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Abstract

This work presents a narrowing calculus that uses strategies to solve reachability prob-
lems in order-sorted conditional rewrite theories whose underlying equational logic is com-
posed of some theories solvable via a satisfiability modulo theories (SMT) solver plus some
combination of associativity, commutativity, and identity. Both the strategies and the
rewrite rules are allowed to be parameterized, i.e., they may have a set of common con-
stants that are given a value as part of the solution of a problem. A proof tree based
interpretation of the strategy language is used to prove the soundness and weak complete-
ness of the calculus.
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1 Introduction

Rewriting logic is a computational logic that was developed thirty years ago [Mes90]. The
semantics of rewriting logic [BMO06] has a precise mathematical meaning, allowing mathematical
reasoning for proving properties, providing a flexible framework for the specification of concurrent
systems; moreover, it can express both concurrent computation and logical deduction, allowing
its application in many areas such as automated deduction, software and hardware specification
and verification, security, et cetera [MMO02, Mes12].

A system is specified in rewriting logic as a rewrite theory R = (¥, E, R), with (X, E) an
underlying equational theory, which in this work will be order-sorted equational logic, where
terms are given as an algebraic data type, and R is a set of rules that specify how the deductive
system can derive one term from another. Many-sorted and unsorted theories can be formulated
as special cases of order-sorted (OS) theories.

Strategies allow modular separation between the rules that specify a system and the way
that these rules are applied. They can be used both to implement and test different algorithms
over a given specification or to drive the search of solutions to reachability problems.

A reachability problem can have the form 3z(¢(Z) —* ¢/(Z)), with ¢, ¢’ terms with variables
in z, or be a conjunction 3z A,(t;(z) —* ¢;(Z)). Reachability problems can be solved by model-
checking methods for finite state spaces. When the initial term ¢ has no variables, i.e., it is a
ground term, and under certain admissibility conditions, rewriting can be used in a breadth-first
way to traverse the state space, trying to find a suitable matching of ¢'(Z) in each traversed node.
In the general case where ¢(Z) is not a ground term, a technique known as narrowing [Fay79|
that was first proposed as a method for solving equational goals (unification), has been extended
to cover also reachability goals [MT07], leaving equational goals as a special case.

Such F-unification algorithm can itself make use of narrowing at another level for finding
the solution to its equational goals. Specific F-unification algorithms exist for a small number
of equational theories, but if the equational theory (3, E) can be decomposed as EgU B, where
B is a set of a_x)ioms having a unification algorithm, and the equations Ejy can | be turned into
a set of rules Ey, by orienting them, such that the rewrite theory E = (X, B, Ey) is admissible
in the sense of the previous paragraph, then narrowing can be used on to solve the E-
unification goals generated by performing narrowing on R. For these equational goals the idea
of variants of a term has been applied in recent years to narrowing. A strategy known as folding
variant narrowing [ESM12|, which computes a complete set of variants of any term, has been
developed by Escobar, Sasse, and Meseguer, allowing unification modulo a set of unconditional
equations and axioms. The strategy terminates on any input term on those systems enjoying
the finite variant property, and it is optimally terminating. It is being used for cryptographic
protocol analysis [MT07], with tools like Maude-NPA [EMMO09], termination algorithms modulo
axioms [DLM™08], algorithms for checking confluence and coherence of rewrite theories modulo
axioms |[DM12|, and infinite-state model checking [BM14]. Recent development in conditional
narrowing has been made for order-sorted equational theories [CEM15] and also for rewriting
with constraint solvers [RMM17].

Conditional narrowing without axioms for equational theories with an order-sorted type
structure has been thoroughly studied for increasingly complex categories of term rewriting
systems. A wide survey can be found in [MH94|. The literature is scarce when we allow for
extra variables in conditions (e.g., [GM86|, [Ham00]), conditional narrowing modulo axioms
(e.g., [CEM15]), or conditional narrowing modulo a set of equations (e.g., [Boc93]).

Narrowing is a technique used to inspect complex concurrent and deductive systems. One
of the weaknesses of narrowing is the state space explosion associated to any reachability prob-
lem where arithmetic equational theories are involved. Satisfiability modulo theories (SMT)
solvers [dMBO8|, an extension of Boolean satisfiability (SAT) solvers that can handle a wide va-
riety of equational theories, including integer and real numbers, may mitigate the aforementioned



state space explosion.

This paper extends in two ways our previous work [AMPP17], where we developed a sound
and weakly complete, i.e., complete with respect to idempotent normalized answers, narrowing
calculus for conditional narrowing modulo Eg U B, i.e., the underlying equational theory E of
the admitted rewrite theories must be decomposable into £ = Ey U B where Ej is a subset of
the theories handled by SMT solvers and B is a set of axioms for the algebraic data types not
handled by the SMT solvers:

1. Strategies. In [AMPP17] we found several sources of state space explosion:

(a) the order of application of the rules,
(b) the application of unneeded rules, and

(¢) that checking a SMT restriction that applied to any state was only possible for can-
didate final states,

that even prevented the state space of some problems from being finite. These problems
can be addressed with the use of strategies

2. Parameters. We also found out that the scope of the calculus could be broadened if we
included the support for parameters in the specifications, i.e., a subset of the variables in
them, either SMT or not, to be considered as common constants that need to be given
a value in the reachability problem, either as a prerequisite or as part of its solution,
allowing, for instance, the fine tuning of a proposed specification.

We have defined a strategy language suitable for narrowing that can be used either to specify
algorithms or to drive the search of solutions to reachability problems. This strategy language
is a subset of the Maude strategy language [MOMV04, EMOMV07, RMPV18|. We have given
a proof tree based interpretation of its semantics, and we have developed a completely new
narrowing calculus that includes this strategy language and the use of parameters, both in the
rewrite theories and in the strategies. Under certain requirements, the calculus is proven to be
sound and weakly complete.

The work is structured as follows: Section 2 presents basic definitions and properties for
order-sorted equational deduction and unification. Section 3 presents rewriting modulo built-in
subtheories and axioms (R/FE). In Section 4 the concepts of built-in subtheory, abstraction,
B-extension, and rewrite theory closed under B-extensions are presented. Also, the relation
— r,B 1s introduced. This relation is closely related to the narrowing calculus to be developed
in Section 7. Then the equivalence of R/FE-rewriting and R, B-rewriting, for rewrite theories
closed under B-extensions, is proved. In Section 5 the strategy language and its semantics are
presented; then, an interpretation of this semantics is proved. In Section 6 we define the concept
of parameterized reachability problem and its solution. In Section 7 the narrowing calculus for
reachability is introduced. Then the soundness and weak completeness of the calculus are proved,
as well as its completeness for some rewrite theories. Section 8 shows several examples of the
use of the calculus. In Section 9, related work, conclusions, and future lines of investigation for
this work are presented. The appendix holds the rest of the proofs of this work. The prototype,
with the running example, can be found at http://maude.ucm.es/cnarrowing.

2 Preliminaries

Familiarity with term rewriting and rewriting logic [BMO06] is assumed. Several definitions and
results from [RMM17| are included in this section.
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Figure 1: Running example. Toast cooking

2.1 Running example

Example 1. Toast cooking will be used as a running example. A toast is well-cooked if both sides
of the toast have been cooked for exactly cookTime (abbreviated to ct) seconds. No overcooking is
allowed. Fresh toasts are taken from a toast bag, and they are cooked using a frying pan that can
toast up to two toasts simultaneously, well-cooking one side of each toast in the pan. There is a
bin, where fresh toasts are put when taken from the bag. A toast in the pan can be returned to the
bin, being flipped in this process. Finally, there is o dish where well-cooked toasts can be output.
There is a limit of fatlTime (ft) seconds to reach the desired final state. In this example, ct
and £t will be the parameters, i.e., they are the variables that represent the common constants
of the specification that must be given a value either by the conditions of the problem or by its
solution.

A Toast (abbreviated to t) can be either a RealToast (rt), represented as an ordered pair of
natural numbers, each one with sort Integer (i), storing the seconds that each side has already
been toasted, or an EmptyToast (et) which has a constant zt, representing the absence of Toasts;
a Pan (p) is an unordered pair of Toasts; a Kitchen (k) has a timer, represented by a natural
number, and a Pan; a Bin (b) is a multiset of Toasts; the bag and the dish are represented by
natural numbers, the number of RealToasts in each one; the System (s) has a bag, a Bin, a
Kitchen, and a dish. When a RealToast is in the pan, the side being toasted is represented by
the first integer of the ordered pair. We will use two auziliary functions, cook and toast (in
lowercase). The rules for Toast cooking are the following:

1. The function call cook(xy,yi) will return the Kitchen obtained from Kitchen xy after y;
seconds, by calling the function toast(vy,yi) for each Toast vy in Kitchen vy.

2. The function call toast(zt,y;) will return zt.

3. The function call toast(rey,ys) will return the RealToast obtained from RealToast Ty
after toasting it for yi seconds, where y; > 0, only if the side of re¢ that is in contact with
the pan gets well-cooked.

4. A fresh RealToast can pass from a non-empty bag to the Bin.
5. A RealToast can pass from the Bin to the Pan if there is room in the Pan.

6. A Kitchen with at least one RealToast in the Pan can cook the RealToasts that are laying
on the pan any given integer number of seconds.

7. A RealToast in the Pan can be returned to the Bin, where it is flipped. This is the only
way that a toast gets flipped.

8. A well cooked RealToast can be taken out to the dish.



2.2 Order-sorted equational logic

Definition 1 (Kind completion). A poset of sorts (S, <) whose connected components are the
equivalence classes corresponding to the least equivalence relation =< containing < s kind com-
plete iff for each s € S its connected component has a top sort, denoted [s], called the kind of
s.

Definition 2 (Order-sorted signature). An order-sorted (OS) signature is a tuple ¥ = (S, <, F)
where:

e (5,<) is a kind complete poset of sorts.

o F'={%4 sn.5 (s1...6n,5)cS5*xs 15 an S*xS-indeved family of sets of function symbols, where
for each function symbol f in X, s, s there is a function symbol f in 3. (s.,]s]-

o X is sensible, i.e., if f is a function symbol in Xy, s, s, [ 15 also a function symbol in
Yo .s, s and [si)] = [s]] fori=1,...,n then [s] = [s].

When each connected component of (S, <) has exactly one sort, the signature is many-sorted.

Example 2. In the cooking example, omitting the implied kind for each connected component
of S, ¥ =(S,<,F) us:

S = {Integer,RealToast, EmptyToast, Toast,Pan,Kitchen,Bin, System},

< = {(RealToast, Toast), (EmptyToast, Toast), (Toast,Bin)},

F={{L_,_liire-{__}¢ t,p) {i_teoe{_s_h pk> {cook}y i,[k]» {toast}, i,[t]s
{_/_/_/_}irxis {#the}

The notation used in F' has the following meaning: {[_, _]}iirt means that there is a miz-
fix function symbol [ _, | such that if i1 and iy are terms with sort Integer then [i1,i2] is a
term with sort RealToast. It is possible to use functional notation for all function symbols, but
miz-fix notation will be used in order to ease the reading.

The order < on S is extended to S* in the usual way: if w = s1...s, in 8™, w' =35} ...s)

in S™, and s; < s, for i = 1,...,n then w < w'. When f € X, € being the empty word, we
call f a constant with type s and write f € ¥, instead of f € X .

A function symbol f in Xy, s, s is displayed as f : s1...s, — s, its rank declaration. Then
f is said to have arity n and end type s. Miz-fiz notation is allowed in 3, where the symbol
is used to identify the position of each s; in s1...s,. If omitted, the usual functional notation
f(s1,...,8,), which is an admitted alternative notation for all functions, is assumed. An S-
sorted set X = {Xs}seg of variables satisfies s # ' = Xs N Xy = 0, and the variables in X’ are
disjoint from all the constants in . Each variable in & has a subscript indicating its sort, i.e.,
s has sort s, which may be omitted when the sort of the variable is not relevant.

The sets Ty s and Tx(X), denote, respectively, the set of ground ¥-terms with sort s and
the set of Y-terms with sort s when the variables in X’ are considered extra constants of . The
notations 7y, and Tx(X') are used as a shortcut for | J,c ¢ Tx s and (J,cg Ts(X)s respectively. It
is assumed that ¥ has non-empty sorts, i.e., Ty s # 0 for all sorts s in S. We write vars(t) or V;
to denote the set of variables in a term ¢ in 75 (&X'). This definition is extended in the usual way
to any other structure, unless explicitly stated. If vars(A) = 0, where A is any structure, A is
said to be ground. A term where each variable occurs only once is said to be linear. For S’ C S,
a term is called S’-linear if no variable with sort in S’ occurs in it twice.

Positions in a term ¢: when a term ¢ is expressed in functional notation as f(¢,...,t,), it
can be pictured as a tree with root f and children t; at position ¢, for 1 <47 < n. Then the root
position of t is referred as € and the inner positions of ¢ are referred as lists of nonzero natural
numbers separated by dots, 41.i2 - - - i,,, meaning the position 4s - - - iy, of ¢;,, where 1 <143 < n.
The set of positions of a term is written pos(¢). The set of non-variable positions of a term
whose root is a function symbol in ¥ is written posy(t). The set of positions of variables from



X in a term is written posy(t). t|, is the subtree of ¢ below position p. t[u], is the replacement
in t of the subterm at position p with a term w. ¢[], is a term with hole that is equal to t
except that in the position p there is a special symbol [], the hole. As an example, if ¢ is
f(g(a,b),c), then t|y is g(a,b), t|l12is b, t[]1.2 is f(g(a,[]),c), and t[d]1.2 is f(g(a,d),c). For
any position p define p.e = p. For positions p and ¢, we write p < ¢ if there is a position r
such that ¢ = p.r, and write p < ¢q if ¢ = p.r and r # e. Trivially p < p because p = p.e.
tlut, ..., Unlp,..p, is the replacement in ¢ of the subterms at the unique positions p1, ..., p, with
the terms uq,...,u,, respectively, where for all 1 < i,j < n if i # j then p; £ p;. We also
write t[u]p if the ordered lists © = wq,...,u, and p = p1,...,p, are known from the context.
tlp = tlps - - - lUpns tlavlplg = tlui[vilpilg - - - [unlvnlp,lg,- Given any ordered list @, which may
have repetitions, we call @ to the set of elements of u. If p = p1,...,p, and p C pos(t) then
tlp = tprs- - tlp, and t|y = {t|p,,..-,t[p,}- vars(t]lp) is the set of variables appearing in the
term with holes t[]5. We also allow the use of holes and replacement in tuples, if T = (t1,...,ty)
then T|; = t1, T|x]1 = (z,t2,...,t,), et cetera.

Definition 3 (Preregularity). Given an order-sorted signature X3, for each natural number n, for
every function symbol f in X with arity n, and for every tuple (s1,...,s,) in S™, let Sy, s, be
the set containing all the sorts s’ that appear in rank declarations in ¥ of the form f: sy ...s), —
s' such that s; < s}, for 1 <i < n. If whenever S, . s, is not empty (so a term f(t1,... t,)
where t; has type s; for 1 < i < n would be a X-term), it is the case that Sfs, . s, has a least
sort, then % is said to be preregular.

Preregularity guarantees that every X-term ¢ has a least sort, denoted Is(t), among all the
sorts that ¢ has because of the different rank declarations that can be applied to ¢, which is the
most accurate classification for ¢, i.e., for any rank declaration f : s1...s, — s that can be
applied to ¢ it is true that [s(t) < s.

A substitution o : X — B, where B C Tx(X), is a function that matches the identity
function in all X' except for a finite set of variables called its domain, dom(c). If B C Tx then
the substitution is ground. We represent the application of a substitution o to a variable x
in X as zo. A substitution o is well-formed if ls(ys0) < s for each variable ys in dom(o).
It is assumed throughout that all substitutions are well-formed. Substitutions are written as
o = {ys, ot Yt —ty}, where dom(o) is {yl,...,y" } and the range of o is ran(o) =
Ui, vars(t;). We will write o = {g — ¢} as a shorthand if both § and ¢ are known. We write
o : D — B, where D is a finite set of variables, to imply that dom(c) = D. The identity
substitution is displayed as none. A substitution o where dom(o) = {zi ...,z } (n > 0),
:L'f;iO' = y; e X, forl <i<n, and y§7 # ygj for 1 < i < j < nis called a renaming, with
inverse o1 = {y; — xii}f‘:l, being none the trivial renaming. The restriction oy of o to a set
of variables V is defined as zoy = xo if x € V and zoy = x otherwise. The deletion o\y of a
set of variables V from o is defined as zo\y = xo if © € dom(o) \ V and xo\y = z otherwise.
Substitutions are homomorphically extended to terms in 7x(X) and also to any other syntactic
structures unless explicitly stated. The composition of two substitutions o and ¢’ is denoted
by oo’, with z(c0’) = (zo)o’ (left associativity). Their closed composition, denoted by o-0’, is
defined as o0’ = (aa’)\mn(g). For a substitution o, if 0o = o we say that o is idempotent. 1t is
assumed throughout that all substitutions are idempotent, usually because dom(o)Nran(o) = (.
For substitutions o and o', where dom(o)Ndom(c’) = ), we denote their union by o Uo’. A
contert C is a A-term of the form Azl ---27 .t, with t € T5,(X) and {z} ,...,27 } C vars(t).

A Y-equation has the form | = r, where | € Tx(X),, 7 € Tu(X)s,, and 55 =< s,. A
conditional Y-equation is a triple | = r if C with [ = r a Y-equation and C' a conjunction of
Y-equations. We call a ¥-equation | = r: regular iff vars(l) = vars(r); sort-preserving iff for
each substitution o and sort s, lo in Tx(X)s implies ro in Tx(X)s and vice versa; left (or right)
linear iff [ (vesp. r) is linear; linear iff it is both left and right linear.

A set of equations E is said to be regular, or sort-preserving, or (left or right) linear, if each
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Figure 2: Deduction rules for OS equational logic.

equation in it is so.

2.3 Order-sorted equational theories

Definition 4 (OS equational theory). An OS equational theory is a pair € = (X, E), where X
is an OS signature and E is a finite set of (possibly conditional) ¥-equations of the forms l =r
orl =r if Niuy li = 1. All the variables appearing in these Y-equations are interpreted as
unwversally quantified. We write | = r if C as a shortcut.

Example 3. The OS equational theory for the toast example has ¥ = (S, <, F') and E is the set
Ey of equations for integer arithmetic (not displayed), together with the equations:

(T3 Yb); 20 = To; (Yb3 2b)s Tbs Yo = Ybs T, Toi Zt = Tp, TelYe = YTt

stating that Bin is a multiset of Toasts and that the position of the Toasts in the Pan is irrelevant.

Definition 5 (Equational deduction). Given an OS equational theory € = (X, E) and a X-
equation | = r, B+ 1| = r denotes that | = r can be deduced from & using the rules in Fig-
ure 2 [BM06, BM12]. We write l <3g r iff EF 1 =1 can be deduced in a single step.

Definition 6 (Equational equivalence of substitutions). Given two substitutions v and &, we
write v =g 6 iff (i) dom(y) = dom(d) and (ii) for each variable x € dom(vy), zv =g xd and
vars(xzy) = vars(xd).

An OS equational theory £ = (X, E) has an initial algebra (Ts/g or Te), whose elements are
the equivalence classes [t]¢ of ground terms in Ty identified by the equations in E.

We denote by Ts/p(X), or Te(X), the algebra whose elements are the equivalence classes of
terms in 7x(X) identified by the equations in E.

The deduction rules for OS equational logic specify a sound and complete calculus, i.e., for all
Y-equations | =7, E+ [ =riff | = r is a logical consequence of E (written E F [ = r) [Mes97];
then we write [ =g 7.

Proposition 1 (Instance deduction). Let (X, E) be an OS equational theory. For each Y-
equation | = 1 in 3 and each substitution o, if E =1 =r then E + lo = ro using the same
number of deduction steps.

Proof. Immediate by induction. O

A theory inclusion (X, FE) C (X', E’) is called protecting iff the unique X-homomorphism
Ts e — Tsy/prls to the Y-reduct of the initial algebra Ts /gy, i.e., the elements of Ty g/ that
consist only in function symbols from ¥, is a ¥-isomorphism, written Ty/p =~ Ty /pr|s.

2.4 Unification

Given an OS equational theory (X, E), the E-subsumption preorder <p on Tx(X) is defined
by t < t' if there is a substitution o such that ¢ =g t'o. For substitutions o, p and a set of
variables V we write py <p oy, and say that o is more general than p with respect to V, if there
is a substitution 7 such that dom(o) N dom(n) = 0, ran(py) = ran((on)y), and py =g (on)y.



When V is not specified, it is assumed that V = dom(p) and p =g o-n. Then o is said to be
more general than p. When FE is not specified, it is assumed that E = ().

Given an OS equational theory (X, E), a system of equations F' is a conjunction A", 1 =r;
where, for 1 < i <n, [; = r; is a X-equation. An F-unifier for I’ is a substitution ¢ such that
dom(c) C V,,, and ;o =f rio, for 1 <i < n. If none is an E-unifier for F' then we say that
F'is trivial. The condition in a conditional equation is a system of equations.

Definition 7 (Complete set of unifiers). For F a system of equations and vars(F) C W, a
set of substitutions CSUEV(F) is said to be a complete set of E-unifiers of F' away from W
iff each substitution o in CSUW(F) is an E-unifier of F, for any E-unifier p of F there is a
substitution o in CSUW(F) such that pyy <g ow, and for each substitution o in CSUYW (F),
dom(o) C vars(F) and ran(c) "W = (.

The notation CSUg is used when W is the set of all the variables that have already appeared
in the current calculation, preventing the collision between new variables from the E-unifier and
variables already used in the calculation. A substitution o in CSUg(F) is always idempotent
because dom(o) N ran(o) = 0.

This notion of complete set of E-unifiers was introduced by Plotkin [Plo72]. An E-unification
algorithm is complete if for any given system of equations it generates a complete set of E-unifiers,
which may not be finite. An FE-unification algorithm is said to be finitary and complete if it
terminates after generating a finite and complete set of solutions.

3 Conditional Rewriting modulo built-ins and axioms

This section introduces the concept of signature with built-ins. Then, rewriting and rewriting
modulo, both with built-ins, are defined.

Definition 8 (Signature with Built-ins [RMM17]). An OS signature ¥ = (S, <, F') has built-in
subsignature o = (So, <, Fy) iff:

b EO - 27
e > is many-sorted,
e Sy is a set of minimal elements in (S, <), and

e if f:w— s € Fy, where F1 = F\ Fy, then s is a sort not in Sy and f has no other typing
m 2g.

We let Xy = {Xs}sesy, X1 =X\ Xy, S1=5\50, X1 =(5,<,F1), He(X) = Te(X) \ Ts, (Xo),
and Hy = Ts \ Ts, -

If ¥ has a built-in subsignature Yo, then the restriction of Ty /g to the terms in Hy, is denoted
by Hs /g or He, and the restriction of 75/ p(X) to the terms in Hy(X) is denoted by Hy /(X))
or He(X).

Definition 9 (Rule). Given an OS signature (2, S, <) with built-in subsignature (X9, Sp), a rule
is an expression with the form c : 1 — rif Nl l; = ri | ¢, written ¢ : 1l — rif | = 7| ¢ or
c:l—rif C as a shortcut, where:

e c is the alphanumeric label of the rule,
e [, the head of the rule, and r are terms in Hx(X), with ls(l) =< Is(r),

o for each pair l;,r;, 1 <i<n,l; is a term in Hx(X)\ X and r; is a term in Hx(X), with
Is(l;) =< ls(r;), and



o ¢ € QF(Xy), the set of quantifier free formulas made up with terms in Ts,(Xo), the
comparison function symbols = and #, and the connectives V and A.

The symbol = (that can be defined with respect to =, #, Vv, and A) will also appear in this
work. All the variables appearing in a rule ¢, vars(c), are interpreted as universally quantified.
Three particular cases of the general form are admitted: ¢: 1 — rif N4l — ri, c: 1 —rif &,
and the unconditional case ¢ : 1 — r. We will use the label of a rule alone, as a reference of the
whole rule, when there is no need to make the full rule explicit.

Definition 10 (Subterms, holes, and replacement in a formula). We extend the use of subterms
and holes to formulas. If ¢ is a formula from QF (X)), i is a positive integer, p is a position,
and t is a term, then ¢|; p is the subterm that appears at position p in the term i of @, the tuple
formed by all terms that appear in ¢, taken from left to right, ¢[|;, consists in the replacement
in ¢l of its subterm at position p with [|, and ¢[t];, consists in the replacement in ¢|; of its
subterm at position p with t.

Definition 11 (B-preregularity). Given a set of X-equations B, a prereqular OS signature X is
called B-preregular iff for each X-equation v = v in B and substitution o, ls(uo) = Is(vo).

Definition 12 (Conditional rewrite theory with built-in subtheory). A conditional rewrite the-
ory R = (X, E, R) with built-in subtheory and azioms (X9, Ey) consists of:

1. an OS equational theory (X, E) where:

¥ =(5,<,F) is an OS signature with built-in subsignature 3o = (So, <, Fp),

E = EyUB, where Ey is the set of Xo-equations in E, the theory inclusion (3¢, Fy) C
(X, E) is protecting, B is a set of reqular and linear equations, called axioms, each
equation having only function symbols from Fy and kinded variables,

e there is a procedure that can compute CSUp(F') for any system of equations F,

e > is B-preregular, and
2. a finite set of uniquely labeled alphanumerical rules R.

Under this definition of Ey and B, if v and v are terms in Ty, and v =p v then u = v.
Condition number 2 will be relaxed, but not removed, later in this work. From now on we will
write “rewrite theory” as a shortcut for “conditional rewrite theory with built-in subtheory and
axioms”.

The transitive (resp. transitive and reflexive) closure of the relation —>}%, inductively defined
below, is denoted —7, (resp. —7%).

Definition 13 (R-rewriting). Given a rewrite theory R = (X, Eo U B, R), a term t in Hy, a
position p in pos(t), arule c : 1l — rif Nyl = 7| ¢ in R, and a substitution o : vars(c) — T,
the one-step transition ¢t —% t[rol, holds iff t = t[lo],, lic —% rio, for 1 <i<mn, and Ey F ¢o.
Given a rewrite theory R, we call u reachable from t in —% iff t =% w.

We write t ——! ¢[ro], when we need to make explicit the rule, position, and substitution.
¢,p,0 R

Any of these items can be omitted when it is irrelevant. We write t —! v to express that there
co

exists a substitution ¢ such that ¢ —6>1 v. For every rewrite step ¢ —>11Q v there exists a closed
c,o-

proof tree witnessing it, in the sense of [LMMO5].

Example 4. In the cooking example, Ey is the theory for integer arithmetic, B is the set
of axioms in Ezample 3, and R 1is the following translation of the rules for cooking, shown
in FExample 1, where the used abbreviations, as established before, are i — Integer, p — Pan,

10



rt —RealToast, t — Toast, k — Kitchen, b —Bin, s — System, and ct; — cookTime. The
subindex 1 will be omitted from now on, for a better readability of the examples:

[kitchen] : y; hyy vy — cOOK(Y; hyt Vg, 2) if 2 >0

[cook] : cook(y; hyt v, 2) — y + z; hly vy if toast(hyt,2) — hly Atoast(vg,z) — v

[toastl] : toast(zt,z) — zt

[toast2] : toast([a,b],z) — [a+ z,blif a>0Aa+z=ct

[bag] : n/xv/gx/ ok — (n—1)/[0,0];zv/gx/ 0k if n >0

[pan] : n/hyy; xp/y; 2t vy )0k — n/xy/y; hey vy [0k

[bin] : n/xv/y; [a,b] vi/ok — n/[b,a]; xp/y; zt vy [ ok

[dish] : n/xy/y; [cti, cti] vy /ok — n/zy/zt vy/ok + 1

+

The transitive closure of the relation —>}3 /B inductively defined below, is denoted —7, /B

The relation — g/ is defined as —p/p= (—>;/E U=pg).

Definition 14 (R/E-rewriting). Given a rewrite theory R = (X, Eo U B, R), terms t,v in Hsx,
and a rule ¢ : L — rif Nyl — 7| ¢ in R, where vars(c) Nwvars(t) = 0, if there exist a term u
in Hs, a position p in posy, (u), and a substitution o : vars(c) — Ts such that t =g u = u[lo]y,
ulrol, =g v, lic —g/p rio, for 1 <i <n, and Ey F ¢o then we say that the one-step modulo
transition ¢ _>}%/E v holds and we write (t,v) 6—>}2/E.

The position p cannot belong to posy, (u), because as [ is a term in Hx(X) then lo is a

term in Hy, hence not in Tx,. We write ¢ ——! v when we need to make explicit the
¢,u,p,0 R/E

rule, matching term, position, and substitution. Any of these items can be omitted when it is
irrelevant.
Rewriting modulo is more expressive than rewriting (—>}3§—>}%/E): from Definitions 13 and

14 it is clear that —>}%§—>}%/E; in the next example we prove that —>}%/E§Z—>}%.

Example 5. Let us assume a rewrite theory R = (X, Eo U B, R), where Sp = {n}, 3¢ has
constants 0, 1, 2, and a binary function symbol + :nn —n; By = {z+y =y+z};
f and g are function symbols in 3¥1; B = {f(z,y) = f(y,z)}; and the only rule in R is c :
f2+4x,0) = g(x). Then f(0,1+2) cannot be rewritten in R because (0,14 2) # f(2+x,0)0
for any substitution o, but f(0,1+2) —>}%/E g(1) with 0 = {x — 1}, because 1 +2 =g, 2+ 1, so
f(071+2) —Eo f(072+1) =B f(2+1’0) = f(2+$70)0-'

4 Abstractions, B-extensions, and R, B-rewriting

Although rewriting modulo is more expressive than rewriting, whether a one-step modulo tran-
sition t —>}R /B Y holds is undecidable, in general, since E-congruence classes can be infinite.
We address the issue in this section, where two simpler relations, —>}%B and —p p [GKO1| are
now defined. Under several requirements, rewriting with these new relations is equivalent to
rewriting modulo E, i.e., %}%,B:_)}%/E and — g p=—rg/p. The main difference between —>}%/E
and —L 5 is that while the first one uses matching modulo E, the second one uses matching
modulo B, which is computable. Also the concepts of abstraction of built-in and B-extension
are presented.

Most of the definitions and results presented in this section can be found in [Mes17, RMM17],
or in our previous work [AMPP17|. As these definitions and results are key to the narrowing
calculus shown in Section 7, they are recalled here.

4.1 Abstractions

Definition 15 (Abstraction of built-in [RMM17]). If ¥ D Xg is a signature with built-in sub-
signature, then an abstraction of built-in is a context C = )\a:il cewy 4%, with n > 0, such that
t° € Ts, (X) and {z} ,....27 } = vars(t°) N Xp.

817
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Lemma 1 shows that there exists an abstraction that provides a canonical decomposition of
any term in 7x(X), in particular for any term in Hx(X), since Hx(X) C Tu(X).

Lemma 1 (Existence of a canonical abstraction [RMM17|). Let ¥ be a signature with built-in
subsignature ¥g. For each term t in Ts(X) there exist an abstraction of built-in )\xil sy A0
and a substitution 6° : Xo — Tx,(Xo) such that (i) t = t°6° and (i) dom(6°) = {x},,... 2l

are pairwise distinct and disjoint from vars(t); moreover, (i) t° can always be selected to be

So-linear and with {l‘;l, ..., xy } disjoint from an arbitrarily chosen finite subset Y of Xj.

Definition 16 (Abstract function |[RMML17]). Given a term t in Tx(X) and a finite subset )
of Xy, define abstracts, (t,Y) as (Ax}, -z t°;0% ¢°) where the contest Az} -7 t° and the
substitution 0° satisfy the properties (i)-(iii) in Lemma 1 and ¢° = N (¢} = 2% 0°). Ift €
Ts, (X\Xp) then abstracts, (t,Y) = (\.t; none; true). We write abstracts,, (t) when Y is the set of
all the variables that have already appeared in the current calculation, so each xél is a fresh vari-
able. For pairs of terms and pairs of lists terms we use the compact notations abstracts, ((u,v)) =
(M@, 9)-(u®,0%); (03, 05); (90, 4)) and abstracts, ((4,0)) = (MT,9).(a°,0°); (05, 03); (65, 7)),

respectively.

Definition 17 (Set of topmost Xo-positions [AMPP17]). Let R = (X, Eg U B, R) be a rewrite

theory with built-in subtheory (X0, Eo), and t a term in Hx(X). The set of topmost X positions

of t, tops, (1), is topy,(t) = {p | p € pos(t) AN Ji € N(p = q.i AN t|q € Hs(X) At € Te, (X))}
We extend the definition to lists of terms: topy, (t1,...tn) = {i.p| 1 <i < nAp € tops, (L)}

Proposition 2 (Relation between X-terms and abstractions [AMPP17]). Let R = (X, E, R) be
a rewrite theory with built-in subtheory (X9, Eo), and t be a term in Hx(X), with abstracty, (t) =
(AZ.t°;0°% ¢°). If 0 is a substitution such that Ey F ¢°o, then t°c =g, to.

Proposition 3 (Invariants of topy, under Ep-equality [AMPP17]). Let R = (¥, Eo U B, R) be
a rewrite theory with built-in subtheory (3o, Eo). If t and t' are two terms in Hx(X) such that
t =g, t' then:

1. tops, (t) = topy, ('),
2. Is(tly) = Is(t']y) and t|g =g, t'|q for all positions q in tops, (t),
3. tlg =g, t'ly for all positions ¢' such that t|y € Hx(X), and

4. if tOpEo(t) ={q1,...,qu} thent' = t[t/|Q1]Q1 T [t/|QHJQn'

Proposition 4 (Relation between abstracts, and topy,, [AMPP17]). Let R = (¥, Eo U B, R)
be a rewrite theory with built-in subtheory (X0, Eo). If t is a term in Hx(X), abstracty, (t) =
(AZ.1°;6°;¢°), where T = x1,...,2, and t° = t[x1]q, - - - [Tnlq,, then (i) tops,(t) = {q1,. .., qn},
and (ii) for every substitution o : T — Ts,(Xo) it holds that topy, (t°c) = topy, (t).

4.2 B-extensions

The concept of B-extension, together with its properties, has been studied in [GKO01], and [Mes17|.
Now, we allow for repeated labels in rules; later we will restrict this repetition. We will use sub-
scripts or apostrophes, e.g. ¢1 or ¢/, when we need to refer to a specific rule with label c.

Definition 18 (Rewrite theory closed under B-extensions). Let R = (X, EgU B, R) be a rewrite
theory, where R may have repeated labels, and let ¢ : 1 — rif C be a rule in R. Assume, without
loss of generality, that vars(B)Nwvars(c) = (). If this is not the case, only the variables of B will
be renamed; the variables of ¢ will never be renamed. We define the set of B-extensions of ¢ as
the set:

12



Extp(c) = {c: ulll, = u[r],if C |u=v € BUB Y Ap € posy(u) \ {e} A CSUE(l,ul,) # 0}
where, by definition, B! = {v=u|u=1v € B}.

All the rules in Extp(c) have label c. Given two rules ¢ : | — rif C and ¢y : ! — r'if C with the
same condition C, ¢ subsumes c; iff there is a substitution § such that: (i) dom(d)Nvars(C) =0,
(11) ' =g 15, and (1) ' =p rd.

We say that R is closed under B-extensions iff for any rule with label ¢ in R, each rule in
Extp(c) is subsumed by one rule with label ¢ in R.

Meseguer [Mes17| shows an algorithm that given a rewrite theory R = (X, Eg U B, R) con-
structs a superset R that is finite and closed under B-extensions, called a finite closure under
B-extensions of R. It is important to remark that the rules in Eztg(c) do not rename the
variables from c.

Definition 19 (Finite closure under B-extensions of a rule). Given an equational theory (X, EoU
B), with built-in subtheory (X0, Eo), and a rule with label ¢, we denote by cp the set of rules in
any finite closure under B-extensions of the rewrite theory R = (3, Eg U B, {c}).

Definition 20 (Associated rewrite theory closed under B-extensions). Given a rewrite theory
Ri1 = (X, Eo U B, R) with no repeated rule labels, any rewrite theory Ro = (X, Eg U B, U cr ¢B)
is called an associated rewrite theory closed under B-extensions of Ri.

Example 6. In the toast example, R is closed under B-extensions because the subterms of the
equations in B have sorts toast, tray, or pan, and no head of any rule in R has any of these
sorts.

Example 7. Consider a rewrite theory R1 = (X, Eg U B, R) with only one sort s, R = {l :
f(a,b) — ¢}, where f is associative and commutative (Ey = 0). Then, one possible instance
oflp islp = RU{l : f(zs, f(a,b)) — f(xs,c)}, because the left side of the associative rule
fxs, fys,zs)) = f(f(zsf,ys),zs) has a subterm at position 2, f(ys,zs), that matches with
f(a,b), so Ry = (X, EgUB,lp) is an associated rewrite theory of Ry closed under B-extensions.

By definition, associated rewrite theories closed under B-extensions are allowed to have
several rules with the same alphanumerical label. The only condition is that all the rules
sharing a label must conform a finite closure under B-extensions of a rule. Rewriting modulo
does not change if we use a rewrite theory or any of its associated rewrite theories closed under
B-extensions.

Lemma 2 (Equivalence of R/E-rewriting and Rp/E-rewriting). If Rp = (X, EgUB, Rp) is an
. . o . 1 o 1
associated rewrite theory of R = (X, EgU B, R) closed under B-extensions, then —R/E= Ry /E

and —)R/E:—)RB/E,
Proof. Since R C Rp then —>}2/Eg—>}{B/E and =g/ EC—Ry/E-
In order to prove —>}%B/E§—>}%/E and —p/pC— R,/ E, We will prove a stronger pair of asser-

tions:

(i) if t —! v, where ¢ in Rp, then t —! v using the same number of rewrite steps,
&Y% Rg/E GUR/E
and

(ii) if t =g, /g v then t =g g v using the same number of rewrite steps.

We use induction on the number of —>}%B /E rewrite steps of the derivations, including those in
the condition of the rule.
Base cases:

13



(i) one rewrite step: t ——! v with a rule ¢ : | — 7if Al_yl; — r; | ¢ in Rp. As
¢,u,p,o RB/E *
there is only one rewrite step in the derivation, it must be the case that lijc =g, /g ric

in zero rewrite steps, 1 < ¢ < n. Then l;oc =g r;0, so l;o —*R/E Ti0 in zero rewrite steps,
1 <i<n. Also, t =g u = u[lo]p, u[fol], =g v, and Ey F ¢o.

e If the rule ¢ belongs to R then t ——! v using the same derivation that has only
¢,u,p,0 R/E

one rewrite step,

e clse ¢ belongs to cp\R, so there is another rule ¢ : | — r if Niili > 71| ¢in R
such that, by definition of cg, | = w(l]; and 7 = w[r]z, where w = w’ € BU B™! and
7 € poss(w) — {e}.
Now, t =g u = ullo], = uw[l]zo], = ulwo(lo]s],. Then u,; = lo, so u = ullo], ;.
As ulrolp = ulwolrolzl, = uwlrlzol, = u[fol, =g v, lioc —g/E 1o in zero rewrite

steps, 1 <i <n, and Ey F ¢o, then t ———1 v in one rewrite step.
¢,u,p-p,0 R/E

ii) zero rewrite steps: t— g, /g v because t =g v. Then, also t— g/ gv.
Rp/ R/
Inductive step:
(i) t —!
&UP.9 R /E

Then, lioc =g, /g rio with less than n rewrite steps, 1 <i < n so, by L.H, ljc —g/g rio,
1 <i¢ < n, using the same number of rewrite steps in each derivation.

vin n > 1 rewrite steps, with a rule ¢ : [ — 7 if N li = ri | ¢ in Rp.

Now, using the same proof shown in the base case, we get t ——! v if ¢ in R, or else
¢,u,p,o R/E'
t ———1 v using the same number of rewrite steps.
¢,u,p.p,0 R/E
(ii) t—= gy E v in n > 0 rewrite steps. We distinguish two cases:

. t—>}%B/Ew—>RB/EU. If the derivation w— g, /pv1 has no rewrite steps, then w =g v, so
t—>}%B/E v and the proof in subcase (i) holds. Else, the derivations of both t—>}%B/E w

and w— g, /p v have less than n rewrite steps so, by L.H., t—>}%/Ew and w— g/ pv with
derivations using the same number of rewrite steps as the original ones, and then
t— r/pv With a derivation that uses n rewrite steps.
ot — ! v in n > 0 rewrite steps. This case is exactly the same as the one in the
c¢,u,p,o RB/E
subcases (i) of the base case and the inductive step, so the same proofs hold.

O

Our definition of the relation —>}% g will require the use of a single representative for all the
instances of each Ep-equivalence class that may appear in the topy, positions of the subterm
that we are rewriting. We use some auxiliary definitions needed for the proofs in the Appendix.

Definition 21 (Representative of a Yo-term over a set of ¥ terms). Let t be a term in Tx,
and let & = {u1,...,un} C Tx, such that t € 4. We define the ¥o-representative of t over 4 as
reps (t) = Unnin({ilus=p,t)})- We homomorphically extend the definition to lists and sets of terms.

Definition 22 (Representative of a term over a set of ¥ terms). Let t be a term in Ty, where
tops,, (t) = p, and let 4 C Ts, such that t|; C 4. We define the representative of t over 4, as
repq (t) = tlreps (t|p)]lp. We homomorphically extend the definition to lists and sets of terms.

Then rep, (@) will be a set containing one element for each Ep-equivalence class that appears
in 4, the representative of the class over .
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Remark 1. From the previous definitions it is immediate that:
o ift is a term in Ty then t =g, repy(t),
o ift is a term in Tx, then rep?(t) = repy(t),
o if topy,(t) = p and |, C 0 then repg(t]p) = repy(tlp) S repa(a),
e ift is a term in repy () then repy(t) =t, and
e if uy and ug are two elements of repy () and u; =g, uz then u; = us.

Definition 23 (Representative of a substitution over a set of Yo-terms). Let o be a ground sub-
stitution and let U C Ty, such that Uzedom(g){(za)|t0p20(w)} C u. We define the representative
of o as rep;(0) = {z > repy(20) | z € dom(0)}, i.e., each topy -term in o is replaced by its
representative with respect to 4, so o =g, repy (o).

Definition 24 (Representative of a term). Let t be a term in Ts, where topy, (t) = p. We define
the representative of t as rep(t) = repy (t).

The transitive closure of the relation —>}2 5, inductively defined below, is denoted —>E g The
relation — g p is defined as —r p= (—>EB U=pg).

Definition 25 (R, B-rewriting). Given a rewrite theory R = (X, Eg U B, R), terms t,v in Hyx,
and a rule ¢ : 1 — rif N'yli = i | ¢ in R, if abstracts, (1) = (AZ.1°;0°;¢°) and there exist
a position p in posy, (t) and a substitution o : T U wvars(c) — Ts such that rep(t|,) =p °0,
v =p tlrolp, lic =g B 1o, for 1 <i<n, and Ey F (¢ A ¢°)o, then we say there is a one-step
transition t _>}%,B V.

We write t —!' v, when we need to make explicit the rule, position, and substitution.
¢,p,0 R7B
Any of these items can be omitted when it is irrelevant. The following examples show the

motivation behind all the previous definitions.

Example 8. We justify the need of rep: consider a rewrite theory R where B = (), Ey is
integer arithmetic, there is one non-Eqy sort s, with two function symbols g : s — s and f :

ss — s, and R = {c: f(ys,ys) — ys}, so abstracts,(f(ys,ys)) = (A\.f(ys,ys); none; true).
Let t = f(9(3),9(1 +2)). t does not match f(ys,ys), but rep(t) = f(g(3),9(3)) does, with
o={ys = g(3)}, sot _>}%,B 9(3). Ast =g rep(t), because t =g, rep(t), and B = () then also

t_>11‘2/E 9(3).

Example 9. In example 7, R1 = (X,B,{l : f(a,b) — ¢}) and R2 = (X, B,lp), as Ey =
(), no abstraction of terms has to be performed when rewriting with _>}%2,B (abstracts, (1) =
(A\.I; none; true) for any left side | of a X-rule). Then, the term f(f(a,a),b) is not a normal
form in _>}%2,B because lp has the rule | : f(xs, f(a,b)) = f(xs,c) that can be applied on top
of the term f(f(a,a),b) with matching x5 — a, modulo associativity and commutativity, leading

to f(f(a,a),b) —>}%2’B f(a,c). Also f(f(a,a),b) —>}21/E f(a,c) and f(f(a,a),b) _>11122/E f(a, o),
because f(f(a,a),b) =g f(a, f(a,b)).

The added rule [ : f(zs, f(a,b)) — f(xs,c) has allowed us to imitate —>}21/E (:—>}%2/E) with
— Ro.B"
Definition 26 (Normalized substitution). Given a rewrite theory R = (3, E, R) with built-in

subtheory (2o, Eo), a substitution o is R/E-normalized (resp. R, B-normalized) iff for each
variable x in dom(o) there is no term t in Tx(X) such that xo —>}%/E t (resp. xo _%%,B t).
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Theorem 1 (Equivalence of R/E and R, B-rewriting). If R = (X, Ey U B, R) is an associ-
ated rewrite theory closed under B-extensions of Ro = (3, Ey U B, Ry), then %}%732%}3/15, and

—R,B="7R/E-
Proof. There is a special case to consider when there are no rewrite steps involved in the deduc-
tions.
() _>}2,Bg_>}%/E and =g BC—R/p-

In the special case, t =g g v with no rewrite steps. As —r = (—>E,B U =pg) then t =g v,
so t —g/p v. The other cases are proved using induction in the total number of —>}%7 p rewrite
steps in the derivation.

e Base case

t —>}37B tlro], =g v with only one _ﬁ%,B rewrite step in the derivation, where ¢ : [ —
rif Nityli = ri | ¢ in R, abstracts, (1) = (Az.1°;0°,¢°), T = z1,...,2p, [° = [[T]g,
¢° = Nj—1(z; =lg;)), p in posy, (t), and o : T U vars(c) — Ts such that rep(t|,) =p I°0,
v =g tlrol,, lo =g 7o, and Ey F (¢ A ¢°)o.

As Eg E ¢°c thenlo = lo(lo|g, g - - [0gnlan =E lo[x10]q, - - - [Tn0]q, = 1°0 =p Tep(t]y) =g,
tlp, so lo =g t|p.

As t|, =g lo and lo =p 7o, then t = t[t|,], =g t[lo], =% t[rol, =g v with rule ¢ in R,
that is, t —>}%/E v, 80t —pR/p V.

e Induction case

There are two subcases to consider:

1.t —>}_—€7B tiro]p, =g v with several —>}~2,B rewrite steps in the derivation. As in the base

case, c: L = rif NiZjli = ri|¢in R, abstracts, (1) = (A\2.1°;0°,¢°), T = x1,...,Tp,
1°=1[7]g, ° = Nj=1(zj = llg;)), p in posy, (), and o : T U vars(c) — Tx such that

rep(t|y) =p I°0, v =p t[rol,, lo =g 7o, and Ey F (¢ A ¢°)o.

By induction hypothesis l;c —g/p rio, for 1 <i < m. As in the base case, Ey F ¢o
and t|, =g lo, so t = t[t|,], =g t{lo], =% trol, =g v, ie., t —>}%/E v, 80 t = R/p V-
2.t —>}%’B U —>J]SL7B w =g v. By the previous subcase ¢ —>}%/E U —>J}57B w =g v, and, by

LH. ¢t —>}%/E U _>E/E w=guv,ie.,t —>E/E w=pgv,0ort—pg/pv.

(1) —>}%/Eg—>}_-€73 and —g/pC—R B-
In the special case, t — /g v with no rewrite steps because t =g v. As =g p= (%E s Y=E)

then t — g g v. The other cases are proved using induction in the total number of —>}%/E rewrite
steps in the derivation.

e Base case: ¢ _>}1R/E v with only one —>}%/E rewrite step in the derivation using arulec: [l —
rif Cin R, where C = A", l; = 1; | ¢, and a substitution 0. We can assume that c is a
rule in Ry since any _>}1R/E step given at position p of t” using a rule ¢; : w[l]; — w(r]y if C
in R\ Ry can also be achieved using rule ¢ at position p.q of t’, s0 t =g t" =L u =g v,
t" =t"[lo]p, u=t"[rol,, lo =g 7o, and Ey F ¢o.

By Proposition 7 there exists a term ¢’ in Hy such that ¢t =p ¢/ =g, t =% u =g v.
We have ¢t <Zp -« <255 ¢/, where az; (linear and regular), for 1 < ¢ < [ has the form
w; = wy, let @z be w; = w;, so each topy, subterm of ¢ is moved by az; ---an and
becomes another topy, subterm of ¢. Then, @z; - - - @Z7 moves the topy, subterms of ¢” in

the opposite way, so there exists a term tg in 7y such that ¢” ﬂB @)B to =g, t.

We have t =g, to =p t" = t"[lo]p, so t"|, = lo. The more general case, where t) =p
t"|p, =p lo is studied in Theorem 2 and Corollary 2 in [Mes17|, where it is proved that
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there is a position ¢ in pos(tp), a rule ¢y : lp — 79 if C'in R, maybe the original ¢, and
a substitution og, such that to|, =p looo, to[rooolq =B u, and Coy = Co, which is also
valid for our particular case where t”|, = lo. As, by definition of rule, Iy € Hx(X), then
q € posy, (to), so tolq =g, tlq- Let tops,(tly) = 2. Then repy _ is the function that
given a term in 7Ty returns the same term with each topy, term on it replaced with the
representative for that tops, term in rep(t|q), if it exists, so rep(tlq) = repy . (tolq) =5

repy, . (looo).

Let abSthtzl(lo) = <)‘gl07085¢8>7 g = Y1, Yk, l8 = lO[ﬂ]aa d)o = /\?:1 Y; = l0|0j~

Define o’ : dom(og) U — Tx ast if 2 = y; € § then 20" = repy _(lo|o,00) else zo" =

rept|q‘2(zao)(:EO zog). As, for 1 < j <k, yjo’ = rept|q'2(lo\ojag) =Eo lolo;00 =E, lolo,; 0,

because § N V|, = 0, then Ey F ¢°0’. Also, as Cog = Co and if z € dom(og) then
J _ _

zo! =g, zop then lo’ =g, log =g Foy =g, 7o', i.e., lo' =g 7o', and ¢o’ =g, oy = ¢o, so

Ey E ¢o’. As ¢o’ and ¢°0’ are ground, because ey, is replacing each ground subterm

with another ground subterm, then Ey E (¢ A ¢°)o’.

As
= lofls0" = loo’[|5 = repy, . (looo[]s), and
— yjo’ = repy, (lolo;00), for 1 < j <k,
then 180/ = lo[madl = Tepﬂqﬁ(loao[lo‘aao]a) = T‘epﬂq‘é(l()[lo‘a]aao) = T’epﬂq‘i(loag) =B

rep(tly), ie., rep(tly) =p o’ so, as t[roo’ly =g, tlroooly =g, tolrooolq =B v =g v,
i.e., troo’l; =g v, we have t —p p v.
Induction case:

again, there are two subcases to consider:

1.t —>}%/E tlro]p =g v with several —>}3/E rewrite steps in the derivation. The proof
is the same as the one in the base case, except that instead of having lo’ =g 7o’
now we have l;c —pg/p rio, for 1 <i < m, so by LH., as (l;;r;)0 = (l;,r;)0’, also
lio' =g p rio’ hence t —>}%7B v.

2.t —>}{/E U —>J}%/E w =g v. By the previous subcase ¢ —>}{,B U —>E/E w =g v, and, by
ILH., ¢t —>}%7B U —>E7B w=guv,ie,t —>*R7B w=gv,0ort—pRrBv.

O]

Corollary 1. If R = (3, Ey U B, R) is an associated rewrite theory closed under B-extensions,
then any substitution is R/E-normalized iff it is R, B-normalized.

Proposition 5 (Decomposition of a normalized substitution). Let R = (X, Ey U B, R) be a
rewrite theory with built-in subtheory (X0, Eo). If o is an R/E-normalized substitution and
o = o1 - 02, with dom(o1) N (ran(o1) U dom(o2)) = 0, then o1 and o2 are R/E-normalized.

Proof. We prove that each substitution is normalized by reductio ad absurdum:

e If 0y is not R/E-normalized, then there exists a variable z in dom(o1) C dom(o) and a
term ¢ such that xzoq is in Hy, so xo1 = xo109 = x0o, and zoq _>1112/E t. As xo1 = zo, then

also zo —>}{/E t hence, as x is in dom(o), o is not R/E-normalized, a contradiction.

e If 0y is not R/FE-normalized, then there exists a variable z in dom(o2) and a term ¢ such
that xog is in Hy and oo —>}%/E t, where either x in dom(o) or not.
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— If x is in dom(o) then xoy = zo, so also xo —>}%/E t hence, as z is in dom(o), o is
not R/FE-normalized, a contradiction.

— If z is not in dom(o) then, as 0 = 0109, z is in ran(oq), so there exists y in dom(o1) C
dom(o) and a position p such that yoi|, = z. Then yo|, = yo102|, = yoi|p,02 = z02,
S0 yolp —>}%/E t, hence also yo —>}%/E t. As y is in dom(o), then o is not R/FE-
normalized, a contradiction.

O]

Proposition 6 (Preservation of the normalized property under generalization). Let R = (X, EoU
B, R) be a rewrite theory with built-in subtheory (3o, Eo). If p is an R/ E-normalized substitution
and o is a more general substitution than p, then o is R/E-normalized.

Proof. We proceed again by reductio ad absurdum. By definition of < g, there exist a substi-
tution n such that py =g (on)y. If o is not R/E-normalized, then there exists a variable x in
dom(o) C dom(p) and a term ¢ such that zo is in Hy, so zo = zon =g zp, and xo %}%/E t.

But then, also zp %}%/E t so, as x is in dom(p), p is not R/E-normalized, a contradiction. [J

Proposition 7 (Decomposition of E-equality in B-equality plus Ep-equality [AMPP17]). Let
R = (X, EoU B, R) be a rewrite theory with built-in subtheory (Xo, Eo). If t and t" are terms in
Hx(X) and t =g t” then there exists a term t' in Hx(X) such that t =p t' =g, t".

Rewriting with —>}%’ p does not depend on the chosen representative for a class of terms
modulo Ejy.

Lemma 3 (Independence of R, B-rewriting under Egp-equality). Given a rewrite theory R =
(3, Ep U B, R) with built-in subtheory (X0, Eo), and terms t, u, and v in Hyx, if t =g, u and
u —>}%7B v then there exists a term w tn Hy: such that t —>}sz w and v =g, w.

Proof. As u _>}~2°,B v, there are rules ¢ : I — r if ANy li > r | ¢ € Rand ¢® =1° —
rif Nityli = ri | ¢ A¢° € R°, where topy, () = ¢ and I° = I[Z]g, a position p € pos(u),
and a substitution o : vars(c®) — Ty such that rep(ul,) = [°0, lijc =g p 10, for 1 <i < m,
and Ey E (¢ A ¢°)o, so v = u[ro],. Also ul, € Hs, because I° € Ty, (X) so, by Proposition 3,
tlp =g, ulp =1°0. Let w = t[ro],.

rep(ulp) = [°c has the form lo[To];. By Proposition 4, topys, (ulp,) = tops,(rep(ulp)) =
tops, (I1°0) = 4. As rep(t]y) =g, tlp =g, ulp =g, rep(uly) then, again by Proposition 3,
tops, (rep(t],)) = d, rep(t]y) = rep(uly) [rep(t}) I, s0 rep(tlp)llg = rep(ul) g and rep(tly )y, =r
rep(ulp)lq;, for 1 <i < n. Let 0’ = 0gomone U Uj=i {2 = rep(tlp)lq; }, where if z; = x;, with
1 <i<j<n,then zjo = zjo =g, ;0' = xj0’, so ¢’ is well defined.

As rep(tlp)[lg = rep(ulp)[lg and rep(ulp,) = I°0c = lo[Zolg, then we have = lo[zo']; =
rep(ulp)rep(tly)lalg = rep(tlp)rep(tlp)lgly = rep(tly). Also, as vars(e) N & = 0, 1o’ = 10,
lic! = lio, ric’ = rio, for 1 < i < m, and ¢o’ = ¢o, then l;0' = ljoc —pp ric = r;o’, for
1<i<m,and EyF ¢o’.

Ey F ¢°0, where ¢°c = AJ_ ((zjo = lg0) = Ni_((ulpgo = lg0o). As ¢°0" =
/\?:1((1'10/ = l|qy'OJ) = /\T‘Lzl(ﬂp.qg' = l|QjU) and tlp.q, =g, Ulpg, for 1 <i < n, then Ey F ¢°0’,
so Eo E (pN¢°)o’ and ¢ %}%073 tirol, = w. Ast =g, uthen t[rol, =g, ulrolp, i.e., v =g, w. O

lO/

The following results will be used in the proof of the completeness of the calculus.

Proposition 8 (Bijection between topy,, positions in B-equal terms). Given an OS equational
theory € = (3, Eg U B) and two terms u and v in Hx(X) such that u =p v, where u = ug &g
o S s uy, =, call T = axy, .. ., az,, with dz € BUB™Y, if tops,, (u) = p and topy, (v) = ¢
then there exists a bijective function destez : p — ¢ such that ul,, = V] destar(p;)» fOT €ach position

pi in p.
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Proof. We inductively define the function dest; that tracks the final position of a subterm for a
list of axioms | = ay,..., a,. Given a position p':

1. destn(p') =/,

2. for a; in BU B~! with the form f[z]; = f'[Z]r, where vars(f[z ]q) = vars(f’[ l7) =z, if
p' = gj.sj, with g; in ¢, then dest,, (p") = rj.s5, else destq, (p') =P/,

3. for l = ay,..., ap, with m > 1, if dest,, (p') = p” then dest;(p’) = destq,. ... 4, (P")-

As, by definition, the axioms in B are regular, linear, and only have function symbols from
Fy, then in each step uji_1 =g u;, 1 < i < n, if az; has the form flzlg = f'[z]7, where
vars(f[z]g) = vars(f'[z]r) = & and it is used in a subterm u;_;|, then:

e if az; moves a subterm in a position p.q; from topy, (u;—1), where ¢; in ¢, with parent in
F1 since ax; has only symbols in F, then the subterm is moved to the position p.r;, with
parent also in F for the same reason as before, hence it remains a topy, position,

e if az; moves a subterm ¢ in a position p.g;.s;.k; from topy (u;—1), where ¢; in G, s; may
be €, k; is an integer, and the parent of ¢ in position p.g;.s; is a function symbol f” from
F1, then t is moved to the position p.r;j.s;.k;, where its parent at position p.r;.s; is the
same function symbol f” from Fy, since f” is also moved by az; from p.gj.rj to p.gj.s;,
hence it remains a topy, position,

e the rest of positions in topy, (u;—1) remain unchanged.

Then destgz is injective, by its definition, and it also has to be surjective, since any position in ¢
not in the image of destg could be always related to a single position in p just by using the list
of axioms az,~',...,ax; !, all of them in B U B!, a contradiction with dest being total and
surjective. We will write dest instead of destgz when az is irrelevant, homomorphically extend
the definition of dest to lists and sets of positions, and define orig = dest ™. O

Corollary 2 (Bijection between topy, positions in E-equal terms). Given an OS equational
theory £ = (X, Eo U B) and two terms u and v in Hx(X) such that u =g v, if topy, (u) = p and
tops,,(v) = q then there exists a bijective function dest : p — q, hence § = dest(p), such that
Ulp; =Ey Vldest(p:), fOT each position p; in p.

Proof. As uw =g v then, by Proposition 7, there exists a term w in Hx(X) such that u =g,
w =p v. As u =g, w then, by Proposition 3, topy, (u) = tops, (w) = p and ulp, =g, w|p,, for
each position p; in p. But, by Proposition 8, wlp, = v]gest(p)s 50 Ulp, =B, Wlp, = Vlaest(p,), for
each position p; in p.

Lemma 4 (Relation between FE-unifiers and B-unifiers of abstractions). Given an OS equa-
tional theory & = (X,Ey U B) and two terms u and v in Hx(X), if abstracty, ((u,v)) =
(AMZ,9)-(u®,v°); (05,09); (¢, ¢3)) and o’ is a ground substitution such that Vi, C dom(o’),
uo’ =g vo', and dom(c’) N (2 U G) = O then there exists another ground substitution o° such
that u®c® =p v°0°, Eo F (95, A ¢7)0°, dom(c°) = dom(o') UZ UG, 50 Viyo vo ge go)ee = 0, and

! o
9 =k Jclom(cr’)'

Proof. Let z = {$1>---»ﬂfiz} and 7 = {y1,...,%,}, so u® = ulzlp, ¢ = (N2 2 = ulp,),
v° =0[ylg, ¢y = (/\;-y:1 y; = vlg;), for proper p and g such that p = topy, (u) and § = topy, (v).
Also, let v = u[Z']y and v = v[§f]g, where posy, (u) = ', Vi N X1 = &/, posy, (v) = ¢, and
Vo N =7, so u® = u[Z|[z']y and v° = v[glg(7]y. As uy’ and vo’ are ground terms then
Uy C dom(a’).

As u® = u[z]; then posy, (u®) = p, hence Vi, N Ao =0, ie., Vi

=%

and u[]p[ly = uo'[J5lly. In the same way, Vi, = ¢ C A1, Vo, 1y =¥, and v[lgllg = vo'[gll7-
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Let fgo = Utedom(g,)g, 75|t0p20 (t), 1-e., the set of all topy, terms that appear in zo’, where z
ranges over the variables in dom(o’). Now, let £ = u|s0’ U v|;0’ U fgo. As 7 Uy C dom(c’),
then ¢ includes all the topy,,-terms that appear in uo’ and vo’, either from their topy,, positions
or as subterms of the instances of the variables in their X7 positions.

Define 0° = rep;(0”) U {z; — repi(ulp,0”) | 2; € 2} U {y; — repi(vlg;0’) | y; € 9}, so
rep;(o) = O om(o")> hience dom(c°) = dom(c') Uz Uy and o’ =g, O gom(ory- Lhen:

e as ' Uy C dom(o’) = dom(oy,,) then 2UgU ' UY C dom(o°),

o u0® = ulrlp[z']po° = u[o®lpT'o%)y = ulrep(ulpo’)|p[T' oty =By ululpo’lplT'o )y =

e as uo’ =g vo', then u°c°® =g, uo’ =g vo’ =g, v°0°, i.e., u®c® =g v°0°.

By Proposition 7, there exists a term w such that u°c® = w =g, v°0°, let # = topy, (w). We
prove v°c° = w, so u’c® =g v°o°:
e as uo® = u[rep;(ulzo’)|pl7 0%yl =B w then, by Proposition 8, there exists a bijection
desty such that desty(topy,(u°0®)) =7 and w|., = u°0°|,p4g, (r,), for each position r; in 7.
As Vu[]p[]ﬁ/ = () then either:

(i) orig,(r;) is a position p; in p, so wl,, = rep;(ulp,0’). As ul,0’ is an element of i,
then wl,, is an element of rep;(%); or

(ii) origy(r;) has the form pf.sx, where p is a position in ', so s is a topy, -position of
u°a°|p;. Then the variable 2’ in 4, call 8 = topy, (2707,,) s0 sy, € 3, verifies 207, =
repi(:c;va’), S0 s € topzo(repi(azga’)), repi(a:;.a’) = x;a’[rept‘f(a:;a’lg)]g, and wly,

(@0rep)lsi, = repp(aio’)]s, = rep%’(w;a’]sk) = rep;(250']s,). Then, as rep;(z%0’[s) C

repg(f), w|y, is an element of T‘eptj(tA).
In conclusion, w|; C repf(f), hence w = w(rep;(wl;)]r.

o 1°0° = ulrep(vlgo NalF Tlplr =50 w = wlrepy(wls)lr. By Proposition 3, topy, (1°0°) =
tops,(w) = 7. As v = v[y]g, Vi, = 9, and topy, (v) = § then, for each position r; in 7,
either:

(i) r;isa position ¢;in g, so rep;(w|,;) = wr, =g, v°a°|qj = repi(v|qjo’). As rep;(w|r;) =E,
rep;(vlg;0”) then, by Remark 1, rep;(w|,,) = repp(vlq,0”), i.e., w,, = v°0°lq, = v°0°|,;
or
(ii) 7; has the form ¢j.si, where ¢ is a position in ¢". As §' C dom(oy,,) then v°0°|, =
J
Y0, = 1epi(y;o’), call 3 = topy, (repy(y;o’)), so si € § and repp(wl,) = wr, =g,
V000 g s, = repi(y;o’) s, = repi(Yo’ls,) = repi(yjo’ls,). As repy(wlr) =g, repi(y;o’ls,)

then, by Remark 1, rep;(wly,) = rep;(y;0’[s,), i.e., wr; = v°0°|g; 5, = v°0°|s,.
In conclusion, as v°0°[|7 = w[|F, vV°0° = v°0°[V°0° |77 = W[V°0°|F]F = wWw|F]F = w.
We have just proved u°c° =p v°c°, but also:
e as ¢ = (/\;:Izl x; = ulp,) and zo° = rep;(ulpo’) =g, ulpo’ = u|po° then Ey E ¢50°, and
o as 6 = (AL y; = vlg,) and §o© = rep;(v|g0”) =, v]go’ = vgo® then Ey F ¢50°,

so Eo F (¢, A ¢y)o°. O
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5 Strategies

In this section we present the combinators of a strategy language suitable for narrowing, which
is a subset of the Maude strategy language [MOMV04, EMOMV07, RMPV18|, a set-theoretic
semantics for the language, and an interpretation of this semantics. We also define the set of
variables of a strategy and the result of the application of a substitution to a strategy.

A call strategy is a name given to a strategy to simplify the development of more complex
strategies. A call strategy definition is a user-defined association of a strategy to one call strategy.

A rewrite theory R = (X, E, R) and a set of call strategy definitions for R, written Callg,
have an associated set of derivation rules Dr cqu, that will be used in the following.

5.1 Open and closed goals, derivation rules and proof trees

Definition 27 (Open and closed goal). An open goal has the form t — v/ST, where t, its
head, and v are terms in Hy, and ST is a stralegy; a closed goal has the form &, with G an
open goal.

Definition 28 (Derivation rule). A derivation rule has the form & or GléGn, where G and

each G;, 1 <1i <n, are open goals. In either case the head of the rule is G.

Definition 29 (Proof tree). Given a rewrite theory R = (X, EyUDB, R) and a set of call strategy
definitions Cally, a proof tree T, its depth, and its number of nodes are inductively defined as
either:

e an open or closed goal, G or &, with depth 1 and number of nodes 1, or

e a derivation tree Tl"G;T", constructed by application of the derivation rules in DR calig,

where each T;, 1 <1 < n, is a proof tree, we call Ty - - - T}, a forest, the depth of T 1s 1 plus
the maximum of the depths of T, and the number of nodes of T is 1 plus the sum of the
number of nodes in T.

The head of T is G in all cases, and we write head(T) = G. T is said to be closed if it has no
open goals on it. We denote by V the set of all the variables appearing in T, Vi to the set of all
the variables appearing in R and B, Via, the set of all the variables appearing in Callr, and
VR, Calir = VR U Vi, . We will use the letter F', with or without subindex, to represent forests
in a closed proof tree, c.p.t. from now on.

Definition 30 (Application of a derivation rule to an open goal). Given any open goalt — v/ST
in a proof tree and a deriwation rule with head t' — v'/ST such that t =g t' and v =g V', the
application of the rule to the open goal consists in putting the derivation rule in place of the open
goal, but replacing t' with t and v' with v anywhere in the rule.

5.2 Strategies and their semantics

We present now the semantics that defines the result of the application of a strategy to the
equivalence class of a term, which is based on the construction of closed proof trees. It is given
by a function (in mix-fix notation)

@ StratR,CallR X HE/E — P(HZ/E)a

with R = (3, Ep U B, R) and E = Ey U B, where [v]g is an element of ST Q [t|g if and only
if a c.p.t. with head ¢ — v/ST can be constructed using the derivation rules in Dg cqiiz , also
defined below.

If [v]g € ST Q [t]g, as any subtree of a c.p.t. for t — v/ST, with head say t' — v'/ST’, is
closed then also [v']g € ST’ Q [t/
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The set Dr cai, does not need to be computable. We will prove in this work that if a c.p.t.
can be formed from an instance Go of a goal G (i.e., o is a solution of G, then the narrowing
calculus that we present can find a more general solution to the goal G, i.e., one that can be
instantiated to o.

In this work we also assume, without loss of generality, that vars(B)Nwvars(ST) = () for any
strategy ST in Callr, by renaming the variables in B. Now, we define Callr, Stratr caiiy, and
DR, caliy -

We will use the following set of strategies for narrowing, which is a subset of the Maude
strategy language for rewriting [MOMV04, EMOMV07, RMPV18]:

5.2.1 1Idle and fail

These are constant strategies that always belong to Stratr cau, - While the first always succeeds,
the second always fails. For each equivalence class [t|g € Hy /E there is a derivation rule
iSi7iate 10 DR, Caiig- There are no derivation rules for fail. Then, idle @ [tle = {[t]g} and

fail @ [t]p = 0. We define vars(idle) = wvars(fail) = (). For any substitution § we define
idle § = idle, and fail § = fail.

Example 10. Suppose that t =g v and we have the open goal t — v/idle in a derivation tree.
There is a term t' and a derivation rule P idTe in DR Call Such thatt =g t'. Ast =g v then

also v =g t', so we can apply this rule to the open goal. Thus, we replace the first t' in the rule
with t and the second one with v, yielding So/iae @ c.p.t. that we put in place of the open goal,

so [v]g € idle Q [t]g. The result [v]g € idle Q [t|g was expected, since idle Q [t|p = {[t|r}
and t =g v imply [v]g = [t]E.
5.2.2 Rule application

A rule of R that has no rewrite conditions and a substitution form a rule application.

(AlphaNum) = Al - |Z]al| - |2]0|---]9
(Label) = (AlphaNum>

|  (AlphaNum)(Label)
(Assignment) = (Variable) — (T (X)-term)
(Assignment List) = (Assignment)

| Assignment) ; (Assignment List)
(Substitution) = none

| (Assignment List)
(RuleApplic) = (Label) [(Substitution)]
(Strat) = (RuleApplic)

Ife:l —=rifyisa rule in R, and v : X = Tx(X \ Vg, cauz) is a substitution such that
dom(y) C wars(c), then c[y] is a rule application in Stratg cay,. For each pair of terms ¢,v in

Hs, if t —' v then there is a derivation rule
cy R

t — v/c[y]

in DR, caily -
We define vars(c[y]) = ran(v). The application of 6 : X = Tx,(X'\ Vg, caiir ) to c[v] is defined

as ch/]é = C[(V(S)dom('y)]'

Example 11. The set Callg for the running example contains the rule application kitchen[none].

For rules with rewrite conditions, a strategy must be supplied for each rewrite condition.
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(StratList) = (Strat)
| (Strat) , (StratList)
(RuleApplic) == (Label) | (Substitution) | { (StratList) }

Ife:l—rif ANjLjlyj = rjlvisaruein R, v: & — Ts(X \ VR calg) is a substitution
such that dom(v) C vars(c), and ST = ST1,...,ST,, is an ordered list of strategies such that
dom(~) Nwvars(ST) = 0, then RA = ¢[y]{ST} is a rule application in Stratr, caiiy -

We define vars(RA) = ran(y) U vars(ST). The application of § : X — Tx(X \ VR, cailg)
to RA is defined as RAS = ¢[(¥6) gom(y)|{ST0}. For each substitution d : vars(cy) — Tz such
that Ey F 10, each term u in My, and each position p in pos(u) such that u|, = Iv6 there is a

derivation rule
l170 = 176 /ST10 -+ - Ly yd — 1y /ST 0

u — u[ryd],/RA

in DR, Calir - L
t|E € c[v]Q[uly] g implies [u[t],]p € c[y]Qlu]p, and [t]g € c[y[{ST}Q[uly]p implies [u[t],]r €
c[vy{ST}Q[u]r because no specific position is required for rewriting using a rule application.

Example 12. The set Callg for the running example contains and enhanced version of the
rule application cook[none]{(toastl[none| | toast2[none]), (toasti[none| | toast2[nonel)}),
where the symbol | represents the or strategy (defined below). Rule [cook] : cook(y; hey vt,2) —
y + z;hl, vl if toast(hey,2) — hl, Atoast(vy,2) — vi, will be applied only if we can apply
either the rule application toast1[none| or the rule application toast2[none] to each condition
in the rule.

5.2.3 Top

It is possible to restrict the application of a rule in R only to the top of the term. This is useful
for structural rules, that are applied to the whole state, or for the strategies applied on the
conditional part of a rule, as will be shown in our running example.

(Strat) ::= top( (RuleApplic) )

Ifc:l—rif¢isarulein Rand v : X — Tx (X \ Vg, caig ) is a substitution such that dom(y) C
vars(c), then top(c[y]) is a strategy in Stratr, cau,. We define vars(top(c[y])) = vars(c[y]) and
top(c[v])d = top(c[y] d). For each substitution § : vars(cy) — Tx such that Ep F 1)yd there is a
derivation rule

176 — 76 /top(c[7])
in DR, calig -

Ife:l—rif /\;n:1 lj = rj|Yisarulein R, v : X = Tu(X \ Vg caiig) is a substitution
such that dom(y) C wars(c), ST = STi,...,ST,, is an ordered list of strategies such that
dom(y) Nvars(ST) = 0 and we call RA = c[y]{ST}, then top(RA) is a strategy in Stratr caliy, -
We define vars(top(RA)) = vars(RA) and top(RA)d = top(RA ), for § : X — T (X\VR, caiir )-
For each substitution ¢ : vars(cy) — Ty such that Ey E 10, there is a derivation rule

I176 = r1v0/ST16 - - - Ly — i y0 /ST 16
Iy — rvd/top(RA)

in DR caily, -

Example 13. Whenever a rule application appears in the set Callg for the running example,
it is as part of a top strategy, e.g., top(kitchen[none]).
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5.2.4 Call strategy

Call strategy definitions allow the use of parameters and the implementation of recursive strate-

gies. A call strategy deﬁmtlon can be either unconditional or conditional.

(VarList) (Variable)

(Variable) , (VarList)

(Equational Condition) (Hx(X)-term) = (Hx(X)-term)

(Equational Condition) A (Equational Condition)

(Strat Condition) (quantifier-free formula)

(Equatlonal Condition) A (quantifier-free formula)
d (Label) ::= (Strat)

d (Label) ((VarList)) := (Strat)

csd (Label)((VarList)) := (Strat) if (Strat Condition)

(Call Strat)

(Arguments) = (Hx(X)-term)

|  (Hx(X)-term) , (Arguments)
(Strat) L {Label

|  (Label) ((Arguments))

The semantics for call strategy invocations, given a pair of terms ¢ and v in Hyx such that
Is(t) =< Is(v) is:

e If sd CS := ST € Callg then the call strategy invocation CS is a strategy in Stratr, caiiz -
We define vars(CS) = () and, for any substitution §, CSé = CS. For every renaming -y
such that dom(y) C vars(ST) and ran(vy) is away from any known variable, there is a
derivation rule

t—v/STv
t—wv/CS
in DR, caliy, -
o If sd CS(z) := ST € Callg, where & = z} ,...,z" are the parameters of CS, & C
vars(ST), t1,...,t, are terms in Tx(X \ VR, caiiy ), With sorts s1,..., s, respectively, and
we call £ = t1,..., 1y, then the call strategy invocation CS(t) is a strategy in Stratr, caiiz -

If p = {Z — t} then vars(CS(t)) = ran(p). I § : X — Tx(X \ Z), then we define
CS(t)d = CS(td). For every renaming ~ such that dom(y) C vars(ST) \ & and ran(v) is
away from any known variable, there is a derivation rule

t—v/ST(yUp)
t—v/CS(t)

in DR, caliy, -

e If csd CS(z) := ST if C € Callg, with & = a?SI,...,:z:?n and C' = N'L (l; = ;) A ¢,
call Veg = vars(ST) U wvars(C), & C Veg, ti,...,t, are terms in Tx(X \ VR, caiiz ), With
sorts si,...,s, respectively, call t = tq1,...,tn, then the call strategy invocation CS()
is a strategy in Stratr, cai,- If p = {Z — t} then vars(CS(t)) = ran(p). If 6 : X —
Ts(X\ (ran(p) U VR, caiin)), then we define CS(t)d = CS(¢6). For every renaming -y
such that dom(y) C Vgg \ & and ran(y) is away from any known variable, and each
substitution 6 : vars(C(yU p)) — Ty such that [;(y U p)d =g rj(y U p)d, for 1 < j < n,
and Ey E ¢(y U p)d, there is a derivation rule

t—v/ST(yUp)d
t —v/CS(t)

in DR, caliy, -

24



The meaning of v in all three cases is that the names of the variables in ST that we could call
free, with respect to CS, have no relevance. By using renaming, different instances of a call
strategy will get different variable names in the narrowing calculus that we have developed.

Example 14. The call strategy definition sd toasts := top(toasti[none]) | top(toast2[none])
allows us to rewrite the strategy in example 12 as top(cook[none|{toasts, toasts}).

5.2.5 Tests

Tests are strategies that check a property on an equivalence class [t]g in Hy;/p. If the property
holds then the test returns a set containing [t]z as its only element. Otherwise, the test returns
the empty set.

(Test) == match (Hx(X)-term) s.t. (Strat Condition)
(Strat) = (Test)

For simplicity of notation, there will always be one quantifier-free formula ¢ € QF(Xy) as
last element of the test condition, which will be the boolean term true if there are no built-in
conditions to check.

For each equivalence class [t|g in Hy,/p, and each test strategy 7'S = matchu s.t. /\;-n:l(lj =
rj) A ¢, if there exists a substitution 0 : vars(TS) — Ty, where we define vars(TS) = vars(u) U
vars(¢) U U;n:l vars((lj,r)), such that t =g ud, [;0 =g r;d, for 1 < j < m, and Ey F ¢6, then
there is a rule

t —t/matchus.t. \JL ([ =7;) A ¢
in DR cailg- I 6 : X — Ts(X\vars(TS)) then T'S§ = matchud s.t. AL, (1;0 = 1;0) A ¢9.

Example 15. The set Callg for the running example contains the definition
sd test := match N/By/Y;V;W;/OK s.t. Y < ft .
This test will be used to verify that the system has not reached the fail time.

5.2.6 If-then-else

Strategies can be combined to be applied over execution paths in several ways. The first way
is the if-then-else strategy where a subset of the test strategies, called simple test, is used. The
term must match some pattern u. If the quantifier-free formula ¢ instantiated with the matching
substitution holds, the strategy in the then clause is applied; if not, the strategy in the else clause
is applied.

(Simple Test) ::= match (Hx(X)-term) s.t. (quantifier-free formula)
(Strat) = (Simple Test) 7 (Strat) : (Strat)
For each pair of equivalence classes [t]g and [v]g in Hy)/ g, each if-then-else strategy IS =

matchus.t. $? ST : ST and each substitution ¢ : vars(u) Uvars(¢) — Tx such that ¢t =g ud,
if By F @6, then there is a rule

t— U/ST15
t — v/matchus.t.¢? STy : ST,

in DR cuaily, and if Eg F —¢6 then there is a rule

t— U/STQ(S
t — v/matchus.t.¢? STy : ST,
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in DR, calln- We define vars(IS) = vars(u) U vars(¢) U vars(ST1) U vars(STs).

IS5 =matchud s.t. 0 ? ST19 : ST20, for any substitution ¢ : X — T (X \vars(IS)).

The restriction to SMT conditions is needed to ensure the completeness of the narrowing
calculus since, in general, a reachability condition cannot be proved false.

Example 16. One alternative set Callr for the running example contained the definition
sd checkExtract := match N/By/Y;[ct, ct]Vy/OK s.t. true ? top(dish[none]) : idle
This if-then-else strateqy was meant to force the extraction of a fully cooked toast to the dish,
pruning the state space of the search for a solution.

5.2.7 Regular expressions

Another way of combining strategies is the use of regular expressions.

<Strat> = <Strat> ; <Strat> concatenation
<Strat> = <Strat> | <Strat> union

<Strat> = <Strat> + iteration (1 or more)
<Strat> = <Strat> * iteration (0 or more)

Of course, ST+ = idle | ST+. Let ST and ST’ be strategies, and let ¢,v and u be terms in
Hy, such that Is(t) =< Is(u) =< Is(v). Then, we have rules

t—u/ST1 uw—v/STs t—v/ST t—v/STs t—v/ST t—v/ST;ST+
t—>v/ST1;ST2 t—)U/ST1|ST2 t—)U/ST1|ST2 t—>U/ST-|— t—)U/ST'i‘
in DR, calig -

We define vars(STy ; ST2) = vars(ST1 | ST2) = vars(ST1) Uwvars(ST2), and vars(ST+) =
vars(ST). The concatenation and union combinators are defined to be right associative, e.g.,
ST1;8T2;8T3 = ST1;(ST2;ST3). The scope of this work is restricted to concatenated strategies
that have no variables in common; this forces iterated strategies to be ground. Substitutions are
applied to all the strategies in the regular expression.

We define tokens(ST+) = tokens(ST), tokens(ST1 op ST2) = tokens(ST1) U tokens(ST2)
if op is a binary combinator, and tokens(ST) = ST otherwise.

Example 17. The set Callg for the running example contains the definition

sd kitchCook := top(kitchen[none]) ; top(cook[none]{toasts,toasts}).

After applying the strategy top(kitchen[none]) to a term with sort Kitchen, the strategy
top(cook[none]{toasts, toasts}) will be applied to each term in the resulting set.

5.2.8 Rewriting of subterms

The matchrew combinator allows the selection of a subterm to apply a rule and extends the
scope of the substitution that validates a test strategy to subsequent steps of the execution
path.

(TermStratList) ::= (Variable) using (Strat)
| (TermStratList) , (TermStratList)
(Strat) = matchrew (Hx(X)-term) s.t. (Strat Condition) by (TermStratList)

Matchrew strategies have the form MS = matchrewus.t. A7, (l; = r;) A ¢ by z! using

n
Sn

STy,...,xy using STy, where T = xl,l,... are the match parameters of MS, £ C A,

T
|Z| = n, u = u[Z]p, for proper p, IUf Hs(X), and, for 1 < i < n, xél does not appear as a match
parameter of another matchrew strategy in ST and for each i € {1,...,n} such that ST; # idle

there exists j € {1,...,m} such that I; = 2! and r; € Hg(X)\ X. We define vars(MS) =
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VioirsT We will also use the short-form MS = matchrewus.t.l = 7 A ¢ by Z using ST.
If § : & = Te(X\vars(MS)), call &' = 0\3, then MS§ = matchrewud’ s.t.ld’ = 7§’ A
¢d' by T using ST¢'. For each n-tuple (ti,...,t,) of terms in HE such that Is(f) < 5, and
each substitution ¢ such that Jy4sms) @ X — Ts(X\vars(MS)), 80 dyers(ms) is idempotent,
ud € Ty, {10,756}y C Ts, 16 =g 76, $0 € Tx, and Ey F ¢6, 50 ran(dyers(msy) S vars(ST6),
there is a derivation rule

23 6 —t1/ST10- -2 6 — tn/STnd
ud = ubfty,. .., tolpi. p,/MS

in DR, caiiy. For any structure A, we call matchParam(A) the set of all the match parameters
that appear in A.

In narrowing, rewrite rules are intended to be applied, using unification, to non variable
terms. The restriction that forces a variable :J:’SL to match with a non variable term of Hx(X),
ensures that the narrowing calculus developed does not loose any solution, because this variable
will be instantiated to a non variable term prior to trying to apply a rewrite rule to it.

Example 18. The set Callr for the running example contains the definition

sd cookl := matchrew N/By/Ky/OK s.t. Kx =Y; RtV; by Ky using kitchCook.

The strategy kitchCook will be applied to the Kitchen Ky of a State, whenever there is a
RealToast (Ryy) in Ky, and Ky will get instantiated to a non-variable term by the condition.

Definition 31 (Subterms, holes, and replacement in a strategy). We extend the use of subterms
and holes to strategies. If ST is a strategy, i is a positive integer, p is a position, and t is a
term, then ST|;, is the subterm that appears at position p in the term i of the tuple formed
by all terms that appear in ST, taken from left to right, ST[];, consists in the replacement in
ST|; of its subterm at position p with [|, and ST[t];, consists in the replacement in ST|; of its
subterm at position p with t.

Definition 32 (Equality modulo of strategies). Given two strategies ST and ST', we say that
ST is equal modulo E to ST', and write ST =g ST’ iff ST = ST'[t]5, for proper t and p, and
for each position p in p ST|, =g ST'|, and Vgp| = Variy,-

5.3 Interpretation of the semantics. Generalization of strategies

Lemma 5 (Interpretation of the semantics). Given a rewrite theory R = (X,Eo U B,R), a
set of call strategy definitions Callg, and terms t,v € Hyx, for each c.p.t. T formed using
the rules in DR cal, with head t — v/ST, so [v|p € STQt|g, each renaming o such that
ran(o) N (Vr U VR, caitr) = 0, and each strategy ST =g ST it holds that:

1. Main property: t —p/p v and there exist closed proof trees for [v]p € STaQ[t]gp and
[v]g € ST'Q[t] g with the same depth and number of nodes as T.

2. If ST = idle then [t|gp = [v]E.

3. If ST = c[y] then t —' .
Y R/E

4. If ST = top(c[y]), then t —1 v (i.c., the rewrite happens at the top position of t).
7€ R/E

5. If ST = matchus.t. NI (l; = rj) A ¢ then [t|p = [v]p and there exists a substitution o
such that t =g uo, ljo =g rjo, for 1 < j <m, and Eo = ¢o.

6. If ST = STy ; STy then there exists a term u € Hy such that [ulp € ST1Q[t|g and
[U]E S STQ@[U]E,
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7. If ST = ST+ then there exist 1 + 1 terms ug = t,u1,...,u;i—1,u; = v € Hy, with i > 0,
such that [ujlp € ST1Q[uj_1]g, for 1 < j <, where i is equal to one plus the number of

wi—wa/ST1; ST1+
w1—>w2/ST1+

the form wl_{:ffig/ST“i/,_’SwﬁfiT” , 15 applied in the rightmost branch of the subtree before

times that a rule with the form , followed by the application of a rule with

w;—w2 /STy

applying a rule with the form w1 Swa /ST

8 If ST =5T, | STy then [’U]E S ST1@[ﬂE or [U}E € STQ@[t]E.

9. If ST = matchus.t.¢? ST, : STy then there exists a substitution & such that t =g ud
and either Eg F ¢0 and [v]g € ST10Q[t]g or Eg F =¢d and [v]g € ST20Q[t]E.

10. If ST = CS, where sd CS := ST € Callg, then: (i) v]p € ST 1Q[t|g, and (ii)
[vlg € ST1YQ[t]g, for every renaming v such that dom(vy) C vars(ST1)\ Vr and ran(y)N

VR, Callr = 0.

11. If ST = CS(t), where sd CS(z) = STy € Callg, T = a},...,a% , T = t1,...,ty,
and p = {Z — t}, then: (i) [v]p € ST1pQ[t|gp and (ii) if v is a renaming such that
dom(v) C vars(ST1)\# and ran(y)N(ran(p)UVR, cair) = 0 (so % € DR, cailr ),
then [v]g € ST1(yU p)Q[t]E.

12. If ST = CS(t), where csd CS(z) = ST if C € Callg, with T = z}, ...,z and
C=N"(l;=rj) AN, call Vog = vars(ST1) Uvars(C), & C Veg, t =t1,...,ty, and p =
{z—1 then (i) there exists a substitution 81 : vars(Cp) — Tx;, such that l;p01 =g r;p01,

for 1 Sj <mn, EyE ¢ppd (so % € DR calln ), and [v|g € ST1p61Q[t] g, and (ii)
for every renaming v such that dom(y) C Ves\2 and ran(y)N(ran(p)UVR, caig) = 0, there
exists a substitution o2 : vars(C(yUp)) — Tx, such that l;(y U p)o2 =g rj(y U p)da, for

1<j<mn, EgkF o(yUp)ds (so % € DR calig ), and [v|g € ST1(yUp)62Q[t]g.

18. If ST = c[y[{ST1, ..., STwm}, with c: 1= rif AL lj = rj |9 arulein R, then there is
a substitution & such that [riydlp € ST;6 Q [lﬂé]E, for1<i<m, andt —6> .
&Y R/E
14. If ST = top(c[Y{ST1,...,8Tm}), with c: L — r if NjL;lj = 75 | ¥ a rule in R then
there is a substitution 0 such that [rivo]g € ST (5@[[175],@, for1 <i<m, andt —' .

CE,’Y(;R/E
15. If ST = matchrew us.t. A7 (l; = ;) A dby x! using ST1,..., 7 using ST, where
u = u[asil,..., 2y Jpi..p. then there exist a substztutwn 0, where 5V i, s ground, and

terms t1,...,tn € Hs such that t =g ué, 1;6 =g rjé, for 1 < 5 < m Ey E ¢, [tile €
STi6 Q@ [x ﬁ]E; for 1 <i<n, and v=p ué[tl,... tnlpr..pn-

Proof. The proof is done by induction on the depth of the c.p.t for t — v/ST. O

Lemma 6 (Generalization of strategies). Given a rewrite theory R = (X, Eo U B, R), a set of
call strategy definitions Callr, terms t,v € Hx, a strategy ST € Stratr caiiy, and a substitution
o such that dom(c) N Vg =0 and ran(o) N (Vg U Vsy) =0, if [v]g € SToQ[t]|g can be proved
with a c¢.p.t. T then [v]g € STQ[t|g and a c.p.t. T" with head t — v/ST and the same depth as
T can be constructed.

Proof. The proof is done by structural induction on the depth of T O
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6 Reachability problems

In this section we present the concept of reachability problem, together with its solutions and
the properties that a solution to one of these problems has. From now on, we will consider
as valid those rewrite theories R = (X, Ey U B, R) whose axioms B are any combination of
associativity, commutativity, and identity (ACU rewrite theories).

Then, the only rules that will be added to the closure under B-extensions of R will have
the form [ : f(xs, f(t1,t2)) — f(xs,t3) for each rule [ : f(t1,t2) — t3 € R such that f has
the associative property (it could also be I : f(f(t1,t2),xs) — f(t3,xs), we choose the other
form). The commutative property has no non-variable subterms, and for the identity property,
f(xs,0) = x4, the non-variable subterm 0 only matches rules of the form [ : 0 — ¢ yielding a rule
l: f(xs,0) = f(xs,t), which is subsumed by the original rule [ : 0 — ¢ with the substitution
{zs — 0}.

Definition 33 (Reachability problem). Given a rewrite theory R = (X, Eg U B, R) and a set
of call strategy definitions Callg, a reachability problem is an expression P with the form
Niojui — vi/ST; | ¢ | V,v, where u; and v; are terms in Hx(X), ST; is a strategy in
Stratr calig, ¢ € QF(Xy), V is the finite set of parameters of the problem, i.e., variables
of X that have to be given a ground value, and v is a substitution such that dom(v) C V and
ran(v) consists only of new variables, not seen before, that may hold the initial values, either
constants or patterns, of some of these parameters. The formula ¢ is the reachability formula of
P. We define vars(P) = vars(u, v, $). The set V allows the declaration of variables in VR, cqiiz
or Vg, as parameters of the problem. V must always verify:

1. vars(P) CV, vars(B)NV =0, and VR N\Veau, SV, i.e, VR and Ve, have no variables
i common, with the exception of the parameters of the problem,

2. concatenated strategies may have in common only variables from V| since they will be given
a ground value; this is also mandatory for strategies from different open goals; also, only
variables from V. may appear in iterated strategies and call strategy invocations, since they
may become concatenated ones, and

8. V' cannot contain:

e any variable in dom(vy) for any strategy c[vy| that may appear in Callg or ST;, 1 <
1 < n,

e any variable in T for any call strategy definition sd C(Z) or csd C(Z) that may appear
in Callg, or

e any variable in matchParam(ST) U matchParam(Callg).

Definition 34 (Instances). Given a rewrite theory R = (X, Ey U B, R), a set of call strategy
declarations Callg, and a substitution o such that vars(B)N(dom(o)Uran(o)) = 0, the instance
R of R is the rewrite theory that results from the simultaneous replacement of every instance in
R of any variable v € dom (o) with xo, Callg is the set of call strategy declarations that results
from the simultaneous replacement of every instance in Callg of any variable x € dom(o) with
xo, and Stralf gy, 18 their set of associated strategies. For every strategy ST in Stralwr, cai, we
denote by ST its corresponding strategy in Strat% cqn,- We denote by Dy oy, the associated
set of derivation rules. If v is a substitution, dom(y) N (dom(o)Uran(o)) =0, and ST = STy
then ST? = ST{(y-o0). If t € T(X), then t” = to. If p € QF(Xy), then ¢7 = ¢o. For any
structure S formed with terms, formulas and strategies, the instance S7 of S will consist in the
instantiation with o of each one of its elements.

Although the label, say ¢, of an instantiated rule remains the same, we will use superscripts,
say ¢?, when it is needed to distinguish which instance of the rule we are referring to.
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Proposition 9 (Equality of (R?)p and (Rp)?). For any ACU rewrite theory R = (X, EgUB, R)
and any substitution o such that vars(B) N (dom(o)Uran(o)) = 0 it holds that (R°)p = (Rp)°.

Proof. We prove (c¢?)p = (cp)? for every rule c € R. If ¢: I — r if C' € R then, by definition,
l € Hy(X)\ X, so [ has the form f(I), for proper f and I.

e If f is binary associative then ¢ has the form ¢ : f(l1,ls) — r if C € R, and c :
fxs, f(li,l2)) = rif C €cp,soc: f(xs, f(lio,l30)) — ro if Co € (¢cp)? since xs0 = xs.
Then, ¢ : f(lio,la0) — ro if Co € R%, so also ¢ : f(zs, f(l10,l20)) — ro if Co € (¢7)p,
and (¢?)p = (¢B)°’.

e Else, cg = {c}, and (c)? = {c°}. Now, ¢ has the form c: f(lo) — ro if Co where f is
not binary associative, so also (¢”)p = {c?}, hence (¢”)p = (cp)’.

O
We will write R} to refer to either (R”)p or (Rp)?, indistinctly.

Definition 35 (Solution of a reachability problem). Given a rewrite theory R = (X, EgU B, R)
and a set of call strategy definitions Callr, a solution of the reachability problem P = N\, u; —
vi/ST; | ¢ | V,v is a substitution o : V. — Ty such that o = v - o’ for some substitution o’,
Eo F ¢o, and [vio]p € ST{Q[u;o]g (hence uio — po /g vio), for 1 <i <n.

Given a rewrite theory R = (X, Eg U B, R), a set of call strategy definitions Callg, and the
reachability problems P = A" u; = v;/ST; | ¢ | V,v and P' = A\, u; — v;/ST; ;idle | ¢ |
V., v, both problems yield the same solutions. For any solution o of P, Ey F ¢o and [v;0]g in
ST¢Q[u;o]g, for 1 < i < n, so there are closed proof trees

F;
U0 — ’UiU/STZw

where 1 <4 < n, formed with the rules in Dg Callg - Then, also

F;
ujo—v;o /ST  vio—v;o/idle

u;jo — v;o/ST? ; idle

where 1 < i < n, are closed proof trees, so o is a solution of P’, and vice versa.

Given a reachability problem A ,w; — v;/ST; | ¢ | V,v, we will solve the equivalent
problem A u; — v;/ST;;idle | ¢ | V,v, since it will allow us to use a smaller set of
narrowing rules, by not having to distinguish between those strategies that are a concatenation
of strategies, to process one strategy after the other, and those that are not.

7 Strategies in reachability by conditional narrowing modulo SMT
and axioms

In this section, the narrowing calculus for reachability with strategies is introduced and its
soundness and weak completeness are stated, as well as its completeness for topmost rewrite
theories.
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7.1 Reachability goals and calculus

Some definitions and the calculus for reachability with strategies by conditional narrowing mod-
ulo SMT and axioms are presented now.

Definition 36 (Instance of a set of variables). Given a set of variables V' and a substitution v,
we call VV = (V \ dom(v)) U ran(vy).

Definition 37 (Reachability goal). Given a rewrite theory R = (X, EoU B, R) and a set of call
strategy definitions Callgr, a reachability goal G is an expression with the form

1 (N2 u; =i /ST | ¢') o, | V,v, or
2. (Whlp =1 gyl fa]p = 01 /ST AN N[y uf — 0} /ST | ¢') 00 | V,v,

where v and o, are substitutions, dom(v) C V, dom(o,) N (VUVY) =0, V C X is finite,
call (@,v,¢) = (@,7,¢') 0u, n > 1, u, and v} are terms in Hx(X), ST; € Stratr, caiir, for
1 <i<n,and ¢ € QF(Xy); also, in the second case, p € pos(u1), k = [Is(u1|p)], the kind of
the least sort of wilp, Tk & Vi o 57 UV Uran(v) U dom(oy) U ran(oy), and ST has the form
RA; ST, with RA a rule application.

In the first case, each one of the elements in the conjunctions is an open goal, for which
we define V57 = Vuw, and Vo = Vg e U VY in the second case, we say that xy is the
connecting variable of the goal and we define Vg = {x} U V54U VY. We will write ‘goal’ as a
synonym of reachability goal.

Reachability goals with the second form, where we always can recover u; form wui|, and
u1[]p, can be generated by the calculus rules in Figures 3 - 5 from a reachability goal with the
first form when the first open goal has the form u; — v1/RA; ST, with RA a rule application
strategy. This second form prevents the repeated application in a derivation of rule transitivity,
that maintains the problem in the second form, forcing the application to the first open goal of
the rule application rule, that reverts the problem to the first form.

The substitution g, will be used in our calculus to hold instantiations or renamings, that
will be generated by the calculus rules, of the variables not in V.

Definition 38 (Instance of a goal). If G is a goal of the form (N\;_, Si | $)"0v | V.v and 0 is a
substitution such that dom (o) VY # 0, then we define the instance Go of G as Go = (\;—; S; |

O)ou | Vip, where p= (vo)yv and o, = (0u0)y\v-
Definition 39 (Instance of a conjunction of open goals). If G is a goal of the form (A\;_; Si |

®)ou | Vv, let SG = (N Si)" 0v, and o is a substitution such that dom(c) NV # 0, then we
define the instance SGo of SG as SGo = (\iZ; Si)* 0, where p = (vo)yv and o = (0,0 ) vy \v-

When dom (o) N VY = 0, o is directly applied to every term and formula in G and SG,
respectively, thus avoiding circularity in these definitions.

Definition 40 (Admissible goals). From now on, we will only consider in our work two types
of goals:

(a) those goals coming from a reachability problem N} | u; — vi/ST; | ¢ | V,v, which is trans-
formed into the goal N\ wiv — viv/STY;idle | ¢v | V,v, with o, = none, and

(b) those goals generated by repeatedly applying the calculus rules in Figures 8 - § to one goal
of type (a).

The notation G ~,) , G, will be used in the calculus to indicate that rule [r] of the calculus
has been applied with substitution o to G, yielding G’. We call this application a narrowing
step. If o is the identity substitution it can be omitted. The rule [r] can also be omitted in the
expression. The superscripts ~", with n > 0, ~*, and ~* will be used with their standard
meanings, maybe with no rule in the subscript (~ and ~! are equivalent).
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Proposition 10 (Invariants of the goals). Given a rewrite theory R = (X, EoU B, R) and a set
of call strategy definitions Callr, and an admissible goal G with the form

o Nisyui —vi/STY o, | ¢ |V v, or
e uil, —1 Tg, i [zg]p — v1/ST 0w AN Nigui = vi/ST 0, | | Vv,

if Go is a goal of type (a), with substitution vy (0., = none by definition), and Go ~; G then
the following invariants hold:

1. vars(B)NV =0 and VR N Veui, €V,

2. VNran(v) =0 and v = (vpf)v, hence dom(v) C V, so dom(v) satisfies the restrictions
giwen for V in Definition 35.2,

8. oy = O\y, hence dom(o,) NV =0 and o, is idempotent,
ran(0) N (V U Vg, caiir U vars(ST)) =0 and ran(o,) NV =0,
dom(o,) Nran(v) =0,

dom(o,) NV =10,

Vre 0 Vel S VY,

SR L R

ift € To(X) then tVo, =t(rdoy),

u;, v, 1 <1 <n, and each term in (;5 have the form t”o,,

©

10. vars(a,v,¢) N dom(v) =0, and
11. G has also the form GYg),, where 0, = Oy, \v, so dom(g},) € Vg, \ V.
Proof. By induction on the number of applied calculus rules from Figures 3 and 4. 0
We extend the definition of solution of a reachability problem to goals.

Definition 41 (Solution of a goal). Given a rewrite theory R = (X, Eo U B, R), a set of call
strategy definitions Callg for R, and a goal G, a substitution o : vars(G) — Tx, where v/ =
(vo)v and 0, = (0,0)\v, is a solution of G iff:

1 if G=N"jui = vi/ST70, | ¢ | V,v then Ey E ¢po and [vio]g € STY 0,,Qluso)p (hence
U0 = pt vio), for 1 <i<mn, and

2. if G = wulp = zp,wi[wglp — v1/ST 00 A Ni—gui — vi/STY0, | ¢ | V,v, where STy =
RA; ST, then Ey E ¢o, [x10]r € RA 0,0 Q [uyoly)g, [vi0]p € STV 0,,Qluy [21],0] 5, and
[violg € STY 0,,Q[uio]p, for 2 <i<n.

In the second case, as [zx0]p € RAY 0,0 @ [u1],0] g implies [u1[zi],0]z € RA 0, @ [uy0]p,
and [Uld}E € STV/QV/@[ul[.’I}k]pU]E then [1}10\{9%}]]5 S ST’f,(g,,/)\{%}@[ula\{xk}]E, i.e., O\{z}} is
a solution of A, u;j = v;/ST7 0, | ¢ | V,v.

We call nil | ¢ | V,v, where ¢ is satisfiable and v : X — Tx(X) such that dom(v) C V,
an empty goal. Given Rp = (X, Eg U B, Rp), a closed under B-extensions associated rewrite
theory of R = (X, Eg U B, R), both with built-in subtheory (X, Ey), a reachability problem
P =N\ ui — v;/ST; | ¢ | V,v is solved by applying the calculus rules in Figures 3 and 4,
starting with G = A, wiv — viv/(STY ; idle) | ¢v | V,v in a top-down manner, until an
empty goal is obtained, where (A;_; u; = v;/STY 0,)0 = NI wioc — UZ‘U/STZ(VU)V(QVU)\V.
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[d1] idle

u—wv/idle (ANA) | ¢ | V,v
(Ao) [ [V, (vo)v

where abstracts, ((u,v)) = (ANZ,7).(u®,v°); (05, 05); (Pa, d5)), o in CSUp(u° = v°),

vars(Y) Cvars((p A ¢o, A do)o), Eo v < (¢ A oy, A ¢g)o, and 9 is satisfiable

[d2] idle

[01] or

[02] or

[p1] plus

[p2] plus

[s1] star

[s2] star

[i1] if then else

where abstracts, ((u,t)) = (A\(Z, 9).(u°,t°); (05, 07); (8%, ¢7)), o in CSUg(u®

u—wv/idle; ST (ANA) | ¢ | V,v
u—v/ST(ANA) || V,v

u—v/(ST1|8T2); ST (ANA)| ¢ | V,v
u—=v/ST1;ST (NA) | ¢ | Vv

u—)’U/(STl’STQ);ST(/\A)‘¢‘V,Z/
u—v/STy; ST (ANA) | ¢ | V,v

u—v/ST1+ ;ST (NA) | ¢ | V,v
u—v/ST1; ST (ANA) | ¢|V,v

u—v/ST1+ ;ST (ANA) | ¢ | V,v
u—v/STy1;8T1+;ST (ANA) | ¢ | V,v

u—v/STi%; ST (NA) | ¢ | V,v
u—v/ST(ANA) || V,v

u—v/ST1%;ST (NA) | ¢ | Vv
u—v/ST1+;ST (ANA) | ¢ | V,v

u—v/match t s.t. ¢ 7 ST, :8T9; ST (ANA) | o | V,v

(u—=v/ST1;ST (NA))o | Y |V, (vo)y

=t°),

vars(v) Cvars((p A @' A dg A d5)a), Bo F v < (6 AP A gy A¢f)o, and 1 is satisfiable

[i2] if then else

where abstracts, ((u,t)) = (A(Z,7).(

u—v/match t s.t. ¢ 7 ST1:8T2; ST (ANA) | o | V,v

(u—=v/STe; ST (NA))o | Y |V, (vo)y

u’,1°); (0, 0¢); (du, ¢7)), o in CSUp(u® = t°),

vars(v) C vars((d A —¢' A5 A ¢3)o), Eo b1 < (¢ A—=d' A gy A ¢g)o, and 1 is satisfiable

Figure 3: Inference rules for reachability with strategies modulo SMT plus axioms I
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e [t] transitivity
u—>v/RA;ST(ANA) | ¢ | Vv
u—l zg,xp > v/RA; ST (ANA) | ¢ | Vv

where RA is a rule application, u € Hx(X) \ X, k = [Is(u)], and zj, fresh variable

e [c] congruence
ulp —1 g, ulxgly > v/RA; ST (NA) | ¢ | Vv
i = Yy, ulyplps — v/RA;ST (NA) | ¢ | Vv

where RA is a rule application, ul|, = f(u1,...,un), ui € Hx(X)\ X,
k" = [Is(u;)], yr fresh variable, and o1 = {zk > ulp[yps]:}
e [r] rule application

ulp =1 2, ulzgly = v/eY{ST1,...,STn}; ST (ANA) | ¢ | V,v
(AN (liy = riy/STy;idle) Aufryl, = v /ST (ANA))o | ¢ |V, (vo)v

where ¢: 1 — 7 if AI_ (I = ) | ¢ fresh version, except for dom(y) UV", of arule ¢ in R,
abstracts, ((ulp, 17)) = (A(@, 9).(u7,1°); (02, 0°); (62, 6)), o' in CSUn(u® = 1),
o = o' U{a > ry0’}, vars(y) C vars((é A 6% A 67 A (¢/7))0),

Eo-v < (9 Ao APy A(¢'v))o, and 1 is satisfiable

o [tp] top
u— v/top(c[Y[{ST1,...,STn}); ST (ANA)| ¢ | V,v

(Nizi Ly = riy/STisidle) Ary — v /ST (AN D))o | |V, (vo)y

where c: 1 — rif AJ_,(li = ri) | ¢’ fresh version, except for dom(y) UV", of a rule ¢ in R”,

abstracts, ((u, 7)) = (A(@,7).(u*,1°); (0u,0°); (du, ¢7)), o in CSUp(u® =1°),

vars(v) C vars((p A ¢g A ¢7 A(P'7))o), Eo - < (¢ Adg Ad; A (¢'))o, and 9 is satisfiable

Figure 4: Inference rules for reachability with strategies modulo SMT plus axioms II
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e [m] match
u—v/match t s.t. AL ([ =) A¢' ST (NA) | ¢ | Vv

(Ajoi(ly — rj/idle) Au— v /ST (ANA))o [ |V, (vo)v

where abstracts, ((u,t)) = (A, 9).(u®,t°); (0, 67); (du, 7)), o in CSUp(u® =1°),
vars(v) Cvars((p A @' A oo A dg)a), Bo -1 < (6 AP A gy A ¢f)o, and 1 is satisfiable
e [w] matchrew

u — v/matchrew t[z]; s.t. AT (I =7;) A ¢/ by 21 using ST, ..., 2, using ST, ; ST (ANA) | 6 | Vv
(Njoi(y = ryy/idle) AN (zi — yi/ STy idle) Atlyly — v/ ST (ANA))o [ ¥ | V. (vo)y

where Z = z1,...,2n, T and g fresh versions of Z, 7 renaming from Z to Z,
abstracts, ((u, tz]p)) = (\(@, @).(u?, £°); (62, 07); (65, &%), o in CSUp(u® = ),
vars(v) Cvars((p A @' Ao Ad)o), Bo -1 < (6 AP A@S A¢s)o, and 1 is satisfiable

e [cl] call strategy

u—v/CS; ST (ANA) | ¢ | Viv u—v/CSH);ST (ANA) | ¢ |V,v
u—v/STy; ST (ANA)| | V,v u—v/SToy; ST (ANA)| ¢ | V,v

where sd CS := ST, or sd CS(Z) := ST; in Callk, v = {Z — t},
and ST fresh version of ST1, except for dom(y) U V"
o [c2] call strategy

u—v/CS{t); ST (NA) | ¢ | V,v
Niti(liy = rjy/idle) Au— v/STyy; ST (ANA) [ | Vv

where csd CS(z) := ST if Cin Calll,, v = {Z — t},
STz if AJL,(lj =7;) A ¢’ fresh version of ST if C, except for dom(vy) UV,

vars(v) C vars(¢'y A @), Eo F 1 < ¢’y A ¢, and 9 is satisfiable

Figure 5: Inference rules for reachability with strategies modulo SMT plus axioms I11
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We briefly explain rule [w] (matchrew): we rename the matching parameters from z to the
fresh variables z with 7. Once abstracted u and t[Z]; to u° and t° and B-unified u° and t°
with o, we search for a unifier of [yo and 7o, say «, using the idle strategy. Once found, the
open goals (zo — 3j/ST~o)a, where 7 is fresh, will find a substitution 3 that makes [y;3]r an
element of ST;yoafQ[z;oal]E, for 1 < i < n, and go on trying to find solutions for the open
goal (t[yls = v/ST)oap.

Definition 42 (Narrowing path and computed answer). Given Rp = (X,Eo U B, Rp), an
associated rewrite theory of R = (X, Eg U B, R) closed under B-extensions, and a goal G with
set of parameters V and substitution vy, if there is a narrowing path G ~»5, G1 ~gy -+~
Gn-1 ~g, nil | Y | Vv, using the calculus rules in Figures 8 and 4, hence 1 is satisfiable, then
we write G~ nil | ¢ | Vv, where 0 = 01 -+ -0y, and we call v | 1 a computed answer for G.

If vg = none then v is the restriction of o to V by construction. In this case, as the
unifiers g;, 1 < ¢ < n, returned by CSUp are idempotent and away from all the variables that
have previously appeared in the computation, so ran(o;) N U;;ll ran(o;) = 0, then v is also
idempotent.

Although several rules allow for simplification in the reachability formula obtained, e.g., we
can replace X — Y + 72 > 0A X = Ywith Z > 0, it is always possible to obtain the same
computed answer without using simplifications.

Proposition 11 (Canonical narrowing path). Given Rp = (X, Eo U B, Rp), an associated
rewrite theory of R = (X, Eo U B, R) closed under B-extensions, and a narrowing path from a
goal G (with set of parameters V), G = Ao | o | V,none ~q, A1 | 1 | Vv ~ogy - D1 |
Ym—1 | ViUm—1 ~0,, Nl | ¥m | V,vm, there exists another narrowing path G = Ao | o |
Vinone ~>5, A1 | x1 | Viv1 oy D=1 | Xm=1 | ViVm—1 ~5,, nil | xXm | V,vm, where the
same inference rule, with the same substitution, is applied at each step in both paths, there is no
simplification of the reachability formula on the second path, and Fo & ¢; < x;, for 1 <1 <m.

Proof. As the applied rule at each step ¢ only depends on A;_; which is the same on both paths,
as long as v; and x; are satisfiable, all that it has to be proved is Ey - ¢; < x;. Then as ; is
satisfiable so is x;.

By the definition of the proposition, xo = g, so Ey F ¥ < xo. The check for Ey - ;1 <
Xi—1 implies Ey F 9; < x;, for 1 < i < m, is trivial since there are only two type of inference
rules in the calculus:

e those rules that do not modify the formula, so v; = v¥;_1, xi = Xi—1, and Eg F ;1 & xi_1
implies Fg F 9; & x;, and

e those rules where x; = (xi—1AX}_1)0, for suitable x,_, and 6, and Ey - ¢; < (xi—1AX}_1)0,
ie, FoF v < x;.

O]

The aim of this work is to solve reachability problems; it must be born in mind that a goal
with the second form comes from a reachability problem. Now it is proved that the calculus
rules are a sound method for solving goals. A distinction is made depending on the form of the
goal. For goals of the second form it is necessary to be very careful with the connecting variable
of the goal, since this variable does not appear in the original reachability problem.

7.2 Soundness and weak completeness of the calculus

The soundness and weak completeness, i.e., completeness with respect to R/FE-normalized solu-
tions, of the calculus for reachability problems are now proved.

36



Theorem 2 (Soundness of the Calculus for Reachability Goals). Given an associated rewrite
theory R = (X, Eg U B, R) closed under B-extensions and a reachability goal G, if v | ¢ is a
computed answer for G then for each substitution p : V¥ — Tx such that vp is satisfiable, v - p
s a solution for G.

Proof. By structural induction over the length of the corresponding canonical narrowing path
and the first inference rule applied. O

The following lemma will be used in the proof of the weak completeness of the calculus.

Lemma 7 (Narrowing of equational conditions). Given an associated rewrite theory R =
(X, EgUB, R) closed under B-extensions, and a goal G = NiL;(l; — r;j/idle) AN At [ ¢ |V, p,
if ais a ground substitution such that Vg C dom(a), Eg E Yo, and lao = T, then there exist a
ground substitution o, substitutions B1,. .., By from CSUs, let Bf = Bifit+1 - Br, and abstrac-
tions abstmctgl((ljﬂf_l,Tjﬁf_l)) = (AM@,95)-(15,75); ( L v); (gf)i,qﬁﬁj)% for 1 < j <m, where

0 = none, let B = B, such that dom(a®) = dom(a) U Vfﬁ,ﬁ’ a =g, a‘jlom(a), l°a® =f 7™a°,
a® <g Biom(ao), G W?dll] AVo, | YB A /\;nzl(qb?; A gbf])ﬁjm | Viv, and for every pair of substi-
tutions p and 7y such that ran(p) is away from all known variables, a° <g (Bp)dom(ac), and
a® =g (Bp)dom(ac) 7 it holds that Eo & (BN N;Z (6], A7) BT )py and At gua =g Al o, Bpy.

Theorem 3 (Weak Completeness of the Calculus for Reachability Goals). Given an associated
rewrite theory R = (X, Eg U B, R) closed under B-extensions and a reachability problem P =
Niejui = vi/ST; | ¢ | V,u, where p is R/E-normalized, if o : V. — Ty, is a R/E-normalized
solution for P then there exist a formula ¢ € QF (Xy) and two substitutions, say A and p, such
that N}y uip — vip/STY;idle | op | Vip Wj\' nil | ¥ | Vv, o =g v-p, and 1p is satisfiable,
where v = (u\)y .

Proof. The proof is by induction over the sum of the number of nodes in each closed proof
tree. =

Remark 2. In the previous theorem, by Definition 35 there exists a substitution o’ such that
o= u-o. As o is R/E-normalized then, by Proposition 5, u has to be R/E-normalized too.
Also, as o is R/ E-normalized and the substitution n obtained after each narrowing step is always
a generalization of o then, by Proposition 6, n is R/E-normalized too.

7.3 Completeness of the calculus, for topmost rewrite theories

In the proof of weak completeness of the calculus for reachability, the only places where the
hypothesis of ¢ being R/FE-normalized is used are in the initial substitution p and in the induc-
tion case, (i), where it limits the positions where rewriting can happen at some proper subterm
of uyo, an instance of the first term in the reachability problem P (uj). It is immediate then
to prove the completeness of the calculus for topmost rewrite theories, those rewrite theories
R = (X, E, R) such that for some top sort state, no operator in 3 has state as argument sort,
each rule I — r if A’ li = r; | ¢ in R satisfies [, € T5;(X)state and l;,7; € T (X)state, for
1 < i < n, since rewriting always happens at position € of ui0, so the hypothesis of o being
R/E-normalized is not needed for this type of rewrite theories in the proof of completeness,
when no variable in V' has sort state, so p is R/E-normalized.

8 Example
Three applications of the calculus using the running example are shown, recall the abbrevia-

tions: i — Integer, p — Pan, rt — RealToast, t — Toast, k —Kitchen, b — Bin, s — Systenmn,
ct; — cookTime, and ft; — failTime. We will omit the use of the subindex i in all variables
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for readability. In both cases we take ct = 20. In the first case, from an initial system with an
empty toaster, an empty dish, and at most one toast in the bin, we want to reach in no more
than 60 seconds the same final system as in the previous case. In the second case, we want to
know if there is value for £t lower than 61 seconds that allows us to get from an initial system
where there are three toasts in the bag and the remaining elements are empty to a final system
where there are three toasts in the dish and all the remaining elements are empty.

We choose Callr to consist of the following call strategy definitions:

e sd test := match N/By/Y;ViW,/OK s.t. Y < ft

e sd cookl := matchrew N/By/Kyx/OK s.t. Kx =Y; Ry Vi by Ky using kitchCook

e sd kitchCook := top(kitchen|[none]) ; top(cook[none]{toasts,toasts})
e sd toasts := top(toastl[none]) | top(toast2[none))
e sd noCook := top(bin[none]) | top(pan[none]) | top(dish[none])

)

e sd loop := (noCook | (cookl ; test ; noCook))+

e sd solvel := top(bag[none]) ; top(bag[none]) ; top(bag[none]) ; loop.
)

e sd solve2 := top(bag[none]) ; top(bag[nonel]) ; (top(bag[none]) | idle) ; loop.

Our reachability problems are:

PP=N/T:/0;ztzt /O - 0/2zt /Y ;ztzt/3/solve2 | N>0AN <3 |
{ct,ft, N, T3, Y}, {ct — 20,ft — 61}, and

P,=3/2t/0;2zt2zt /0 — 0/zt /Y ; ztzt/ 3/ solvel | ft < 61 |
{ct,ft, Y}, {ct — 20}.

The most important feature of Callr is the invocation of the call strategy test after each
invocation of cookl. This renders the search state space of both problems finite, since there is
a limit in both cases in the value of £t that gets checked against the timer, which initially has
value 0, through the invocation of test.

Further pruning of the search tree is achieved through several facts: (i) all rule applications
are used inside top strategies, preventing rule congruence of the narrowing calculus to be applied,
(i1) in the call strategy definition cook1, where a rule must be applied in a subterm of the state,
the matchrew strategy selects the precise subterm where to apply a top strategy in a much
efficient way that the blind search of rule applications, and (iii) the use of the call strategy
noCook after test prevents consecutive calls to cookl since rule toast2 always well-toasts one
side, so it cannot be invoked in the next strategy call. The definition of noCook could be further
optimized but it is left as is for the sake of simplicity.

In Py, as we can infer from the problem that, initially, there must be either two or three toasts
in the bag, we impose the application of the rule bag twice, followed by the nondeterministic
strategy top(bag[none]) | idle, before applying any other rule, also preventing its application
later, pruning the search tree. In the initial state we use the variable T} to represent the bin.
This use is valid because Toast is a subsort of Bin, and it also covers both initial cases: the
one without toasts in the bin and the one with one toast in the bin, since both EmptyToast and
RealToast are subsorts of Toast.

Among the answers returned by the prototype we have:

a-ct—20,ft —61,N — 3, Y — 60, T} — zt,
b- ct—20,ft— 61,N — 2, Y — 60, T3 — [0,0],

c- ct—20,ft — 61, N — 2, Y — 40, T; — [20,20], and
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d- ct—20,ft— 61, N =2, Y —40+U+V, Ty — [C, D] such that
C+U=20AND+V =20NU+V <20AU >0AV >0,

stating that we need 60 seconds when (a) 3 toasts are in the bag or (b) 2 toasts are in the bag
and one fresh toast is in the bin. The required amount of time can be smaller: (c) 40 seconds
if the toast in the bin is well-cooked or, if it is not, (d) 40 seconds plus the remaining toasting
time for the toast in the bin, as long as this remaining time is not above 20 seconds.

In P, as we know that there are three toasts in the bag, we impose the application of the
rule bag three times before applying any other rule, also preventing its application later, pruning
the search tree. This problem has only one initial state, but what we are trying to find is a value
for the parameter £t that fits the restrictions of the problem. The search for a solution ends,
since our search state space is finite thanks to the call strategy test, without finding a solution.

For the third example, if we take P, and we allow ft to be below 62 seconds instead of 61,
then the prototype returns the answer Y — 60 such that £t < 62 A £t > 60, i.e., we can cook
three toasts in 60 seconds when ft = 61, fulfilling all the restrictions of the problem.

9 Conclusions and related work

In our previous work [AMPP17], we extended the admissible conditions in [RMM17] by: (i)
allowing for reachability subgoals in the rewrite rules and (ii) removing all restrictions regarding
the variables that appear in the rewrite rules. A narrowing calculus for conditional narrowing
modulo Fy U B when Fj is a subset of the theories handled by SMT solvers, B are the axioms
not related to the algebraic data types handled by the SMT solvers, and the conditions in the
rules in the rewrite theory are either rewrite conditions or quantifier-free SM'T formulas, was
presented, and the soundness and weak completeness of the calculus, as well as the completeness
of the calculus for topmost rewrite theories was proved.

The current work extends the previous one by adding two novel features: (1) the use of
strategies, to drive the search and reduce the state space, and (2) the support for parameters both
in the rewrite theories and in the strategies, that allows for the resolution of some reachability
problems that could not be specified in the previous calculi that we had developed. A calculus
for conditional narrowing modulo Ey U B with strategies and parameters has been presented,
and the soundness and weak completeness of the calculus have been proved. To the best of our
knowledge, a similar calculus did not previously exist in the literature.

The strategy language that we have proved suitable for our narrowing calculus in this work
is a subset of the Maude strategy language [IMOMV04, EMOMV07, RMPV18|. This strategy
language and a connection with SMT solvers have been incorporated into the latest version of
the Maude language [DEE120], which is being used to develop the prototype for the calculus in
this work.

A classic reference in equational conditional narrowing modulo is the work of Bockmayr
[Boc93|. The topic is addressed here for Church-Rosser equational conditional term rewriting
systems without axioms. The intimate relationship between rewriting and reachability problems
was shown by Hullot [Hul80|, where he proved that any normalized solution to a reachability
problem could be lifted to a narrowing derivation that computed a more general solution.

Narrowing modulo order-sorted unconditional equational logics is covered by Meseguer and
Thati [MTO07], being currently used for cryptographic protocol analysis.

The idea of constraint solving by narrowing in combined algebraic domains was presented
by Kirchner and Ringeissen [KR94|, where the supported theories had unconstrained equalities
and the rewrite rules had constraints from an algebraic built-in structure, but they did not allow
for reachability problems.

Escobar, Sasse, and Meseguer [ESM12| have developed the concepts of variant and folding
variant narrowing, a narrowing strategy for order-sorted unconditional rewrite theories that
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terminates on those theories having the finite variant property, but it has no counterpart for
conditional rewrite theories and it does not allow the use of constraint solvers or strategies.

Foundations for order-sorted conditional rewriting have been published by Meseguer [Mes17].
Cholewa, Escobar, and Meseguer [CEM15] have defined a new hierarchical method, called lay-
ered constraint narrowing, to solve narrowing problems in order-sorted conditional equational
theories, an approach similar to ours, and given new theoretical results on that matter, including
the definition of constrained variants for order-sorted conditional rewrite theories, but with no
specific support for SMT solvers.

In [Mes20], Meseguer studies reachability in Generalized Rewrite Theories, that include
constructors and variants, using equational theories beyond our setup of EyU B (that only asks
for strict B-coherence), but with no rewrite conditions in the rules. Frozenness is used as a type
of strategy.

In previous work [AMPP14, AMPP15|, the relationship between verifiable and computable
answers for reachability problems in rewrite theories with an underlying membership equational
logic has been studied, presenting two correct and weakly complete narrowing calculi, the second
being a refinement of the first one. In this second calculus only normalized terms, in a similar
way to the reduction phase of Fribourg in the language SLOG [Fri85|, were considered in order
to find an answer to a reachability problem. The rewriting language Maude [CDET07], which
allows the use of reflection, was used as a framework to develop the prototype for the calculus.

Order-sorted conditional rewriting with constraint solvers has been addressed by Rocha et
al. [RMM17], where the only admitted conditions in the rules are quantifier-free SMT formulas,
and the only non-ground terms admitted in the reachability problems are those whose variables
have sorts belonging to the SMT sorts supported.

Future work will focus in broadening the applicability of the calculus. One line of work will
involve the development of a narrowing calculus for Ey U (E; U B) unification with strategies,
where E7 is a non-SMT equational theory; another line of work will study the extension of the
strategies and reachability problems supported by the calculus.
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A

Appendix

This appendix holds the rest of the proofs of this work.

Lemma 5. Given a rewrite theory R = (X, Eg U B, R), a set of call strategy definitions Callg,
and terms t,v € Hy, for each c.p.t. T formed using the rules in Dg cqu, with head t — v/ST,
so [v]g € STQ[t]g, each renaming « such that ran(a) N (Vr U Vg, caix) = 0, and each strategy
ST’ =g ST it holds that:

1.

10.

11.

12.

Main property: ¢t —p/p v and there exist closed proof trees for [v]p € STaQ[t]gp and
[v]p € ST'Q[t]p with the same depth and number of nodes as T'.

. If ST = idle then [t]g = [v]E.

. If ST = c[y] then t —1  w.

Y R/E

. If ST = top(c[y]), then t —=! v (i.e., the rewrite happens at the top position of t).

V€ R/E

. If ST =matchus.t. AT;(l; = 1) A ¢ then [t]p = [v]p and there exists a substitution o

such that t =g uo, [jo =g rjo, for 1 < j < m, and Ey F ¢o.

It ST = ST1; STy then there exists a term u € Hy such that [ulp € ST;Q[t]p and

[’U]E € STQ@[U]E

. If ST = ST+ then there exist ¢ + 1 terms ug = t,u1,...,U_1,U; = v € Hy, with i > 0,

such that [u;]p € ST1Q[uj_1]g, for 1 < j < i, where ¢ is equal to one plus the number
’LU1~>’LUQ/ST1 3 ST+
w1—>w2/ST1+

with the form w1—1>1')wl’fuT]21 ; Sﬁ/._);iﬁff”, is applied in the rightmost branch of the subtree

before applying a rule with the form

of times that a rule with the form , followed by the application of a rule

wl—)wz/STl
w1—>w2/ST1+'

IS8T = 8Ty | STy then [U]E c STl@[t]E or [’U]E S STQ@[t]E.

. If ST =matchus.t.¢? ST, : ST9 then there exists a substitution ¢ such that t =g ud

and either Ey F ¢6 and [v]g € ST10Q[t]g or Ey F —¢d and [v]g € ST20Q[t]E.

If ST = CS, where sd CS := ST € Callg, then: (i) [v]g € ST1Q[t]g, and (ii) [v]g €
ST1~Q[t|g, for every renaming vy such that dom(vy) C wars(ST:) \ Vg and ran(vy) N
VR, Calir = 0.

If ST = CS(t), where sd CS(z) = STy € Callg, T = x},...,20 , T = t1,...,lp,
and p = {Z — t}, then: (i) [v]g € ST1pQ[t|p and (ii) if v is a renaming such that
t—v/ST1(yUp)

dom(7) € vars(ST1)\# and ran(1) (ran(p) UV, caii) = 0 (s0 L5209 € Dry ),
then [’U]E S STl(’y U p)@[t]E

It ST = CS(t), where csd CS(z) := ST: if C € Callg, with T = :Bil,...,x?n and
C=NjL(lj =75) N ¢, call Vog = vars(ST1) Uvars(C), & C Ves, t =t1,...,t,, and p =
{z > t}, then (i) there exists a substitution ¢; : vars(Cp) — Tx, such that [;pd1 =g rjpd1,
for1<j<n, EyF gbp(sl (SO migslégl € DR,CallR)a and [U]E € STlpél@[t]E, and (ii) for
every renaming -y such that dom(y) C Vs \ @ and ran(y) N (ran(p) U VR, caiiy ) = 0, there
exists a substitution o : vars(C(y U p)) — Tx, such that I;(y U p)da =g r;j(y U p)da, for

1<j<mn, EyE p(yUp)ds (so % € DR, cuaily ), and [v]g € ST1(yU p)d2Qlt]E.
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13.

14.

15.

If ST = c[Y{ST1,...,STm}, with c: 1 — v if NiL;l; = r;j|¢ arulein R, then there is

a substitution 0 such that [r;v0]g € ST;0 @ [lﬁé]E, for1<i<m,andt —§> v.
&Y R/E

If ST = top(c[y[{ST1,...,8Tm}), with ¢ : I — 7 if AIL;l; = r;j [ ¢ arulein R then

there is a substitution 0 such that [r;vd]p € ST;0Q[l;vd]g, for 1 <i < m,and t —g v.
C,€6,Y R/E

If ST = matchrew us.t. A7, (l; = ;) A pby z! using STy,..., 2 using ST, where

! ¥ lpi..p, then there exist a substltutlon d, Where dy, o 15 ground, and

u = ulrg,...,T7
terms t1,...,t, € Hy such that t =g ud, [;0 =g 1}, fOI‘1<j<m Ey E ¢4, [ti|g €

ST;5 @ [mSié]E, for1<i<mn,and v=pg ué[tl, s tnlprpn-

Proof. The proof for the first property is done by induction on the depth of the c.p.t. T for
t — v/ST. The rest of the properties are proved when the related strategy is treated in the
proof for the first property. As ran(a) N vars(ST) = @ then vars(ST) N dom(a™t) = 0, so
STaa™ = ST.

e There are five strategies in the base case: fail, idle, c[v], top(c[y]), and the match test.

The depth and number of nodes of all the closed proof trees is one in this case.

1. As there are no derivation rules for fail, there is nothing to prove in this case.

2. If [v]g € idle@Q[t]p = {[t|g} then, as shown in example 10, [v]g = [t]g (property
2), so v =g t and, by definition, ¢ —/p v. As idle a = idle then also [v]p €
idle a@Q[t] g using the original c.p.t. T. As only idle =p idle, there is nothing to
prove about the strategies that are equal modulo F to idle.

3. If vlg € c[¥]Q[t|g, with ¢ : I — rif ¢, then So7a] Must come from a derivation
rule 7=o7e] 1 Dr,caiig where t/ —5> v’ for proper p and 6 such that t =g t' =

&PY9 R
t'[170]p, v =g v = t'[rvd],, and Ey F ¢yd, so t —> v (property 3).
c,p, Y6 R/E
c[yla = c[(va) gom(y)); call B = (*ya)dom( y and let & = a1, As mn(a) Nn((Vp U
VR, Cailr) = 0 then ¢88 = c(ya) gom(ya~'6 = ¢4, so also t T) / v, and there
? R/E

is a derivation rule ; ,/C[ ] € DR, Callg > SO is a c.p.t. for [v]g € c[y]aQ[t] g

t—v/chla
because t =g t', v =g v/, and c[y]a = ¢[f].

As ST = c[y] =g ST, then ST = c[y] where v =g 7/, so (I,r,¢)y =g (I,r, )Y,
with Viy, = Vi and V,, = Vi, hence Ey E ¢7/8, t =g t/ [lyé]p =g t'[l/0], and

v =g t'[ryd], =g t'[rv'd]p, ground terms, and ¢'[Iv/4], —g t'[ry'0]p. Then, there
e’

is a c.p.t. for [v]g €

1s a derivation rule I, =t o, /e DR, caliy > SO o]

c[y)@ft] -

4. If [v]g € top(cly])Q[t]g, where ¢ : I — r is a rule in R, then T' = j must

=v/top(c)

come from a derivation rule 558 Teoplel]) © DR, Calln » meaning that [y WR

rvd, such that [v§d =g ¢ and rvé =g v, so t 7> v (property 4). Call § =
€% R/E

(Ya) dom(+)- As in the previous case, top(c[y])a = top(c[y]a) = top(c[f]). If we take
8 = a~14, then ¢fd’ = cyd so also 176 7; rvd and F5Sm5Teep(e) € PR, Caiig
SoTtep(a 18 @ ¢-p-t. for [v]g € top(c[y])aQ[t]g, because lyd =g t, ryd =g v,
and top(c[y])a = top(c[A]).

As ST = top(c[y]) =g ST’ then ST’ = top(c[y']) where v =g v/, so (I,7,9)y =g
(I,7,¢)y, with Vi, = Viy and V,, = V,.s, hence Ey E W(S, t =g lvd =g 170

and v =g rvyd =g 96, ground terms, and 176 —5> r+'5. Then, there is a
CG,’Y R

SO
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derivation rule P78, 00T, TeopC7]) in DR, calln; SO So/top @) is a c.p.t. for
[v]E € top(c[y])Q[t] k-
5. If ST =matchus.t. AL (l; =7;) A ¢ and [v]p € STQ[t]p, then T =

=o/ST must
come from a rule

wSw/ST in DR, cali, such that ¢t =g w and v =g w, so t =g v
(i.e. [t]g = [v]E), and there exists a substitution o such that w =g uo, so t =g uo,
lic =g rjo, for 1 < j < m, and Ey F ¢o (property 5). As ¢t =g v then, by
definition, ¢t =g/ v.

As STa =matchua s.t. \JL,(lja = rja) A da, if we take o’ = a~'o then, trivially,
w =g uao’, so t =g uao’, ljao' =g rjac’, for 1 < j < m, and Ey F ¢ac’, so there
is a rule wSw/5Ta € DR, Cally , hence Su75Ta is a c.p.t. for [v]p € STaQ[t]p.

As ST =p ST', then ST" = matchu's.t. ATL, (I} = 7)) A ¢/ where (u,l,7,¢) =p
(U/ l, f/ ¢/) Wlth V l_’l”¢ _V/l/f g SO ‘/( ,l,, ¢/) —@ henCe W
tion rule in Dg_ cyiig , Since w =g uo =g v'o, l'c =g lo =g fo =g #o, and Ey E ¢o
and ¢ =g ¢’ implies Ey F ¢'o. Then, as t =g w and v =p w, ST is a c.p.t. for
[U]E S ST’@[t]E

is a deriva-

e Inductive step:

6. ST = STl N STQ

T T t—u/ST ST
If [v]p € STQ[t]p then T' = ;= 7o comes from a rule %ﬁiv/gT?;_g%Z 2 where

T} and T are closed proof trees with head t — u/ST; and u — v/ST3, respectively,

o ulp € ST1Q[t]p and [v]g € ST2Q[u]p (property 6). As these closed proof trees
are of a smaller depth then, by L.H. and property 1, { = g/p u and u —g/g v, s0
t —)R/E .

As STa = ST1a;STaa, we can apply the I.H. to T7 and T5, so there are closed proof
trees T] and T4 with head t — u/ST 1 and u — v/ ST, respectively. As there is a

t—u/ST ST T, T}
rule =Y t:;‘/g?s/ 2% € DR, Cally then TSo75ta 18 a c.p.t. for [v|g € STaQlt]E.

As ST =g ST, then ST' = ST ; ST, where STy =g ST and STy =g ST,. As T}
and Ty are of a smaller depth than T then, by L.H., there are closed proof trees T}
and T} for [ulp € ST}Q[t|g and [v]g € STHQ[u]g, with the same depth and number

of nodes as T} and T4, respectively, and % is a c.p.t. for [v]p € ST'Q[t]p with

the same depth and number of nodes as T'.

7. ST = ST1+.
T must be either of the form t—)v/Té'Tl—&- or t_w/Té%TlJr, where T has head t — v/ST,
or Ty has head t — v/STy ; ST1+.

In the first case, i = 1 because no rule with the form

wi—wa /STy ;ST1+
1w /ST 1T has been

applied, and there are 2 terms, ug (we take ¢) and u; (we take v), in Hy such that
ug =1, up = v, and [u1|g € ST1Q[up]g, because we have a c.p.t. for t — v/ST;.

In the second case, we can apply I.H. to the c.p.t. for uy — v/ST1+ so there are i
terms wy = u1, ..., w;j—2, w;—1 = v such that (w;|p € ST1Q[w;_1]p,for1 <j <i—1.
As there is a c.p.t. for ¢ — u; /ST in the left branch, then also [ui]gp € ST1Qt|g
Taking ug =t and ujy1 = wj for 1 < j <i—1 we get ugp = t, u; = wj—1 = v, and
[ujlE € ST1Q[uj_1]g, for 1 < j <i (property 7).

In either case we also have a c.p.t. of a smaller depth whose head has the form
t—wv/...s0, by LH., ¢ —g/p v. Also by LH., we have either a c.p.t. T{ with head
=t — v/STi or T4 with head t — v/ST1a ; ST1a+ with depth equal, whichever

the case, to depth(T) — 1. As ST; + o = ST1a+ and there are rules %
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d t—=v/STia; STro+ 17 T,
an t—v/STi1a+ t—v/STia+ or t—v/STia+
[v]g € STaQt]p with the same depth and number of nodes as 7T'.
As ST =g ST', then ST' = ST+ where STy =g ST}. As Tj, where j in {1,2},
has smaller depth than T then, by I.H., there is a c.p.t. T’ for [v]g € ST|Q[t]g
or [v|g € ST} ; ST1 + Q[t]g with the same depth and number of nodes as T}, and
% is a c.p.t. for [v]g € ST'Q[t]p with the same depth and number of nodes as
T.
. ST =S8T1|STs.
T must be either of the form t_)v/sjjzll r5T; OF t_m/s% rS5T5 where 77 has head t —
v/STy or Ty has head t — v/STs, so either [v]|g € ST1Q[t]g or [v]p € ST2Q[t|g
must hold (property 8) and, by LH., t —x/g v. Also by LH. there is a c.p.t T,
with head t — v/ST1a, or T4, with head t — v/ST2a with depth equal, whichever
the case, to depth(T) — 1.

As STa = STia | STea and there are rules tﬁjﬁgvT/iT‘l;Tm and téjg%i:ﬁzs?‘na
. . 8 T

m DR7CGHR7 then either t%v/ST11a|ST2a or tﬁv/STfa\STga
STaQ[t]p with the same depth and number of nodes as T'.
As ST =g ST, then ST' = ST | ST% where STy =g ST} and STy =g ST). As
Tj, where j in {1, 2}, has smaller depth than T then, by LH., there is a c.p.t. T” for
[v]p € ST|Q[t]g or [v]p € STLQ[t|E, with the same depth and number of nodes as
Tj, and % is a c.p.t. for [v]p € ST'Q[t|g with the same depth and number of
nodes as 7.

. ST =matchus.t.¢?ST; : STs.

By the definition of the derivation rules for the if-then-else strategy, T' must be of the
form t%Z}ST or tﬁfjsT, where T has head ¢t — v/ST16 or T has head t — v/ST6,
t/HUI/STlts t/ﬁv//STzé ith
v /5T Of /5T 0 W1
t =g t' =g ud and v =g v'. In the first case, by definition of the rule, Ey F ¢¢ and, as
Ty isac.p.t. fort —v/ST19, [v]g € ST10Qlt]g; in the second case, also by definition
of the rule, Ey F —¢d and, as Ty is a c.p.t. for t — v/ST9, [v|p € ST20Q[t|E
(property 9). In either case, as T1 and Ty are closed proof trees of a smaller depth
whose head has the form t — v/ ... then, by LH., t = /g v.

STo = matchuas.t.pa ? ST1ov @ SToro. If we take &' = a6 then ad’ = 6, so
uad = ud, pad’ = ¢pd, ST1ad’ = ST16, and SToad’ = ST50.

— If Ey E ¢ad’ (so Eg F ¢d) then T} exists and there is a rule % (i.e
%) in DR, cCaliz, SO HUTW is a c.p.t. for [v]p € STaQlt]p with the
same depth and number of nodes as T'.

t'—v'/SToad’ . t'—v'/ST26 -
(1.e., '—v' /ST n D’R,Calhz)a 50

in DR, cail, then either is a c.p.t. for

is a c.p.t. for [v]g €

coming from the application of a rule with the form

v

— FElse, T exists and there is a rule

t'—v' /STa
J% is a c.p.t. for [v]g € STaQ[t]g with the same depth and number of
nodes as 7.

As ST =g ST’, then ST’ = matchu' s.t. ¢’ ? ST} : ST, where u =g v/, ¢ =g ¢/,
STl =F ST’l, STQ =F ST/Q, Vu = Vu/, V¢ = V¢/, VST1 = VS’T/lﬂ and VSTQ = VST’Q-
We prove the case where Fy F ¢d, the case where Ey F —¢d is proved in exactly the
same way. As ¢ =g ¢’ and V;, = Vi then Ey F ¢'9, ground formula. Also, as u =g v/

and V,, = Vi, then t =g t/ =g ud =g /0, so there is a derivation rule %.

As STy =g ST) then ST16 =g ST)6 so, by LH. since t =g t/, v =g v/, and T has

smaller depth than T, there is a c.p.t. T] = IHJW for [v]p € ST} 0Qlt] g, with the
1

same depth and number of nodes as 77, and 7 18 a c.p.t. for [v]p € ST'Q[t]p

Tl
t—v/S
with the same depth and number of nodes as T
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10.

11.

12.

ST = CS, where sd CS := ST, and y renaming such that dom(y) C vars(ST1)\Vr
and ran(y) N VR, caiix = 0.
T must be of the form J%v where T has head t — v/ST13,s0t —g/p v, by LH,,

for some renaming (3 such that ran(8) N Vg, caur = 0 (hence dom(B8~1) N Vg = 0).
Also by LH., if we take B~%, as dom(8~!) N Vg = () then there is a c.p.t. T} with
head t — v/ST1 and the same depth and number of nodes as 71, so [v]g € ST1Q[t]| g
(i), and if we take v/ = 871y, as also dom(y) N Vg = 0, there must be a c.p.t. with
head t — v/ST157 (i.e., t — v/ST17), with the same depth and number of nodes
as T1, so [v]g € ST1~vQ[t]g (ii) (property 10).

As dom(a) C vars(CS) = () then o = none, so STa = CS and T is also a c.p.t. for
[Vl € STaQ[t]g.

As ST' =g ST, then ST' = CS = ST, and T is also a c.p.t. for [v]g € ST'Q[t] 5.
ST = CS(t), where t = ty,...,t,, sd CS(z) := STy € Callg, & =zl ,...,z"
& CVes, p={zl —t1,..., 2% — t,}, with ran(p) C X\ Vg, caup by the definition
of call strategy, and ~ is a renaming such that dom(y) C vars(ST1) \ Z and ran(y) N
(ran(p) U VR,caitz) = 0

T must be of the form t_ﬂ)f#@, where T7 has head t — v/ST1(8U p) (so, by LH.,
t —pgr/p v) for some renaming $ such that dom(B8) C wvars(STi) \ (# U Vg) and
ran(B) N (ran(p) U VR, caitr) = 0, hence (83U p)B~1 = p. Then, by LH., there must
exist a c.p.t Ty with head t — v/ST1p and the same depth and number of nodes as
T so [v]g € ST1pQlt) g (i).

As dom(y) C vars(ST1) \  C VR, caiig, dom(p) = &, and ran(p) C X \ VR, Caiig,
so ran(p) N dom(y) = 0, then ST1(y U p) = ST1pvy, with dom(y) C vars(ST1p).
Then dom(vy) C vars(ST1p). As T has head t — v/ST1p and the same depth and
number of nodes as T1, dom(y) C wvars(ST1p\ Vr), and ran(vy) N (vars(ST1p) U
VR, caliz) = 0 then, by L.H., there must exist a c.p.t. T3 with head ¢ — v/ST1py
(ie, t = v/ST1(yUp)), so [v]g € ST1(yU p)Q[t]g (ii) (property 11).

As dom(a) C wvars(ST) \ & = vars(CS(t)) \ & = ran(p), because & ¢ vars(CS(t))
and ran(p) N VR, cair = 0, then STa = CS(ta) and as ran(p) C X \ Vg, callr C
X\ vars(ST1), so dom(a)Nwars(ST1) = 0, then ST1(pa) = (ST1p)c and there is a
derivation rule % in DR cailn- Now, as Ty has head t — v/ST1p and depth
one less than the depth of T, dom(a) C ran(p) C wvars(ST1p) and vars(ST1) C
VR, Calir, 80 ran(a) N (vars(ST1p) U VR, caiir) € ran(a) N (ran(p) U Vr caiy) =
ran(o) N (vars(ST) U Vg cailr) = 0 then, by IL.H., there is a c.p.t. Ty with head
t = v/(STip)a and the same depth and number of nodes as 77, so HUT% is a
c.p.t. for [v]g € STaQ[t]g with the same depth and number of nodes as T'.

As ST =g ST, then ST' = CS(t'), where t =g t'. Let o/ =z — ¥, 50 p/ =g p.

As T = HU/TW, where T} has head ¢t — v/ST1(8 U p), then there is a derivation
rule %, so there is also a derivation rule %. As ST1(BUp) =k

ST1(BUp') then, by L.H., there is a c.p.t. T} for [v]g € ST1(8 U p')Q[t]g with the
same depth and number of nodes as T}, so % isac.p.t. for [v]g € CS(¥)Q[t|g
with the same depth and number of nodes as 7.

ST = CS(t), where t = t1,...,tn, csd CS(Z) := STy if C € Callg, with T =
9:;1, a2 C Vg, and C = /\;nzl(lj = rj) A ¢, call Vo = vars(C), Vg =
vars(ST1) U Ve, and p = {a}, — t1,...,37 — b}, with ran(p) N Vg, cai, = 0, and
7 is a renaming such that dom(vy) C Ves \ & = Vg \ dom(p) and ran(y) N (ran(p) U
VR, Caiir) = 0, 50 C(v U p)(Voars(cy) = Cp.

T must be of the form t_w/TW, where T} has head t — v/ST1(8 U p)d (so, by LH.,

t —pg/g v) for some renaming 3 such that dom(3) C Ves \ @ = Vs \ dom(p), so

48



13.

dom() N dom(p) = 0 and ran(B) N (ran(p) U VR, caix) = 0, so ran(B) N (ran(p) U
dom(p)) = 0 hence p8 = S U p, and some substitution 0 : vars(C (U p)) — Tx such
that [(BU p)d =g #(BU p)d and Ey F ¢(8 U p)d.

Call 61 = B0. As pf = S Up then d; : vars(Cp) — Tx is a substitution such that
Lipdy =g rjpdi, for 1 < j <n, Ey F ¢pdy. Also as pB = fUp, so (BUp)d = pBd = pdi,
Ty is a c.p.t with head ¢t — v/ST1pd; so, by definition, [v]g € ST1p01Q[t] g (i).

As C(yUp) ()t = Cp then C(yUp)(yv,) 181 = Cpdy, call §3 = (v, )~ 181, hence
d2 : vars(C(yUp)) — Ty is a substitution such that [;(y U p)éa =g (v U p)da, for
1 <j<mn,and Ey F ¢(yUp)de. As dom(d1) = vars(Cp) then ST1(yUp)dy = ST1(yU
P)(We) 101 = ST1(we Unve Up) (we) 7101 = STi(ny, Up)di = ST1(n, U pdr),
because as ran(y) N (ran(p) U VR cair) = 0 and vars(ST1) € Vg, cai, then after
v, instantiates ST'1 in ST1(y, Up), 61 does not instantiate any renamed variable
in ran(y\v,). Now, as 01 ground implies ran(pd1) C ran(p), ran(p) N VR, cair = 0,
and dom (v, ) C vars(ST1) C VR callg, then ST1(ny, U pd1) = ST1pd1nv,, i-e.,
ST1(yUp)oa = ST1pd1 v, -

In order to use I.H. we need to prove ran(y\v,) N (vars(ST1p61) U VR, caiir) = 0 and
dom(’y\vc) C vars(ST1pd1).

— By definition, ran(y) N (ran(p) U Vi caiyr) = 0. As ran(pd1) C ran(p) then also
ran(y) N (ran(pd1) UVR, caig) = 0, so ran(ny,) N (vars(ST1p01) U VR, caiig) = 0
because vars(ST1) C VR, caily -

— As dom(y) C Vgs \ dom(p) and Vgs = vars(ST1) U Vo then dom(yy,) C
vars(ST1) \ (dom(p) U Vi) so dom(my,,) € vars(ST1p) \ Vo. Now, as ran(p) N
VR, calty = 0, so ran(p) Nwars(ST1) = 0, and dom(ny,) € vars(ST1) \ Ve,
then dom(nv,) C vars(ST1p) \ (Vo U ran(p)) so, as dom(d1) = vars(Cp) C
Ve U ran(p), then dom(yy,,) € vars(ST1pdy).

Then, by LH., there is a c.p.t. for [v]g € ST1pd1 v, Q[t]g hence, as ST1(yU p)d2 =
ST1pd17\ v, also [v]g € ST1(yU p)02Q[t] g (ii) (property 12).

As dom(a) C vars(ST)\ & = vars(CS(t)) \ & = ran(p), because & ¢ vars(CS(t)) and
ran(p) VR, cailr = 0, then STa = CS(ta). Also, as ran(a)N(vars(ST)UVR, Cailz )
0, then ran(a) N (ran(p) U dom(p)) = 0 and dom(a™') N (vars(ST) U VR, caiig) =
so, as Vos € VR calig Cpaa™' = Cp and ST1paa™' = ST1p, hence Cpaa~1d;
Cpdy and STipaa=td = STipdy, call 63 = o161, so &3 : vars(Cpa) — Ty is a
substitution such that [;pads =g rjpads, for 1 < j < n and Ey F ¢padz and there

is a derivation rule % € DR caiir- Then, as ST1pads = ST1pdy implies

t — v/STipads =t — v/ST1pd; and T has head t — v/ST1pd1, t—w/T% is a
c.p-.t. for [v]g € STaQt]p with the same depth and number of nodes as 7.

As ST' =g ST, then ST’ = CS(t'), where t =g t'. Let o =T — ', 50 p/ =g p. As
T= J#@’ where T has head ¢t — v/ST1(5 U p), then there is a derivation rule
%. Asp =g 0, then [(BUp) =g I(BUp)d =g F(BUp)d =g F(BUp')S and
Ey E ¢(BU )0, so there is also a derivation rule %. As ST1(BUp) =k
ST1(B U p') then, by LH., there is a c.p.t. Tl for [v]g € ST1(B U p)Q[t]g with the
isac.p.t. for [v]p € CS(¥)Q[t|p

I = |l

same depth and number of nodes as 11, so m
with the same depth and number of nodes as T

ST = c[y]{ST}, with ¢ : I — r if /\T:1 lj—rjl¢arulein R, ST = STq,..., ST,
and dom(y) N vars(ST) = 0.

Ty T, . ; :
T must be of the form o/nl(5T] where T;, 1 < i < m, are closed proof trees with

head l;y6 — 776/ STid (so, by LH., l;ivd —g/p 76 and [rjyd]g € ST;6Q[lv0]k),
1170—7r1v0 /ST 16 lmyd—=rm~y0/STmd
u—ulryd]p/cy[{ST}

because there is a derivation rule € DR, calln, Where
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14.

15.

u € Hyx, p € pos(u), § : vars(cy) = Ts, u = u[lyd], =g t, u[ryd], =g v, and

Ey E ¢yd so, by definition as also ;70 —gr/p 776, 1 < @ < m, ¢ —! v
C7u7p7’y6R/E

(property 13).

Call ' = (Y@) gom(y) 0 STa = c[y'[{STa}.

If we take &' = o716, as dom(a™t) = ran(a), ran(a) N (Vo U Ve caig) = 0, § :
vars(cy) = Tz, then ¢/ = ¢(7a) gomma ™16 = ¢yd, so &' : vars(¢y') = Tx with
Eo E Yy, ul, =17'd', and STad" = ST6.

1178’ —=r1v' 8 /ST1ad’ by 8" =rmy 8" /ST mad’
Then, u—ulry’'8']p/STo
. . . . Ty Ty .
is a derivation rule in DR gy, SO m is a c.p.t. for [v]p € STaQ[t]|p with the
same depth and number of nodes as T'.

As ST = c[y]{ST} =g ST, then ST' = ¢[y|{ST } where ST =5 ST and v =g ~/,
so (I,r, 0, 1,7)y =g (Lr, 0, U, 7)Y, with Vi, = Viy, Viy = Vi, Vi, =V, and
Viy = Viyr, hence Eg E /6, t =g t'[l70], =g t'[l7/0]p and v =g t'[rvd], =g t'[rY/d]p,
Ly §—r1v'8/ST 6 lm~y 6—=rm~' 8/ ST, 6

__uoulry3ly /ey {5T} )
rule in DR cai,- Again, by LH., since STé =g ST ¢ and (I,7)yé =g (I,7)7'd, there
exist a c.p.t. Tj with the same depth and number of nodes as T} for [rjv'0]p €

ST50Q[lj+/'0]g, for 1 < j < m, so BiTn g g c.p.t. for [v]g € [y {ST}Qt] 5.

t—wv/cly']{ST'}
ST = top(c[y|{ST}), with ¢ : I — r if AjLl; — rj | ¢ arulein R, ST =
ST1,..., STy, and dom(y) N vars(ST) = 0.

T must be of the form bl (5T] where T;, 1 < i < m, are closed proof trees with

head l;v0 — r;vd/ST;d (so, by LH., l;76 —g/g 170 and [rjy0]p € ST;6Q[l;76] k),
1170—=7r170 /ST 16 lmyd—=rm~y0 /ST md
Iv0—ryé/top(c[V[{ST1,....5Tm})
d s wars(ey) = Ts, 176 =g t, rvd =g v, and Ey F ¢v4.
Aslivd —p/p rivd, 1 <i <m,t =g lyd, v =g 17, and Ey & 170 then, by definition,
t ——! v (property 14).

C,U,€,70 R/E
The proofs for the existence of a c.p.t. for [v]p € STaQ[t]g and [v]gp € ST'Q[t]g
with the same depth and number of nodes as T are the same proofs shown in the
previous subcase, particularized for the position p = €, so u = Iy and u[r~vd], = rvJd.

1176—=11v0 /ST 10 liny0—=rmY6 /ST md
u—ulrydp/STa

, i.e.,

is a derivation

ground terms and formula. Then,

because there is a derivation rule € DR, calln, Where

ST = matchrewu s.t. C by xi,l using ST1y,..., vy using STy, call T = :rél, Ce TG
where C'= N\TL (l; = 7)) N b, u= ulzl ..., 2 . p,, and & = {Z}.

T must be of the form -2--Tn where each T} is a c.p.t. with head xéié — t;/ST;0,

t—v/ST?
2L §—t1/ST16--2™ §—tn/STnd
. - . S1 Sn
1 < ¢ < n, by application of a rule W= ud,/ST € DRr,callg, SO

Vv(u,f,'F,d))E = ( and Vﬁé C Vp, where dyg, : X = Tu(X\Vsr), mn(&VST)'Q Vs
t =g ud, v =g udlt]y, 1§ = 76, and Ey E ¢ so, by LH., [t;]p € ST;0Q[x{;d]g, for
1 <j < n (property 15). Also by LH., 24,0 = /g tj, for 1 < j < n. Then, by con-
gruence of rewriting, t =p ud[x} 6,...,x7 6]y, p, —r/E W[l =g v (ie., t =g/ v).

Call o/ = anz. Then STa has the form matchrew ua’ s.t. Co by z}, using ST/, ...

x} using STypo!, ie., STa = STdo/, with ran(a) N (Vr U Vg, caig) = 0. Call §' =
(o/)718. As ran(a) NVp = 0, ran(dvy,) € Vags C Vi, and ran(dyy,) N Vsr = 0, then
ran(a) N ran(dy,,) = 0, hence ran(a’) N ran(dv,,) = 0. As also Vsr Nran(dyy,) =0
and Vsro C Vsr U ran(a’) then, for each x € Vgrp, xa/d’ = 26 and:
— if x € dom(6) then V5 C ran(dyy, ), 80 Vs N Vere =0, ice., Viarst N Ve = 0,
and
— if z ¢ dom(9) then 26 = x and:
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* if © € dom(o/) then, as ran(a) N Vp = 0, hence also ran(/) NV = 0, and
x € Vgp C Vp, then x & Vgpyr, e, 0 = Vos N Vera = Vears' N Vsrar;
« if x ¢ dom(d/) then x € Vgpy \mn( ") = Vsra \ dom((a/)71), so 28’ =
r(a) =26 =2, ie, x ¢ dom(] Vepar)-
Then 5{/5Ta/ : X = Te(X\vars(STd')) and STad’ = STd'§’ = STd, hence t =g
uc'd = ud € Ty, l/§' =15 = 70 = 7/§', s0 {l; 0/5’ T8y C Ty, ¢/ = @6 €
/5/%1/ST10/5/ 2l o6ty ) STnals!

! S! 91
Ts, and Ey E ¢a’d’, hence there is a derivation rule ua’5’—>ua’(5’[ﬂp/SToc’

in DR catin- As ud/d’ = ud, STa = ST, STA'§ = ST, and za/6' = Z6, because

zl 5ty /ST16a" 6—tp/STnd
— . . Sq Sn
z C mp(ST), this is the same as W= s,/ STa € DR, callr- Then, as

t =g ud and v =g ud[t], Hv/% is a c.p.t. for [v]p € STaQ[t|g

As ST =g ST', then ST’ = matchrewu’ s.t.C’ by:i’usingSTl where ST =g ST
C =g C/:/\ (ll =7, )/\(ﬁ/ SO (¢,l,7’) =5 ((ﬁl ll _) with V,, =V, = 2, V¢ = V¢/,
Vi, = Vi and Vi = VT 1,850t =p ud =g '8, v =p uldltl; =g ud'[t]p, 16 =g 76, and

Ey E ¢'§, ground terms and formula

. . . 6—>t /ST 67 6—)tn/ST’ .
Then, there is a derivation rule 2 : '6—>u5[ﬂp/ST’ € DR, cailr 10 DR, Callg -
Again, by L.H., since ST =p SiT/é7 there exist a c.p.t. T’» with the same depth and

number of nodes as Tj, for [t;]g € ST;é@[msﬁ]E, for1 <j<m,so i

1Ty -
T/ST’ 1S a Cpt

for [v]g € ST Q[t]p with the same depth and number of nodes as 7.
O

Lemma 6. Given a rewrite theory R = (X, EgU B, R), a set of call strategy definitions Callg,
terms t,v € Hsy, a strategy ST € Stratr,calir, and a substitution o such that dom (o) NVg =0
and ran(o) N (Vg U Vgr) = 0, if [v]p € SToQ[t]g can be proved with a c.p.t. T then [v]g €
STQ[t]g and a c.p.t. T" with head t — v/ST and the same depth and number of nodes as T'
can be constructed.

Proof. The proof is done by structural induction on the depth of T'.

e There are five strategies in the base case: fail, idle, c[y], top(c[y]), and the match test.
The depth of all the closed proof trees is one in this case.

— As there are no derivation rules for fail, there is nothing to prove in this case.
— If ST = idle then STo = ST and T =T

= If ST = c[y] then STo = c[(70)gom(y)]- As dom(c) N Vg = 0 then c¢(v0)gom(y) =
CYOran(y)- T = S0/3To because ¢ has the form ¢ : [ — 7 if ¢, and there exist u € Hy,

p € pos(u),and 6 : Voyg — Ty such that u —————' w, i.e., u = u[ly0 40,0
C"}/O-'r‘an('y)7p7(S R

and Eo F ¢704,(1)0, so there is a derivation rule W in DR caliy, t =E u, and

ran()

W = U[rYOygn(y)0]lp =& v. Then, also u m w, because as, by definition,
WO ran (v

dom(y) C vars(c) then 0,qn(,)0 : Vey — T, s0 there is a derivation rule TSw/sT in
DR, Callr and T" = = 7r.

if ST = top(c[y]) then STo = top(c[y0 an(y)]). As dom(o)NVg = 0 then c(v0) gom(y) =
CYOran(y)- I = =v/5To because ¢ has the form ¢ : [ — 7 if ¢, there exists 0 :
Veroruniy = To such that By F ¢Y0mn(4)0, 50 fo——smm——7grs Is a deriva-
tion rule in DR calig, t =F 1V0ran(y)9; and ry0,n(1)0 =g v. Again, by definition,
dom(vy) C wars(c) so Tran(y)0 : Vey = Ts and, as Ey F ¢y0,4,,(1)0, there is a derivation
rule in DR, caily > SO T =

l'Yo—mn('y) —TY0ran(~) /ST t—>’l}/ST
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if ST =matchus.t. \JL,(l; = rj) A ¢ then there exists a substitution ¢ such that
t =g uod, ljod =g rjod, for 1 < j < m, and Ey F ¢od, so there are derivation rules

e Inductive step:

m and m n DR,C(Z”n? where w =F UO'(S, and T = m because
— — [
t=pw=gwv,so0alsoT’ = T=0/ST"
T Ty
_ . t—w/ST o w—v/SToo
ST = 8T ; ST and T has the form 0/ 5To . By LH there are closed

proof trees with the forms tﬁf/lSTl and wﬁf/QSB where 7] and T3 have the same

! /
Ty Ty

depth and number of nodes as T and T, respectively, so T" = Hw/stT_lw/Lé;w/ST? is
a ¢.p.t. with the same depth and number of nodes as T
Ty Ty
ST = ST,+ and T must be either of the form ;:Z//?Tlg or t"”éi:}l/"s;;?”. As
STyo;8Ti0+ = (ST ; ST1+)o then, by L.H., there is either a c.p.t. with the form
7y T3

] T . ) T50/8T /) _ T50/ST1;8T1+

t—>U/IST1 or t—)v/STf;STH—’ hence either 7" = t—>v/S'11‘ or T" = t—>v1/ST =
£k Ty

ST = ST1|ST5 and T must be either of the form ;:’;//S;Tl; or ;:’;//‘ZTY%; . Then, by LH.,

T
. . . Ty T . ) t—=v/STq
there is either a c.p.t. with the form 507577 7 i50/5T3 hence either 7" = T=0/5T
75
! __ t—=v/STo
or T" = t—v/ST -
Ty
= ? : i t2v/5T1od
ST = matchus.t.¢?S8T1 : STy and T must be either of the form —v/STo OF

ED)
% where § : Vo g0 — Ts, t =g uod, and either Ey E ¢od or Ey E —¢od,
respectively.
Let a = oy, ,, so dom(0) = Vi \ dom(a), and 8 = o\y, ,, so dom(d) N dom(B) = 0.
Then 0 = aW B, (uod, pod) = (uad, pad), so Eg E ¢oé iif Ey E ¢pad, and ad : Vi, 4 —
Ts;, so there is a derivation rule of the form t?i/vs/?Taé or t?:/f/g?a& in DR, cCally -
Consider the open goal t — v/(ST;ad)3, where i = 1 if Ey F ¢ad and ¢ = 2 if

Ey E =¢ad. As § is ground and dom(d) N dom(B) = () then adéf = afBé = od and

H}/(SS’Fihaé)ﬁ is a c.p.t. so, by I.LH., there is a c.p.t. with the form IHU/TW, where
!

T/ has the same depth and number of nodes as T;, and 7" = %

ST = CS, where sd CS := ST, € Callr and T has the form zji/%, for some

renaming 7, because STo = CSo = CS = ST, s0 T' = %

ST = CS(t), where sd CS(z) = STy € Callg, T = x},..., 2%, t = t1,...,ty,

and p = {T — t}, call p’ = {Z — to}, and T has the form %, because

STio0 = CS(t)o = CS(to), and for some renaming v such that dom(vy) C Vgp, \
and ran(y) is away from any known variable, so Vgr, = Z U ran(y). As we also
have dom(p') = dom(p) = Z, then ST1(y U p') = ST1vp' = ST1ypo and also

STi(yUp) = ST1yp. As So/sTpe 18 a cpit. then, by I.H., there is a c.p.t.
£
Ty _ t=v/ST1(vUp)
t—>v/5}T1'yp7 and 7" = : t%v/ls}up !
ST = CS(t), where csd CS(z) = STi if C € Callg, with & =z} ,...,z7 and

C=NjLi(lj=rj))N¢g, & C Vs, t=t1,...,ty, and p = {T > 1}, call p’ = {T > to},
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T

and T has the form % because ST;0 = CS(t)o = CS(to), and for some

renaming «y such that dom(vy) C Vgr, \ & and ran(v) is away from any known variable,
so Vgr, = Z U ran(y), and there is a substitution ¢ : vars(CS(yUp')) — Tx such
that 1;(y U p')0 =g r;(y U p')d, for 1 < j < n, and Ey F ¢(y U p')d.

Let 6" = 0ran(y) U (00\ran(y))- As 0 is ground and ran(y) is away from all known
variables, then (7 U p)(S/ = (’7 U p)(smn(’y) U (Ué\mn(’y)) = (’Yémn('y)) U (po-(s\mn('y))) =
(ryémn(w))u(plé\mn(v))) = (/yUpl)da S ’ULLTS(C(’)/ U P)) — Tx verifies lj (’}/Up)(sl —E
ri(y Up)d', for 1 < j < n, and Ey F ¢(y U p)d’, and there is a derivation rule

Ty
t ST1(yUp)d - . So 7
W in DR, cally - Since (yU p)d’ = (y U p')d, then T = W

ST = c[y{ST1,...,8Tm}. As dom(c) N Vr = 0 then c(Y0)gom(y) = CY0ran(y)-
cil—=rif NjLylj = rjl¢isarulein R and T has the form %, where T;

T! .
has the form (5 STS 5 T8 for 1 <4 <m, 0 : vars(cyo,an(y)) = Ts, 0" = Oran(y)0,

Eo F ¥y04n(1)9, and there are u in Hy and p in pos(u) such that t =g u, ul, =
V0 ran ()0, and u[ry0y4p(1)0]p =E V-
As &' = Oy4n(y)0, then & : vars(cy) — Tz, and Ey F ¢y0', ul, = Ivd', so there

1178 —=1r178" /ST 18 -l 8" —rm 8 /ST md’ . no_
/UH’M[T'Y(;In]p/ST w2 in DR, cally - Also ulryd }p =

is a derivation rule

U[TY O ran(4)0lp =E V-

As dom(oc) N Vg = 0 and dom(d) C V. U ran(y) € Vg U Vgr then dom(d) N

dom (0 ran(y)) = 0 50, as ran(o)N(VRUVsr) = 0 and ¢ is ground, o\ yan(1)0 = 00\ ran(y)

and 06 = (Jran( )UO'\mn(')/))(S = Umn('y)o-\mn( )(5 = Oran(y )6U\ran( ) — 6,0\ran( ) hence,
T!

for1 <i<m,T; = and, by LH., there is a c.p.t. T with

l,v5’—>r1'y§’/ST 00\ ran(y)

the form M(S,_WTZW and the same depth and number of nodes as T;. Then, as
Tll T/l
t =g v and u[ryd'|, =g v, T' = t—1>7.1/ST

ST = top(c[Y{ST1,...,8Tm}). As dom(o) N Vg = 0 then ¢(v0)gom(y) = CY0ran(y)-

c:l—rif /\;n:1 l; = r; | ¢ is arulein R and T has the form tEW’ where T;
has the form l‘wqrv%,/ST.d, for 1 <4 <m, 0 : vars(cyo,an(y)) = T, 6 = Oran()0,

Eo E Yy0an(1)95 t =E V0 ran()9, and ry04,(1)0 =E v.

As 8" = Opn(y)0, then &' : vars(cy) — Ty and Ep F 17, then there is a derivation
1178'—=1r1v6" /ST 16 Iy y8' —rmy8' /ST m &’
Iyo'—ryd' /ST

0" = rY0an(4)0 =E V-

rule

in 'DR,CQHR. Also t =F l’yO'mn(,y)(S = l’y(sl and

. : . . : T
As in the previous case, for 1 < ¢ < m thereisa c.p.t. )" with the form T ST s ST

and the same depth and number of nodes as T;. Then, as t =g lvd’ and rvd' =g v,

r_ Ty
"= t—lw/ST'
ST = matchrew us.t. \T_,(l; = 7j)A¢ by z} using ST1,..., a7 using ST,, where
u = ufzl,...,2% ]y . p, and T has the form tﬁW’ where T; has head 2% 6 —

t;/ST;o6, for 1 < i < n, with t C Ts, Oygp, @ X — Tu(X\Vsrs) such that,
1an(0vsr,) € Vagas t = uod € Ts, uodltl; =g v, {lj0d,r;06}7, C Ts, loé =g
Fod, ¢pod € Ty, and Ey F ¢od.

The fact that ran(dvy,,) € Vgp,s does not ensure that ran(dyg,, ) N Vsr = 0. Let
a be a renaming such that dom(a) = Vg N ran(dyy,, ) and ran(a) is away from all
know variables and call ¢’ = oda. Then 0y, : & = Tu(X\Vsr). By Lemma 5, as
T; has head aziié — t;/ST;0d, there is also a c.p.t. with the form for
1< <n.

7
wgiﬁﬂti/STi& ’
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As 0y X = Ta(X\Vsr), t =p ud = ud’ € Ts, ud'lt]; =p v, 16/ =16 =g 70 = 76,
so {l;0",7;0'}]L; C Ts, and ¢&' = ¢d € T, so Ey F ¢d' then there is a derivation
xy 8 —=t1/ST18'al, §'—tn/STnd' .

Ar Y / _
rule = ud L T5T in DR, cally - As ud'[26']; = ud’ = ud = ud[zd]p, so
1 / n /
— = . . . w5, 0—t1/ST10"ay 6—tn/STnd
also £¢' = xd’, the derivation rule can be written a3,/ ST , hence
] T,
T — 2l 8-t1/8T18' 2l 5 tn /STnod

ud—ud[t]s/ST
O

Proposition 10. Given a rewrite theory R = (X, EgUB, R) and a set of call strategy definitions
Callr, and an admissible goal G with the form

o Niyu; = vi/STY0, | ¢ | V,v, or

° ullp —>1 xk,ul[xk]p — Ul/STTQy A /\?zgui — ’UZ'/ST;-/Q,, ‘ gb ‘ V,l/7

if G is a goal of type (a), with substitution vy (0., = none by definition), and Go ~+j G then
the following invariants hold:

1.

2.

10.

11.

vars(B)NV =0 and Ve N Veai, CV,

VNran(v) = 0 and v = (1ph)y, hence dom(v) C V, so dom(v) satisfies the restrictions
given for V in Definition 33.2,

. 0v = O\y, hence dom(g,) NV = () and g, is idempotent,

. ran(0) N (V U VR, caite Uvars(ST)) = 0 and ran(o,) NV =0,

dom(g,) N ran(v) = 0,

dom(o,) NV =),

- Vre N Ve, €V,

. ift € Tu(X) then tYp, = t(v W g,),

u;, v, 1 <1 < n, and each term in qg have the form t"o,,
vars(a, v, ) N dom(v) = 0, and

G has also the form GYg;,, where g, = by, \v, so dom(g},) € Ve, \ V.

Proof. - If G is a goal of type (a) then we have that G = Gy, 0 = none, and g, = 9, = none.
The invariants 1 —7 and 11 are direct consequence of the definitions of reachability problem and
goal of type (a), and the fact if § = o1 ... 0, then ran(o;) is away from any known variable, for
1 <i < m, by the definition of the calculus rules. We prove invariants 8 — 10.

8.

9.

10.

As 0, = none, then t"p, =t =tv = t(v ¥ o).

We have to prove w € 4 U UQAS = dt,,w = tYp,. As, by the previous point, t"p, = tv,
then we prove w € 4 UdU ¢ = 3t,,w = tv. Now, as G is a goal of type (a), G
has the form AL, v — o0v/STY | ¢°v | Vv, so 4 = @v, v = %, ¢ = ¢"v, hence
weGUIUG = It,,t P U UPAw = tv.

As G is a goal of type (a) then dom(v) N ran(v) = (). By the previous point, there exists
4% U 9% U @° such that a Ud U ¢ = 4% U v U ¢v. As dom(v) N ran(v) = () then
vars (v, ?°v, ¢°v) N dom(v) = 0, i.e., vars(a,v,¢) N dom(v) = 0.
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- We prove the invariants for goals of type (b) by induction on the number of applied calculus
rules from Figures 3 and 4 in G ~%, G’ e Gy 80 0 = o', using the fact that the properties

hold in G'. We call v/, v/, ¢/, /', and ST’ the structures in G’ in place of @, v, ¢, v, and ST,
so either v = v/ or there is a substitution o such that v = (v/0)y where, for proper t; and to,
o € CSUg(ty,t2) so V Nran(o) = O by definition of CSUp. Also, as dom(v) N ran(vg) = 0,
v = (1f)y and 0 is a composition of several CSUs, so ran(f) is away from all known variables,
then dom(v) Nran(v) =0 and, as V¥ = (V' \ dom(v)) U ran(v), also dom(v) NV" = (.

1. Immediate, since the invariant holds in G’, by I.H, and no rule modifies V.

2. As either v = vV or v = (Vo)y, VN ran(o) = 0, and V N ran(v') = 0, by L.H., then
V Nran(v) = 0 in either case. Also, by LH., v/ = (vgo’)y, so v = (V'o)y = ((voo')vo)y =
(voo'o)y = (vof)v .

3. By LH., o = U{V? with dom(g,) N (V U ran(v')) = 0 and ran(o,) NV = 0, ie.,
mn(a{v) NV = 0. Then:

e If [r] computes a CSUp of two terms, say o, then we can find in G (depending on
the actual calculus [r] applied):

— open goals that are an instance with o of one open goal in G’ with the form
u — v’/ST”/ 0,. The strategy of one open goal in G will be an instance with o
of part of ST o,/ in the case of rules if then else and match,

— new open goals with the form (u — v/idle)o which are equal to (v — v/idleg,/)o,
or

— new open goals with the form (v — v/STp, ; idle)o, where ST,/ is an already
existing strategy in G’, which are equal to (v — v/(ST ; idle)g,)o.

In any of these cases, by Def. 38, 0, = (0,/0)\v, hence g, = (o 0)\v = (a{va)\v =
(@'ohy =8Oy

e If[r]isacall strategy rule, applied to a open goal with the form v’ — v'/ CS; ST o,
or v/ = v'/CS({ 0,); ST g,r, where CS has parameters Z, then o = none, v = 1/,
Oy = 0y = U’\V = (o'o)\v = O\y, and dom(g,) N (V Uran(v)) = 0. Apart from the
rest of existing open goals, that remain unchanged, we can find in G:

— for conditional call strategies, new open goals with the form u — v/idle which
are equal to u — v/idle p,, and

— anew open goal u — v/ST%~; ST" o, where if the call strategy has no parameters
then: (i) v = none, call 79 = none, or else (i) v = {Z — tY g, }, call 79 = {Z — ¢},
and ST is a fresh version of the strategy ST in the call strategy definition for
CS in Cally, except for dom(y) U VY. As dom(g,) N (V U ran(v)) = () and
vars(STY) N dom(v) = 0 then vars(ST%) N dom(p,) = 0 so, if either (i) or (ii)
holds, ST5v = (ST27v0)" 0u-

e 0 = none for the rest of the rules, so v = v/ and g, = 0,/ = a{v = (0d'oh\v = Oy,
and no new strategies are added. In these rules, for any open goal v/ — v'/ST¢ € G

there is one open goal u/ — v//ST" 0,, € G’ such that if STy € tokens(ST¢) then
ST, € tokens(ST" o), so ST has the form STY o,/ i.e., STYo,.

4. Immediate, since 6 is a composition of several CSUs, where the range of each CSU is away
from all known variables (so dom(0) N ran(f) = 0), including V, and, by the previous

point, g, = 6\y.

5. If 0 = none there is nothing to prove. Else, as 9, = (0,0)\y and v = (V'o)y then
dom(o,) = dom(g,)U(dom(c)\ (VUran(o,)) and ran(v) = ran(oy)U(ran(v')\ dom(o)).
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10.

As ran(o) is away from all known variables and, by L.H., dom(g,/) N ran(v’') = () then
dom(o,) Nran(v) =

(dom(g,) U (dom(a) \ (V U ran(e,))) N (ran(oy) U (ran(v') \ dom(0))) =
(dom(ay) U (dom(o) \ (VU ran(e,))) N (ran(s/)\ dom(o)) =

(dom(o) \ (V Uran(o,)) N (ran(v')\ dom(c)) C dom(c) N (ran(v')\ dom(o)) = 0.

—

. As dom(p,)NV =10, dom(g,) Nran(v) = 0, and V* C VUran(v), then dom(o,)NV"Y = 0.

. Immediate, since Vg N Veai, €V, in R and Callg we are replacing each variable v €

dom(v) with vv, and V¥ = ran(v) U (V' \ dom(v)).

. Immediate, since dom(v) CV and dom(g,) N (V Uran(v)) = 0, invariant 5, imply "o, =

t(rWoy)

. Let w € «/ Uv' U@ such that wo € aU U ¢. By LH., w = t“ g,/, for proper ¢. By LH.

and the previous point, w = t(v/ W g,/). As, by LH., dom(v') CV and dom(g,, )NV =0,
then wo = t(V' W o, )0 = t(v, W (o )\v)o = t((V'o)v W (eo)\v) = t(r & o) so, by the
previous point, wo = tYg,,.

By LH., vars(v/,v',¢’') N dom(V') = 0, with dom(v') CV. As v = (V'o)y, then dom(v) =
dom (V') U dom(ov ), so vars(u'c,v'c,¢'c) N dom(v) = 0. Then we only have to check
vars(, v, ¢) \ vars(u'c,v'o, ¢')o, i.e., those variables introduced by the rule that do not
belong to the instantiation of vars(w/,v’, ¢') with o.

e Each one of the variables, say x, introduced by abstracty,, is new so, as v = (V' o)y:
— if 2 € dom(o) then vars(xo) N dom(v) C ran(o) N dom(v) C ran(oc) NV = 0,

and
— if x ¢ dom(o) then, as x is new (so x ¢ V), vars(xo) Ndom(v) = {x} Ndom(v) C
{z} NV =0 ().

This covers all the rules in Figure 3, except rule transitivity. It also covers rule match
and it partially covers the rest of rules in Figure 4.

e Both rules transitivity and congruence introduce one new variable not in dom(v), so
(t) applies (o = none).
e Rule matchrew introduces one vector of new variables (¢) not in dom(v), so () applies.
e The next case is rule rule application, with strategy c[y]{ST} and substitution o. By
LH. ¢[y]{ST} has the form (c[8]{ST"})" 0,s, for proper 8, so ¢[y] = ¢’ [0(V'Wour) ran(s)]
where dom(d) = dom(v). The calculus rule uses a version, say ¢, of ¢ where all
the variables are new except for dom(y)UV"?'. The new variables of vars(c!') are not
in dom(v), so (1) applies. We check the rest of the variables in vars(c¢} ). For each
z € vars(¢y') N (dom(y) UVY):
— if x € V¥ then:
x if x € dom(c) then vars(zo) C ran(v) so, as dom(v) N ran(v) = () then
vars(zo) N dom(v) =
*x else xo =x,s0 x € V¥, and:

- if x € V then x ¢ dom(v) so, as xo = x, vars(xo) N dom(v) = 0;
- else x € ran(V') so, as xo = x, € ran(v). Then, as o = x and
dom(v) N ran(v) = 0, vars(zo) N dom(v) = 0;

— else x € dom(y) (= dom(d)), and xyo = 26(V' W 01 ) ran(5)0 = TI(V' W 01 ) ran(s)
call @ = (V& 0u)rqn(s)- By definition of the rule application strategy, ran(d) C
T5:(X \ VR, cuaii ) 50, as dom(d) C VR, caiiz, ran(d) N dom(d) = 0. Then for each
y € vars(zd), y € ran(d), x # y, and:
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x ify ¢ dom(a) then ya = yandy ¢ dom(v)

(s)- In particular, asy € ran(0),
y & dom(v), so vars(ya) N dom(v) = 0;

ran
* else y € dom(a) (= dom((v W 0v)ran(s)))- Then:
- if y € dom(Vpgn(s)) then vars(ya) C ran(v) so, as dom(v) N ran(v) = 0,
vars(ya) N dom(v) = (), and
- it y € dom((0v)ran(s)) then, as we have already proved g, = 0\, and 0 is a
composition of several CSUs, so ran(f) is away from all known variables,
vars(ya) N dom(v) = 0.
In conclusion, vars(zyo) N dom(v) = .

e The proof for rule top, with strategy top(c[y]{ST}) and substitution o, is exactly
the same as the previous one.

e In rule [c1] call strategy, (u,v,¢) = (@/'0,0'0,¢'c), where o = none, so there is nothing
to prove.

e Now, we check rule [c2] call strategy with strategy invocation CS(t) and substitution
v = {Z — t}. By LH. CS(%) has the form (CS(w))" g/, for proper w, so t =
w(V Wo,) =w(vWe,) =w(vdo,) (0 = none), hence v = {Z — w(r W g,)}, call
a = v g,. The calculus rule uses a version of the condition C in the right-side
of the call strategy definition, call it C’, where all the variables are new except for
dom(y) UV". The new variables in C' are not in dom(v), so (1) applies. We check
the rest of the variables in C’. For each z € vars(C") N (dom(y) UVY'):

— if 2 € V¥ then z € V¥, because o = none, and:

x if x € V then x ¢ dom(v) so, as xo = z, vars(xo) N dom(v) = 0,

x else x € ran(v). Then, as zo = x and dom(v) N ran(v) = 0, vars(zo) N
dom(v) = 0;

—else x € dom(y) (= %), say * = m;, so vy = w;a (« = v W p,). For every
y € vars(w;):

* if y € dom(v) then vars(ya) C ran(v) so, as dom(v)Nran(v) = 0, vars(ya)N
dom(v) =0,

x if y € dom(o,) then, as we have already proved g, = f\y and 0 is a
composition of several CSUs, so ran(f) is away from all known variables,
vars(ya) N dom(v) = 0,

x else y ¢ (dom(v) U dom(oy)), so ya = y. Then, as y ¢ dom(v), vars(ya) N
dom(v) = 0.

In conclusion, vars(zy) N dom(v) = (.

11. The last calculus rule applied to get G from a goal of the form GYo,, where Go ~p, G o,
and, by I.H. and invariant 3, g, = 9/\\/:

e may have generated G as an instance of G, with a substitution o, so § = #'c. Then
Definition 38 ensures that o, = (0,0)v,\v = (9’\VJ)VG\V = (0'0)y,\v = Oy, \v, and
we take o), = gy, or

e it may have not generated an instance, so = ¢, and we take 0, = (0,)v; =
By )ve = by = Ovarv

O]

Theorem 2. Given an associated rewrite theory R = (X, EgU B, R) closed under B-extensions
and a reachability goal G, if v | ¢ is a computed answer for G then for each substitution
p: V¥ — Tx such that ¥p is satisfiable, v - p is a solution for G.
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Proof. By structural induction over the depth of the corresponding canonical narrowing path
and the first inference rule applied. Remember that V# = (V' \ dom(p)) U ran(p), (Aj—; wi —
vi/ ST (0p)i)o = Ni_y wio — vio/STEMU)V((QM)ia)\V, and vars(G) = vars(¢)UU;-; vars({ui, v;})U
VH or vars(G) = {x} U vars(¢) Ui, vars({u;, v;}) UVH (for rules [¢] and [r]).
¢ Dase case
Rule [d1] (idle):
G = u; — vi/idle | ¥1 | Vi ~pane nil | ¢ | V,(uo)y, where abstracts, ((u,v)) =
<)‘(j7g)'(?ﬁ7v(l)); (02792);( Za¢g)>a Y = (¢1 A ¢Z A gbg)O', T = {5517- '4'7'%.7:1}7 u? = ul['ﬂﬁ?
o z _ o _ ° 7
¢u = (/\zzlxi = ul’}’z’)? Yy = {ylv"-ayiy}7 vy = ’Ul[y}q, d)v = (/\jyzlyj = Ul’%‘)? QS
CSUp(uj = 1), so u§o =p v{o, and 1 is satisfiable, for proper p and g.
As p is a ground substitution such that dom(p) = vars(Go) and p is satisfiable, i.e.,
(1 A @ N ¢3)op is satisfiable, then i10p is ground, so Ey E t1op, and (&5 A ¢5)op
is satisfiable, where ujop and viop are ground terms, so there exists a substitution p’ :
Vzopgop — Ts such that Zopp’ =g, u1lzopp’ = uilsop and yopp' =g, vi|gopp’ = vilgop.
Let v = opp’. As ujop and viop are terms in Ty, the theory inclusion (Xg, Ep) C (%, E) is
protecting, and uSop =p viop, then wiop = woplui|popls =g, wop[Ty]; = wY[TY]p =
uiy =g v}y = vY[Ilg = vioplilg =g, vioplvilgoplg = viop, so uiop =g viop. As
vars({u1,v1,¥1}) € vars(G) then u104m5()p = W10P =E VIOP = V10 yqrs(c)P and Ey F

Y1op implies Ey F 11045 p 50, as in example 10, [v10yqrs(c)plE € 1d1eQ[u10 45 Pl B>
and o ,qr5(c)p is a solution of G.

e Inductive step

G = Nicyuwi — vif/ ST (ep)i | ¢1 | Vipor G = wlp ="' z,ufz], — v1/STH ()1 A
Nisgui = vi/STH(0u)i | ¥n | Vip. Welet A = AY gu; — v;/ST!(0y)i- When the
substitution applied in the first narrowing step is none, A, 11, and y remain unchanged,
so L.LH. ensures that A and ¢ comply with the thesis of the theorem, as it is shown in the
proof for the second subcase. We will omit this proof in the rest of related subcases, as
the proof is always the same.

1. Rule [d1] (idle):
G=u — vl/idle A A ’ (0 ‘ V,u ~1d1],01 Aooy ‘ Y101 A\ p°o1 ‘ V, (,U,Jl)v = Gldl,
with G' = A | 1 A¢° | V, u, where abstracty, (vi) = (A\z.07;0°¢°), T = {x1,..., 21},
1}(1) = ’1)1[.%'1, - 7xl]Q1...qza P° = (/\221 €T, = 'Ul‘qi); o1 € CSUB(u1 = ?}f), o1 A @0y s
satisfiable, and G'oy ~7, nil | ¢ | V,v, call 0 = o107, so Tyars(c) | ¥ is a computed
answer for G, and o/, ars(Glo) | 1 is a computed answer for G'o;.
If p: vars(Go) — Tx is a substitution such that vp is satisfiable, then let p; =
Puars(G'a)» 50 als0 Ppy is satisfiable. As dom(p) = vars(Go) then dom(p1) = vars(Go)N
vars(G'o). Let p2 = Pyars(Go)\vars(Go), SO p = p1 W p2, and let py : vars(G'o) \
vars(Go) — T, so dom(p1) N dom(p}) = 0 and dom(p1) U dom(p}) = vars(G'o),
such that 1 (p1 W p)) is satisfiable, and call p' = p1 W pj, so p’ : vars(G'o) — Tx.
As dom(p}) = vars(G'o)\vars(Go) and dom(p1) = vars(Go)Nvars(G'o) C vars(Go),
then p/vars(Gg) = (plwp/l)vars(Go) = (pl)vars(Ga) = p1,s0 by LH., as p' UCLTS(G,(OjO'/)) -
Ts; and 1y’ is satisfiable, a;am(G,al)p’ is a solution for G’o1, meaning that Ey E (11 A
¢°)o1 a;(m(G,m)p’ and there are closed proof trees for each open goal in Aglagms(G/gl)Pl

. . .o (Mo—la;ars(G/o )p,)V ’ /
with respect to the instantiation Dy oy . We prove (a) Aalamrs(G,al)p =

AJUarS(G)p and (b) (MUlU;aTS(G/Jl)p/)V - (Mavars(G)P)V:
(a) As A appears both in G and G’ then vars(Aoy) C vars(Goy) N vars(G'oy) C

/ / _ / / _ /
vars(G'oy), so Aalamm(G,al) = Aocjo’ and vars(Aalamrs(G,Ul)) = vars(Aoy10’) C

o8



vars(Goro’) Nwvars(G'o10’) = vars(Go) N vars(G'o), hence Aala;m,s(G,al)p’ =

Aoio'p' = Agio'p1 = Ao10'p = Aop = Ao yers(c)p-
(b) If v € V then either
— v & dom(u) and v = v, so vars(vp) C V \ dom(pu) C vars(G), or
— v € dom(u), so vars(vp) C ran(p) \ dom(u) C vars(G).
Also, either
— v ¢ dom(uoy) and vuor = v, so vars(vpoy) C V' \ dom(puoy) C vars(Goy) N
vars(G'oy), or
— v € dom(uoy), so vars(vuoy) C ran(uoy)\ dom(uoy), and also vars(vuoy) C
vars(Goy) Nwars(G'oy).

Asin the previous case, then vuoio

/
vars(G'o1)

vars(G'oy0") = vars(Go)Nvars(G'o). Then v,uala;(m(G,al)p’ = vpop = vpop =
VIO P = VO yqrs(c;) P hence (uola;am(@al)p/)v = (1O yars(c)P)V -

Then, from (a) and (b), the same closed proof trees are also valid for each open goal

in Ao yqs(c)p With respect to the instantiation D;g %;ﬁf)p)v.

As vars(i1 A ¢°) C vars(G’) then (¢ /\gbo)cna;am(G,al) = (Y1 A\P°)o10’ = (Y1 N9°)0,
s0 Ep E (Y1 A¢°)op’, hence Ey E ¢1op’ and Eg E ¢°op’, where (11 A¢°)op’ is ground,
because vars((1 A ¢°)o) C vars(G'o) and p' : vars(G'o) — Ts. Now, dom(p1) =
vars(Go) Nwvars(G'o), and vars(vi|q,) C vars(Go) Nwvars(G'o) implies vy |g,0p1 € Ts
s0, as p' = p1 W p}, vi|g00 = vilgo(p1 W p)) = vi|gop1 = vi|go(p1 W p2) = vilg0p,
for 1 <4 <, hence ¢°cp’ = (/\2:1 ziop = vi|g0p). As also vars(yro) C vars(Go)N
vars(G'c) then, reasoning exactly in the same way, 110p’ = 10p, so Ey E 10p.

/
vars(G'o1)

= vpoio’, vars(vuo) = vars(vpoio’) =
) C vars(Gala;(m(G,al))ﬂvars(G’gla;(m(G,al)) = vars(Goy1o')N

vars(vporo

Let v = o(p1 W p2 W p)), where pr W pa W p| = pWpy = p' Wpr. As wjo1 =p
v{o; then wio =p vjo, so w1y =p viy. Also, wiop and viop € Ty, because
vars({uio,vi0}) C dom(p) = wvars(Go), so u1y = uiop and vy = viop. Fi-
nally, ¢°cp’ ground implies z;0p’ ground, so x;op’ = x;y, for 1 < ¢ < [. Then,
uiop = wy =g iy = YTy, 2g.q = vioplriop,.. 100 g g =B,
viopvL|gop, ..., V1lg..q = viop, so, as E = B U Ey, uwiop =g viop, and, as
vars({ur,v1}) C vars(G), w10 yars(@)P =E V10yars(G)P- Then, as in example 10,
(V10 vars(@)PlE € 1d1eQu10 e @)plE- As also Ey F ¥1044m5(c)p, and there are

closed proof trees for each open goal in Acy.q)p with respect to Dg(g;ﬁf)p)v,

then o,45()p 1s a solution of G.

2. Rule [d2] (idle):
G =wu — v1/idle; ST oy AN A | b1 [ Vi ~ (49 none w1 — v1/STH ou N A | 1 |
Vip = G and G' ~} nil | ¢ | V,v, where v = (u0)y, S0 Oyrs(cy | ¥ is a com-
puted answer for both G and G’, since vars(G) = vars(G'). For any substitution p
that satisfies the premises of the theorem, by LH., 0,4.s(c)p 18 a solution for G’, call
0 = Oyars(@)P> V' = (0)y, and g7 = (0u,0)\v, so Eo F 910, there are closed proof

trees for each open goal in Ad, and also a c.p.t. ———~———— all of them with
u16—v18/STY o,/
u1d—uid/idle u15—>v16/ST”/QV/ c ,Dl/

then
u16—v16/idle ; STV 0,/ R,Callgr>

/ .
respect t0 D ooy - As there is a rule

F
u1d—oub/idle 5 4015/5TV o,
u16—v1d/idle; ST”/gU/
solution of G.

is also a c.p.t., with respect to D%, SO O yars(q)P; 18 also a

3. Rules [01] and [02] (or):

29



we prove [ol]; the proof for [02] is exactly the same, with ST's instead of ST;. G =
uy — ’Ul/((STlll | ST/;) ) ST”)QM NA | (2 | Vi ~[o1],none U1 — vl/(STlll ) ST“)QM A
Al Y | Viu = G, so vars(G) = vars(G'), and G' ~F nil | ¢ | V,v, where
v = (1o)v, 80 Tyars(c)|? is @ computed answer for G and 45|70 is a computed
answer for G'. Call Ay = uy — v /(STY ; ST*)o,. By LH., for any substitution

p : vars(G'o) — Ts such that vp is satisfiable, 045 p is a solution for G, call
0 = Tpars(@)P (= Tvars@)P), V' = (1d)v, and o,r = (0u0)\v, so there is a c.p.t. for
L] L)
wys—t/STY o) t—v16/5T 0,
u16—v18/(STY 3 ST Yo,/
w6t /(STY |STY Yo,1 t—v16/ST" o,/ and
u16—v18/((STY |STY ) ; ST Yo,

A16 with respect to D%CGHR. The c.p.t. has the form

for some term t € Hx. As there are rules

w 5—t/STY o,
16—t/ (STY |STY o,

in ,D7V2,,Call7z7 then the proof tree

L]
u16~>t/STTIQU/ Iy
16—t/ (STY |STY Yo, i t—v16/ST" 0,

urd — 016/ ((STY | ST5); ST )ow

is closed, so, as vars(G) = wars(G'), p : vars(Go) — Tx, ¥p is satisfiable, and
Tars(G)P 18 @ solution of G.

. Rule [p1] (plus):
G = uyp — Ul/(STlf+ ) ST“)Q,M ANA ‘ 1/11 ‘ V’au ~p1],none Ul — vl/(STlf ) ST“)QM A
Al Y | Viu = G, so vars(G) = vars(G'), and G' ~7F nil | ¢ | V,v, where
v = (uo)y, hence oy |t) is a computed answer for both G and G'. Call Ay =
up — v /(STY ; ST*)p,. By LH., for any substitution p : vars(Go) — Tx such
that 1p is satisfiable, 0,405 is a solution for G, call § = Tyars(r)P (= Tvars(@)P);
V' = (pd)y, and g,r = (0u0)\v, 50 there is a c.p.t. for Ay with respect to D;’é Callg -
F F:
u15—>t/SlTll”QV, t%vlé/sTV/gy/

ur6—v18/(STY 5 ST )0,

The c.p.t. has the form for some term ¢t € Hy. As there

! / /
6—t/(STY t—v16/STY 0—t/STY /
are rules “Ot/(STY Q”/)t/ = V{ & w1l 24— in DR gy, > then
u10—=v10/(STY +; STV )o,r u10—t/(STY o0,1)+ ) R
N E—
u16—>t/ST‘1’ o, Fy

wr6—t/(STY 0,)+ t—v18/8T o,
u1d — v16/(STY 4 ; ST Yo,

is a c.p.t., so p:vars(Go) — Ts, ¥p is satisfiable, and 0,450 is a solution of G.

. Rule [p2] (plus):

G=u — Ul/(STllL—H STM)Q,M/\A ’ (01 ’ V. 3 p2],none U1 —7 vl/(ST/f; STI1L+7 ST“)QH/\
Al | Viu = G, so vars(G) = vars(G'), and G' ~F nil | ¢ | V,v, where

v = (uo)y, hence 04|t is a computed answer for both G and G'. Call Ay =
up — v1 /(ST ; ST +)ou; STH. By LH., for any substitution p : vars(Go) — T, such
that 1p is satisfiable, 0,450 is a solution for G', call § = Tyars(r)P (= Tvars(@)P);

V' = (ud)y, and g,, = (0u0)\v, so there is a c.p.t. for A;d with respect to D;’é Call -

o F3
7 7
F1 tlﬁtg/(STT o,)+ tg—v16/STY ¢/
u15—>t1/ST11’/gV/ t1—>1r15/(ST’1’/+ ; ST"/)QV/

The c.p.t. has the form , for terms t; and

ur6—v18/(STY 5 STY +; ST )0,
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wrd—ta/(STY 0,)+ ta—v16/STY 0,1 wrd—ta/(STY 3 STY 40,/
u15—>v1§/(ST11’/+ ; STVI)QV/ ’ u15—>t2/(ST’1’,QV/)+ ’
and u16—t1 /ST 9,/ t/1—>t2/(S7,”f/QV/)
u15—>t2/ST11’ 0, ;ST +

to € Hx:. As there are rules

+
in DR,CallR’ then

F )
7 7
uléﬂtl/STT o, t1~>t2/(ST’1/ o,1)+ F3
! ! !
uyd—ta/(STY 5 STY +)o,s to—v16/STY o,

!
uyd—to/(STY e,1)+

u10 — U15/(ST11/,—|— ; STV/)QV/

is a cp.t., so p:vars(Go) — Ty, Pp is satisfiable, and 045 p s a solution of G.

. Rule [s1] (star):

G =wu = v1/(ST*; ST oy NA | 1 | V,p ~1s1]mone U1 —> v1/ST o NA | 9y |
Viu = G, so vars(G) = vars(G'), and G’ ~7F nil | ¢ | V,v, where v = (uo)y, so
Tyars(G)|¥ 18 a computed answer for G and ¢45()[7 is a computed answer for G'.
Call Ay = u; — v1/STHp,. By LH., for any substitution p : vars(G'c) — Ty such
that p is satisfiable, 04,570 is a solution for G', call § = Tyars(a) P (= Toars(@)P)>
V' = (ud)v, and o,, = (0ud)\v, so there is a c.p.t. for A0 with respect to D%CGUR.

Fy
The c.p.t. has the form w105016/5T 0,

As, by definition, (ST 0,/)* = idle | (ST¥ 0,/)+ and there are rules

u1d—uid/idle’
/ ’
idl 1 §/idle|(STY 1 6/STY . /
u16—'>u16/1 e, : and u1d—uid/idlel( .1 QV/)“F, up —w/l / 0, in D7Vz(j s then
u1d—u16/idle|(STY o,/)+ u10—v16/(idle|STY +; STV )o,/ yCaALR

the proof tree
u1d—upd/idle Fl
u15—>u16/idle\(S’T’f/gyl)+ u16—>v15/ST”/gV/

u1d — v16/((idle | STY +): ST )o,

is closed, so p : vars(Go) — Tx, 1p is satisfiable, and 74,5 p is a solution of G.

. Rule [s2] (star):
G=u — Ul/(ST%{*; ST“)QM/\A | L ‘ Vi ~7152],none U1 — U1/<ST7—|—; ST“)QM/\A |
1 | Vi = G’y s0 vars(G) = vars(G'), and G' ~F nil | ¢ | V,v, where v = (uo)y,
hence 0,475 [¢ 18 a computed answer for both G and G'. Call Ay = (STY+; ST*)g,.
By LH., for any substitution p : vars(Go) — Ts such that 1p is satisfiable, 04p5()P
is a solution for Gly call § = Ovars(G')P (: Uvars(G’)p)7 V= (/’Lé)\h and g, = (Q,LL(S)\V7
80 there is a ¢.p.t. for the goal A1d with respect to D%’Calln.
Py Fy

u1s—t/(STY o )+ t—v18/5T 0,
w16—v18/(STY 0,)+; ST 0,1

definition, (ST% 0,/)* = idle | (ST% 0,/)+ and there are rules

The c.p.t. has the form

for some term ¢t € Hy. As, by

w1 6—t/(STY 0,0)+
ur6—t/idle|(STY o,1)+

/
0—t/idle|(STY t 6/ST16 . /
and W2t4 el(. 19”')j _my,/ = in D% cuu. then
u10—v19/((id1e|STY +) ; STV )o,/ ) R
31
uys—t/(STY o 1)+ y

u16—>t/id1e\(STT,gV/)+ t—>v16/ST”'gV/
uid — v10/((idle | STY +); STV o,

is a c.p.t., s0 p: vars(Go) — Tx, ¥p is satisfiable, and 74,5 p is a solution of G.
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8. Rule [i1] (if then else):
G =u; — v /(matchty s.t. @1 28T : ST ST) o (NA) |1 |V, ~i1],01 (ug —
v1/(ST1;ST) o, (NA) | o | Vip)or = Gloy, call t = )0, and ¢ = ¢} 0, where
abstracts, (t) = (A\z.t%0°% ¢°), t° = t[z]g, with T = x1,...,2; and § = q1,...,q,
¢° = (N._; z; = t|g;), hence Vo UVyo = VUi, 01 € CSUp(u1 = t°), 1ha = 1 AGA ¢,
so Vi C Vi, 1booy is satisfiable, and G'oy ~1, nil | ¢ | Vv, call ¢ = o10’, where
v = (po)y = (po10’)y, so oy, | ¢ is a computed answer for G and a{/Glgl | ¥ is a
computed answer for G'oy.
Let p : Voo — 7Tx be a substitution such that vp is satisfiable, call 6 = oyp,
V' = (ud)v, so dom(v') = V and ran(v') = 0, and o0, = (0ud)\v, s0 ¢ : Vg — Ts.
As dom(p) = Ve and Vi C Vv, so Ve C Virg, then dom(p) C V. Let pf -
Vero \ Vao — Tx, so dom(p) U dom(p}) = Vere, such that ¢(pW p}) is satisfiable, and
call p' = pW pl, s0 p' : Vgro — Ts and p, = p.
By LH,, as p' : Vo or — Tx and ¢p’ is satisfiable, a{,G/UI p' is a solution for G'oq,
call ' = 010{/@01 ¢, 0" = (eud"))\v, and p" = 5(/&4)\%.
We prove several intermediate results:
— )y = (ud")v.
We prove the equivalent fact, x € vars(Vu) = xd = xd: as VI = (V' \

dom(p)) U ran(p) then Vi, = VF# so if ¢ € Vy, = V# C Vg then o € Vg, 201 €
Vaor € Ve, and x(o10')y, = xala{,cl . Now, as z0 (= zoy,p) is ground,
o1
xd = xoy,p = zoy,(pWp)) = zoy,p = x(o10”)v.p' = :Eala(/cl o =xd.
71
- ‘/(tm(ba) C Vo
As Vie UVge =V, UZ, o =1 AP A ¢°, and 01 € CSUp(uy = t°), 50 Vioy, =
Ve € Vao,, because B is regular, hence Vgo, U Vies, = Vigo,, then Vg, =
Vao, U Voo, U Ve, = Vigo, U Vieo, U Voo, U Ve, = Vo, U Vigy U Vze, U Ve, =
VGUl U VY(tUh(zbal) U ‘/2017 Y VY(tUh(bal) - VG/0'17 hence Vv(ta,qba) C Voo
= Vi ey Vet oty
This is immediate since dom(p) C V, v/ = (ud)y, so dom(u) C dom(v'), and
ViV = Ty
= Vi oty \ Vi gry) S V"
As dom(p) €V and v/ = (ud)y then the variables in Vi puy instantiated in
Vi gv'y must belong either to V' \ dom(u) or to ran(u), i.e., to V#. Since
171
vV :V — Tx then V,

G

!

!

) \ V(t’f, oy = () and the result follows.

~ gop' =Y oup”.
As (u8)v = (u')y then gop’ = 68" = (¢ 0,00 = 6"V (g0 )y = 61V ¢ =
Yo/, so we prove the equivalent ¢4 o' = ¢ p,/p” by proving z € Vo, =
V' o = 2” 0,p". We consider two cases:
« if £ € V then z¥ is ground, so 2 ¢/ = " 0,/ p".
« if ¢ Vthen ¥ =z, s0 z¥ ¢ V. Also, as z ¢ V, z' = x so, as x € Vp,,
T € Vg Asw ¢ V and 2¥ = x then 2V ¢ = z0 = z(0u0"\v = woud" and
2 oy = zoyp" = z(0ud)\vp" = x0oudp", so we check xg,0" = w0,0p" by
checking y € Vi, = yd' = ydp™:
-asx € V¢>‘f and y € Vyp, then y € Vfﬁ‘fé'u’ e,y e Vg
- again, we consider two cases:
(a) if y € Vg then yd is ground, so ydp” = yd = yoy,p = yop = yoi0'p.
Also, as Vg C Vi, y € Vi and Vo, C Vigrgy, s0 yd' = yala(,alalp =

yoi0'p = ydp”;
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(b) if y ¢ Vg then, as y € Vy, y € V¢\G C Vig\a 50, as also y ¢ Vi and
5: Vo — Ts, yop" = yp' = YOy e = Y9
— top' =t o’
The proof is the same as the previous one, just exchanging ¢ and t everywhere,
even when they appear with subscripts and/or superscripts.

As o(/G, P’ is a solution for G'oy then, by LH.:
o1

(a) EoF 2d’, ie., EgF (Y1 Ao A@°)d,

(b) there are closed proof trees for each open goal in Ad’, with respect to D)V

, R,Callr
(=DR. Caity» We use v’ instead of (ud')v in (c)), and
(c) [v10']p € (ST1;ST)" ¢ Qu1d]
so:
(a) 1. Vi, C Vi implies wgola(/clol = 9010’ = 190, S0 Eg E oop’, where Yoop’
is ground, because Vi, € Vi and p' @ Voo, — Tx, hence Ey E 10y,
Ey E ¢°cp’, and Ey E ¢op/, all ground expressions.
ii. Vyyo € Vg and dom(p) = Vg, implies ¢1op € Ty so, as p/ = p W pf,
op’ = Pro(pWp)) = rop = 19, hence Ey F 110 ().
(b) As in subcase (a)-ii, VA C Vi implies Ad’ = Ad, and the same closed proof trees
are valid for each open goal in Ad with respect to D;’é’calln (t1)-
(c) Again, V,, 4, € Vi implies that v16’ = v16 and w16’ = u1d. Then there is a c.p.t.

i )
uléﬁw/STTlg’ w—wl&/ST"/gV/

u16ﬁv15/(ST1;ST)”/ o

of the form , for some term w € Hy, with respect to

D%,Calln'
We prove (a) ST p,p" = STV o and (b) dom(p") = Vio \ Ve
(a) As Oy = (AQ/L(S)\Va 0 = OvgpP, 0 = UlU, 5, = UlUVG’alp7 Ql = (Q,uél)\V7 and

/

Vg NV = this is the same as ST”,Qu(ala’)VGpp” = ST 9“010(/@01,0 :

Let y € VST”

i yeVa. Then Vyor € Vao, € Viroy, so y(o10' )y, = yoiro’ = yala{,G,al. Also

, 80 y ¢ V. There are two options:

y(o10")v, = yo, hence V(10 C Vao. Then, as p: Voo — Ts, y(o10")v,p

is ground, so y(010")vepp" = y(010 )vep = yoroy,, p=yoioy,, (pUph) =

/ /.
yglUVG, P
ii. y ¢ Vo, so y(o10')vg = y. As ran(o) N Varu,, = 0 and Vgur, C Vsrug,
then ran (o) Vg o = =0 soy ¢ Vg, and, as dom(p) = Vg, (010 Wep =Y.
"
Then:

/

A if y € Vi then y(o10 )y pp” = yp' = yd{/w\vc = yd = yala{/Gldlp,
ground term because Vo, C Vigy g0y € Varo, and p' : Vg, o — Ts;
B.if y ¢ Vi g then y(o10")v,pp” = yp” = y5(/z7¢\vc = y. As dom(oy) C
(Vi UVee) € (VgU Vi UZ) and y ¢ (Vg U Vig) then yoi = y so, as
ran(op) N VST” =0, yo1 ¢ Vao,, and yor0y, . =y & Vas,o! s0, as
Gloq VG/o'l
P Vo — 7’z, yoroy,, 0=y =y(010)vepp".
(b) As dom(p") C (Vi \ Vo) and, from (a.ii.A), y € (Vi \ Vo) = Vyr = 0 then
dom(p") = Vi 4 \ Vg, hence p" : V4 \ Voo — Ts.

In exactly the same way as the proof for (a), STY o,p" = STY ¢ and STY 0, =
STY of
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10.

Now, we prove (a) dom(p”) = V(tylg o o
1 @v/P1 Oy

) (b) Eo & ¢{ 00", and (c) wid =p
tllez/p”:
() As dom(p") = Vip \ Ve, Vigr gy © Vier oty Viewoty \ Viy gy €V C Va, and
iom(gu)ﬂV“ = 0, then dom(p") = Viy g)\Vo = Vigrg, 40,0 \Vo = V(tT'Qu,dff/Qu)\
G-
As 0, = (0u0)\v and V(t,flydﬁl)
V(tT'@uMS’f/@u(S)’ S0 we prove V(tT
since § : Vg — Tx.

(b) Immediate, since Eg E ¢op’ and ¢pop’ = ¢} 0, p".

NV =0, then Vi, orro ) = Vi (o) v 67 (eudv)
V. ) \ V&, which is trivial,

! = !
Qu‘sz(ﬁlf @ud) (tT qu(bT Ou

!

/

(¢) uioy =g t°0y and o = 010’ imply wyo =p t° so, as V,,, C Vg, ULO yars(G) =

uio =g t°0. As p: Vs — Tx, 80 uioy,p is a ground term, and p’ = p W p} then
w1 = woy,p = woy,p =g t°op’ = t[z)gop = top'[zop'l;.
As Ey F q/[)oop’ then top'[Zop']; =By top'[tlgop, ... tlgop'ls = tapi[ta,o’b]q =
top = t’l’lg,,/p”, because top’ = t} oup”, so uid =p t°op’ =g, tY op”, ie.,
u1d =gty oy p”.

Then, as p" : Vi, gy ) = T5: Bo B & o, wd =g #] 0p", and STY oy =

1 I//7 1 l)/
u15—>w/STT/g’ c D'/
u1d—w/match t’l’/gl,/ s.t. d)ll’l,gu/ ? STll’/ QU/:STZI 0,1 R, Callg "

STll” o', there is a derivation rule

Now,
F
uys—w/STY o Fy

u10—w/match t’f/gul s.t. qb{l.g,// ? STT/ QV/:STZI o, w—v16/STY 0,1
u18 — v16/(match t! o,/ s.t. ¢ 0,0 ? STY 0,0 : STY 0,0); ST 0,
is a c.p.t., p: vars(Go) — Ty, 1p is satisfiable, Ey F 110 (1), and there are closed

proof trees for each open goal in A with respect to D;’é Cally (TT); hence oyrg()p is
a solution of G.

. Rule [i2] (if then else):

G =u; — v /(matchty s.t. 1 28Ty : STo; ST) o (NA) |1 |V, ~lit],01 (ug —
v1/(STo ; ST) o, (NA) | Yo | Vip)or = Gloy, call t = o, and ¢ = ¢} 0,, where
abstracts, (t) = (A\2.t°;0°%¢°), t° = t[Z]g, with T = x1,...,2; and ¢ = q1,...,q,
¢° = (Niz1 @i = tlg;), hence VieUVye = V;U#, 01 € CSUR(ur = 1°), b2 = h1A=dAG,
so Vg C Vi, 1907 is satisfiable, and G'oy w; nil | ¢ | V,v.

The proof is the same as the one for rule [i1], just replacing ¢ with —¢, and ex-
changing ST; and ST9 everywhere except in the match strategy at the beginning
“match t1 s.t. ¢1 7 ST1: 5Ty ; ST”.

Rule [t] (transitivity):
G=u — Ul/(RA; ST)“Q#(/\A) | 1 ‘ V, i ] UL 1 Tk, Tk — v1/(RA; ST)“QH(/\A) ’
1 | Vip =G s0o Vg CVeU{ar} = Vi, and G' ~7F nil | ¢ | V,v, where v = (uo)y,
hence oy, |¢ is a computed answer for G and oy, |t is a computed answer for G'.
Let p : Voo — Tx such that ¢p is satisfiable, call § = oy,p, V' = (pud)y, and
0 = (0ud)\v, where dom(v') =V and ran(v') = 0, let 0 : Vgiy \ Voo — Ts, such
that 1 (p W o) is satisfiable, let p’ = p W o, and call §' = oy, p'. As Vg C Vi then
0 Vae — Ts and G§' = G6.

By LH., as p’ : Vi, — Ty and 9y’ is satisfiable, ¢’ is a solution for G', so [zxd']p €
RA¥0,0" Q [u10']g and [v10']gp € ST p,0'Q[x,d"|p. This is equivalent, since Go' =
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11.

Gd, to [l’k(y]E S RA“QM(s Q [U15]E and [Ul(S]E € ST“QM(s@[JJk(S,]E, ie., [wktsl]E S
RA" 9, @ [u16] and [110]p € ST 0,,Q[z40] g, s0 there are closed proof trees of the

forms L and L With respect to DY . As there is a
u15—)zk5//RA” o, :Ek(;/*)vl(S/ST” p R,CallR
u16—>$k6’/RA” 0, xké’—nqé/S'T 0,
rule € DR Calip > then

U164)U15/(RA ST)

F1 F2
uﬁﬁxk&’/RA”/gy/ mké’ﬁvlé/ST”/gy/

U0 — 7)15/(RA ; ST)”IQV/

is a c.p.t. with p: vars(Go) — Ts and tp satisfiable, s0 0,.5()p is a solution of G.

Rule [c] (congruence):
G = wlp =" apwmrly = vi/(RA: ST oy (NA) [ 41 | Vi w0, up =
Ykt W1 (Y lps = v1/(RA; ST) o, (NA) |1 | Vo= G, where ui|p, = f(u], ..., u,),
u, € Hs(X) \ X, yp fresh variable, and o1 = {z — ui|plyw]i}, so (uo1)y = p and
Veo, = Ver, and G' ~7, nil | ¢ | Vv, call 0 = o10”, where v = (uo’)y = (po)v,
hence oy, |9 is a computed answer for G and J(/G, |1 is a computed answer for G'.
Let p : Voo — Tx such that v¢p is satisfiable, call § = oy p, V' = (ud)y, and
0 = (0u0)\v, where dom(v') = V and ran(v') = 0. As Vg, = Vg then Vg, =
VGglgl = Vryr, 80 also p: Vargr — 7-2, call ¢’ = UVG/p.

For every variable z € Vg N Vi, as dom(o1) = {xi} and x, ¢ Vi, 20 = zoy,p =
zop = zo10'p=zo'p= za{/ p=20". As vars(ui|p) C Vg and vars(ui[yw]p.i) € Voo
then vars(ui|p[li) € Ve N VG/ 50 u1|po[]; = u1]pd’[]i-

By ILH., as p : Vgor — Tx and 9p is satisfiable, a{,G/p is a solution for G/, so [y;.0'|g €
RAMQ“(SI Q [u;él]E and [1)1(5/]]5 € ST“QM(SI@[Ul[y,;}p_Z‘(S/]E. As Vo = {yk/} U Vg \ {xk}
and Vgrary, N {zg,yw} = 0, so RA*g,(010")y, = RAYguov,, then RAFg,6' =
RA“QMU{/G/;) = RAY g 0y, p = RA"ou(010")vgp = RA guovyp = RAV 0,6 = RAY o,
In the same way, ST"0,8 = ST" g,,. Then, [y,8'|z € RAV g0 Q [u}¥'|p, [116']E €
STV 0,,Qfuy [}.]p.i0"] £, and there are closed proof trees of the forms (1)

u%é’—)y;czs’/RA”/gl,/

F1 Fs : v/
or (2 and (3 with respect to D .
( ) u;d/ y;€5//RAV/ 0,/ ) ( ) w1 [y;ﬁ]p.id/ }vlél/STD,gV/ P R,Callr

— Case (1): RAY = ¢’[4], so RAV o, = c”/[’y(gy/)mn(v)], & 1l = rif ¢ and
there exist a substitution 7, a position ¢, and terms ¢,t’ € Hy, such that Ey F
1 . . . . /

/ b ————— " t,80 —————isa derivation rule in DX ,
¢7(QV )mn(’y)n o "/(Q,,/)mn(»y),q e t—t'/RA o, R,Callp
;' =p t, and t' =g y,.0’. By definition of —>}%, also u1d|p[t)y ———

CV"Y(QV/)ra,n('y)’i'qu

1

u16],[t']; so there is a derivation rule c DY )
1 ’P[ ]l u15\p[t]i—>u15|p[t/]i/RAV/QV/ R,Cally

Now, w0 = w0’ =g t, so u1|p[t]; =g wid|p[u;d]; = wi|p[uj}id = ui|p0, and xy, €
Va, 80 240 = Tp0yars(c)p = Tk0p = L1010 p = w1 |p[yw]io’p = w10’ |plywo’lip =
u10|p[yp o'lip = w10 plplyr o’ pli = u1dlplyw 'l = urd|p[t'];.

If we apply the previous derivation rule, with uid|,[t]; =g w1[pd and xid =g
, 80 [z10]p € RAV/QV/@[U1|p5]E

.
u16[p[t'];; then we get the c.p.t. u1|pd—z6/RA 0,

— Case (2) RAV/ = cyl [’7]{ST,{7 . STV } RA” Ql/ = [V(QV’)ran('y)]{ﬁV Ql//}7
cl’,'y(gl,/)mn(v) has the form [ — rif /\j:1 l; = 7; | ¢ and there exist a substitution
n, a term ¢t € Hy, and a position ¢ € pos( ) such that t]q = In and Ey F ¢n, so

l STY Amn—rmn/STY
vn—=rin/STY 0,m- nor /ST 0 c DR ot T i @
t—t[rnlq /RA" 0, AR

there is a derivation rule
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12.

c.p-t. with root I;n — rjn/ST;-’/QV/n with respect to D%,C’allg’ for 1 <5 < m,
uw;" =g t, and t[rn)y =g y,.9".
We take w = uq|,0[t]; and the position i.q. Then, as Ey F ¢n and w|; 4 = t|q = I,
Lin=r10/STY 0,m-lmn—7mn/ ST 0, c DY .
’LU—>UJ[7”77]Z',Q/RAV,QV/ R,Callr
We have w0’ =g t and t[rn], =g y;,0’. From the previous subcase we also know
that w0 = w0’ and 210 = w[pd[yd’];. Then w = ui|0[t]; =g wi|pd[u}d’]; =
u|p8luid]s = ualpd and wlrnlig = (u1lpd[t]i)[rnliq = uilpd[tlrnleli =& uilpdly;dli-
As o1 = {:ck — u1|p[yk/]i}, T € Vg, vars(ul[yk/]p.i) - Vgl, SO vars(u1|p[yk./]i) -
Ver, and uq[p0[)i = u1|pd'[], then x40 = zpov,p = zx(010")vep = wilplywlio’'p =
uilplywlioy,, p = wlplyw]id” = uilpd[yrd'li = urlpdlywd’]s then wirnliq =g wxd
S0, as w =g ui|pd, we can apply the derivation rule with wu;|,0 and z;0 and
complete a c.p.t. with T1,...,T,,, yielding a1 , hence [zpd]E €

, u1|pd—a6/RAY o,
RAV g,,/@[ul |p5]E

As Vi) € Vo N Vg then 016" = v1d and v16” = 16, 50 ug[zp]pd = uid[rd], =
u1d[u|pdlye0']ilp = w1dyx0']ps = wid'[yrd’]p.i, and the c.p.t. (3) can also be writ-

Fy v ,
ten as i o03/5T g hence [v16]lg € STV 0, Quy[zk]p0]E. As also [zpd]p €

RAY 0,/@[u1]p6] g, either for case (1) or (2), and vp is satisfiable then o ,,.5)p is a
solution of G.

there is also a derivation rule

Rule [r] (rule application):

We prove this case for conditional rules. For rules without rewrite conditions, the
proof is the same just with the part dealing with the conditions removed from it.

G = ulp =" zp,ulzgly = v/(c[n{ST1,..., ST} ; ST ou (NA) [ 1 | V,pt ()0,
(N1 iy = 1iv/ ST o idle) Aulrylp — v/ ST 0 (AA) [ Y2)o1 | Vi (nor)y = Gloy,
where:

— 7 = (%o dom(yy (0 ran(y) € Vi), ¢ € R, cg € cg C Rp has the form
c: 1 —=reif Niy(I8—=715)| 0% ey s L= rif N_y(li = ;) | ¢ is a fresh version
with some renaming v/ of ¢ € Rl5, with dom(v") = vars(ch) \ (dom(v,) & V*#),
80 ¢y = cfy/, call I = I;

— abstracts, (ulp) = (Aw.u’;op; ¢5), u°
D1y Pus Oy = (/\?:1 Tj = ulpp,;);

— abstracts, (I') = (A\g.l°;0°%,¢°), 1° =U[ylg, with y = y1,...,ypand ¢ = q1, ..., q,
¢° = (Nic1 i = Ula);

- (7/1 € CSUg(u° =1°), 01 = O”l U {xk — 7"’7010'/1}, Yo = Y1 AP° AN @y A @y, Yooy is
satisfiable;

Then G'oy ~, nil | ¢ | V,v, call ¢ = 010, where v = (uo)y = (poio’)y =
(poio’)y, so oy, | ¥ is a computed answer for G and U{/Glgl | 1 is a computed answer
for G'oy.

457 = (10) dom(op then dom () = dom(2t) = dom ().

Let p : Vgo — 7Tx be a substitution such that p is satisfiable, call § = oy,p
and o0, = (0u0)\v, s0 § : Vg = Ts, p1 = py,,,, 50 also ¥p is satisfiable, and
call v = (vp)v, where dom(v') = V and ran(v') = 0. As dom(p) = Vg, then
dom(p1) = VooV Let p2 = py, v, ;50 p= p1¥pz, and let p} : Voo \Vas — Ts,
so dom(p1) N dom(p}) = 0 and dom(p1) U dom(p}) = Ve, such that ¢(p1 W p)) is
satisfiable, and call p’ = p1 Wpl, so p’ : Vore — T

= ulp[Z]p, with Z = z1,...,2, and p =

We prove several intermediate results:
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— Asv = (uo)y, V* C Vg N Vg, and dom(p1) = Vao N Ve then VY C dom(pr)
0, as dom(V) =V and ran(v') = 0, v/ = (vp)y = (vp1)v = (vp')y. Also, as
dom(p) SV, V' = (vp)v = ((no)vp)v = (nop)v = p(op)ve.

— As dor;z(p’l) = Vo \ Vgo and dom(p1) = Vge N Vere € Vo, then p’VGa =
(p1 ¥ P)ve, = (P1)Vve, = p1-

— As oy = (ovgp)ve, p : Vgo — Tx, and V¥ C Vg, then dyu = (op)ys,
ran(dyu) = 0, and dom(dyu) = VF (= (V \ dom(u)) U ran(p), so ran(u) C
dom(dyw)). Then v = (poy,p)v = pdyr and c’é/ = cov' = copdyu.

As U{/Glal | 1 is a computed answer for G'o1, p' : Vgrg,or — T, and ¢p' is satisfiable
then, by I.H., a{,@al P is a solution for G'oq, call §' = 010{/@01 p' and o' = (0.8 )\v,
meaning that:
(a) EoF yd,
(b) there are closed proof trees for each open goal in Ad, with respect to Dgpcly)a‘l’lR
(=DY Call» We use V' instead of (vp')y in (c) and (d)),
(c) g € ST”/Q’@[u[r’y]pé’]E, ie, [vd]g € STV,Q,@[U&[T”'}/(;/]I,]E, and
(d) [rivdE € STI’/,Q’@[Zi’yd’]E, forl1 <i<n.
Then:
(a) L. V¢2 - Vg/ implies V¢201 - VG’Jl and V¢2U - VG’U; S50 1/}2(5/ = ’poO'lO'(/G/ p, =
o1
ao10’p’ = a0y, hence Ey E aop’, where ia0p is ground, because Vi, C
Varo and p/ @ Vigry — Ts. As by = 1 A @° A ¢S A ¢y, then Y18 = 1oy,
Eo Enop', Eo E ¢°cp', Eg E ¢S0p’, and Ey E ¢yop', all ground formulas.
ii. Also as 12 = Y1 A @° A @y, so Vi, € Vg N Ve hence Vi, » € Vgo N Vi, and
dom(p1) = Voo N Vigry imply 1h10p1 € Tx. Then, as p' = p1 W p), we have
Yrop’ = Pro(p1 W pl) = Yropr = Yro(p1 8 p2) = P1op = Y16, so Ey F 116
(1).
iii. As Y10’ = 10p’ and Y1op’ = P10 then 18" = 1)10.
(b) As in subcases (a)-ii and (a)-iii, VA C Vi N Vi implies A§ = Ad, and the same
closed proof trees are valid for each open goal in Ad with respect to D%Ca”R (2).
(c) i Again, V, ), € Vo N Ve implies that vd’ = vd and ud'[ ], = udl]p.
ii. We prove that ST" o' = ST o,
As Oy = (QM(S)\Va § = OvVgP, 0 = 010/7 § = Ula{/c/alplv Q/ = (Q;L(s,)\V7 and
Vepr NV =0, this is the same as STVIQM(O'lo',)VGp = ST’/guala{/Glal 0.
Let z € VSTV/QH' As VSTV,QH - VSTMQN C Vg NVgr, then x € Vg N Ve
and Voo, € Vo, N Vglgl - Vglgl, S0 a:(ala’)vc = zo0’ = .’L’O’lo'{/Gl . Also
o1

x(010" )y, = w0, hence V4,01, . € Vgo. Then, as p: Vgy — T, 2(010')vzp

Va
is ground, so (10" )y p = xala(,cl p= mala{,G/ (pUp)) = xala{/cl 0.
iii. Asin subcase (a)-1, V5 C Vi implies ryd" = ryop'.
As zpo1 = ryoy and 0 = 010’ then zo = ryo so, as xy € Vg, ryo = xpovy,
and ryop’ = xroy,p’, ground terms. But, as Varov, € Vao then xpoy,p =
KoV (p1 Wp) = TROVLP1 = TrOV (P18 p2) = TROV,p = T10, SO ryop = a1
(3).
From (i)-(iii), [v0]g € ST 0, Q[ud|x10] )5, i€, [0]g € STV 0, Qlulzk],0]E (4),
holds.

(d) Using the same proof as in the previous case, [rmé’]E, € STV o Q[lid' g, Vivry €
Ver, and Vg, © Ve 0 Vg imply [rivop]e € ST} 0, Q[liyop']E, for 1 <i <n,

where each term and strategy are ground (5).
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Now:

(a) Vy, € Vg imply ulpov, = ulpo, hence ul,ov,0 = ulpo0, and u’o} =p I°07 imply
u’cl =g °00.

(b) As Ey F ¢p00, ground formula, then u°cfl = ul,[Z]po0 = ul|,00[zob]; =g,
ulpobBluly 5005 = ulpob, all ground terms.

(c) As Ey F ¢°00, ground formula, then [°00 = I'[g]g00 = l'00[gob]; =g, l'00[l'|500)5
l'o6, all ground terms (6).

(d) As p:Vge = Ts, 50 ulpov,p (= ulpd) is a ground term, then u|,d = ulpoy,p =
ulpoy,0 = ulpol =g, u®ol =p 1°00 =g, 'l = lva@ (7).

Recall that ¢[y,]{ST}" 0., = &/'[(v* 0,/)

el {STY 00 @ [uly0] -

As dom(v') = wars(ch) \ (dom(y) W VH), ¢ = cop, and dom(dyu) = VH, then

Veou € dom(dyw) W dom(y) & dom(y'). Then, as cov/ = copudyr and dyw is a

ground substitution, it follows that V;,,» = dom(vy) W dom(v’), hence V,,

]{ST g,,/} Now, we prove [zxd]g

dom(~

/(76) dom(~y) =

VTU‘”(V)émn(w) U Vdom('y’)(ﬂ/é) dom(~) "
Then:
— As (70) dom(y) 1s @ ground substitution, if z is a variable in ran(y) then 26,4,y
is a ground term, s0 Vign(1)8,,,,) = 0.

— As dom(y) Ndom(y') = 0, if z is a variable in dom(v') then 2(70)g4om(y) = 2, s0
Vitom (1) (48)aomy = dom(Y').

In conclusmn Veor 16,n(oy = dom (7).
Call v/ =v (75)dom(7) (= V"W (70) gom(y) because dom(v') Ndom(y) =V Ndom(y) =
(). We must find a substitution 7 : V,,» — Ty such that Ey F ¢ 7. Let 0 = poldp ¥
:0/1(: p2 ¥ :Ol)a so dom(0) = Vgs U Vgry. We choose 7 = (Wlae)dom(v’) = 7/(00)mn(7’)7
so dom(1) = dom(v") = Vgyr and (cov”)T = (cov”" )y 06.
We prove that 7 is a ground substitution by proving that (cor”’)ycf is ground.
Call §" = 5V“’75mn(y) As dyu and Y04 () are ground substitutions, dom(dywu) N
(dom(y")Uran(vy")) = (), and VCOZ,/ = dom(~y )Udom( "), then (cor”)y" = oV’ (V0ran(+)¥

7) =G 5V” (75mn(7) & 7) = C 5V”’Y 75mn('y) - 607 5V“75mn('y) = 607/5” = Cy 0" If
z € Vcw,(;n then, as dyu is ground, either z € Vi or z € Vi \ Vi, because I’ is the

only term of ¢,y that does not appear in G'. then:

— If z € Vv then V., C Vigry, 80 2o is a ground term because dom(0) = Voo UV,
— It 2 € Vi \ Vi, as z € Vy and, by (6), I'00 is ground, then zo6 is a ground term.

Now, we prove Eg F ¢v"7.

— As ran(y) C Vg and 4 is a ground substitution, then 74,4y, is a ground sub-

stitution so, as ¢ = coudys and v/ = = V'Y0ran(y), OV'T = O UdveOran(nT =
P poyu (Véran('y) & 7—)
— As dyu is a ground substitution, Vieys, . € Vs, = dom(y )Udom(’y’ om(t) =

dom(v'), and dom(Vd,an(y)) = dom(y) then OOy (Voran(y) W T) = gb p(oyn W
’Yé‘mn('y) W T) = ¢u ((GP)V“ & V(O.p)mn(v) W 7-) P°p (( ) W ( 0
Vl(ag)mn(’y/))a
because as ¢pud” 7 is ground, it remains the same if we substitute the appearances
of p, ground substitution, with 6 = p W p'.

— As (00)vwu is ground then ¢°u((00)veV(00) ran ()WY (00) ran (1)) = ¢°u(y'wy)ab,
the last equality because as the formula is ground, no new 1nstant1at10n will come
from an unrestricted substitution.

)mn(v)
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— As dom(y) Ndom(v") = 0 and dom(vy) Nran(y') = 0, we can apply the substitu-
tions one after the other, so ¢°u(y' Wvy)ol = ¢°uv'vo6 = ¢yob.

— As Voo S Vigro, 0/ 1 Vgre = Tx, and 0 = pa W p then ¢yof = ¢yop'.

Joining all the equalities, we get ¢°v"'T = ¢yop’. Then, as Ey E ¢yop/, also Ey F
(ZSCV//T.
Now, we prove the existence of a needed derivation rule in ,D7V2,,Call7z' As o, = (9#5)\‘/
and v/ = (ud)y, both ground, U, Vir 0p € Vi, and & : Vg — Ty, then ST} 0,0 =
STY o, and VST” =0, for 1 < i < m, and (c[y])"oud = Cu[(’ﬁf@u)dom(yﬁ)]& =
ctt [’Y](S = CV [(76) dom('y)]'
Recall that ¢p € Rp has the form ¢ : 1 — ¢ if A, (I — r§) | ¢¢ and V' =
V' (76) dom(y)- There are two cases to consider now:
(a) ¢o € R:

as 7 : Voo — Ty Eg E ¢V 1, 1°V"T and V"1 are terms in Hy, € is a position in

pos(1°V"'7) such that (I°V'7)|c = I°%'7, and ST o,s are ground strategies, then

there is a derivation rule

60" — "7 ) STY 0y - 160" T — 1€ l/”T/STmQV/
vt — rcy”T/c[(vé)dom(w)]{ST Qy/}

in D;/Q,C’alln'

(b) co ¢ R:
then there is a rule ¢1 : f(¢,t') — t” if C € R such that ¢y has the form ¢ :
fas, f(t. 1) = flas, ") if C, where dom(y,) € Ve, and C = NiL (If — 7§) | ¢°.
Let 7/ = TV, - As V., Cc Vg and 7: Vg — Ty then 7/ 2V, ,» — Tx. Also, as
Ve, C Ve, and Ep F ¢V 7 then Ey E ¢V 7.
As I°V'7 is a term in Hy, 2 is a position in pos(lcu 'T) such that (I°V'7T)]y =
ft, W', By E ¢V, t"V'7 = "V"7, and ST" 0,s are ground strategies, then
there is a derivation rule

lfu’%—)rlu”T/ST’f,Q,, As VT =t V”T/Sng,,
V"'t — 1V TtV 7]2/c(V8) dom(m) {ST "0}

in D%,Callg' As )2 = )2 = f(xs, []), and V" 7[t"V" 7] = re[t" o1 = rV'T,
this is the same as

5V = 507/ STY gy -+ 18V"'T = 1§ V”T/STmQu
vt — TCV"T/C[(’Y‘S)dOM(v)]{ST QV'}

so in both cases we have the same derivation rule. Now, as:

= V" = V'8 (V0) dom(y) 18 ground, v’ = pdyu, § = oy, p, 0 = pWp}, and dom(dyw) =
VH,

— 7 =7(00)ran(y) and dyu W (ydydom(y) are ground substitutions,

— o ¢ = rif N (I§ = rf) | ¢¢ and cor'T is ground,

— ey l=riaf Nl —15) | ¢, and

— ¢y is a fresh version of ¢ff except for dom(y) W dom(dyw), with renaming ~' :
vars(chy) \ (dom(y) & dom(dyw)) — vars(cy) \ (dom(y) W dom(Sywu)),

then, COVHV/ = CO(VH © 7/) = CO(V/ @ (Vé)dom(v) W 7/) - CO((M(SV”) (75) dom(7y) & ’7/) =
A

o (v & (Y0) dom(y) B V) = ¢y (Ove W (70) dom(y))s 50 coV'T = oy (00) an(yy =
Cryt (Oyn W (75)d0m(7))(00)mn(7/) = ny’((SVM W (Vé)dom('y) Wof) = Cy! (W W o) =
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13.

e ((0vep) W (yovep) Bab) = ey ((0p) & (10p) Bab) = ¢ ((06) & (100) ob) = ¢ yab,
all because cov”7 is ground, and we can write the derivation rule as

l1yol — Tl’}/UQ/STll/Ql,/ e lpyyol — T‘m’}/O'H/STmQV/
lyol — T’YO’Q/C[(’Y{S) dom('y)]{ST Ql/’}

(8)

AISO, as o' = 0-10-(/6,01 Pl, ‘/'ri'ycrl,lp/ol - VG’017 [Tifyél]E € STzV QV’@UZ"W;,]E, for1<i <
n, where each term is ground, o = o10’, and 0 = p'Wpo, then r;yd’ = 7’1’7010?/0, p =

riyoi1o’'p’ = riyop' = rivyel (and ;78 = l;y00), so [rivol|g € ST” QV/@[ZZ’)/O'H]E, and
F

there are closed proof trees of the form O ey , with respect to D% Callg

As dom(y') = wvars(cf)) \ (dom(vy) W V#) then dom(y) N dom(y') = 0, so 7'y =
v Wy = 4. We already know that ryop’ = x30 (3) and ul,0 =g lyob (7) so
as ryop' is ground and 0 = p/ W py, then also ryof = ryop’ = 40, and we can
apply the derivation rule (8) to ul|,0 and x,0 and construct the c.p.t. for [z4d]p €
(e[ ]{STH 0.6 Q@ [u|pd]E, i.e., [zrd]E € c[’yémn(,y)]{SiTV 0y} @ [u|pd] g, with respect

v/ .
t0 DR culiy:

P . Fin
l1wa9—>r1'ycr€/ST16 lmwaﬂ—wm'yJG/STmé

ulpd = 2k8/c[(76) dom() ST 0u}

As we have shown before that Ey F 919 (1), that there are closed proof trees for each
open goal in Ad with respect to D% Cally (2); and that [vé]p € ST 0,,Q[ulzi],0]
(4), then § = 0y4r5(c)p s a solution of G.

Rule [tp] (top):

Again, we prove this case for conditional rules. For unconditional rules the proof is
the same, just with the part dealing with the conditions removed from it.

G =u— v/(top(c[y,[{ST1, ..., STm}); ST ou(AA) [ b1 |V, pt (1) 0y (Aimq (liy —
ri'y/SngM; idle) Ary = v /ST o, (NA) | Y2)or |V, (uor)v = G'o1, where:

— 7 = (%o domy#y (0 ran(y) € Vg), ¢ € R, cg € cg C Rp has the form
c: 1= reaf Ny (I8 —rf) ]gbc 07 U= rif Nyl = 1) | ¢ is a fresh version
with some renamlng v of ¢y € R, with dom(y') = vars(chy) \ (dom(v,) W VH),
80 ¢y =y, call I = l;

— abstracts, (ulp) = (Aw.u®;op; ¢5), u°
D1y Pus Oy = (/\?:1 Tj = ulpp,;);

— abstracts, (I') = (\g.l°;09;¢°), 1° =U[ylg, with gy = y1,...,ypand § = qu, ..., q,

o l
¢° = (Niz1 ¥i = Ula);

— 01 € CSUB(u° =1°), o = 11 A ¢° N &5, A ¢y, 10 is satisfiable;

Then G'oy ~7, nil | ¢ | V,v, call 0 = 010, where v = (uo)y = (poio’)y =

(poia’)y, so oy, | ¢ is a computed answer for G and 0{/@ | 1 is a computed answer
91

for G'oy.

Asy = (Qu)mn( ") then dom(%”) - dom(’yT) - dam(’}/)'

Let p : Vgo — ’Tg be a substitution such that 1p is satisfiable, call 6 = oy, p

and 0, = (0u0)\v, s0 6 : Vg — Ts, pr = py,,,, so also p; is satisfiable, and

call v/ = (vp)y, where dom(v') = V and ran(v') = 0. As dom(p) = Vg, then

dom(p1) = VaoNVare. Let p2 = py, \v,, 50 p = p1¥pz, and let o) Vero\Vae = Ts,

so dom(p1) N dom(py) = 0 and dom(p1) U dom(p}) = Vo, such that ¢(p1 W p)) is

satisfiable, and call p' = p1 W p}, so p’ : Vo — T

We prove several intermediate results:

= ulp[Z]p, with Z = z1,...,2, and p =
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— Asv = (uo)y, V* C Vg N Vg, and dom(p1) = Vao N Ve then VY C dom(pr)
0, as dom(V) =V and ran(v') = 0, v/ = (vp)y = (vp1)v = (vp')y. Also, as
dom(p) CV, V' = (vp)v = ((no)vp)vy = (nop)v = p(op)ve.

— As dom(p)) = Vo \ Voo and dom(p1) = Ve N Ve € Vo, then p’VGG =
(p1 ¥ P)ve, = (P1)Ve, = P1-

— As by = (ovgp)ve, p : Vgo — Tx, and V¥ C Vg, then dyu = (op)ys,
ran(dyu) = 0, and dom(dyu) = V# (= (V \ dom(u)) U ran(p), so ran(u) C
dom(dyw)). Then v = (poy,p)v = pdyr and cg/ = coV = coudyn.

As U{/Glgl | 1 is a computed answer for G'o1, p’ : Vgrg,or — T, and ¢p' is satisfiable
then, by I.H., a{,GlUl p' is a solution for G'oq, call §' = alo{,c/al p' and ¢ = (0.8 )\v,
meaning that:
(a) EoF d,
(b) there are closed proof trees for each open goal in Ad’, with respect to D%%)(I‘Z/ZR
(:D%CGHR, we use v/ instead of (vp')y in (c) and (d)),
(c) [v¥)g € STV JQ[ryd'| g, and
(d) [rivd]e € STY 0 Q[lnd] g, for 1 < i < n.
Then:
(a) i VTZJQ - Vgl implies V¢2U1 - nggl and nga - Vglo, SO ¢2(51 = @DQUlU{/G/UI p/ =
oo10’p’ = a0y, hence Ey F oop’, where 1p0p’ is ground, because Vi, C
Varo and p' @ Vg — Ts. As g = 1 A ¢° A ¢y, then 10 = oy,
Eo E1op’, Eg E ¢°cp', Eg E ¢Sop’, and Ey F ¢yop/, all ground formulas.
ii. Also as 12 = Y1 A @° A @y, so Vi, € Vg N Vg hence Vi, » € Vige N Vi, and
dom(p1) = Voo N Vigry imply 1h10p1 € Tx. Then, as p' = p1 W p), we have
Urop’ = Yro(pr W py) = Prop1 = P1o(p1 W p2) = Yrop = 16, so Ey F 116
(1).
ii. As Y10’ = 10p’ and Y1op’ = 110 then ¥’ = 10.
(b) As in subcases (a)-ii and (a)-iii, VA C Vg N Vg implies A’ = A4, and the same
closed proof trees are valid for each open goal in Ad with respect to D%,Call';z (2).
(c¢) 1. Again, V,, C Vig N Vi implies that v’ = vd.
ii. We prove that ST" o' = ST o,
As o = (Qué)\v, § =oyup, 0 =010, 0 = Ula{/c’olpl’ o = (Quél)\v, and
Vepwr NV =0, this is the same as STV/Qu(Jlo'/)VG,O = ST”/QHala{/Glolp’.
Let x € VSTD/QM' As VSTD/QM - VST’“QM C Ve N Vg, then x € Vg N Ve
and Vi, € Vio, N Vere, € Vigre,, so z(o10”)y, = zo10’ = xola{/al . Also
o1

x(010")v; = w0, hence Vy(y,61, . € Voo Then, as p: Voo — Ts, x(010" )y p

Va
is ground, so z(o10”)y,p = mala{/al p= xala(/cl (pUpy) = J:Jla{/al 0.
iii. Asin subcase (a)-1, V4 C Vi implies ryd" = ryop'.
Joining all the results, we get [v]g € ST 0,/Q[ryop']E, so there is a c.p.t. of
the form £ with respect to D;’é Calle (3)-
; R

r'yap’ﬁ\sz/ST"/gU/
(d) Using the same proof as in the previous case, [rwd’]E/ € STV ¢ Ql;46'] g, Vijyriy ©
Ve, and VST.”'Q’ C Ve N Vg imply [riyop'le € STY 0,Q[liyop' g, for 1 < i < n,

where each term and strategy are ground (4).

Now:
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(a) Vi C€ Vg imply uoy, = uo, hence uoy, 0 = uof, and u°c}] =p [°0] imply
uch =g [°00.

(b) As Ey F ¢506, ground formula, then u®00 = u[Z]|p06 = uob[zob)|; =F, uohu|z00]5 =
uof, all ground terms.

(c) As Ey F ¢°00, ground formula, then [°00 = I'[]00 = '00[yob]; =g, 'o0[l'|00]; =
l'c6, all ground terms (5).

(d) As p : Vg — Tx, so uoy,p (= ud) is a ground term, then ud = uoy,p =
uoy,0 = uol =g, u®ol =p 1°00 =g, l'cf = lvob (6).

We need to prove:

ryop')e € el {STY 0v@[us] g, where ¢y (ST 00 = v/ [(W 007) gomnir HOT" 011}
As dom(y') = wars(chy) \ (dom(y) W VH), ¢ = co,u, and dom(dyu) = V” then
Veou € dom(dyu) W dom(y) W dom(~'). Then as cov/’ = copudyn and dyu is a ground
substitution, it follows that V,,,» = dom(~y )Udom( "), hence Viry = ran(y)Udom(v')

a0 Voo (v8) gom ) = Vran()8ran(zy Y Vom (1) (16)aom(y - L hen:

dom(~y)
— As (70) dom(y) 18 @ ground substitution, if z is a variable in ran(y) then 26,4,y
is a ground term, s0 Vign(4)s,4,(,) = 0.

— As dom(y) Ndom(v') = 0, if 2 is a variable in dom(y') then 2(¥d)gom(y) = 2, 50
Vitom() (38 domry = d0m(').

In conclusion, Vev/(v6) 4o,y = dom(v").
Call v" = V' (79) gom(y) (= V' & (70) gom(y) because dom(v') N dom(y) =V Ndom(y) =
(). We must find a substitution 7 : V,,,» — Ty such that Ey F ¢°v"7. Let 0 = pop1 ¥
pll(: p2 ¥ p/)7 80 dOm(G) = Vo U Vi, We choose 7 = (7,09>d0m(7’) = Vl(ge)mn('y’)a
so dom(1) = dom (') = Vo and (cov”)T = (co/”" )7 06.
We prove that 7 is a ground substitution by proving that (cor”’)y/cf is ground.
Call §" = 5‘/“757’@”@) As dyu and Y04 () are ground substitutions, dom(dywu) N
(dom(y")Uran(vy")) = (), and VCOZ,/ = dom(~y )Udom( "), then (cor” )y = oV (V0ran(+)¥
’Y) = 5V“ (’yémn('y) W ’Y) =6 5V”7 ’Y&“{m(’y) - 007 5‘/“’}’5mn('y) - 607/5” = Cy 0" If
z € ‘/07,5// then, as dyu is ground, either z € Vi or 2z € Vi \ Vi, because I is the
only term of ¢,y that does not appear in G’. We check each case:

— If z € Vg then V,, C Vg, 80 200 is a ground term because dom(6) = Vg, UV,
— Ifz € Vp\ Vi, as z € Vi and, by (5), 00 is ground, then 206 is a ground term.

We prove Ey E ¢vV"T.

— As ran(y) C Vg and d is a ground substitution, then 74,4y, is a ground sub-
stitution so, as ¢ = coudys and v/ = = V'Y0ran(y), OV'T = P USVRYOran(y)T =
P oy (’75mn(7) W 7-)

— As 0y is a ground substitution, Vieys,, € Vo, = dom(y)ddom ('), dom(r) =
dom(v'), and dom(Y0yqn(y)) = dom(y) then ¢°udyu(Voran(y) W) = ¢°u(dyn ¥
’75mn('y) W T) = ¢u ((O-p)V“ & V(O—p)mn('y) S T) = ¢CM((00)V“ & ’Y(Ue)mn('y) 4
’7/(09)7,(171(7/)),
because as ¢ud” 7 is ground, it remains the same if we substitute the appearances
of p, ground substitution, with 6 = p W p'.

— As (00)vwu is ground then ¢°u((00)veV(00) ran ()WY (00) ran(yy) = o°u(y'8y)ab,
the last equality because as the formula is ground, no new 1nstant1at10n will come
from an unrestricted substitution.

— As dom(v) Ndom(v') = 0 and dom(vy) Nran(y') = (), we can apply the substitu-
tions one after the other, so ¢°u(vy' Wy)ol = ¢°uy'vob = ¢yob.
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— As Vo S Vo, p': Vare = Ts, and 6 = pa W o then ¢yof = ¢ryop.

Joining all the equalities, we get ¢Vt = ¢yop’. Then, as Ey E ¢yop/, also Ey F
ocV'T.

Now, we prove the existence of a needed derivation rule in D% Cally - NS 0 = (0ud)\v
and v/ = (ud)v, both ground, U2, Vir o € Va, and & : Vg — Tx, then ST} 0,0 =
ST’LI’/QVI and VST;’IQV/ = (Z)’ for 1 < i < m, and (C[%”])“Qlté = Cu[(VﬁQu)dom(’yﬁ)](s =
ch [7]5 =c [(75) dom('y)]'

Recall that ¢o € R has the form ¢ : ¢ — r¢if NiL (If — 7§) | ¢ and V" = V'¥6,4p(4)-
As 7 : Vo = Ts, Eg E ¢%V"'7, 1V and r°V"'7 are terms in Hy;, € is a position in

pos(1°v"'7) such that (1°"7)|. = IV, and ST" g, are ground strategies, then there
is a derivation rule
V"t — TfV"T/ST'{le eV T = 1T ) STY, 0,

vt — TCI/”T/C[(’Y&dom('y)]{ﬁy, o}

inpﬁcmw
Now, as:
-V =y (Va)dom(
VHE,
— 7 =9(00)ran(y) and dyu W (70) gom () are ground substitutions,
—co: 1= roif N (1§ —71f) | ¢¢ and cov’'7 is ground,
— ey l=riaf NIyl = 13) | ¢, and
— ¢y is a fresh version of ¢ except for dom(y) W dom(dyw), with renaming ~" :
vars(chy) \ (dom(y) & dom(dyw)) — vars(cy) \ (dom(y) W dom(dywu)),

4 is ground, v' = pdyu, § = oyp, 0 = pp}, and dom(dyu) =

"

then, cov"y" = CO(V” & 7/) - CO(V/ © (Vé)dom('y) W ’Y/) = CO((M6V“) &J (’Y(D dom(7y) ® 7/) -
08(5‘/“ W (Vé)dom(’y) © 7/) = C’Y'(5V” W (Vé)dom(w))v so cov''T = COV”’YI(O-Q)mn('y’) =
Cy! (6‘/“ & (Vé)dom(’y)xo—e)mn('y’) = 07’(5V” @ (Vd)dom('y) W 00) = C’V’(d & (76) W 00) =
e ((0vep) W (10vep) Bab) = e ((0p) 8 (10p) Wb) = e ((06) 8 (100) rb) = 0D,
all because cov”7 is ground, and we can write the derivation rule as

Liyo® — r11ya0/STY 0y - lyyo0 = ryyo0/ STV, 0,
10— 1900/ cl(38)aom ST 017}

(7)

Also, as &' = 010{/0/01,0’, Vivorliner € Vare, [1ivd]e € ST;'/,QV/@[Q’Y(S/]E, for 1 <
i < n, where each term is ground (4), ¢ = o10’, and 0 = p/ W pa, then r;vd' =
rifyala{,clalp’ = riyoro'p’ = riyop' = riyof (and [;v0" = liyob), so [riyoblp €

F;
lma@—)m'ya@/ST;’,gV/ ’

STY / 0,/ Q[l;v00] g, and there are closed proof trees of the form

. U
with respect to DR callg-
R
ud—=1ry00/c[(V0) dom () {ST " 0,1} r'yap’—>v5/ST”/Ql,/ i

There is also a derivation rule — ;
U6_>'U6/(C[('76)dom(’y)]{ST @y’} 9T Qy!

V/
HDRcmRa

as seen in subsection 5.2.7.

F
r'yap/—>v5/ST“/Ql,/
to D%yca”R (3). As ryop' is ground and 6 = p' W py then ryop’ = ryof, hence

F

We already know that there is a c.p.t. of the form

with respect

!
——L Is a c.p.t. with respect to DX .
r'ym9~>v6/ST”l,Q,// p p R,Callr

We also know that ud =g lyof (6), so we can apply the derivation rule (7) to
ud and ryof, and construct the c.p.t. for [wé]g € (c[v]{ST})"0.0 Q [ud]g, i.e.,
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14.

[v0]E € c[’yémn(,y)]{SiTV/ 0./} @ [ud] g with respect to D%Ca”R:

L1 Fm
ll'y(fﬂ—n”l'yn'e/STll’/gV/ lmwnearmwne/ST%gy, F
—7 7
u6~>7"y<79/c[(76)dom(v)}{STu o,} ryof—vd/STY o,

ud — v5/c[(75)dom(v)]{ﬁu 0} ST o,

As we have shown before that Ey F 116 (1) and that there are closed proof trees for
each open goal in Ad with respect to D%’CGHR (2), then 6 = 4,(7)p is a solution of

G.

Rule [c1] (call strategy):

There are two versions of the rule where in Callg we have either (a) sd CS := ST,

or (b) sd CS(z) := ST.

(a)

G =wu — v1/CS"0, ;ST 0, (NA) | Y1 | V, p, where CSFo, = CSH, G~
up — v1/S8T9 ;8T 0, (NA) | Y1 | V,u = G and G' ~} nil | ¢ | V,v, where
sd CS := STy € Callly, v = (po)y, and ST is a fresh version of ST, with
some renaming ', where dom(y') = Vg, \ V¥, so STy = ST/, hence oy, |¢ is
a computed answer for G and oy, |t is a computed answer for G'. As Vgg = ()
then Vi C Vi, so ran(ovy,) C ran(ovy,,). Then:
i. as sd CS := ST, € Call% then there is sd CS := STy € Callg such that
ST} = ST, hence STy = ST+ = SThH~' = (SToy')*, since dom(y')NVH =
0 and ran(v") N dom(u) = 0, and
ii. as dom(o,) N V* = (), invariant for admissible goals, and ST’y has only new
variables except for V¥, then STy = ST20, = (SToY' )" 0p-
Let p : Voo — Tx such that 1p is satisfiable, call § = oy, p, s0 0 : Vg — Tx, and
call v/ = (vp)y, where dom(v') =V and ran(v') = 0. Let p1 : Voo \Vaos — T, S0
dom(p)Ndom(p1) = 0 and dom(p)Udom(p1) = Ve, such that (pWp;) is satisfi-
able. Call p' = pWpy, 50 p' : Vgro — Ty, and call §' = oy, p', 800" : Vgr — Ts. As
dom(v') =V and ran(v') = 0 then (vp')y = (vp)y = /. Then G¢' = Govy,,p' =
Govy,, (p¥p1) = GlovgWoy, \ve ) (pEp1) = GlovgpWoy \vp1) = GJVGﬁ = G9.
2

Fy
uy ' —t/(STor' ) 0,1 t—v18//STV o,
u16’—=v18"/(SToy ;ST))”,QV/ ’
. ! .
for some term t € Hy, with respect to D% . By Lemma 6, there is also a
) P R,Callg" PY ,
Fy
U15/4)t/(ST0’y/)Ul ’
/ / / .
As CS" oy = CS, (STo')" = ST§+, since (dom(v') U ran(v)) NV = 0,
! /
u1d’'—t/CS  t—v18' /ST o, nd u1d’' —t/STY

By I.H, Ey E 116’ and thereisa c.p.t. of the form

c.p.t. of the form

and there are derivation rules — L0 e,
w16/ —v18' /(CS ;ST) o, wd—t/0s 0 1€
. BB
uy ' —t/(SToy' )V Fy
wd'—t/(SToy)” WSO /5T ey,

v .
0 DR Cally, then is a c.p.t., so

w18 >t/ CS
v18' € (CS ;ST 0,,Quy 0.
As G&' = G0, this is the same as v16 € (CS ; 8T)" 0,,Qu18 and Ey E 16, so
T vars(G)P 18 @ solution of G.

u16’ =016’ /(CS ;8T 0,

G =u = v1/CS{t)* 0, ;ST o, (NA) | Y1 |V, u, where CS(t) o, = CS*(tpoy),
G o) ur = v1/SToy ;ST = (NA) | 1 | Vip = G, and G' ~F nil | 4 |
V,v, where v = (uo)y, we call o, = (0.0)\v, sd CS(z) := ST € Callly,
v =A{& ~ tpou}, STs is a fresh version of ST, with some renaming ', where

dom(y') = Vg, \ (£ UVH), so STy = ST17/, hence oy, | is a computed answer
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for G and oy, [¢ is a computed answer for G'. As Vigu(g,,) = ran(y) and
& C Vgr, then Vg C Vi, so ran(ov,) C ran(ov,, ). STe = ST3[T']5, for proper
7" and p, where &' = % and Vgp,, NT =0, so STay = ST2[Z']y = ST2[7'7].
Call 9 = {z — t}, so 'y = Z'yopou. Then:

i. as dom(p,)NV* = (), invariant for admissible goals, and ST’[| has only new
variables except for V#, then STs[l; = ST2[lpon = ST20ullp = ST17 0ullp,
and

ii. as sd CS(z) := ST € Cally, then there is a definition sd CS(z) := STy
in Callg such that ST{ = STy. Then, we get SToy = SToT'v]; =
STy eul®'3]p = ST1v' 0ul®Vp = ST 0ul®voneuly = (STGY' [ v01]p) 00 =
((SToy ) [Zvoulp)on = (STo'[Z'v0lp)! s since dom(y') N V¥ = § and
ran(y") N dom(u) = 0.

Let p : Vgo — Tx such that ¢p is satisfiable, call § = oy, p, so § : Vg — Ty, call
V' = (vp)y, where dom(v') = V and ran(v') = (), and call o, = (0,p)\v- Let
p1: Voo \ Vao — Tx, so dom(p) N dom(p1) = 0 and dom(p) U dom(p1) = Ve,
such that ¥(p W py1) is satisfiable. Call p) = pW p1, so p : Vg, — Ty, and
call o' = oy, p', s0 0’ : Voo — Te. As dom(v') = V and ran(v') = () then
(vp)v = (vp)y = V. Also, as Vg C Vi and dom(p1) = Vo \ Voo, then
Go' = Goy,_,p' = Goyyp' = Gop' = Go(pw p1) = Gop = Goy,p = G6.
Fa

|

, ulé’aw/(STO'y’[a’c"yO]ﬁ)”/QV/ wﬂvlé’/STV/gV, .
By IL.H, Ey F 910, so w1601 [(STor o 10ln 5T s is a c.p.t., for some

term w € Hy, with respect to D;’é Calip - As g, is idempotent and p is ground then
o, 1s also idempotent. Then, as v/ is ground, dom(v') =V, and dom(g, )NV =
Iy

. )2
we can write as . Let o
g u18'—w/(STov [2v0]p)" 0, u16’—w/ (ST [ v00,/]5)" 0,

be a renaming such that dom(a) =V, , and ran(a) is away from all known

- . F3

variables. By Lemma 5 there is a c.p.t. of the form 3w (S Tor 00l (0
Now, we can apply Lemma 6, so there is also a closed proof tree of the form
Fy . . . . )
b0 S To el This c.p.t. shows that partial generalization of dom(g,)

is also valid.
As (SToY[Z000]p)" = ST~ [#v000V]p = ST~ [Fv0v 00)p = STY (v U
"), where v = {Z — t/9,/}, since (dom(y') U ran(y)) NV =0, V' is ground,
dom(v') = V, and dom(g,/) NV = 0, and also CS(#)" 0, = CS(tv'0,/), then
wd'—>w/STY ('Uy") w1’ —w/(SToy'[#'300,/1p)"
u1d’—=w/CS({tv o) ? " u1d’—w/CS(tv' 0,1) ’

i.e

l/l . .
DR,Calln has derivation rules

Fy
) u16/~>w/(ST0"//[§TZWOQUl]1§>V, Fo
and u1d’—w/CS(tv'o,) wﬁvlé’//ST” ' Then u18'—w/CS(tv'e,,r) wj“l‘S//ST"/@y’
u1d’—=v18'/(CS (%) ;ST) 0,1 w18’ =018’ /(CS (%) ;ST) o,

is ac.pt., so [L10]g € (CS(E); ST) 0,,@[u10'] 5. As G&' = G4, this is the same
as [v10]g € (CS(#) ; ST 0,,Qu18] g and Ey E 18" is the same as Ey E 118, so
Tars(G)P 18 a solution of G.

15. Rule [¢2] (call strategy):
G = ur — v1/CS BV 0p ;5T g (N A) | 61 | Vi, where CS(DFa, = CS"(Fuay),
G ~ieo) Njor (Y'Y = rjy'y/idle) Auy = v /STy ST 00 (NA) [ 2 | Vo= G,
G~ wo’ = v10’ [(STay ; ST 0,)0" (A A') | b3 | V, (uo')y = G”, and G” ~7,
nil | ¢ | Vv, call o0 = 0’0", where v = (po)y, csd CS(z) := STy if C € Callly,
C=NjLilj = riNg, v ={T = tpou}, call O =1,7,¢, ST if Cv'is a fresh version
of STy if C, with some renaming +', dom(y') = Vsr, o \ (8 UVH), s0 STy = ST17/,
Yo = 1 A ¢y, and 3 = Yoo’ A by = P10’ A ¢y'ya’ A 3y, for proper 14, hence
Veryyer € Vargr C Var, call 45 = ¢y'vo' A by, oy, | is a computed answer for G,

6]



and oy, |1 is a computed answer for G’, where 1) = ¢30” A 1, for proper v5. We
call 0, = (0,0)v,,\v-

By invariant 11, G has the form G}o,, so (u1,v1,¢1) = (uo,vo,%0)H0y, for proper
ug, vo, and vy, and there exists Ag such that A = Afp,. As Vesh (e, = ran(y)
and & C Vﬁ'y',STz then Vo C Ve, so oy, = (ov,,)v, and G’ has the form Gfo,,
where g, = (‘(_)u)vcl\v, by invariant 11. Also by invariant 11, G” has the form G% o,
where p/ = (uo’)y and g = (0u0")vg,\v- Then, v3 = 10’ A b5 = (Yopeu)o’ A
VY5 = Yop' o, A s has the form (¢ A ¢o)p' oy, for proper ¢g, and (ur,vi)o’ =
(u0, vo)pouo’ = (uo,vo)i 0, s0 Vi, C VGQ, hence Vo = Vg, € Var,,, Vaor ©
VGS@MUI - V , - VG// and VGO— C VGM - VGH ! 1 = V ! - VG// .

Gg/gu ouo' o GY 0,10

(ST, C) = (STQ[E"};;,C[.% "l3), for proper ( " %', q,p), where VistTap) e, E = (0 an

#Ug" =32, and Cy = C[z")7y' = C'[7" ’]q

Call o = {7 = t}, s0 (ST2,CY)y = (ST2[2']5,

Then:

(a) as dom(g,) N VH* = 0, invariant for admissible goals, and (STQ[]p,C'y [Jg) has
only new variables except for V¥, then (ST3[5, Cv'[lz) = (ST2[5, CY'[lg)0n =
(ST?QMHWC’Y QMH 7) = (ST Qu[]paC7 Qu[] 7), and

(b) as sd CS(z) := STy if C € Callly then there is a call strategy definition
sd CS(7) = STy if C' € Callg, C' = Ny ) — vy A ¢/, call O = T, 7, ¢,
such that (ST, C')* = (ST1,C), s0 C'pu=C = C[z"];, hence C'u= él,u[f”]q
and C' = él[i"’]q, since dom(pu) N& = (. Then, since dom(y') N V* = ) and
ran(vy") N dom(p) = 0:

— STyy = STala')y = STi¥ 0@}y = STEA [ 0mlpe, = STHA [ 0ulpe, =
(SToy'[Zv0]p5)" 0p, call STy = SToy'[Z'v0]p, and

- ?211 — 67’[93”7](7 :7/67,9#[9?”’7](7 _ é/lj/gu[juﬂtj _ aluiél)u[f”'mﬂgu]q —
O~ e 0mlgen = (€7 0lg)" ou = (€ [2"]g70)" eu = (€797 v0)" 00 =
(C"v0)"e

As G = GSIQMI, then Go = ug — vo/STh ; ST (A Do) | Yo A ¢o | V, none, hence

(ST} ; ST)" o, is a strategy in G”.

Let p : Vo — Tx such that vp is satisfiable, call 6 = oy, p, so 0 : Vg — Ty, call v/ =

(vp)v = (nop)v, where dom(v') =V and ran(v') = 0, and call 0, = (0vp)vy,\v =

(0uop)vg \v- As dom(p) = Vgo and Vo C Vi, 50 Vao © Vary,.o = Varg,oron

Vg, then dom(p) C Vgua”. Let p1 : Vgrgn \ Vae — T, so dom(p) N dom(pr) = 0

and dom(p) U dom(p1) = Vigrer, such that ¢(p W py) is satisfiable. Call p’ = p W py,

SO p, : V(;//U// — 7’2 and pQ/GJ = p.

By IL.H., as p' : Vgugr — Tsx and vp’ is satisfiable, a{’/mp' is a solution for G”, call

§ = a{’,GNp’, so ¢ : VG// — Ty and ¢10'¢ is ground. As dom(v') =V and ran(v') =0

then (vp')y = (vp)y = V. Also, as Vg C Vg and dom(p1) = Vgrer \ Vao,

then Go'd' = Ga’a(} = Ga’a(’/c P =Gd'd"p = Gop' = Go(pw p1) = Gop =

Goy,p = Go. Also, as Vi, C Vi, so 10’8 =119, and 110'0" is a subformula of ¢y,

50 Y10’d’ is ground and satisfiable, then Ey F 110.

As ¢’ is a solution for G” = GY o, anc} Go = ug — vo/STh; ST (A Qo) | o A o |

V, none, then [vop 0,/0' | € (ST0; ST 008" Quopt’ 006" (1) Now, as (uo, vo) oy =

(u1,v1) and &' = a%’/GN ', then we can write (1) as [v10']g € (ST; ST)'MIQM/(%}GN p'Qurd’| g

(+).

As (ST}; ST)" o, is a strategy in G”, then (ST; ST)“/QM/J(}G”p’ = (ST4; ST g0’ =

(ST ; ST) ouo’o"p = (ST ; ST) ouop’ = (ST ; ST) 0up’ = (STp 5 ST) ovp =

(ST( ; ST)" 0,/, because Gop' = Gop and (ST( ; ST)" o, is a strategy in Go, so we

'[z"]g, since dom(y') N T = (Z)

Cry
CY'[2")g)y = (ST2[z']5, C'[7"7]q)-
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16.

can write (11) as [116')g € (ST} ; ST)” 0,,@[u16’] g, hence there is a closed proof tree
L1 L]

ulé’—>w/(ST6)VlgV/ w—mlts’/STV/QV/ . v
w16 —010') (STh5T) 0 , for some term w € Hy, with respect to DR Caiir -

As o, is idempotent and p is ground then g,/ is also idempotent. Then, as v/

is ground, dom(v') =V, and dom(o,) NV = (), we can write — 5,_>w/1(iqu,)V,Q
1 0
Fy

S0/ (5Tor T 0 o0 Let o be a renaming such that dom(a) =V, , and

ran(a) is away from all known variables. By Lemma 5 there is a c.p.t. of the form

2 ~
w0/ (Tor 0o ln) @) Now, we can apply Lemma 6, so there is also a c.p.t.

F.
of the form " :
18’ —w/(SToy [#v00,/]5)"

As G’ ~»*, G" and all the calculus rules apply always to the leftmost open goal of
any goal, then also G" = AL, (l;7'y — rjy'y/idle) [ P2 | V i ~7, nil | P20’ Aty |
V. (uo’)y. Then, by LH., for every substitution 0 : Vg, — Ts such that (20’ A1)4)0
is satisfiable, 0{,@”0 is a solution of G, so Iy/v0'0 =g ™/v0'0 (1).

Call v = {z = (V' W o,)}, so CSY (&/0,) = STY~" if (C)'", call " =
(O (v Ury") = C"V' (v U~"), and call §" = ¢’ Then:

o C//(S// — C’//(S// C/ /(,Y U,y//)éll C/ /(,}/ U,y//)é// C/ /[ ]7(,)// U,Y//)él/ —
C/,y/ 7[ ] //5// C’/ [ (V U Qy )]75// _ C/ /[to] /6// _ C/,y/[t_gyl]qylo_/él —
C'y'[toy ]ql/’o’a{’/ L0 since (dom(y')Uran(y")) NV =0, v is ground, dom (V') =
V', and dom(o, ) NV =10,

— Cy'y = C'py'y = C'pla"|gy'y = C'y'ulz"|qy = C'Y pltuouls = C''[toulan =
C'y[t (QM)VG \vlgt, because 7' is a renaming such that (dom(y’) U ran(y’)) N
(dom(p) U mn(,u) #)=0and V; C Vg, \V,

—as Cy'y = C'Y[t (QM)VGI\V]QM, Veyiyer € Var, 0 = o'c” is idempotent, and

o’ a{’/ , is arestriction of o, hence also idempotent, then Cvy'v0'8" = Cy'~vo’ U{}GH p =

€ i) v, o' o1, = O H0u' o v i oY, vl =
O [ (00" 7"V Va0 W' 0! = O (040 v \laliior v o'l and

/

— as p' = pWpy, and p is ground, then C"Y'[t(0u0)v, \v]z(po)vo’ O’VG”p =
C Y [ (Quap)VGl\V] (/.LO'p)VOJO-{// //'0 - C/ /[tQV ]qylo-/o-{; //p’
o) C”é"cn = Cv'~vc'd'. As C~'yo'§ is ground, then 5{;0” is ground, i.e., 5{}0” Vo —
Ts, and ¢v/'yo'd is ground.
As 9y’ is satisfiable and p’ = 30" p' A bgp’, then also 30’ p’ = (a0’ A w4)a”p’ =
(20" Npa)ay, , p" = (20" Apg)d" = (1 A @y'y)o’ A1ps)d" is satisfiable, so ¢y'y0'd
i.e., g7/, is satisfiable. As ¢y'yo'd’ is also ground, then Egy F ¢y/~d".

v/

as

By (1), as (20’ A1py)d’ is satisfiable, Iv/'y0'8! =g 7y/ya'd | i.e., Iy/78" =g 776", As
also CS(1) 0,y = CS(tv'0,/), then there are derivation rules W ow/STg (Ur")d”

o —w/CS(vg,) €
w18’ —=w/(STov' [Z'v00,/]p)" ' _and u18’—w/CS(tv'o,) w—>v16’/ST /QV/

. I/l .
in D cqu, > SO there is

u1d’—w/CS(tv'o,) w18’ —v168' /(CS(E) ;ST
Fy
ul6’~>w/(ST0'y’[i"‘/09,,/]ﬁ)Vl Fa
“15/‘>w/CS(EV,Q,//) w%vlﬁl/S’TV’Q ’

v ! . v’ !
a c.p.t. 505 (G50 ST ,and 118" € (CS(t); ST)” o,,@Quqd’. As

G&' = G0, this is the same as v16 € (CS(E) ; ST)” 0,,Quy6 s0, as Egy E 116, T vars(G)P
is a solution of G.

Rule [m] (match):

G = u; — vy / (match t; s.t. /\;nzl(lg = r;) N1 ST ou (NA) |1 | Vi~ im0
(/\;nzl(l; — r}-/idle)“gu ANur — vi/STHou (NA) | 2 | V,p)or = G'oy, call t =
t‘l‘gu, ¢ = qbfgu, | = (Z_’)"Qu, and 7 = (7)"o,, where abstracty, (t) = (A\z.t%;0°; ¢°),
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t° = tlzlg, with £ = z1,...,27 and ¢ = q1,...,q, ¢° = (/\,lizlsci = t|4), hence
Vie UVg =V UZ, 01 € CSUp(uy = t°), o = Y1 Ao N ¢°, s0 Vg C Vi, oo is
satisfiable, and G'oy ~, nil | ¢ | V,v, call 0 = o10’, where v = (uo)y = (po10’)y,
0 oy, | ¥ is a computed answer for G and U(/G/gl | 1 is a computed answer for G'oy.

Let p : Voo — Tx be a substitution such that 1p is satisfiable, call § = oy, p, so d :
Vo — Ts, p1 = pv,,,, 50 also ¢Yp; is satisfiable, v/ = (vp)y, where dom(v') =V and
ran(v') = 0, and 0, = (0,0)\v- As dom(p) = Vg, then dom(p1) = Vo N Vgrg. Let
P2 = PV, \Var,» 50 p = p18pe, and let py = Varg \Vae — Ty, so dom(p1)Ndom(py) =0
and dom(p1)Udom(p}) = Vo, such that 1(p1Wp)) is satisfiable, and call p’ = p1Wpl,
so p' : Vgro — Ts. By definition of v and pi, ran(v) U (V' \ dom(v)) C dom(p1) so,
as dom(V') =V and ran(v') =0, v/ = (vp)y = (vp1)v = (vp')v.

By LH., as p' : Vgrg,or — Ty and ¢p’ is satisfiable, U(/c/gl P’ is a solution for G'oq,

!
‘/;t,¢,[,f\VG‘

As in rule [il], if then else, and using the fact that V. C Vi, we have the following
intermediate results:

(uo)v = (ud")v,
- ‘/(t,qS,l_,T')(r - VG’U7

call ¢’ = 010(/@01 p', @ = (0ud')\v, and p" =6

. V(n,m,i’,ﬁ)“ c V(t17¢17l_’f')“’

= Vit e \ Vit oy & V5 and

— (t,d)ap = (t1,61)" owrp”.
Using the proof for the last result we also get (I,7)ap’ = (I',7)" o,p".
As a(/-G,al P is a solution for G’y then, by LH.:

(a) EU = ¢26/7 i'e'a EO F Wl A Qb A ¢o)517
(b) there are closed proof trees for each open goal in Ad’, with respect to D%@CL‘{ZR
<:D%,Call7a7 we use v/ instead of (ud’)y in (c) and (d)),
(¢) [nd)E € ST ¢'Quy '), and
(d) [Tj5/]E € idle@[ljé’]E, for1 <j3<m,ie., 16’ =g f(y,
S0:
(a) 1. Vi, C Vi implies wgola(/clol = 9010’ = 190, 80 Eg E oop’, where voop’
is ground, because Viy,, € Vi, and p' @ Vo, — Tx, hence Ey E 10y,
Ey E ¢°cp’, and Ey E ¢op/, all ground expressions.
ii. Vo € Vo and dom(p) = Vg, implies Y1op € Ty so, as p) = p W pl,
op’ = Pro(pWp)) = rop = 19, hence Ey F 110 ().
(b) As in subcase (a)-ii, VA C Vi implies Ad’ = Ad, and the same closed proof trees
are valid for each open goal in Ad with respect to D%’CGHR (t1)-

(c) Again, V,, 4, € Vi implies that v10’ = v16 and w16’ = u1d. Then there is a c.p.t.

of the form ——~X —— with respect to D% .
u16—v18/ST o’ p R,Callr

(d) As (I,7)8 = (l_,f)o'lU{/G/Glp’ = (I,Foo’p = (I,Aop = (I',7)" 0,p", then
) 0" =5 (F) 0up”.

We prove (a) ST p,p" = STV ¢ and (b) p” Vierr \ Vo = Ts:

(a) As g = (Qlu5)\y, § = oy,p, 0 = o010, 8 = ala@clglp’, o = (Qu(sl)\v, and

Vepwr NV = () this is the same as ST ou(o10” )y pp” = STV Q“Um{/c/gl 0.
Let y € VSTV/Q , 80 y ¢ V. There are two options:
"
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17.

i. y € Vig. Then Vo, € Vo, € Virgy, 80 y(o10')v, = yor0’ = yala{/cl . Also
o1
y(o10')v, = yo, hence Vy(orov, € Voo Then, as p: Voo — Tx, y(o10")vp
is ground, 50 y(010") 0" = ¥(10" o0 = vy, p = oo, (pUsh) =
/ /.
yalUVG’alp I

ii. y ¢ Vg, so y(o10')v, = y. As ran(o) N Vgpu,, = () and VST” C Vsrug,

then ran(o )ﬂVSTV =0soy ¢ Vg, and, as dom(p) = Vo, (010 Wep =Y.
Then:
A ify €V, 417 then y(o10")vepp” = yp" = yévt Ve T yd' = yma{/glol 0,

ground term because Vyo, € Viy 4770, € Voo, and 0 Vergor = Ts;

B ity & Vi1 then ylor0)vgpp” = yp" = yoy,  \y, = y- As dom(o1) C
(Viy UVpe) C (Vg U Vi U z) C (Vg U Vtﬂilﬂ‘ Uz) and y ¢ (Vg U Vt,q&,l_ )
then yop = y so, as ran(o1) N VST,, =0, yo1 ¢ Vgo,, and yalcf{/G/

a1
Yy §é VGUlU@G/ S0, as p’ : VG/UW/ — 7-2, yUlo'{/Gl(]lp’ =y = y(alg’)vcpp//.
o1

(b) As dom(p") C (V, 417\ V) and, from (a.ii.A), y € (V, 47-\ V) = Vypr =10
then dom(p") =V, 47\ Vg, hence p" : V, ,7:\ Vg — Ts.

II 5

Now, we prove (a) dom(p”) = (6077 0,00 (b) By £ ¢ 00", and (c) u1d =g

tlleu’pN:

(a) As dom(p") =V, 47:-\Va, V(n,m,i’,ﬁ)t" S Vit o007y V(tl,dn,l_',f')u\‘/(t1,¢1,i’,f’)u’ <
VI C Vg, and dom(0,) NV# =0, then dom(p") = V; 517 \ Ve = Vig, 617,710, \
Vo = 1/(1,/1@1’[,’77,)1,/@” \ V. Also, as 0,/ = (0u0)\v and Vi gy NV = (0, then
V(h@lj’f’)”lgw - Vv@l@lj’f’)”/(gﬁ)\v - V(t1,¢1,l7f’)”'w5’ S0 we prove V(h@lj’f’)"lgu‘; -
1/'(“7(1)17[—,77_,,)1,/9“ \ Vg, which is trivial, since § : Vg — Ts.

(b) Immediate, since Eg E ¢pop’ and ¢op’ = ¢% 0,0

(¢) uioy =g t°oy and o = 010’ imply wyo =p t° so, as V,,, C Vg, ULO s (G) =
uio =g t°0. As p: Ve — Tx, 80 uioy,p is a ground term, and p’ = p W p} then
w10 = woy,p = woy,p =g t°op’ = t[z)gop = top'[zop'l;.
As Ey E (;$°Up then top'[zop']; =5 top [tlgop, ... tlgop'ls = tap’[tap’| ]q =
top’ = 100 p because top' = t{ 0,p", so u1d =p t°op’ =g, t] o p”, ie
u1d =g tl Qu’p .

Then, as P” : ‘/(t1,¢1,f’,F/)”/gV/ = T, By F ¢11/QV’p”7 and (Z,)Vlgu’p” =F (f,)ylgu’pﬂa

. . . /
there is a derivation rule ; — € D% ¢ » for some term w such
—>w/matcht 0,1 8.8 dY 0,1 ) LALR

that t1 ovp” =pw. As u16 =g t¥ g,/p” then

F
urd—u1d/matchty o,/ s.t. ¢V 0,0 u16—v16/ST 9,

u16 — v1d/match tT'Q,,/ s.t. d)ll’lg,,/; STV 0,

is a c.p.t., p : vars(Go) — Tx, ©¥p is satisfiable, Ey F ¥10 (1), and there are closed
proof trees for each open goal in Ad with respect to D%’CGHR (1), hence 0 y4ps(c)p 18
a solution of G.

Rule [w] (matchrew):

MS = matchrew t; s.t. Cy by z; using ST, ..., 2, using ST, call z = {z1,..., 2, },
where t; = t1[Z]p, for proper p = {p1,...,pn}. G = w1 = v1/(MS;ST) 0, (AN A) |
1 | V,u, where Cy = /\;”Zl(l; = r;) A, call t = tou, ¢ = & ou, [ = (Z,)“QM, and
= (77/>“Qu-
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Now, G ~[y],0, (/\}11@3‘7 — rjy/idle) A Ay (@i — yi/ STV 0,y id1le) A t[yls —
v/ STHou (NA) | Y2 | V,u)or = G'o1, where T and § are fresh versions of z, v is a
renaming from Zz to Z, abstracts, (t[Z]5) = (A\2.t°%0°;¢°), t° = t[z1,..., 2llq..q» ¢° =
(/\2:1 zi =t|g;), o1 € CSUp(u1 =1°), 2 =1 A p A ¢°, so Vg C Vigr, oo is satisfi-
able, G'oq W:’g /\?:1(1'1' — yi/Sng,[y; idle)alag/\(t[g]ﬁ — 'Ul/ST’uQM)O'l(TQ(/\AOjO'Q) ‘
Y3 | V,(poro2)y = G”, and G” ~%, nil | ¢ | Vv, call o/ = 030” and 0 = 010,
where v = (uo)y, so oy, | ¢ is a computed answer for G and U{/G/dl | ¥ is a computed
answer for G'oy.
Let p : Voo — 7Tx be a substitution such that p is satisfiable, call 6 = oy,p,
so 0 : Vg = Ts, p1 = pv,,, so also 1ppy is satisfiable, and v/ = (vp)y, where
dom (V') =V and ran(v') = 0. As dom( ) = Voo then dom(p1) = Voo N Vigre. Let
P2 = PV \Var,» 50 p = p18pe, and let o : Varp \Vae — Ty, so dom(p1)Ndom(p) =0
and dom(p1)Udom(p}) = Vo, such that ¢ (p1Wp) ) is satisfiable, and call p’ = p1Wpl,
so p : Varo = Ts, call &' = oy, p/, 6z = 0y, and o = (5’ . By definition of v
and p1, ran(v) U (V' \ dom(v)) C dom(p1) so, as dom(V') = 'V and ran(v') = 0,
V= (vp)v = (vpr)v = (vp')v
By LH., as p' : Vgrg,or — Ty and ¢p’ is satisfiable, a(/ o, P’ is a solution for G'oq,
call ¢’ = 010(/@01 P, @ = (0ud)\v, and p" = 6Vt¢>l Ve
As in rule [m], match, we have the following intermediate results:

= (no)v = (ud")v,

- Wt,¢,f,?)a C Vero,

N V(thd)l,l_’f')”l < V@lv%i’f’)“’

B V(hﬁlf’f’)” \ V(t1,¢1j’,?*’)”’ C V¥, and

- (t, o, [, f)O'p/ = (tl, o1, Zl, f’)ylgylp//.
As o(/Glgl P’ is a solution for G'oy then, by LH.:

(a) EoF ¢ad, ie., EgF (Y1 ApA¢°)d,

(b) there are closed proof trees for each open goal in A¢’, with respect to Dgg%)a‘l/ln
(*Dé’é Cally» We use v/ instead of (ud’)y in (c)-(e)),

(016" € ST g Q[t[g]50"]

(d) [r;']p € id1e@[;8']g, for 1 < j < m, i.e., I§' = 70, and

(0|5 € ST ¢/ Qa;0'|, for 1 < i < mn,

(a) 1. Vi, € Vi implies ¢2010(/c/01 = 19010’ = a0, s0 Eg E poop’, where yoop’
is ground, because Vi,, € Vi, and p' @ Vo, — Tx, hence Ey E 10y,
Eo E ¢°0p, and Eqy F ¢op/, so also Eg E ¢4 0,,p" (1), all ground expressions.
ii. Vyyo € Vige and dom(p) = Vg, implies ¢rop € Ty so, as p/ = p W pf,
Yrop' = Pro(p W py) = Yrop = P14, hence Eg F 16 (1)
(b) As in subcase (a)-ii, VA C Vi implies Ad’ = Ad, and the same closed proof trees
are valid for each open goal in Ad with respect to DR Callr (t1h)-

(c) Again, Vv1 C Vi implies that v10’ = v1d. Then there is a c.p.t. of the form
, with respect to DR Callg -

t[ylp 6’—>v15/ST”
@ As (08 = (Lol o — (o' — (r)og! = () o, thon
o1

) oup" =5 (F) 0up”

(e) As in the previous subcase, (z,7)0 = (Z,7)" o p”, so there are closed proof
F; . . ’
trees of the form oo ut ond ST g for 1 < i < n, with respect to D% Calir-
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Using the same proofs shown in rule [m], match, we get ST 0,p” = ST" ¢’ and

P Vigir\Va = T

Also using these proofs, we get: (a) dom(p”) = Vi o, (b) Eo F oY op”,

and (¢) u1d =g tY 0 p".

As V(h,(hj’f’)”’ C ‘/(tl,qin,l’ 7)oy - VMSMQ , then pVMsu =" so ran(p'{/Msugu) C

Te C To(X) and, as t1 = [z, (1) 0vp” =g ()" QVP and Eo E &7 0,0 (1),

oy 0P Y ey p/STY o ay e P! =y 010" /STy 0 o !
t 00—t lgly 0,00 | MSY R, Cally*

Also w1 (515 0,00" /MS” 0,0 t1[5)5 0,10 —>018/ST 0,/
U154)U15/(MS ST o

there is a derivation rule

. . . . !
is a derivation rule in DR,Calln‘

Asuid =g t1 o p”, then

7 Ijl T T F;n 7
Vo 0" =yl e 0" /ST o' af @l,/p”l—w% o, 10" /STy o F i
_1/ 1/
u1d—t1(gly o, 0"/ MSY 0, t1[gly 0,1 p" —v16/STY o,

u16 = v18/(MS ; ST) 0,

is a c.p.t. with respect to D;’éyca”R. As p i vars(Go) — T, v¥p is satisfiable, Ey F ¢10

(11), and there are closed proof trees for each open goal in Ad with respect to D%CMR
(T11), then o yqrs(q)p is a solution of G.

O

Lemma 7. Given Rp = (X, Ey U B, Rp), an associated rewrite theory of R = (3, Ey U B, R)
closed under B-extensions, and a goal G = AJL,(l; — rj/idle) A Atg, | ¢ | Vi, if ais a
ground substitution such that Vg C dom(a), Eo F o, and la = Tav, then there exist a ground
substitution a°, substitutions f31,..., 8, from CSUs, let ﬁf = BiBit1 - Bk, and abstractions
abstracts, (5], r36171) = (A3 ). (15,79); (67,67,); (8, 67,)), for 1 < j < m, where ) =
none, let = B, such that dom(a®) = dom(a) U Vé’ﬁ, o =g, O‘?iom(a)v I°a® =g 7°a°, a° <g
Baom(ae), G wﬁl] A?o, | ¢ﬁ/\/\;.”:1 (gb?J /\qﬁﬁj)ﬁ’;” | V, v, and for every pair of substitutions p and ~y
such that ran(p) is away from all known variables, a° <g (8) dom(ac)> and @° =g (80) dom(a®) ">
it holds that Ey F (¥ A /\;nzl(gbfj A @7 )B7)py and Atoya =g At o, Bpy.

Proof. The proof is by induction over m, the number of equational conditions. We also prove
that dom(8) C dom(a®) UL, Y ran(B i) ().

1. Base case, m = 1:
G =1 —r/idle N Atp, | ¢ | V,p, a is a ground substitution, Vg C dom(«), Eg F Yo,
la =g ra, and abstracts, ((187,73Y)) = abstracts, ((1,7)) = (MA@, 9).(1°,7°); (07, 07); (67, 47))-
, where [° = l[ ]Ih e = 7“[ ]q; ¢l - /\2’“:1 Ty = l|pi7 and gbi = /\Zyzl Yi = T|Qi for proper p, g,
iy and iy, 80 Vio po go g0 = Vi, U UG C Vg UZ UG C dom(a) Uz U Y = dom(a®), hence
Ve g2 © dom(a®). As Vio g0 C Xy then also Vie 50 C dom(a®) N Xp. Then:

e by Lemma 4, there exists a ground substitution a° such that [°a® =p r°a®, Eg F
(07 A ¢pyp)a®, dom(a®) = dom(a) Uz Uy, so Wlo7ro7¢?7¢$)ao =0, and a =g, a?lom(a),
hence there also exists a substitution 51 € CSUgB(I° = r°), where in this base case
B = Bt = B1, such that dom(B) C dom(a®) = dom(a) UZ U ¢ (¥) and a®° <p B. As
B < 5dom(o¢°) then o® <p Bdom(a°)7 hence o® < 5dom(o¢°);

e as Ey F (] Ay )a’, o is satisfiable, dom( °) = dom(a)UzUY, VypyN(2UgG) =10, so
Yo =g, Ya° hence wa is satisfiable, and a® <p B, s0 a3, < Bx,, then (YAG;AP;) B
is satisfiable, and G W[dl] AFo,p | (w NOP NGB |V, (,uﬁ)v,

81



e let p such that a® <g (8p)dom(ac) and let « such that a°® =g (8p)dom(ac) - 7- Then:
(a) as Vg C dom(a), Vi C Ap, and dom(a®) = dom (o) U2 Uy then Ya = pa® =g,
V(BP) dom(ac)Y = ¥ 50, as Fy F o, also Ey F vpy;
(b) s Vg ge C dom(a®) N &, then (6§ A 62)0° =g (6 A 62)(89)dom(ar)y = (65 A
¢7)Bpy so, as Eg E (6] A ¢7)a, also Eg E (47 A ¢7)Bpy-
From (a) and (b) we get Eo E (¢ A ¢ A ¢7)Bpy-
e As Vg C dom(a) C dom(a®), dom(B) C dom(a®), a® =g (8p)dom(ac) - 7> and ran(p)

is away from all known variables, then Ao, o =g, A*0,a° =g A" 0,(BP) dom(ac) Y =
Atoufpry.
2. Induction step, m > 1:
G =11 = r1/idle ANy (l; — rj/idle) A Algy, [ |V p, let AT = NTLo(l; — rj/idle).
As in the base case, there exist a ground substitution 0° and a substitution 8; € CSUp(I] =
r1), so ran(B1) N (Ve U V; 5 U Vig pe) = (), such that a =g, 0 Gom(a)> dom(B1) C dom(éo) =
dom(a) U 1 U1, 6° KB B1 < (B1)dom(se)s (¥ A @7 A ¢5)p1 is satisfiable, so G W[dl}
(AP A AFg)BL | (W A g7 Adp))BL |V, (M51)v = G, and for every pair of substi-
tutions p and 7 such that 6° <g (810)dom(se) and 6° =g (B1p)dom(se) - v it holds that
EoE (Y A7 AN@p)Brpy and (AT A Atpy)a =g (AS A AFo,)Brpy.

As §° <p fB1 and §° is ground, then there exists a ground substitution §;, such that
dom(81) = ran(B1) U (dom(6°) \ dom(51)), where ran(31) N Vg = 0, and 6° =g f1 - 01, S0
dom(f161) = ran(B1) U dom(5°) = ran(f1) U dom(a) U &1 U gp. Then:

e as 0° =p (5151)\7«(1”(51), SO 6?(0 (5161)Xg\mn(ﬁl); dom(c5°) = dam(a) Uz Uy,
and a =g, 5307”(04) - 5\($1Uy1) then o =g, 65(501U?31) —B (5151)\(7"‘1"(51)U£1Ug1) -
(B101) dom(a)s 1-€-» @ =E (B101) dom(a);

° VAgl N (.22’1 U ﬁl) =10 implies Ag”ﬁldl = Agn(ﬂlél)\(fclugl) =g Ag”a Then, since
Njta(lja =g rja), /\;n z(l‘5151 =g 7j5101) (1);

e as o F o, Vi C Xo, 0%, = (B101) xp\ran(8,)> and Vi N (ran(B1) U2y U 1) = 0, then
YB101 = Y(B101)\(310g1) Eo Ya, so Ey F B101;

® as 5%0 = (Blél)XO\mn(,Bl) and Vd)?l 62, Nran(f1) = (), then ((Z571/\¢7(31)51(51 = ((Z)fl/\qﬁgl)(so
s0, as Eo F (¢], A ¢7,)0°, also Eo F (g7, A ¢7,)B101; and

e as Fy F (qf)?l A 62521)51(51 and Eg F ¢ 5101, then Eg F (1/) A gf)?l A qj)gl)ﬂl(sl('r'r)

Then, by (f) and (ft), we can apply the LH. and there exists a ground substitution 67,
substitutions Ba, ..., 8p from CSUs, and abstractions abstmctgl((ljﬁlﬁéfl, rjﬂlﬂ{l)) =
(A (Z5,75)- (l;’, ;) (l, TJ) ((Z)l ,(l)T )), for 2 < j < m, where 3 = none, such that
dom(f3") C dom (57) UGS, ran(B;), dom(87) = dom(B161) U (V; 5 \ (81 Udh)), Bid1 =,
(89 dom(saon)s 1908 =5 1965, for 2 < j < m, 87 < (B aom(sp) G~ Mg, By |
(0 Ao N @7 )BLBE AN NjZo (@, A 87) BT |V, (uBrB5)v, and for every pair of substitu-
tions p and v such that 67 <g (85'p)dom(so) and 67 =g (85"p)dom(so) - 7 it holds that Ep =
(AG7 NG, ) BLBE NNGo (0] A7) B ) py and (AT AAM ) B101 =g (AFAA ) 5155 p.

As 3185 = B = 3, this is the same as Gy wg‘;}l At B | YB A /\?1:1@?], A qbﬁj)ﬁ]m |
V. (uB)v, Eo F (b8 ANy (6], A 87 )BT )py, and (A A Algy)Bi01 =g (AF A Atoy)Bpy
(t11)-
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As dom(B1) C dom(d°) = dom(a) U 1 U 1, dom(a®) = dom(a) U V; 4 80 dom(f1) U
dom(0°) € dom(a®), dom(d7) = dom(B161) U (V5 \(:&1 Uui)), dom(él) = ran(f) U
)

(dom(6°) \ dom(f1)), and dom(55*) C dom(d7) U UJ ! ran(B;), then:

dom(B) = dom(B155") = dom(p1)Udom(B5") C dom( )Ux1Uy1Ud0m(5°)UU o mn(,@’])

dom(a)Uz1Uj1Udom(B101)U(V; \(leJyl))UU L ran(B;) = dom(a a)UV; sUdom(B161)U

UT_QI ran(f;) = dom( )Udom(ﬁlél)UU] 2 mn(ﬁj) (dom(a®)Udom(p1)Udom(6°))U
(ran(B1) UUJS,' ran(B))) = dom(a®) UUJL," ran(B;) ().

Let a® = 6°(07)v, A@ug) = 0% U (67)v, @10 since 0° is ground and dom(d°) =
dom(a) UZ1 Ugy. Then

(a) as G w[ldl] G1, then:
G iy A, B BB AN (67 A 62,)B2 | Vi (1B
(b) as dom(6°) = dom(a) U1 U g, then:
dom(0®) = dom(8° U (5)v, \au)) = dom(8°) U (V; 5 \ (31 Ug) = dom(a) U U
7 U (ny \ (1 U7)) = dom(a) U Vi ie, dom(a®) = dom(a) UV -

:vy’
(c) as a =g, &9 dom(a) NV =0 and ¢° is ground, then:

dom(a)’
adom(a) (6°U (51)\/ \(:clu;/l))dom(a) = 5flom(a) =g, @, l.e.,, @ =p, azom(a);
(d) as 0° =p (Blél)\mn(ﬁl )1 B161 = Eo (51)dom(6161)> and dom(éf) = dom(Blél) U (V:@,gj\
(1 Ug1)), then:
a® = 8°U(07)v, \(@ug) =B (BLo\ran(81) U (07)v; \(@10g1) =Eo (07)dom(8161)\ran(81) U
ODv; \@1ug) = (07 \ran(s1)s 1€ &% =5 (67)\ran(1): 50:
e as ran(B1) N Vg = () and l;-’éf =5 rjo-éf, for 2 < j < m then l50° =g r3a°, for
2<j<m
e as ran(B1) N Vie o =0 and 1581 =p r{ P, then:
= BB )\ran(sy) = 1381 =B 1581 = 77 (B1)\ ran(81)
= B (B161 )\ ran(s1) =B 71 (8101 )\ran(s1)»
- l?(éf)dom(ﬁﬁl)\mn(ﬁl) —E ri(éi)dom(ﬂlfsl)\“l”(ﬁl)’ and
— 170 \ran(81) =E 710 \ran(sy)» 1-€-, [7a° =g r{a”’.

In conclusion, I°a®

(e) ® as dom(ﬁlél) = mn(ﬁl)udom(a)uﬁrluﬁl, then (ﬂlél)\ran(ﬁl) = (/Blél)dom(a)ui"lugl;

® as B101 =g, (67) dom(s161) = (07)dom(s1) U (07) dom(s) then 61 =gy (67) dom(s):

e as dom(B161) = ran(B1) U dom(a) Uy Uy then dom(dy) C ran(B1) U dom(a) U
21 U g1;

e then, as §° =p (B101)\ran(s,) and dom(d7) = dom(a®) U ran(p1):
a® = 8°(07)v; A\@up) = (0°(07)v, \(@1Ug1)) dom(ac) =B
((B101)\ran(81) (07)v;, :\(#1Ug1) ) dom(a®) =
((8101) dom(a)u1 ugs (07)v; \(@103)) dom(a®) =Eo
((ﬁl(5T)dom(51))dom(a)ui’1ug1 (5?)‘/ A\($1Uy1))d0m(a°) =
((/816 )dom(a YUz1Ug1 (60)‘/ \(leJyl))dom (a®) = ((51 )dom (a) )dom a®) —

9

(ﬁlé )dom(ao) <E (61(/82 )dom(Jo))dom a®) — (181/82 )dom (a®) = ( )dom (a°

In conclusion, a® <g (51 )dom(ao)a

— 70 0.
=Ep T Q7

(f) let p and v such that a® <g (8p)dom(ac) and & =g (8p)dom(ac) - 7¥- Then:

e as 61 =g, (07)dom(sy) then (8161)dom(s15,) =Eo (8167)dom(s:s,), hence
(5151)d0m(a)uf1ug1 —Eop (Bl5f)d0m(a)ufluf/1;
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e then, as §° =p (5151)\mn(51) and dom(B101) = ran(f1) U dom(a) U 21 U gy:
a® = 6°(07)v, \(@um) =B (BL)\ran(8)) (0)Vv; \(@rum) =
(8161) dom (a )USE1Uy1(51>V \@1Ug) =Eo (5151)dom(a)umum(51)%@\(@1%) =
(615 )dom a®) (615 )dom (a®) =FE a’;
e as dom(d0]) = dom( °)Uran(B1) and (8167)dom(ac) =E @° <KE (BP)dom(ac) =
(Blﬁglp)dom(ao)v then (5T)dom(a°)Umn(,81) <E (52 p)dom(ao)Uran(Bl)v Le.,
67 <k (B3'P) dom(59);
¢ as dom(do) = dom(a®)Uran(p1) and (5155”[’)dom(a°)7 = (ﬂp)dom(ao)fy =pa’ =g
(515 )dom (a®)> then (/Bgnp)dom(ao)Umn(ﬁl)’Y —FE (5(1))dom(a°)Umn(Bl)7 Le.,
67 =& (B5'P) dom(52)7-

In conclusion, as 67 <g (83'p)dom(s) and 07 =g (B3'p)dom(s3)y then, by (11),
F (B ANZL(B] N 678 ) s

e Also by (11), (AB'AAF0,)B101 =g (A5 AAF,)Bpy, so At o, B161 =g AFouBpy;
e As a =g, 620m(a), 6° =p B1- 61, B1 is a CSU, so V o, N ran(B1) = 0, and
VKou C Vi C dom(ar), then:
Ao, Bpy =g AFo,f161 =p Atp,0° = Alg 520m(a) =g, Algua.

So also Atg,a =g At Bpy.
O

Theorem 3. Given an associated rewrite theory R = (X, EgU B, R) closed under B-extensions
and a reachability problem P = A", u; — v;/ST; | ¢ | V,p, where p is R/E-normalized, if
o :V — Ty is a R/E-normalized solution for P then there exist a formula ) € QF (X)) and two
substitutions, say A and p, call v = (u))y, such that A", wip — vip/STY; idle | gp |V, p wi
nil | ¢ | Vv, 0 =g v-p, and vp is satisfiable.

Proof. The proof is by induction over the sum h of the number of nodes in each c.p.t. for the
solution o. No simplification is applied to the reachability formulas that appear in the generated
path.

In the following we will make use of the following two facts. For any term ¢ and substitution
« it holds that:

1. poss(t) C posy(ta) because, by definition, the variables of ¢ that « instantiates are located
at positions in posy(t), and

2. topy, (t) C topy, (tar), because o only may add new topy, positions for non-¥g variables in
its domain, but cannot remove any existing position in topy, (t).

We will call w = uyp and v = vyp. In all cases o = p- o, for proper o’ such that dom(o’) = V#,
[violg € ST{Q[uyo]Eg, and Ey F ¢o. As o is ground and R/E-normalized, then ¢’ has to be
also ground and, by Proposition 7, R/E-normalized.

(1) Base step: h = 1.

Then P has the form u; — v1/ST1 | ¢ | V,p, with Vp =V, 4,6 € V and the c.p.t. T for
ujo—v10/ST] v1o—vy0o/idle

ujo—v10/STT;idle
There are four strategies in the base case: idle, c[y], top(c[v]), and the match test.

Py and o has the form

1. ST, = idle.

P =wu; — vi/idle | ¢ | V,pu. As, by definition 33, Vi, 4,6 € V then V4, C V¥ =
dom(c’), and as [vio]g € idle@[ujo|p then, as shown in example 10, ujo =g vi0, i.e.,
uo’ =g vo’, all ground terms.
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Let abstracty, ((u,v)) = (MZ,7).(u°,v°); (03,05) (00, d5)). As dom(o’) = V# then, by
Lemma 4, there exists a ground substitution o° such that u°c® =p v°0°, Eg F (¢, A¢S)o°
dom(c°) =VHF Uz Uy, and o' =g, oj..

As u°0® =p v°0°, then there exist substitutions ¢/ and p’ such that v/ € CSUp(u® = v°)
and 0% =p V’-p’,/caﬂ v :O(W’)v and p = Pian(wy(/vwom(u))', As /dom(“) € Veand o' =g,
opu then o = po’ =g, poy, =g p(V'o')vie = (/' 0" )v = (W)W Pl oy Yo dom (v ))
V'p{mn(y)U(V\dom(u)) =vp, 1.6, 0 =g Vp.

As Ey E ¢o, Vg, C VF#, and o' =g, oy, then ¢uo® =g, puo’ = ¢o, so Ey E puo®. Now,
as Eo E (62 A 62)a°, then Eo = (du A ¢S A ¢0)o°, call ¥° = du A ¢S A ¢ and let 3 = 9°u/.
As Ey E¢°0°, 0° =g V'-p/, and Ve Nran(v') =0, so 9°0° = ¢°V'p’, and p is more general
than p/, then ¥°V/p, i.e., 1p, is satisfiable, hence 1) is also satisfiable.

As u = uip, v =vip, and v € CSUp(u® = v°), then u — v/idle;idle | ¢u | V,p ~ gy
u— v/idle | ¢p | V,p ~q1),0 nil | | Vv, where ¢ is satisfiable and o =g vp.

. STy = [y].
P=wu —uv/c[y] | ¢ |V,u, withe: 1 —r Zf X € R, and [v10]g € ¢7[Y0qn(y)|Qur0]E.
Then, by Lemma 5 point 3, ujo0 ———! v10, 80 Ey E X0V0,qn(q). Call d =
V(1) Ro /g

7Y Oran(y) (= 77 because o is ground and, by definition, dom(y) N dom(c) = 0, hence
Eo F xv0), R(c') = (X, EgUB, {c}), and Rp(c') = (£, EgUB, ¢g). Then also ujo —1

¢ {¢}/E
v10 80, by Theorem 1, w0 —>~1{c’} B V10.
As uyo —%C,}’B vio and vars(B) Nwvars(cy) = (), then this rewrite step uses a rule ¢} € g
where:

e if ¢} = ¢ then ¢] has the form ¢ : lyo — ryo if xvyo, call lp =1 and ro = r, and

o if ¢} # ¢ then ¢ has the form ¢ : wllyo],y — wlryoly if xyo, by Definition 18,
for proper w and p’. As by Definition 18, V,, N V., = (), by Definition 33, V,, NV =
0, and also dom(y) C Vo and dom(o) C V, this is the same as ¢ : w[l]yyo —
wlr]yyo if xyo, call lg = w[l],y and 19 = wr],y.

In either case, ¢} has the form, ¢| : loyo — royo if xyo. Let ¢g : lo = roif x. As ¢} € ¢y
and ¢| = cga then, by proposition 6, ¢y € cg. Since 0 = uo’, if we call I; = lyyu and
r1 = royp then ) has also the form ¢ : lio" — r0’ if xvyo.

Let ¢z : Iy — r2if x2 be a fresh version of ¢ except for dom(y)UV*H (= dom(v)Udom(d")),
and let T be the renaming that verifies co = ¢f7, so (I2,r2, x2) = (lo, 70, X) (4 W T), where
(dom(r) U ran(r)) N (dom() U VA) = 0. Then lo(yi)aoms) = (9 7)(¥H)domie) =
lU((V“)dom('y) L'HML'HT) = lo((fyu)dom('y) U:U’)T = loypt = I 7, s0 also 7AQ(PYFL)dom('y) =7 and

X2(V1) dom(y) = xyir. Call le = lo(Yt) dom(y) and o” = 7710’ Then l.o” = it 1o’ =
l10’. Now:

(a) abstracty, (l.) = <Ag.;°;0§;¢;’>, where 3 = Yis- -5 Yiys 1° = Iy, P = P15+, Diy,
p= toPZo(lc)7 elo = U;yzl{yl = lC|p¢}’ and ¢? = /\zil Yi = lC|p15

(b) sincelyo’ = l.0” and topy, (I.) C topy, (l.o”) then abstracts, (l10") = abstracts, (1 CJ”)
(AYZ.15,05 00505 doyn), where 2 = 2y i logn = led"[J]52]g, 4 = tops,(leo”) \
tOPZo(lc)v Ocor = Uﬁil{yz = lelp, 0"} U U 11z = lcgl|qg} and ¢2,, = (/\Z 1Y% =
lelpi 0" A Ny 25 = 1e0”|g,);

(¢) as ujo —>}[c,}73 vio with ¢, then there are a position p in posy, (u10) and a substi-
tution 6 : gUZ U Vc’l — Ty, such that rep(uiol,) =g 12,0, vic =g uio[royod], =
uo[roypo’d], = wiorio’dl,, and Ey E (xyo A ¢2,.,)0, so Ey F xvod, ie., Ey E
xvro'd, 46 =g, lc|po”d and 26 =g, l.0”|30;
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(d) as p € posy, (ui0) and o is R/E-normalized, hence R, E-normalized by Theorem 1,
then p € posy, (u1), 50 10|, = u1|po = ur|puo’ = urplpo’ = ul,o’; and

(e) as 7 is a fresh renaming then 0 = V,, N ran(r) = V,, N dom(r71), so u|,77 1o’ =
ulpo’ = woly, =g, rep(uicly) =p 15,6 = 1.0"[yl5Z)s0 =g, leo” = L7771
ul,7 o’ =g l.77 1o’

o, ie.,

Let abstracty, (ul,) = (\Z.u%05;¢2). As dom(t71o’) = ran(r) U V# then, by Lemma 4,
there exists a ground substitution ¢° such that u®c® =g (°0°, Ey E (¢5,A¢7)0°, dom(o°) =
dom(t71oYUZ UG = ran(r) UVFUZ U, and 7~ 1o’ =g, O dom(r—10") = Oran(r)uvi SO
(7YY vu =g, opu. As (dom(r) U ran(r)) N VH = and dom(o’) = V# then o’ = of,, =
(170 Yyu =g, Oyu.

Asu®c° =p [°0°, then there exist substitutions v/ and p’ such that v/ € CSUp(u°® = 1°) and
0% =p V/p/’ call v = ('U’V/)V and p = p{ran(zx)U(V\dom(u))' As dom(:u’) CVand o’ ~Eo U?/H
thfn 0 = po' =g, oy, =5 p@'p v = (/' 0")v = (W )V 0 (YO dom( (v )) =
men(u)u(\/\dom(y)) =Vp, L., 0 =g Vp.

As x2(V1) dom(y) = XTYUT, dom(c®) = ran(T) U VF U T U7, and o' =g, O pan(r)UVi
then xa (Vi) gom(y)0°0 = XVHTO (ryuved =Eo XYUTT L o'§ = xyuo's so, as Ey E xyuo's,
Eo F x2(YH) dom ()0 0-

As Ey E ¢o, Vi, C VH#, and 0’ =g, o}, then ¢uo® =g, ¢ppo’ = ¢o, so Ey F ¢puo®. Now,
as Eg E (g5 A@p)o®, then Ey E (oA ds, A¢7)o° ground formula, so Eg E (oA ¢y, Ad7)o°0
and Eg E (op A ¢y A @) A X2(Yi) dom(v))0°8. Call ©° = dp A ¢y A ¢f A X2(V1t) dom(), and
let o = V. As o® =g V/p/, s0 p°0° = ©°V'p' = pp’, then Ey E pp'd, call &' = p'5, hence
© is also satisfiable.

Now, Go =t — v/c*[(V1) dom(y)); idle | @ | V, o ~pg u =1 o, 20 — v/ (V1) dom () ]; id1e |
op |V, p ”"Fc} ul, =t @, ulz], — v/ (V) dom(y)]; 1d1e | dp | V, = G, where ul, cannot

be a variable, say ,, because as p € posy(u1) then, by (c), also z,0" —% 5 19700, so

o would not be R/FE-normalized. As cg : la — 72 if x2, where rg('y,u)dom(,y; = r17, and

v € OSUp(u° = 1°) then G1 ~ [ yufwsr oy (U[r17]p — v /idle)V' [ ¢ | Vv = Ga.

We already know that Ey F ¢d’. We prove that u[ri7],0/0" =g v/§'":

and dom(0°) = dom(r71o’) Uz U, then 710’ WoR; =Eo
1.

?

e as 7 o’ =K, afiom(T,lg,)
UZom(T_la’) Wo3 , = 0°, where Vg, N (U §) = 0, v =ur"t and v = v7~

o u[ri7],V' 0 =p ulri17),0°8 =g, ulr17]p(r7 o’ W 0%ug)0 = u[r17],m 0’8 = ulr1],0’5;

)6 = vr~Lo’§ = vo'6;

e by (c), vioc =g uio[rio’dp, i.e., vo' =g uo’[r10’d],, ground expression so, as J is
ground, vo’'d =g uo’'d[ri0'd], = ulri]po’d, hence ur17],V' 8 =g vv/'d'.

e v/'§ =g vo°) =g, v(r7 o’ W Ug«ug

Let abstracts, ((u[ri7]p,vv")) = (M@, §').(r°,v°); (62,05); (¢5, #5)). Then, by Lemma 4,
there exists a ground substitution 6° such that r°6° =p v°5°, Ey E (¢y A ¢5)0°, dom(5°) =
dom (&) Uz’ Uy, and & =g, 0 (57), SO there exist substitutions V" and p” such that

V"' e CSUg(r° =v°) and 6° =g v"'p", call v = (V'V")y and p; = pZan(Vl)U(V\dom(Vl))'

As Ey E ¢, ground formula, and &' =g, 0gom (o) then Eo F @d° so Ey = (@ A @2 N @g)d°,
call ' = @ A @2 A ¢5. Now, as 6° =p /' p” implies ¢'0° = ¢'v"p", then also Ey E ¢'v"p",
call ¥ = ¢'v", so 1 and 1)p; are satisfiable.

As V" € CSUp(r° = v°) and 1 is satisfiable, then Gg ~vgy),» nil | ¢ | V,v1, where
v1 = (v")y. Then, as 1¥p; is satisfiable, all that is left to prove is 0 =g v1p1.

o
dom
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As dom(6°) = dom(d") U3’ U Y and o' =g, 0 gom sy then dom(0°) NV = dom(d") and
85 =g, 0, 50, as dom(o) =V and o (=g u(V'p')vu) is ground, call o8 = u(v/'p')vu,
then vip; = (VV//)Vp,r/an(ul)U(BV\dom(ul)) = W)y =g WO°)v =g, W)y = (,uy’é’)‘./ =
(/ﬂ//plé)v = ,U,(l//p/(s)vu =0 67’an(UB)U(V\dom(aB)) —B O-(Smn(o)U(V\dom(U)) =ody =0, le,
0 =EF V1p1.

. STy = top(c[y]).
The proof is almost exactly the same as the previous one, particularized for the case p = e.
The only difference is found in the initial narrowing steps, where instead of:

-Go=u— ’U/C'u[(%u)dom('y)]; idle ’ b | Vi U —1 o, Xy — U/CM[(W/:“)dom(w)]; idle |
S| Vo i ulp =t @ ulz]y, = 0/ (Vi) dom(y)]s 1dle | ¢p | V. = Gy and

-Gy M rl v W{zoriTr'} ( [TlT]p v /idle)yl | ¥ | Viv = Ga,

now we have:

Go = u = 0/t0p(c[(V11) dom(ry]): idlLe | Gpt | Vs pt (s (17 — v fid1e)! | o | Vyw =
Gao.

. STy =matchtst. AT (l; =75) Ax.

P=u = v /ST | ¢|V,p,vars(P) = vars(u1,v1,¢) C V, ST] =matchitos.t. \JL,(ljo =
rjo) A xo, and there exists a substitution ¢ : Vsrg — T, such that vioc =g ui0 =g tod,
ljod =g 108, for 1 < j <m, and Ey F (¢ A x)uo’d.

Let abstracts, ((u,tp)) = (MZ, 7).(u,t°); (05, 07); (62, ¢5)). As uyo is ground then uo’d =
u1po’'d = w100 = uyo =g tod = tuo’d so, by Lemma 4, there exists a ground substitution
0° such that u°c® =p t°0°, Ey F (¢S A ¢7)0°, dom(c°) = dom(o'd) Uz UG, and 0'd =,
O-Zom(a’é)'

Call Y1 = (P A X)) A by A7 As Eg E (9 AX)ud'd, Vigayuers N (2 UG) = 0, and
0’6 =g, azom(g,é) = Ji’(m@), then Fo F (¢ A x)uo®, so Eg F 110°.

As u°0® =p t°0°, then there exist substitutions v and 7 such that n € CSUg(u® = t°)
and 0° =p 1T, so Y10° = Y107, hence Fy F ¢¥1n7T and 17 is satisfiable.

Now, Go = u — v/STY;idle | ¢ | V, pt ~m (Aj2i(lj — rj/idle) Auy — v /idle)un |
i |V, (un)y = Ga.

As lod =g 700, 0’5_ =5, Uzom(g,é), a'd =g, T\ (ag) o° =B 1T, and Vj, ., _( Ug U
ran(n)) = 0, then (I,F)unt = (I,7)u(n - 7) =p (I,7)po® = (1,7)uot ;5 =6, (,T)po’s,
ie., (I, ") unt =g (I,7)0é, so lunt =g FunT.

By Lemma 7, as 7 is a substitution such that Eg F 107 and lunT =g Funt, then there
exist a ground substitution 7°, substitutions f1,...,8mn, let 3 = B{*, and abstractions
abStraCtzl((ljﬁiiaTjﬁjil)) = <)‘(j'jayj) (l;)a ;) (4 l; r]) (¢l a¢o )), for 1 < j < 'm, such
that dom(7°) = dom(7) U ny, T =B, Tdom(T)’ [°1° = 7°7°, 7° < Baom(ro), call g =
PinB AN (0], A 67)BT, G~y (u — w1 /idle)unf | Y2 |V, (unB)v = Gz, and for
every pair of substitutions p and v such that 7° <g (B8p) gom(re)y and 7° =g (89) dom(re) - ¥
it holds that Ey F ¥9py and (u; — vy /idle)unt =g (u1 — v1 /idle)unBpy (1).

Take p = none. As 7° <g Bgom(re), then there exists v such that 7° =g B (ro) - 7 and
ran(7°) = ran(Baom(ro) - ), 50 as 7° is ground then 7 is ground. By (1), Eo F 927y and
(up — v1 /idle)unT =g (u; — v /idle)unBy. Now, as Vi, », €V = dom(o) and o is
ground, then Vo = Vod = Vuo'd =g, Vuo® =g Vunt =g VunBy so, as uio =g 010,
also u1punBy =g vipnBy, ground Y-equation, hence Vi, v )uns S dom(y).

Let abstracty, ((u1pmB, vipmpB)) = (M@, 7)., 0°); (05, 65); (65, 43))-  As wiumBy =g
V1B, Viuyw)yums S dom(y), and v is ground then, by Lemma 4, there exists a ground
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~ A~

substitution ° such that u®y® =g v°9°, Ey E (¢ A ¢5)7°, dom(7°) = dom(vy) Uz U,
and v =g, ﬁom(y)'

As u®y° =p v°9°, then there exist substitutions « and € such that o € CSUp(u® = v°) and
7° =p a-e. Now, as 7° =p Bdom(TO) Y =E Bdom(T") JYZom(W) =B 6dom(7°) ) (O"g)dom('y) and

7° is ground, then 7° =g (B0€) jom (7o), 50 T° =E (BA) dom(ro) - €, hence 7° K g (Ba) gom(ro)
and, by (1), Eo F taae.

Call ¥ = (12 A ¢ A ¢p) v, ground formula, and v = (unBa)y. As Ey F (¢S A ¢g)7° and
7 =p a-¢e then Ey F (¢5 A ¢g)a - €, so also Ey E (o5 A ¢g)ae, hence, as Ey F e,
Ey E ¢e. Finally:

e as Fp = te then ¢ is satisfiable, 50 Ga ~ (1] nil | ¥ | V v, ie., Go ~T nil [ | V,v,
e as Fy F ie then ¢ is satisfiable, and

e as Vo =g VunpBy =g, Vﬂﬂﬁﬁom(v) =p VunpB(a- E)dom('y) then:
o=ov =g (B(a-€)dom))v = (unBac)y = (unpa)y -e = v, ie, 0 =g ve.

(1) Induction step: h > 1.

e First, we prove the induction step when P has several open goals and the first open goal
is one the base cases: P =u; — v1/ST1AQ| ¢ | V,pu, Q= A" yu; — v;/ST; and n > 1,
let A = /\?:2 U; — ’UZ/ST@7 idle.

We have proved for all of these cases that there exist a formula 17 and substitutions ),
v/, and p’ such that G = uyp — vip/STH;idle | pp |V, p~3 nil | ¢ | VoV, o0 =g Vp/,
and 110’ is satisfiable. Then, also Go = uip — viu/STY;idle A Ap | ¢u | V,p w;\r,
A(pN) |1 | Vv = Gy, where 0 =g vV/-p/ and 1y’ is satisfiable.

Now, we prove that Gy ~3, nil | ¢ | V,v, for proper v, ¢, and \”, and that there exist
a substitution p such that ¢ =g v - p and ¥p is satisfiable, so the theorem holds. This
generic proof is valid for many of the other cases of the induction step, so we prove it only
once. We provide a specific proof for each case where this proof does not apply.

All the variables in dom()’) are either variables in V# or fresh variables generated by
the calculus rules, so Va, N dom(N) C V¥, hence A(uXN) = A(pX)y = AV and G; =
AV |1 | Vv, As any narrowing step will preserve ¢, instantiated with the substitution
used in that step, as part of a conjunction of formulas, and Vi C V then ¢ = ¢/ A 9o,
for proper .

As 11p’ is satisfiable and ¢o is ground, so ¢v/p’ is ground, then there exists a ground
substitution « such that dom(a) = Vi, s, where all the variables are either fresh or belong
to ran(v'), so dom(a) Nran(v') = 0, and Ey E (¢ A 2)p'a, where ¢v/p'a = ¢p/p/. As
V' - pl is ground, so p’ is also ground, and dom(a) N ran(v') = 0, then: (i) v/ - (p/ - a) =
V- p)-a= (" p)aand (i) p'-a = pa,so EgE1(p - a). Call V! = VY UV,.

/

Consider the problem P’ = Q' | 41 | V/, none in R*" and Call%’é, whose corresponding
goal is G} = AV | ¢1 | V/,none. As o0 =g V' - p/, both ground substitutions, then
Vao = Vo .p) € Va, 5o Vouryy N dom(a) = 0 and Q' - p'a = Q@' - p') =g Qo. As
there is a c.p.t. for [v;o|p € ST?[u;o]g, for 2 < i < n, then, by Lemma 5, there are closed
proof trees for all the open goals in Qv p), i.e., Q- p) - @, each c.p.t. having the same
depth and number of nodes as its correspondent c.p.t. for Qo. As Ey E ¢1(p' - «) then
p' -« is a solution of P’ with less nodes that those in the solution o for Py, since we have
excluded the nodes in the c.p.t. for the first open goal, so we can apply the L.H. to P,
and there exist a formula 1) and substitutions \” and p”, call A = M\ and v = (u)\)y,
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such that Gy = AV | ¢y | V', none ~3, nil | ¢ | V!, X, p/-a =g X" p", and ¢p” is
satisfiable, call p = p"’/Umn(V). Then, also Gy = AV | ¢y | V,v/ ~7, nil | ¢ | Vv, so
Go ~3 nil | ¢ | V,v, and vp is satisfiable. Finally, v-p = (v-p")v = (pNN'p")v =g

(LN p'a)y = (Vp'a)y =g (ca)y = 0.

In the rest of cases, the strategy in the first open goal of P may be a concatenation or
not, so P has the form uy — v1/ST1(;ST)ANQ | ¢ | V,u, let STy = ST1(;ST), with
Q= A"gu = v;/ST; and n > 1, let A = A" ,u; — v;/ST;;idle, where ST is allowed
to be a concatenation of strategies but ST is not (in case of several concatenations), o is
a solution of the reachability problem P’ =Q | ¢ | V., p, so [nio]g € ST{Q[uyo]g and, for
2 <i<n, [volg € ST?Q[u;0]g, hence there is a c.p.t. for [v;o]g € ST [u;0]r where the
sum of the number of nodes in each c.p.t. for P’ is lower than h.

1. ST1 =5, | So.

L1
7J,1¢7~>w/S7‘;7 ( Fy )
STg ST .
Then, one c.p.t., T, for P and o has the form ula_)w;logvloq/“;;é,g/ , with respect

to D% cainy» Where w (= vio if STy = ST1) is a term in 7y and ¢ in {1,2}, let
S = S;(;ST). Consider the problem P = u; — v1/S | ¢ | V, u which for the same

o (oo 2757
. ujo—w/SY w—v10 /ST .
solution ¢ has a c.p.t. TV = 2= ;120—>u10—75i ! with one less node than T

Then, by I.H., there exist a formula 1)1 and two substitutions, A" and p/, let v/ =
(uXN)v, such that u — v/S*;idle | gu | V,p ~3, nil | 1 | V,/, 0 =g V' - p/, and
P1p 1s satisfiable.

But then, also:

— if n =1 then Go = u — v/ST};idle | ¢u | Vi p ol oro2] U — v/SH;idle |
op | Vip ~3 nil | 1 | Vo', o =g v/ - ¢, and 1’ is satisfiable, so ¢ = ¢y,
A=XN,v="1and p=p;

—else Go = u — v/STh;idle AAp | du | Vi ol oro2] U — v/SH;idle A Ap |
o | Vi ~3 A(pXN) |1 | Vv = Gy, 0 =g V' - p/, and 1’ is satisfiable. The
rest of the proof is the one given at the end of the induction step for the base

cases.
2. ST = 51+.
w75ty (iSeiersre)
. . o U0 w ‘i" w—v10/ST
Then thereis a c.p.t. T, with respect to DRycallR’ of the form oo STT ,

where w (= vio if STy = ST1) is a term in Ty, and either head(11) = uio — w/SY
or head(Ty) = ujo — w/S§ ; S{+, let S = S; or S = S1;S1+, depending on the
case, and So = S(; ST).

Consider the problem P’ = u; — v1/Sy | ¢ | V, u which for the same solution o has
Tt Gisejorso)
u1o0—=v10/S§
Then, by I.H., there exist a formula 1)1 and two substitutions, A and p/, let v/ =
(uX)v, such that w — v/Sf;idle | pp | Vi~ nil | ¢y | VU, 0 =g v - p/, and

P1p is satisfiable.

But then, also:
— if n =1 then Go = u — v/ST};idle | gp | V,p ~pl or p2]
u—v/Shidle | pp | V,p~3, nil |91 | V.V, 0 =g v/ p/, and ¢1p’ is satisfiable,
sop =11, A\=N,v="1/and p=p;

with one less node than T'.

acp.t T =
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— else Go = u — v/STY;idle AN Ap | ou | Vip ~plorp2] U = v/Sk;idle A Ap |
o | Vo=t A(pXN) [ 41 |V, = Gq, 0 =g V' - p/, and 91’ is satisfiable. The
rest of the proof is the one given at the end of the induction step for the base
cases.
3. STy = CS, where sd CS := S, let Sp = S(;ST).
T

F
. . o ujo—w/STY (w—wla/STU)
Then thereis ac.p.t. T, withrespect to DR e of the form oo STT ,

where w (= vi0 if STy = ST1) is a term in Ty, and head(T}) = ujo — w/S°.
Consider the problem P’ = u; — v1/Sy | ¢ | V, u which for the same solution o has

F
T (wﬁ'ulo'/STo')
u1c—v10/S§

acpt. T = with one less node than T.

Then, by I.H., there exist a formula 1 and two substitutions, A" and p/, let v/ =
(uXN)v, such that u — v/SH;idle | ¢u | V,p ~3, nil | 1 | V,/, 0 =g V' - p/, and
P1p 1s satisfiable.

But then, also:

— if n =1 then Go = u — v/ST(;idle | ou |V, ~ e
u—v/Shiidle | gp | Vip ~, nil |1 | Vv, 0 =g /- p/, and 19’ is satisfiable,
sop =11, A=N,v="r/and p=p;

—else Go =u — v/SThH;idle AAp | dp | V,p el U v/S;idle A Ap | gu |
Vo ~=3 ApXN) [ 91 | Vi) = Gy, 0 =g vV - p/, and 1’ is satisfiable. The rest
of the proof is the one given at the end of the induction step for the base cases.

4. STy = CS(t), where sd CS(Z) := S € Callg, let v = {Z — t} and Sy = Sv(; ST).
T

F
. . o uyo—w/STT (wﬁvla/STU)
Then thereis ac.p.t. T, with respect to DR,CauRv of the form oo STT ,

where w (= v1o if STy = ST1) is a term in Ty and head (1) = w0 — w/(S7)°.

Consider the problem P’ = u; — v1/Sy | ¢ | V, u which for the same solution o has
i (g=vie7570)
u10—v10/S§

with one less node than T'.

acp.t T =

Then, by I.H., there exist a formula 1)1 and two substitutions, X' and p/, let v/ =
(uX)v, such that w — v/Sf;idle | g | Vi~ nil | ¢y | V', 0 =g v/ - p/, and
P1p is satisfiable.
But then, also:
— if n =1 then Go = u — v/ST};idle | pp | V,p el
u—v/Skiidle | pp | V,p~3, nil | ¢1 | V.V, 0 =g v/ p/, and ¢1p’ is satisfiable,
sotp =11, A\=N,v="1/and p=p;
—else Go = u — v/STy;idle AAp | ¢p |V, ~>pq) u — v/Sh;idle AAp | ¢u |
Vo~ A(pXN) |91 |V, = Gy, 0 =g V- p/, and ¢1p/ is satisfiable. The rest
of the proof is the one given at the end of the induction step for the base cases.

5. 8T :_C’S(ﬂ, where csd CS(z) := S if C € Callg, with C of the form [ = 7 A ¥,
with | [ |=| 7 |= m, let 8 = {Z — t} and let ¢, with dom(e) = Vog \ (V U Z), be a
fresh renaming.

=TT (P

ulcr*)w/ST(f w—v10/STT
uioc—v10/ST§ ’

where w (= vjo if STy = STy) is a term in Ty, 0 : vars(Cefo) — Ty is a

substitution such that lefod =g Telod, Fy E xefod, and ¢ and § ground and

dom (o) N dom(d) = () implies (Sef)?0 = (Sehd)?. Let Sy = Seb(;ST), T = 010,

O = u; — v1/Sp; idle(AA), O = u; — v1/Sp(AQ), and 11 = (¢ A x€d) .

Then thereisac.p.t. T', with respect to D . of the form

Then Go = u — v/STY; idle(AAp) | dp | V,pt ~> ) Nj=i(ljn — rjn/idle) A Op |
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Y1 | Viu = Gy, As Ey F ¢poy, ground formula, because Vy, C V, then ¢uoy = pur
and E(] = wlT.

By Lemma 7, as 7 is a substitution such that Eq F Y17 and Int =g ™7, then
there exist a ground substitution 7°, substitutions Bi,...,8mn, let 3 = A", a
abstractions abstracts, (inB] ', rmpl ")) = (Aw;, @}).(15,79); (67 P 07); (67,07 )>
for 1 < j < m, such that dom(7°) = dom(7) UV &, T =g, Tdom(r)? [°7° =p 7°7°
T° <E Bdom(’ro)a call 11}2 = @Z}lﬂ A /\;n:l(gblj A ¢j)ﬁj s Gl Wﬁlll],ﬁ gﬂﬁ | ?/Jz |
V,(uB)y = Ga, call £ = pf, and for every pair of substitutions p and 7 such
that 7° <g (/Bp)dom(To) and 7° =g (ﬁp)dam(To) -~ it holds that Ey F 1opy and
Our =g O&py (7).

Consider the problem P’ = @’¢ | 12 | V& none in RE and Call%, whose corre-
sponding goal is G’ = ¢ | 1o | V&, none, and take p = none. As 7° <g Baom(ro)»
then there exists 7/ such that 7° =g Biom(re) - 7 and ran(7°) = ran(Baom(re) - ¥'),
so as 7° is ground then 4/ is ground. By (1), Ep F 12y’ and Our =g O&y/, so also
O'ur =g Oy, where all the terms and formulas are ground.

Now, @'¢y =5 O'ur = (u1 — v1/So(AQ))uT = (U1 — v1/So(AQ))po1d = (ug —
v1/So(AQ))od = (o — 1)10/505(/\90)) = ©". For the first open goal of ©”

: Ul o—w € o (w y(,? U) . .
there is a c.p.t. T/ = 1= /<51f>_wla/sj5l /517" with one less node than T, since
0

S§6 = (SeBd)?(; ST?). As we have closed proof trees for all the other open goals
in ®” then, by Lemma 5, there are closed proof trees for all the open goals in
@’¢y', each c.p.t. having the same depth and number of nodes as its correspon-
dent c.p.t. in ©”. As Ey F 197/, then +/ is a solution for P’, so we can apply
the I.H. to ®”, and there exist a formula 1) and substitutions v/ and p’, such that
Of | Yo | V&, none ~}, nil | ¢ | V&, /', o =g V/-p/, and ¢y’ is satisfiable, where
dom (V') C V& C ran(€). But then, call A = 8v/, v = (£&V/)y, and p = pQ/Umn(V), also
Go ~j O |9 | Vv ~
and p is satisfiable.

As dom(v) CV, thenvp = (Vp)\mn(v) = (Vp/VUmn(y))\mn(l/) = (p/\/U plmn( ))\mn( ) =
pl\/\mn(y)u(y mn(y))\mn(y) p/VU(Vp,)V\dom(p’) = (VPI)V = (gylp,) ( BV P) -KE
(WY)W =g (W) =g, (W7)v =B (no°)v =g, (o'd)y = (0d)y = o, ie,
o=gUV-p.

Finally, as 1p’ is satisfiable and p is more general than p’ then vp is also satisfiable.

nil || Vv, ie., p= p’VUmn(V),so Go w;f nil || Vv,

V,

. STy = matchts.t.x 751 : S2 and there exists a substitution 6 : Vsre — Ts,
such that ujo =g tod and Ey F (¢ A x)od (the proof with Sy instead of Si, when
E (¢ A —x)od, is exactly the same).

Fy
ulo'ﬂw/(/gljf)a ( FQ/ST )
. . o ujo—w (1’ w—v] o o
Then thereisac.p.t. T', with respect to DR . of the form w1015 /STT

where w (= vio if STy = ST1) is a term in Ty, and o and ¢ ground and dom (o) N
dom(0) = ( implies (51)70 = (516)?. Let Sop = Si1(;ST), 7 = 016, ® = u; —
v1/S0; idle(AA), and O = uy — v1/SH(AQ).

Let abstracts, ((u,tp)) = (M, g).(u®,t°); (05, 67); (5, ¢5)). As uio is ground then
uo’d = upuo’d = u106 = uyo =g tod = tpo'd so, by Lemma 4, there exists a ground
substitution o such that u°c® =g t°0°, Ey E (¢3N] )0°, dom(c°) = dom(o’§)UzUg,
and 0’6 =g, Uzom(a'é)'

Call Y1 = (@A X)u A @ A pf. As Eg F (6 A X)uo'0, Vigayuors N (2 UG) = 0, and
o'd =g, O-cd)om(a’é) = Gi(iug)v then Fy F (¢ A x)uo®, so Eg F 110°.
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As u®c® =p t°0°, then there exist substitutions v and 7 such that n € CSUp(u® = t°)

and ¢° =p n-7, 80 P10° = Y197, hence Ey F ¥1nT and 17 is satisfiable. Call £ = un.

Now, Go = (u1 — v1/ST1;1d1e(AA))p | b | Vi p ~ iy (w1 — v1/So; idle(AA))E |

Yin |V, v = Ga.

Consider the problem P’ = @'¢ | ¢1n | V&, none in RS and Call%/, whose corre-

sponding goal is G’ = ¢ | 17 | VE, none, and take p = none.

Now, @61 = ©'punt =p ©'110° = (u1 — v1/S0(AQ))puo® = (u1 — v1/So(AQ))po® =g,

(ur = v1/So(AQ))po16 = (ur — v1/So(AQ))od = (w10 — v10/ST6(ANQ7)) = ",
F F:

tss0  (ooordsme) .
For the first open goal of ®” there is a c.p.t. T' = “1”_’“1/511;)%”10/1;851 /517 with

one less node than T, since S§d = (510)7(; ST?). As we have closed proof trees for
all the other open goals in ®” then, by Lemma 5, there are closed proof trees for all
the open goals in @’¢7, each c.p.t. having the same depth and number of nodes as
its correspondent c.p.t. in @”. As FEy F 107, then 7 is a solution for P’, so we can
apply the L.H. to ®”, and there exist a formula 19 and substitutions v’ and p”, such
that ©¢ | Y1n | V&, none ~7, nil | ¢o | VS, ", 7 =g v"-p", and yop” is satisfiable,
where dom(v") C V& C ran(€). Call N = g/, v/ = (&")y, and p = p"’/Umn(y,).
As p' is more general than p” and vop” is satisfiable then vop’ is satisfiable. Also,
Vi pt = (VW PGy = &V 0 v = (0" )y =g (unT)v =B (ko®)v =g,
(uo’d)y = (60)y = oy =0, ie., 0 =gV -p'. Now:

— if n = 1 then Go ~;1), (u1 — v1 /So;idle)l | ¥in | V. &y Wj,, nil | o | VU,
ie., Go~3 mil |2 | V1V, 0 =g v/ p/, and oy’ is satisfiable, so ¢ = 9o, A = X,
v=1'and p=p;

— else Go ~ 1), (w1 — v1 /So;idle AA)un | in | V.&v ~5 A(uX) | ¢ | V.V,
ie., Go 3 A(N) | o | ViV, 0 =g V' - o/, and ¢op/ is satisfiable. The rest of
the proof is the one given at the end of the induction step for the base cases.

. STy = matchrew ts.t.l = 7 A Y by Zusing S, where |z| = k, || = || = m, and
By definition, VN Z =0 and 2 C X;. As [v10]p € ST{@Q[ui0]p then there is a c.p.t.,
zlaji/sga'”zkaa?,z/sga .
ulaﬁtaé[ﬂﬁ/STT (toﬁ[ﬂﬁ—mjlo/STU)

with respect to DR o s of the form , where

_ wo—v10/ST§
Z C dom(J), ground substitution, uyo =g tod, lod =g 7od, and Ey F yod, with all
these terms and the formula ground. Also, if STy = ST then tod[t]; =g vio.

Let abstracts, ((u,tp)) = (Mw,w").(u®,t°); (65, 07); (¢5, #7)). As uyo is ground, then
uo’d = uipo’d = w108 = ujo =g tod = tupo'd so, by Lemma 4, there exists a
ground substitution ¢° such that u°c® =p t°c°, Ey F (¢, A ¢7)c°, dom(c°) =
dom(o’d) Uw U W', and 0’6 =g, O Gom(o'5)-

Call 1 = (@A X AN G5 AN b7 As Eg E (¢ Ax)uo’s, Vigayy, N (0 U ') = 0, and
o'd =g, Uzom(g/s) = Ui(wuw/y then Eg E (¢ A x)uo®, so Ey E ¢y0°.

As u®c® =p t°0°, then there exist substitutions v and 7 such that n € CSUp(u® = t°)
and ¢° =p 07, so Y10° = Y17, hence Fy F ¥n71, ground formula, and 7 is
satisfiable. Call @ = /\?Zl(xj — y;/Sj;idle) A t[ylp — v1/ST;idle A A, where
and y are fresh versions of z, and let A be the renaming from z to z, i.e., ZA = z, and
let © = Ab_ (25 = y;/S;) Atlgly — v1/ST A Q.

Now, Go = (u1 — v1/ST1;8T;idle AA)u | S | Vit~ (g (Nj2y (i — 75/1d1e) A
©)un | Y1 | V, (un)y = Gy, all ground terms.

As lo6 =g 700, 0'§ =g, Jzom(a/ay o'd =g, Ui(wuw')’ 0® =g 17, and Vj . N (U
W' U m”(??)) = ®7 then (lv":)/”]T = (laf)ﬂ(ﬁ ) T) =B (laf):uao = (laf):uo-i(wuw/) —Ey
(I, P)ua'd, ie., (I, F)unt =g (I,7)0d, so lunt =g FunT, since lod =g 7o6.
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In the same way, as w0 =g tod, ground terms, and vio is also ground, then
Vounr = U . Let 7/ = 7UNX-0; U{y — t}, so Vg, = 0. As dom(u) C V then
Ou = O so, by Lemma 7, as 7’ is a ground substitution such that Vg, C dom(7’),
Ey E 4yn7', and lunt’ =g Funt’, there exist a ground substitution 7°, substi-
tutions B1,...,0m, let B = B}, and abstractions abstmctgl((]ﬁj ! r]ﬂ] b =
(Mwy, w%).(15,75); (07 L ,,,J) (gf)l ,¢7.)), for 1 < j < m, such that dom(7°) = dom(7")U
Vw A 7—, —Eo Tdom(7’)’ l 7° =g T TO T° <E /Bdom ) call 5 = /”75 and 1/]2 =
P1nB A /\] 1(¢>l Ny ) , also Gq ~ dl] O¢ | o | V, &y = Ga, and for every pair of
substitutions p and v such that 7° <g (BP) dom(ro) and 7° =g (B) dom(re) =¥ it holds
that Eg F 1opy and ®unt’ =g O&py (7).

Consider the problem P’ = @'¢ | ¥y | (§ U2 UV)E, none in RE and Call%’, whose
corresponding goal is G' = O¢ | ¢o | (U T U V)E none, and take p = none. As
7% KE Bdom(ro), then there exists 7' such that 7° =g Biom(ro) - 7' and ran(r°) =
7an (Baom (7o) -’y’), so as 7° is ground then ~' is ground. By (J[), Ey F 9y and
Ount' =g O&Y, so also O'unt’ =g O'&~y/, where all the terms and formulas are
ground. Now, ©'¢y =g @'unr’ = (/\?Zl(xj — y;/S;) Ntgly — vi/ST;idle A
At = (Nj_i(z8 — t3/8)) NH[Hlp = v1/STiidle A A)unr =p (Nj_i (26 =
t;/S)) At — v1/ST;idleAA)uo® =g, (Ni_y (20 = t;/S;) /\t[ﬂp — vy /8T;idleA
A)pc's = (/\ (250 = t5/S;)At[t]; — v1/ST;idle AA)od = /\ 1 (20 = t5/S76) N
tltl; — vl/ST" idle NA7 = ©”. As we have closed proof trees for all the open goals
in ®” then, by Lemma 5, there are closed proof trees for all the open goals in @&y,
each c.p.t. having the same depth and number of nodes as its correspondent c.p.t.
in ®”. As Ey F 197/, then o' is a solution for P’. The difference with respect to the
closed proof trees in the answer o for the reachability problem P, is that we have
two less nodes, tod — tod[t];/STT and tod — vi0/ST]; ST?, so we can apply the
LH. to @&y, and there exist a formula ¢ and substitutions v/ and p/, such that
G =0O¢ |y | (JUE UV, none ~ nil | | (UZUV)E Y, + =g V/-p/, and ¥p’
is satisfiable, where dom(v') C (§Uz U V)¢ C ran(€). But then, call v = (£2/)y and
p= p’VUmn(V), also Go = O | o | V. &y ~T nil |4 | Vv,

As dom(u) < V’ then vp= (Vp)\m”(V) = (yp/VUmn(V))\m”(V) = (p/VUZ/pi“an(zz)>\7”an(V) =
P\ ran () Y Pran )y Nran(w) = PrUWE W dom(e) = (e )v = (&0 )v = (unBV'p')v =k
(unBy )W =g %)y =g, (unT")v =p (Ho°)v =g, (no'd)y = (0d)y = o, ie,
oc=gv-p.

Finally, as 1p’ is satisfiable and p is more general than p’ then vp is also satisfiable.
. STy =c[y]{S}, withc:l = rif Carulein R, C=1—7|x,S=251,...,9m, and
dom(v) Nwvars(S) = 0.

As [vio]p € ST{Q[uio]p then there is a c.p.t. T, with respect to D% o, , of the

TyTm

T TO)
uyo—w/STY ( o E; ; _ F
form uro—v10/STG 7 where T; = liyod—riy0d /ST for 1 < < m, To = w—v10/ST??

[w]E € “[(Y0) dom(y)|@[ur0] g, Where 0 : vars(eyo) — Ts, with Eg F xyod, there is
p € pos(uio) s.t. o =g wo[lyod],, and w = uio(ryod], if Ty exists or w = vy0,
otherwise. By Lemma 5.13, ly00 — o g 700, s0 uio — 1 w. Call
CU’pv(’ya)dom('y)(sRa/E
a = yod (= ydo since dom(d) N dom(a) = ) and both substitutions are ground),
o = vo, and ¢ = ¢7(V0)gom(y) (= ca’ because ¢ is ground and, by deﬁnition,
dom(y) N dom(c) = 0). As ujo —1 w then, By Theorem 1, ujo0 ——!  w,
cd,p R°/E ¢ o,p’ R B
since R is closed under B- extensions, with ¢} € ¢z and proper p’, as seen in the proof
of Lemma 2, so also ujo —! w, hence we can assume that ¢ = ¢}, p = p/, and
%0 o/
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T is the c.p.t. for [w]g € ¢|Q[uio]p using uio 7} w. Since o = po’, if we call
4 o

l1 = lyp and 11 = ryp then /(= ca’) has also the f(im{lEc&/ o' — ro if Cd.

Let ¢ : lo — ra if C be a fresh version of ¢* except for dom(y) U VH* (= dom(vy) U

dom(c’)), and let T be the renaming that verifies co = ¢#7, so (l2, 72, Ca) = (1,7, C) (¥

7), where (dom(7) U ran(7)) N (dom(y) U V#) = 0. Then la(vu)gom(y) = l(p W

T) (V) dom(y) = UV domy) ¥ 1 8 T) = L(VH) dom() W )T = lyur = IiT, so also

TZ(’Y:U’)dom('y) = 77 and 02(7 )dom = Cypr. Call l. = ZQ(,YM)dOm( ) and 0" =

77 Y¢’. Then l.o” = ly77 Yo' = l10'. NOW

(a) abstracty, (I.) = <Ag.lf; 07, ¢7), where g = yi, ...  Yiy» 1°=1[ylp, D= p1,-- -, Diys
]3 = tOpEO(lC)v 0? = U;L{yz — lc|pi}7 and ¢? = /\zyzl Yi = lc|pi;

(b) sincelio’ = l.0” and topy, (I.) C tops, (l.o”), then we have that abstracts, (l10') =
abstracts, (l.o”) = (AGZ.1S ;00 5 @0 ), where Z = z1, ..., 2, 10, = 10" [y]p[Z]g
G = tops,, (1e0”) \ tops,, (Le), 05, = UiLi{yi = Lelp, 0" Ui {25 = 10|, }, and
Gogrr = (/\i:l Yi = lc,pigﬁ A /\;'zzl zj = ZCUN‘QJ');

(¢c) as uyo —5>1 w, then there is a substitution §’ : § U 2 UV, — Ty, such that

¢spd Ro B
8y, =0, rep(urolp) =p lg,n 8", w =g u10[r10'd'], = wio[ri0'd], = wio[ryuo’s], =
wo[ryodl, = uioraly, and Ey E (x& A ¢2_,)0', so Ey E xa (since xo/d' =
xa'd = xa), i.e., By F xyouo', 50’ =g, lc|po”d and 28’ =g, l.0”|50';

(d) as p € posy, (u10) and o is R/E-normalized, hence R, E-normalized by The-
orem 1, then p € posy, (u1), so wiol, = uilpo = uilppo’ = uiplpo’ = ulpo’;
and

(e) as 7 is a fresh renaming then § = V,, N ran(r) = V,, N d (7'_1) S0 u|p7'_1 "=
ulpo’ = w0y =g, rep(uroly) =p 15500 = leo”[y]5[2
ulp,m Lo’

Let abstracty, (ulp,) = (Az.u°;02;¢%). As dom(r~'o’) = ran(r) U V# then, by

Lemma 4, there exists a ground substitution ¢° such that u°c® =g [°0c°, Ey F

(65, A ¢7)o°, dom(c°) = dom(t7 o) UE UG = ran(r) UVHF UZ UG, and 7710’ =p,

U(c)lom(v'—la’) - Uw?an(‘r)UV“’ s0 (170" )vi =k oy and T = (7—7101)\‘/” — o UEV“' As

(dom(t)Uran(r))NVH* =0 and dom(c’) = V* then o' = o{,, = (171" )vu =g, o5,

2130 =g, lco” = L7710, ie.,

=g l.m 1o,

Asu®0° =p [°0°, then there exist substitutions ¢ and ¢’ such that ¢ € CSUg(u® = 1°)
/ _

a?d o =p -, ,call £ =p-9¥and ¢ = mn(gv) (V' dom ()" As Idom(,u) - ‘{ and

o' =g, oy then o = p- o' =g, p-oy, =p p- (9w = p- (I )vu = (WI)y =

7 Cmn(gv) U(V\dom((€v)) =&y - Cmn (E)U(V\dom(Ev)) — §v - ¢, ie., 0= -( so0also

o =p ().

A8 X2(Y1) dom(y) = X V0T, dom(0°) = ran(T) UVF Uz UG, and 770" =g, 07,0 Gyus

then X2(Y) dom()0°0 = XVHTO g, (ryuyud =By XYUTT 0’8" = X Y10’ = xyp0's =
xYouo' so, as Eg = xyopuo’, also Eg F x2(Vit) dom ()00’

As Ey F ¢o, Vg, C V¥, and o' =g, o}, then ¢uc® =g, ¢ppo’ = ¢o, so Ey E
¢po®. Now, as Eg £ (¢ A ¢7)o°, then Ey E (¢p A ¢, A ¢7)o° ground formula,
so Eo F (o A ¢y A ¢7)o°0" and Eg F (pp A ¢ A d7 A X2( V1) dom(y) )00’ Call
©° = PUNPGAD] AX2(VL) dom(v)> and let p = ©°0. As 0° =p 9-(', 50 p°0° = (' =
oC’, then Ey F o', call §" = ('0’, hence ¢ is also satisfiable. Call ® = ly7 —
7y7/ST;idle(Aui[ryT], — v1/ST;idle) AA and ©' = Iy1 — 7y7/ST(Aut[ryT]p, —
vl/ST) A Q.
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Now, Gog = (u1 — v1/S8T1; ST;idle AAW | o | V, 1 ~ 1Y

u —t xo, 20 — v/STY; STH;idle N A* | du | V, p T

ulp =tz ulaly = 0/F (V1) dom(r) {S"}; STH; idle AAF | g |V, pp = G,

where u|, cannot be a variable, say z,, because as p € posy,(u1) then, by (c), also
240 =k p T, 50 0 would not be R/E-normalized.

As ¥ € CSUg(u® =1°) and ¢y : lg — 12 if C2, where ro(Yit) gom(y) = 17 = ryut and
Co(V1) dom(y) = Cypr, call 9" = JU{z = 7179}, then G1 ~ 9 O | 0 | V. &y = Ga,
call Vo = (§UZUV UVeyr)S.

Consider the problem P’ = @’¢ | ¢ | Vi, none in R&V and Call%’, whose correspond-
ing goal is G' = ©¢ | ¢ | Vo, none. Now, @'¢6" = @'ud('d" =g ©'(cU(I('0" )\vu) =B
@’(JU(UO(V)\VU =5, @' (cur~ 1) = @’(UU(T‘lé)VC, U%ué) = @’(UU(T‘l(S)VC,) =
@718 = lyod — 7756 /576(Auro[ryod], — vio/ST7) A Q7 = O,
We have closed proof trees T4, ..., Ty, (and Tj if ST is a concatenation) for the open
goals before 7, whose sum of nodes is two less that number of nodes in T'. As we
have closed proof trees for all the other open goals in ®” then, by Lemma 5, there
are closed proof trees for all the open goals in ©’¢6”, each c.p.t. having the same
depth and number of nodes as its correspondent c.p.t. in ®”. As Ey F ©d”, then
6" is a solution for P’, so we can apply the L.H. to ©’£6”, and there exist a formula
2 and substitutions v/ and p”, such that ©¢ | ¢ | Vo, none ~1, nil | ¢2 | Vo, vy
0" =g vy, -p", and p2p” is satisfiable, where dom(vy; ) C Vo C ran(§). Call X' = 9'v",
V= (& )y, and p = pQ’/Umn(V,). As p’ is more general than p” and 9p” is satisfiable
then ¢op’ is satisfiable. Also, as V. C Vy and o =g (ud(')y, v/ - p/ = &)y -
Sy = (0" = (") =5 (108" = (uOC'8 Yy — (o8)y = o, Le.,
o=gv - p. Now:
— if n = 1 then Go ~3 Ga ~), nil | g2 | V.V, ie., Go ~1, nil | b | V,V/,
o=gv -p, and ¢,p is satisfiable, so ¥ = @), A= XN, v =1/, and p = p';
—else Go ~3 Ga ~F, AN) | oh | Vi, ie, Go ~{ A(pN) | ¢y | V.V,
o=gVv -p, and ¢,p’ is satisfiable. The rest of the proof is the one given at the
end of the induction step for the base cases.

. 8T1 = top(c[y]{S}).
The proof is almost exactly the same as the previous one, particularized for the case
P =€, 80 ulp = u, uilp = w1, ur[ry7]p = ry7, et cetera. The only difference is found
in the initial narrowing steps, where instead of Gg w[t]w’["d G1 ~ [0 G2 now we
have GO ~ [tp) Gz.

O
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