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Abstract

This work presents a narrowing calculus that uses strategies to solve reachability prob-
lems in order-sorted conditional rewrite theories whose underlying equational logic is com-
posed of some theories solvable via a satis�ability modulo theories (SMT) solver plus some
combination of associativity, commutativity, and identity. Both the strategies and the
rewrite rules are allowed to be parameterized, i.e., they may have a set of common con-
stants that are given a value as part of the solution of a problem. A proof tree based
interpretation of the strategy language is used to prove the soundness and weak complete-
ness of the calculus.
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1 Introduction

Rewriting logic is a computational logic that was developed thirty years ago [Mes90]. The
semantics of rewriting logic [BM06] has a precise mathematical meaning, allowing mathematical
reasoning for proving properties, providing a �exible framework for the speci�cation of concurrent
systems; moreover, it can express both concurrent computation and logical deduction, allowing
its application in many areas such as automated deduction, software and hardware speci�cation
and veri�cation, security, et cetera [MM02,Mes12].

A system is speci�ed in rewriting logic as a rewrite theory R = (Σ, E,R), with (Σ, E) an
underlying equational theory, which in this work will be order-sorted equational logic, where
terms are given as an algebraic data type, and R is a set of rules that specify how the deductive
system can derive one term from another. Many-sorted and unsorted theories can be formulated
as special cases of order-sorted (OS) theories.

Strategies allow modular separation between the rules that specify a system and the way
that these rules are applied. They can be used both to implement and test di�erent algorithms
over a given speci�cation or to drive the search of solutions to reachability problems.

A reachability problem can have the form ∃x̄(t(x̄)→∗ t′(x̄)), with t, t′ terms with variables
in x̄, or be a conjunction ∃x̄

∧
i(ti(x̄)→∗ t′i(x̄)). Reachability problems can be solved by model-

checking methods for �nite state spaces. When the initial term t has no variables, i.e., it is a
ground term, and under certain admissibility conditions, rewriting can be used in a breadth-�rst
way to traverse the state space, trying to �nd a suitable matching of t′(x̄) in each traversed node.
In the general case where t(x̄) is not a ground term, a technique known as narrowing [Fay79]
that was �rst proposed as a method for solving equational goals (uni�cation), has been extended
to cover also reachability goals [MT07], leaving equational goals as a special case.

Such E-uni�cation algorithm can itself make use of narrowing at another level for �nding
the solution to its equational goals. Speci�c E-uni�cation algorithms exist for a small number
of equational theories, but if the equational theory (Σ, E) can be decomposed as E0 ∪B, where
B is a set of axioms having a uni�cation algorithm, and the equations E0 can be turned into
a set of rules

−→
E0, by orienting them, such that the rewrite theory

−→
E = (Σ, B,

−→
E0) is admissible

in the sense of the previous paragraph, then narrowing can be used on
−→
E to solve the E-

uni�cation goals generated by performing narrowing on R. For these equational goals the idea
of variants of a term has been applied in recent years to narrowing. A strategy known as folding
variant narrowing [ESM12], which computes a complete set of variants of any term, has been
developed by Escobar, Sasse, and Meseguer, allowing uni�cation modulo a set of unconditional
equations and axioms. The strategy terminates on any input term on those systems enjoying
the �nite variant property, and it is optimally terminating. It is being used for cryptographic
protocol analysis [MT07], with tools like Maude-NPA [EMM09], termination algorithms modulo
axioms [DLM+08], algorithms for checking con�uence and coherence of rewrite theories modulo
axioms [DM12], and in�nite-state model checking [BM14]. Recent development in conditional
narrowing has been made for order-sorted equational theories [CEM15] and also for rewriting
with constraint solvers [RMM17].

Conditional narrowing without axioms for equational theories with an order-sorted type
structure has been thoroughly studied for increasingly complex categories of term rewriting
systems. A wide survey can be found in [MH94]. The literature is scarce when we allow for
extra variables in conditions (e.g., [GM86], [Ham00]), conditional narrowing modulo axioms
(e.g., [CEM15]), or conditional narrowing modulo a set of equations (e.g., [Boc93]).

Narrowing is a technique used to inspect complex concurrent and deductive systems. One
of the weaknesses of narrowing is the state space explosion associated to any reachability prob-
lem where arithmetic equational theories are involved. Satis�ability modulo theories (SMT)
solvers [dMB08], an extension of Boolean satis�ability (SAT) solvers that can handle a wide va-
riety of equational theories, including integer and real numbers, may mitigate the aforementioned
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state space explosion.
This paper extends in two ways our previous work [AMPP17], where we developed a sound

and weakly complete, i.e., complete with respect to idempotent normalized answers, narrowing
calculus for conditional narrowing modulo E0 ∪ B, i.e., the underlying equational theory E of
the admitted rewrite theories must be decomposable into E = E0 ∪ B where E0 is a subset of
the theories handled by SMT solvers and B is a set of axioms for the algebraic data types not
handled by the SMT solvers:

1. Strategies. In [AMPP17] we found several sources of state space explosion:

(a) the order of application of the rules,

(b) the application of unneeded rules, and

(c) that checking a SMT restriction that applied to any state was only possible for can-
didate �nal states,

that even prevented the state space of some problems from being �nite. These problems
can be addressed with the use of strategies

2. Parameters. We also found out that the scope of the calculus could be broadened if we
included the support for parameters in the speci�cations, i.e., a subset of the variables in
them, either SMT or not, to be considered as common constants that need to be given
a value in the reachability problem, either as a prerequisite or as part of its solution,
allowing, for instance, the �ne tuning of a proposed speci�cation.

We have de�ned a strategy language suitable for narrowing that can be used either to specify
algorithms or to drive the search of solutions to reachability problems. This strategy language
is a subset of the Maude strategy language [MOMV04,EMOMV07,RMPV18]. We have given
a proof tree based interpretation of its semantics, and we have developed a completely new
narrowing calculus that includes this strategy language and the use of parameters, both in the
rewrite theories and in the strategies. Under certain requirements, the calculus is proven to be
sound and weakly complete.

The work is structured as follows: Section 2 presents basic de�nitions and properties for
order-sorted equational deduction and uni�cation. Section 3 presents rewriting modulo built-in
subtheories and axioms (R/E). In Section 4 the concepts of built-in subtheory, abstraction,
B-extension, and rewrite theory closed under B-extensions are presented. Also, the relation
→R,B is introduced. This relation is closely related to the narrowing calculus to be developed
in Section 7. Then the equivalence of R/E-rewriting and R,B-rewriting, for rewrite theories
closed under B-extensions, is proved. In Section 5 the strategy language and its semantics are
presented; then, an interpretation of this semantics is proved. In Section 6 we de�ne the concept
of parameterized reachability problem and its solution. In Section 7 the narrowing calculus for
reachability is introduced. Then the soundness and weak completeness of the calculus are proved,
as well as its completeness for some rewrite theories. Section 8 shows several examples of the
use of the calculus. In Section 9, related work, conclusions, and future lines of investigation for
this work are presented. The appendix holds the rest of the proofs of this work. The prototype,
with the running example, can be found at http://maude.ucm.es/cnarrowing.

2 Preliminaries

Familiarity with term rewriting and rewriting logic [BM06] is assumed. Several de�nitions and
results from [RMM17] are included in this section.
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Figure 1: Running example. Toast cooking

2.1 Running example

Example 1. Toast cooking will be used as a running example. A toast is well-cooked if both sides
of the toast have been cooked for exactly cookTime (abbreviated to ct) seconds. No overcooking is
allowed. Fresh toasts are taken from a toast bag, and they are cooked using a frying pan that can
toast up to two toasts simultaneously, well-cooking one side of each toast in the pan. There is a
bin, where fresh toasts are put when taken from the bag. A toast in the pan can be returned to the
bin, being �ipped in this process. Finally, there is a dish where well-cooked toasts can be output.
There is a limit of failTime (ft) seconds to reach the desired �nal state. In this example, ct
and ft will be the parameters, i.e., they are the variables that represent the common constants
of the speci�cation that must be given a value either by the conditions of the problem or by its
solution.

A Toast (abbreviated to t) can be either a RealToast (rt), represented as an ordered pair of
natural numbers, each one with sort Integer (i), storing the seconds that each side has already
been toasted, or an EmptyToast (et) which has a constant zt, representing the absence of Toasts;
a Pan (p) is an unordered pair of Toasts; a Kitchen (k) has a timer, represented by a natural
number, and a Pan; a Bin (b) is a multiset of Toasts; the bag and the dish are represented by
natural numbers, the number of RealToasts in each one; the System (s) has a bag, a Bin, a
Kitchen, and a dish. When a RealToast is in the pan, the side being toasted is represented by
the �rst integer of the ordered pair. We will use two auxiliary functions, cook and toast (in
lowercase). The rules for Toast cooking are the following:

1. The function call cook(xk, yi) will return the Kitchen obtained from Kitchen xk after yi
seconds, by calling the function toast(vt, yi) for each Toast vt in Kitchen vk.

2. The function call toast(zt, yi) will return zt.

3. The function call toast(rrt, yi) will return the RealToast obtained from RealToast rrt
after toasting it for yi seconds, where yi > 0, only if the side of rrt that is in contact with
the pan gets well-cooked.

4. A fresh RealToast can pass from a non-empty bag to the Bin.

5. A RealToast can pass from the Bin to the Pan if there is room in the Pan.

6. A Kitchen with at least one RealToast in the Pan can cook the RealToasts that are laying
on the pan any given integer number of seconds.

7. A RealToast in the Pan can be returned to the Bin, where it is �ipped. This is the only
way that a toast gets �ipped.

8. A well cooked RealToast can be taken out to the dish.
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2.2 Order-sorted equational logic

De�nition 1 (Kind completion). A poset of sorts (S,≤) whose connected components are the
equivalence classes corresponding to the least equivalence relation ≡≤ containing ≤ is kind com-
plete i� for each s ∈ S its connected component has a top sort, denoted [s], called the kind of
s.

De�nition 2 (Order-sorted signature). An order-sorted (OS) signature is a tuple Σ = (S,≤, F )
where:

� (S,≤) is a kind complete poset of sorts.

� F = {Σs1...sn,s}(s1...sn,s)∈S∗xS is an S∗xS-indexed family of sets of function symbols, where
for each function symbol f in Σs1...sn,s there is a function symbol f in Σ[s1]...[sn],[s].

� Σ is sensible, i.e., if f is a function symbol in Σs1...sn,s, f is also a function symbol in
Σs′1...s

′
n,s
′, and [si] = [s′i] for i = 1, . . . , n then [s] = [s′].

When each connected component of (S,≤) has exactly one sort, the signature is many-sorted.

Example 2. In the cooking example, omitting the implied kind for each connected component
of S, Σ = (S,≤, F ) is:
S = {Integer, RealToast, EmptyToast, Toast, Pan, Kitchen, Bin, System},
≤= {(RealToast, Toast), (EmptyToast, Toast), (Toast, Bin)},
F = {{[_,_]}i i,rt, {__}t t,p, {_;_}b b,b, {_;_}i p,k, {cook}k i,[k], {toast}t i,[t],
{_/_/_/_}i r k i,s, {zt}et}.
The notation used in F has the following meaning: {[_,_]}i i,rt means that there is a mix-

�x function symbol [_,_] such that if i1 and i2 are terms with sort Integer then [i1, i2] is a
term with sort RealToast. It is possible to use functional notation for all function symbols, but
mix-�x notation will be used in order to ease the reading.

The order ≤ on S is extended to S∗ in the usual way: if w = s1 . . . sn in Sn, w′ = s′1 . . . s
′
n

in Sn, and si ≤ s′i for i = 1, . . . , n then w ≤ w′. When f ∈ Σε,s, ε being the empty word, we
call f a constant with type s and write f ∈ Σs instead of f ∈ Σε,s.

A function symbol f in Σs1...sn,s is displayed as f : s1 . . . sn → s, its rank declaration. Then
f is said to have arity n and end type s. Mix-�x notation is allowed in Σ, where the symbol _
is used to identify the position of each si in s1 . . . sn. If omitted, the usual functional notation
f(s1, . . . , sn), which is an admitted alternative notation for all functions, is assumed. An S-
sorted set X = {Xs}s∈S of variables satis�es s 6= s′ ⇒ Xs ∩ Xs′ = ∅, and the variables in X are
disjoint from all the constants in Σ. Each variable in X has a subscript indicating its sort, i.e.,
xs has sort s, which may be omitted when the sort of the variable is not relevant.

The sets TΣ,s and TΣ(X )s denote, respectively, the set of ground Σ-terms with sort s and
the set of Σ-terms with sort s when the variables in X are considered extra constants of Σ. The
notations TΣ and TΣ(X ) are used as a shortcut for

⋃
s∈S TΣ,s and

⋃
s∈S TΣ(X )s respectively. It

is assumed that Σ has non-empty sorts, i.e., TΣ,s 6= ∅ for all sorts s in S. We write vars(t) or Vt
to denote the set of variables in a term t in TΣ(X ). This de�nition is extended in the usual way
to any other structure, unless explicitly stated. If vars(A) = ∅, where A is any structure, A is
said to be ground. A term where each variable occurs only once is said to be linear. For S′ ⊆ S,
a term is called S′-linear if no variable with sort in S′ occurs in it twice.

Positions in a term t: when a term t is expressed in functional notation as f(t1, . . . , tn), it
can be pictured as a tree with root f and children ti at position i, for 1 ≤ i ≤ n. Then the root
position of t is referred as ε and the inner positions of t are referred as lists of nonzero natural
numbers separated by dots, i1.i2 · · · im, meaning the position i2 · · · im of ti1 , where 1 ≤ i1 ≤ n.
The set of positions of a term is written pos(t). The set of non-variable positions of a term
whose root is a function symbol in Σ is written posΣ(t). The set of positions of variables from
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X in a term is written posX (t). t|p is the subtree of t below position p. t[u]p is the replacement
in t of the subterm at position p with a term u. t[ ]p is a term with hole that is equal to t
except that in the position p there is a special symbol [ ], the hole. As an example, if t is
f(g(a, b), c), then t|1 is g(a, b), t|1.2 is b, t[ ]1.2 is f(g(a, [ ]), c), and t[d]1.2 is f(g(a, d), c). For
any position p de�ne p.ε = p. For positions p and q, we write p ≤ q if there is a position r
such that q = p.r, and write p < q if q = p.r and r 6= ε. Trivially p ≤ p because p = p.ε.
t[u1, . . . , un]p1...pn is the replacement in t of the subterms at the unique positions p1, . . . , pn with
the terms u1, . . . , un, respectively, where for all 1 ≤ i, j ≤ n if i 6= j then pi � pj . We also
write t[ū]p̄ if the ordered lists ū = u1, . . . , un and p̄ = p1, . . . , pn are known from the context.
t[]p̄ = t[]p1 . . . []pn , t[ū[v̄]p̄]q̄ = t[u1[v1]p1 ]q1 . . . [un[vn]pn ]qn . Given any ordered list ū, which may
have repetitions, we call û to the set of elements of ū. If p̄ = p1, . . . , pn and p̂ ⊆ pos(t) then
t|p̄ = t|p1 , . . . , t|pn and t|p̂ = {t|p1 , . . . , t|pn}. vars(t[]p̄) is the set of variables appearing in the
term with holes t[]p̄. We also allow the use of holes and replacement in tuples, if T = (t1, . . . , tn)
then T |1 = t1, T [x]1 = (x, t2, . . . , tn), et cetera.

De�nition 3 (Preregularity). Given an order-sorted signature Σ, for each natural number n, for
every function symbol f in Σ with arity n, and for every tuple (s1, . . . , sn) in Sn, let Sf,s1...,sn be
the set containing all the sorts s′ that appear in rank declarations in Σ of the form f : s′1 . . . s

′
n →

s′ such that si ≤ s′i, for 1 ≤ i ≤ n. If whenever Sf,s1,...,sn is not empty (so a term f(t1, . . . , tn)
where ti has type si for 1 ≤ i ≤ n would be a Σ-term), it is the case that Sf,s1,...,sn has a least
sort, then Σ is said to be preregular.

Preregularity guarantees that every Σ-term t has a least sort, denoted ls(t), among all the
sorts that t has because of the di�erent rank declarations that can be applied to t, which is the
most accurate classi�cation for t, i.e., for any rank declaration f : s1 . . . sn → s that can be
applied to t it is true that ls(t) ≤ s.

A substitution σ : X → B, where B ⊆ TΣ(X ), is a function that matches the identity
function in all X except for a �nite set of variables called its domain, dom(σ). If B ⊆ TΣ then
the substitution is ground. We represent the application of a substitution σ to a variable x
in X as xσ. A substitution σ is well-formed if ls(ysσ) ≤ s for each variable ys in dom(σ).
It is assumed throughout that all substitutions are well-formed. Substitutions are written as
σ = {y1

s1 7→t1, · · ·, y
n
sn 7→tn}, where dom(σ) is {y1

s1 , . . ., y
n
sn} and the range of σ is ran(σ) =⋃n

i=1 vars(ti). We will write σ = {ȳ 7→ t̄} as a shorthand if both ȳ and t̄ are known. We write
σ : D → B, where D is a �nite set of variables, to imply that dom(σ) = D. The identity
substitution is displayed as none. A substitution σ where dom(σ) = {x1

s1 , . . . , x
n
sn} (n ≥ 0),

xisiσ = yisi ∈ X , for 1 ≤ i ≤ n, and yisi 6= yjsj for 1 ≤ i < j ≤ n is called a renaming, with
inverse σ−1 = {yisi 7→ xisi}

n
i=1, being none the trivial renaming. The restriction σV of σ to a set

of variables V is de�ned as xσV = xσ if x ∈ V and xσV = x otherwise. The deletion σ\V of a
set of variables V from σ is de�ned as xσ\V = xσ if x ∈ dom(σ) \ V and xσ\V = x otherwise.
Substitutions are homomorphically extended to terms in TΣ(X ) and also to any other syntactic
structures unless explicitly stated. The composition of two substitutions σ and σ′ is denoted
by σσ′, with x(σσ′) = (xσ)σ′ (left associativity). Their closed composition, denoted by σ·σ′, is
de�ned as σ·σ′ = (σσ′)\ran(σ). For a substitution σ, if σσ = σ we say that σ is idempotent. It is
assumed throughout that all substitutions are idempotent, usually because dom(σ)∩ran(σ) = ∅.
For substitutions σ and σ′, where dom(σ)∩dom(σ′) = ∅, we denote their union by σ ∪ σ′. A
context C is a λ-term of the form λx1

s1 · · ·x
n
sn .t, with t ∈ TΣ(X ) and {x1

s1 , . . . , x
n
sn} ⊆ vars(t).

A Σ-equation has the form l = r, where l ∈ TΣ(X )sl , r ∈ TΣ(X )sr , and sl ≡≤ sr. A
conditional Σ-equation is a triple l = r if C with l = r a Σ-equation and C a conjunction of
Σ-equations. We call a Σ-equation l = r: regular i� vars(l) = vars(r); sort-preserving i� for
each substitution σ and sort s, lσ in TΣ(X )s implies rσ in TΣ(X )s and vice versa; left (or right)
linear i� l (resp. r) is linear; linear i� it is both left and right linear.

A set of equations E is said to be regular, or sort-preserving, or (left or right) linear, if each
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t ∈ TΣ(X )

t =E t
Reflexivity

l =E r

r =E l
Symmetry

l =E t t =E r

l =E r
Transitivity

f ∈ Σs1···sn,s li =E ri li, ri∈TΣ(X )si , 1≤i≤n
f(l1, . . . , ln) =E f(r1, . . . , rn)

Congruence

(l = r if
∧n
i=1 li = ri) ∈ E σ:X→TΣ(X ) l1σ =E r1σ · · · lnσ =E rnσ

lσ =E rσ
Replacement

Figure 2: Deduction rules for OS equational logic.

equation in it is so.

2.3 Order-sorted equational theories

De�nition 4 (OS equational theory). An OS equational theory is a pair E = (Σ, E), where Σ
is an OS signature and E is a �nite set of (possibly conditional) Σ-equations of the forms l = r
or l = r if

∧n
i=1 li = ri. All the variables appearing in these Σ-equations are interpreted as

universally quanti�ed. We write l = r if C as a shortcut.

Example 3. The OS equational theory for the toast example has Σ = (S,≤, F ) and E is the set
E0 of equations for integer arithmetic (not displayed), together with the equations:
(xb; yb); zb = xb; (yb; zb), xb; yb = yb;xb, xb; zt = xb, xtyt = ytxt
stating that Bin is a multiset of Toasts and that the position of the Toasts in the Pan is irrelevant.

De�nition 5 (Equational deduction). Given an OS equational theory E = (Σ, E) and a Σ-
equation l = r, E ` l = r denotes that l = r can be deduced from E using the rules in Fig-
ure 2 [BM06,BM12]. We write l↔E r i� E ` l = r can be deduced in a single step.

De�nition 6 (Equational equivalence of substitutions). Given two substitutions γ and δ, we
write γ =E δ i� (i) dom(γ) = dom(δ) and (ii) for each variable x ∈ dom(γ), xγ =E xδ and
vars(xγ) = vars(xδ).

An OS equational theory E = (Σ, E) has an initial algebra (TΣ/E or TE), whose elements are
the equivalence classes [t]E of ground terms in TΣ identi�ed by the equations in E.

We denote by TΣ/E(X ), or TE(X ), the algebra whose elements are the equivalence classes of
terms in TΣ(X ) identi�ed by the equations in E.

The deduction rules for OS equational logic specify a sound and complete calculus, i.e., for all
Σ-equations l = r, E ` l = r i� l = r is a logical consequence of E (written E � l = r) [Mes97];
then we write l =E r.

Proposition 1 (Instance deduction). Let (Σ, E) be an OS equational theory. For each Σ-
equation l = r in Σ and each substitution σ, if E ` l = r then E ` lσ = rσ using the same
number of deduction steps.

Proof. Immediate by induction.

A theory inclusion (Σ, E) ⊆ (Σ′, E′) is called protecting i� the unique Σ-homomorphism
TΣ/E −→ TΣ′/E′ |Σ to the Σ-reduct of the initial algebra TΣ′/E′ , i.e., the elements of TΣ′/E′ that
consist only in function symbols from Σ, is a Σ-isomorphism, written TΣ/E ' TΣ′/E′ |Σ.

2.4 Uni�cation

Given an OS equational theory (Σ, E), the E-subsumption preorder �E on TΣ(X ) is de�ned
by t �E t′ if there is a substitution σ such that t =E t′σ. For substitutions σ, ρ and a set of
variables V we write ρV �E σV , and say that σ is more general than ρ with respect to V, if there
is a substitution η such that dom(σ) ∩ dom(η) = ∅, ran(ρV) = ran((ση)V), and ρV =E (ση)V .
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When V is not speci�ed, it is assumed that V = dom(ρ) and ρ =E σ·η. Then σ is said to be
more general than ρ. When E is not speci�ed, it is assumed that E = ∅.

Given an OS equational theory (Σ, E), a system of equations F is a conjunction
∧n
i=1 li = ri

where, for 1 ≤ i ≤ n, li = ri is a Σ-equation. An E-uni�er for F is a substitution σ such that
dom(σ) ⊆ Vli,ri and liσ =E riσ, for 1 ≤ i ≤ n. If none is an E-uni�er for F then we say that
F is trivial. The condition in a conditional equation is a system of equations.

De�nition 7 (Complete set of uni�ers). For F a system of equations and vars(F ) ⊆ W, a
set of substitutions CSUWE (F ) is said to be a complete set of E-uni�ers of F away from W
i� each substitution σ in CSUWE (F ) is an E-uni�er of F , for any E-uni�er ρ of F there is a
substitution σ in CSUWE (F ) such that ρW �E σW , and for each substitution σ in CSUWE (F ),
dom(σ) ⊆ vars(F ) and ran(σ) ∩W = ∅.

The notation CSUE is used whenW is the set of all the variables that have already appeared
in the current calculation, preventing the collision between new variables from the E-uni�er and
variables already used in the calculation. A substitution σ in CSUE (F ) is always idempotent
because dom(σ) ∩ ran(σ) = ∅.

This notion of complete set of E-uni�ers was introduced by Plotkin [Plo72]. An E-uni�cation
algorithm is complete if for any given system of equations it generates a complete set of E-uni�ers,
which may not be �nite. An E-uni�cation algorithm is said to be �nitary and complete if it
terminates after generating a �nite and complete set of solutions.

3 Conditional Rewriting modulo built-ins and axioms

This section introduces the concept of signature with built-ins. Then, rewriting and rewriting
modulo, both with built-ins, are de�ned.

De�nition 8 (Signature with Built-ins [RMM17]). An OS signature Σ = (S,≤, F ) has built-in
subsignature Σ0 = (S0,≤, F0) i�:

� Σ0 ⊆ Σ,

� Σ0 is many-sorted,

� S0 is a set of minimal elements in (S,≤), and

� if f : w → s ∈ F1, where F1 = F \F0, then s is a sort not in S0 and f has no other typing
in Σ0.

We let X0 = {Xs}s∈S0, X1 = X \ X0, S1 = S \ S0, Σ1 = (S,≤, F1), HΣ(X ) = TΣ(X ) \ TΣ0(X0),
and HΣ = TΣ \ TΣ0.

If Σ has a built-in subsignature Σ0, then the restriction of TΣ/E to the terms in HΣ is denoted
by HΣ/E or HE , and the restriction of TΣ/E(X ) to the terms in HΣ(X ) is denoted by HΣ/E(X )
or HE(X ).

De�nition 9 (Rule). Given an OS signature (Σ, S,≤) with built-in subsignature (Σ0, S0), a rule
is an expression with the form c : l → r if

∧n
i=1 li → ri | φ, written c : l → r if l̄ → r̄ | φ or

c : l→ r if C as a shortcut, where:

� c is the alphanumeric label of the rule,

� l, the head of the rule, and r are terms in HΣ(X ), with ls(l) ≡≤ ls(r),

� for each pair li, ri, 1 ≤ i ≤ n, li is a term in HΣ(X ) \ X and ri is a term in HΣ(X ), with
ls(li) ≡≤ ls(ri), and

9



� φ ∈ QF (X0), the set of quanti�er free formulas made up with terms in TΣ0(X0), the
comparison function symbols = and 6=, and the connectives ∨ and ∧.

The symbol ¬ (that can be de�ned with respect to =, 6=, ∨, and ∧) will also appear in this
work. All the variables appearing in a rule c, vars(c), are interpreted as universally quanti�ed.
Three particular cases of the general form are admitted: c : l→ r if

∧n
i=1 li → ri, c : l→ r if φ,

and the unconditional case c : l → r. We will use the label of a rule alone, as a reference of the
whole rule, when there is no need to make the full rule explicit.

De�nition 10 (Subterms, holes, and replacement in a formula). We extend the use of subterms
and holes to formulas. If φ is a formula from QF (X0), i is a positive integer, p is a position,
and t is a term, then φ|i.p is the subterm that appears at position p in the term i of φ̄, the tuple
formed by all terms that appear in φ, taken from left to right, φ[]i.p consists in the replacement
in φ|i of its subterm at position p with [], and φ[t]i.p consists in the replacement in φ|i of its
subterm at position p with t.

De�nition 11 (B-preregularity). Given a set of Σ-equations B, a preregular OS signature Σ is
called B-preregular i� for each Σ-equation u = v in B and substitution σ, ls(uσ) = ls(vσ).

De�nition 12 (Conditional rewrite theory with built-in subtheory). A conditional rewrite the-
ory R = (Σ, E,R) with built-in subtheory and axioms (Σ0, E0) consists of:

1. an OS equational theory (Σ, E) where:

� Σ = (S,≤, F ) is an OS signature with built-in subsignature Σ0 = (S0,≤, F0),

� E = E0∪B, where E0 is the set of Σ0-equations in E, the theory inclusion (Σ0, E0) ⊆
(Σ, E) is protecting, B is a set of regular and linear equations, called axioms, each
equation having only function symbols from F1 and kinded variables,

� there is a procedure that can compute CSUB (F ) for any system of equations F ,

� Σ is B-preregular, and

2. a �nite set of uniquely labeled alphanumerical rules R.

Under this de�nition of E0 and B, if u and v are terms in TΣ0 and u =B v then u = v.
Condition number 2 will be relaxed, but not removed, later in this work. From now on we will
write �rewrite theory� as a shortcut for �conditional rewrite theory with built-in subtheory and
axioms�.

The transitive (resp. transitive and re�exive) closure of the relation→1
R, inductively de�ned

below, is denoted →+
R (resp. →∗R).

De�nition 13 (R-rewriting). Given a rewrite theory R = (Σ, E0 ∪ B,R), a term t in HΣ, a
position p in pos(t), a rule c : l→ r if

∧n
i=1 li → ri | φ in R, and a substitution σ : vars(c)→ TΣ,

the one-step transition t→1
R t[rσ]p holds i� t = t[lσ]p, liσ →∗R riσ, for 1 ≤ i ≤ n, and E0 � φσ.

Given a rewrite theory R, we call u reachable from t in →1
R i� t→∗R u.

We write t −−−→
c,p,σ

1

R
t[rσ]p when we need to make explicit the rule, position, and substitution.

Any of these items can be omitted when it is irrelevant. We write t −−→
cσ

1

R
v to express that there

exists a substitution δ such that t −−−→
c,σ·δ

1

R

v. For every rewrite step t→1
R v there exists a closed

proof tree witnessing it, in the sense of [LMM05].

Example 4. In the cooking example, E0 is the theory for integer arithmetic, B is the set
of axioms in Example 3, and R is the following translation of the rules for cooking, shown
in Example 1, where the used abbreviations, as established before, are i− Integer, p− Pan,
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rt− RealToast, t− Toast, k− Kitchen, b− Bin, s− System, and cti − cookTime. The
subindex i will be omitted from now on, for a better readability of the examples:
[kitchen] : y;hrt vt → cook(y;hrt vt, z) if z > 0
[cook] : cook(y;hrt vt, z) → y + z;h′rt v

′
t if toast(hrt, z) → h′rt ∧ toast(vt, z) → v′t

[toast1] : toast(zt, z) → zt

[toast2] : toast([a, b], z) → [a+ z, b] if a ≥ 0 ∧ a+ z = ct

[bag] : n/xb/gk/ok → (n− 1)/[0, 0];xb/gk/ok if n > 0
[pan] : n/hrt;xb/y; zt vt/ok → n/xb/y;hrt vt /ok
[bin] : n/xb/y; [a, b] vt/ok → n/[b, a];xb/y; zt vt /ok
[dish] : n/xb/y; [cti, cti] vt/ok → n/xb/zt vt/ok + 1

The transitive closure of the relation →1
R/E , inductively de�ned below, is denoted →+

R/E .

The relation →R/E is de�ned as →R/E= (→+
R/E ∪ =E).

De�nition 14 (R/E-rewriting). Given a rewrite theory R = (Σ, E0 ∪B,R), terms t, v in HΣ,
and a rule c : l→ r if

∧n
i=1 li → ri | φ in R, where vars(c)∩ vars(t) = ∅, if there exist a term u

in HΣ, a position p in posΣ1
(u), and a substitution σ : vars(c)→ TΣ such that t =E u = u[lσ]p,

u[rσ]p =E v, liσ →R/E riσ, for 1 ≤ i ≤ n, and E0 � φσ then we say that the one-step modulo
transition t→1

R/E v holds and we write (t, v) ∈→1
R/E.

The position p cannot belong to posΣ0
(u), because as l is a term in HΣ(X ) then lσ is a

term in HΣ, hence not in TΣ0 . We write t −−−−→
c,u,p,σ

1

R/E
v when we need to make explicit the

rule, matching term, position, and substitution. Any of these items can be omitted when it is
irrelevant.

Rewriting modulo is more expressive than rewriting (→1
R(→1

R/E): from De�nitions 13 and

14 it is clear that →1
R⊆→1

R/E ; in the next example we prove that →1
R/E*→

1
R.

Example 5. Let us assume a rewrite theory R = (Σ, E0 ∪ B,R), where S0 = {n}, Σ0 has
constants 0, 1, 2, and a binary function symbol _ + _ : n n → n; E0 = {x + y = y + x};
f and g are function symbols in Σ1; B = {f(x, y) = f(y, x)}; and the only rule in R is c :
f(2 + x, 0)→ g(x). Then f(0, 1 + 2) cannot be rewritten in R because f(0, 1 + 2) 6= f(2 + x, 0)σ
for any substitution σ, but f(0, 1 + 2)→1

R/E g(1) with σ = {x 7→ 1}, because 1 + 2 =E0 2 + 1, so

f(0, 1 + 2) =E0 f(0, 2 + 1) =B f(2 + 1, 0) = f(2 + x, 0)σ.

4 Abstractions, B-extensions, and R,B-rewriting

Although rewriting modulo is more expressive than rewriting, whether a one-step modulo tran-
sition t →1

R/E v holds is undecidable, in general, since E-congruence classes can be in�nite.

We address the issue in this section, where two simpler relations, →1
R,B and →R,B [GK01] are

now de�ned. Under several requirements, rewriting with these new relations is equivalent to
rewriting modulo E, i.e., →1

R,B=→1
R/E and →R,B=→R/E . The main di�erence between →1

R/E

and →1
R,B is that while the �rst one uses matching modulo E, the second one uses matching

modulo B, which is computable. Also the concepts of abstraction of built-in and B-extension
are presented.

Most of the de�nitions and results presented in this section can be found in [Mes17,RMM17],
or in our previous work [AMPP17]. As these de�nitions and results are key to the narrowing
calculus shown in Section 7, they are recalled here.

4.1 Abstractions

De�nition 15 (Abstraction of built-in [RMM17]). If Σ ⊇ Σ0 is a signature with built-in sub-
signature, then an abstraction of built-in is a context C = λx1

s1 · · ·x
n
sn .t
◦, with n ≥ 0, such that

t◦ ∈ TΣ1(X ) and {x1
s1 , . . . , x

n
sn} = vars(t◦) ∩ X0.
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Lemma 1 shows that there exists an abstraction that provides a canonical decomposition of
any term in TΣ(X ), in particular for any term in HΣ(X ), since HΣ(X ) ⊂ TΣ(X ).

Lemma 1 (Existence of a canonical abstraction [RMM17]). Let Σ be a signature with built-in
subsignature Σ0. For each term t in TΣ(X ) there exist an abstraction of built-in λx1

s1 · · ·x
n
sn .t
◦

and a substitution θ◦ : X0 → TΣ0(X0) such that (i) t = t◦θ◦ and (ii) dom(θ◦) = {x1
s1 , . . . , x

n
sn}

are pairwise distinct and disjoint from vars(t); moreover, (iii) t◦ can always be selected to be
S0-linear and with {x1

s1 , . . . , x
n
sn} disjoint from an arbitrarily chosen �nite subset Y of X0.

De�nition 16 (Abstract function [RMM17]). Given a term t in TΣ(X ) and a �nite subset Y
of X0, de�ne abstractΣ1(t,Y) as 〈λx1

s1 · · ·x
n
sn .t
◦; θ◦;φ◦〉 where the context λx1

s1 · · ·x
n
sn .t
◦ and the

substitution θ◦ satisfy the properties (i)-(iii) in Lemma 1 and φ◦ =
∧n
i=1(xisi = xisiθ

◦). If t ∈
TΣ1(X \X0) then abstractΣ1(t,Y) = 〈λ.t; none; true〉. We write abstractΣ1(t) when Y is the set of
all the variables that have already appeared in the current calculation, so each xisi is a fresh vari-
able. For pairs of terms and pairs of lists terms we use the compact notations abstractΣ1((u, v)) =
〈λ(x̄, ȳ).(u◦, v◦); (θ◦u, θ

◦
v); (φ◦u, φ

◦
v)〉 and abstractΣ1((ū, v̄)) = 〈λ(¯̄x, ¯̄y).(ū◦, v̄◦); (θ◦ū, θ

◦
v̄); (φ◦ū, φ

◦
v̄)〉,

respectively.

De�nition 17 (Set of topmost Σ0-positions [AMPP17]). Let R = (Σ, E0 ∪ B,R) be a rewrite
theory with built-in subtheory (Σ0, E0), and t a term in HΣ(X ). The set of topmost Σ0 positions
of t, topΣ0

(t), is topΣ0
(t) = {p | p ∈ pos(t) ∧ ∃i ∈ N(p = q.i ∧ t|q ∈ HΣ(X ) ∧ t|p ∈ TΣ0(X0))}.

We extend the de�nition to lists of terms: topΣ0
(t1, . . . tn) = {i.p | 1 ≤ i ≤ n∧p ∈ topΣ0

(ti)}.

Proposition 2 (Relation between Σ-terms and abstractions [AMPP17]). Let R = (Σ, E,R) be
a rewrite theory with built-in subtheory (Σ0, E0), and t be a term in HΣ(X ), with abstractΣ1(t) =
〈λx̄.t◦; θ◦;φ◦〉. If σ is a substitution such that E0 � φ◦σ, then t◦σ =E0 tσ.

Proposition 3 (Invariants of topΣ0
under E0-equality [AMPP17]). Let R = (Σ, E0 ∪ B,R) be

a rewrite theory with built-in subtheory (Σ0, E0). If t and t′ are two terms in HΣ(X ) such that
t =E0 t

′ then:

1. topΣ0
(t) = topΣ0

(t′),

2. ls(t|q) = ls(t′|q) and t|q =E0 t
′|q for all positions q in topΣ0

(t),

3. t|q′ =E0 t
′|q′ for all positions q′ such that t|q′ ∈ HΣ(X ), and

4. if topΣ0
(t) = {q1, . . . , qn} then t′ = t[t′|q1 ]q1 · · · [t′|qn ]qn.

Proposition 4 (Relation between abstractΣ1 and topΣ0
[AMPP17]). Let R = (Σ, E0 ∪ B,R)

be a rewrite theory with built-in subtheory (Σ0, E0). If t is a term in HΣ(X ), abstractΣ1(t) =
〈λx̄.t◦; θ◦;φ◦〉, where x̄ = x1, . . . , xn and t◦ = t[x1]q1 · · · [xn]qn, then (i) topΣ0

(t) = {q1, . . . , qn},
and (ii) for every substitution σ : x̂→ TΣ0(X0) it holds that topΣ0

(t◦σ) = topΣ0
(t).

4.2 B-extensions

The concept ofB-extension, together with its properties, has been studied in [GK01], and [Mes17].
Now, we allow for repeated labels in rules; later we will restrict this repetition. We will use sub-
scripts or apostrophes, e.g. c1 or c′, when we need to refer to a speci�c rule with label c.

De�nition 18 (Rewrite theory closed under B-extensions). Let R = (Σ, E0∪B,R) be a rewrite
theory, where R may have repeated labels, and let c : l→ r if C be a rule in R. Assume, without
loss of generality, that vars(B)∩ vars(c) = ∅. If this is not the case, only the variables of B will
be renamed; the variables of c will never be renamed. We de�ne the set of B-extensions of c as
the set:
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ExtB(c) = {c : u[l]p → u[r]p if C | u = v ∈ B ∪ B−1 ∧ p ∈ posΣ(u) \ {ε} ∧ CSUB(l, u|p) 6= ∅}
where, by de�nition, B−1 = {v = u | u = v ∈ B}.

All the rules in ExtB(c) have label c. Given two rules c : l→ rif C and c1 : l′ → r′if C with the
same condition C, c subsumes c1 i� there is a substitution δ such that: (i) dom(δ)∩vars(C) = ∅,
(ii) l′ =B lδ, and (iii) r′ =B rδ.

We say that R is closed under B-extensions i� for any rule with label c in R, each rule in
ExtB(c) is subsumed by one rule with label c in R.

Meseguer [Mes17] shows an algorithm that given a rewrite theory R = (Σ, E0 ∪ B,R) con-
structs a superset R that is �nite and closed under B-extensions, called a �nite closure under
B-extensions of R. It is important to remark that the rules in ExtB(c) do not rename the
variables from c.

De�nition 19 (Finite closure under B-extensions of a rule). Given an equational theory (Σ, E0∪
B), with built-in subtheory (Σ0, E0), and a rule with label c, we denote by cB the set of rules in
any �nite closure under B-extensions of the rewrite theory R = (Σ, E0 ∪B, {c}).

De�nition 20 (Associated rewrite theory closed under B-extensions). Given a rewrite theory
R1 = (Σ, E0 ∪B,R) with no repeated rule labels, any rewrite theory R2 = (Σ, E0 ∪B,

⋃
c∈R cB)

is called an associated rewrite theory closed under B-extensions of R1.

Example 6. In the toast example, R is closed under B-extensions because the subterms of the
equations in B have sorts toast, tray, or pan, and no head of any rule in R has any of these
sorts.

Example 7. Consider a rewrite theory R1 = (Σ, E0 ∪ B,R) with only one sort s, R = {l :
f(a, b) → c}, where f is associative and commutative (E0 = ∅). Then, one possible instance
of lB is lB = R ∪ {l : f(xs, f(a, b)) → f(xs, c)}, because the left side of the associative rule
f(xs, f(ys, zs)) = f(f(xsf, ys), zs) has a subterm at position 2, f(ys, zs), that matches with
f(a, b), so R2 = (Σ, E0∪B, lB) is an associated rewrite theory of R1 closed under B-extensions.

By de�nition, associated rewrite theories closed under B-extensions are allowed to have
several rules with the same alphanumerical label. The only condition is that all the rules
sharing a label must conform a �nite closure under B-extensions of a rule. Rewriting modulo
does not change if we use a rewrite theory or any of its associated rewrite theories closed under
B-extensions.

Lemma 2 (Equivalence of R/E-rewriting and RB/E-rewriting). If RB = (Σ, E0∪B,RB) is an
associated rewrite theory of R = (Σ, E0 ∪B,R) closed under B-extensions, then →1

R/E=→1
RB/E

and →R/E=→RB/E.

Proof. Since R ⊆ RB then →1
R/E⊆→

1
RB/E

and →R/E⊆→RB/E .

In order to prove →1
RB/E

⊆→1
R/E and →R/E⊆→RB/E , we will prove a stronger pair of asser-

tions:

(i) if t −→
c,u

1

RB/E
v, where c in RB, then t −→

c,u

1

R/E
v using the same number of rewrite steps,

and

(ii) if t→RB/E v then t→R/E v using the same number of rewrite steps.

We use induction on the number of →1
RB/E

rewrite steps of the derivations, including those in
the condition of the rule.

Base cases:
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(i) one rewrite step: t −−−−→
c,u,p,σ

1

RB/E
v with a rule c : l̃ → r̃ if

∧n
i=1 li → ri | φ in RB. As

there is only one rewrite step in the derivation, it must be the case that liσ →RB/E riσ
in zero rewrite steps, 1 ≤ i ≤ n. Then liσ =E riσ, so liσ →R/E riσ in zero rewrite steps,

1 ≤ i ≤ n. Also, t =E u = u[l̃σ]p, u[r̃σ]p =E v, and E0 � φσ.

� If the rule c belongs to R then t −−−−→
c,u,p,σ

1

R/E
v using the same derivation that has only

one rewrite step,

� else c belongs to cB\R, so there is another rule c : l → r if
∧n
i=1 li → ri | φ in R

such that, by de�nition of cB, l̃ = w[l]p̃ and r̃ = w[r]p̃, where w = w′ ∈ B ∪B−1 and
p̃ ∈ posΣ(w)− {ε}.
Now, t =E u = u[l̃σ]p = u[w[l]p̃σ]p = u[wσ[lσ]p̃]p. Then up.p̃ = lσ, so u = u[lσ]p.p̃.
As u[rσ]p.p̃ = u[wσ[rσ]p̃]p = u[w[r]p̃σ]p = u[r̃σ]p =E v, liσ →R/E riσ in zero rewrite
steps, 1 ≤ i ≤ n, and E0 � φσ, then t −−−−→

c,u,p.p̃,σ

1

R/E

v in one rewrite step.

(ii) zero rewrite steps: t→RB/E v because t =E v. Then, also t→R/Ev.

Inductive step:

(i) t −−−−→
c,u,p,σ

1

RB/E
v in n > 1 rewrite steps, with a rule c : l̃ → r̃ if

∧n
i=1 li → ri | φ in RB.

Then, liσ →RB/E riσ with less than n rewrite steps, 1 ≤ i ≤ n so, by I.H, liσ →R/E riσ,
1 ≤ i ≤ n, using the same number of rewrite steps in each derivation.

Now, using the same proof shown in the base case, we get t −−−−→
c,u,p,σ

1

R/E
v if c in R, or else

t −−−−→
c,u,p.p̃,σ

1

R/E

v using the same number of rewrite steps.

(ii) t→RB/E v in n > 0 rewrite steps. We distinguish two cases:

� t→1
RB/E

w→RB/Ev. If the derivation w→RB/Ev1 has no rewrite steps, then w =E v, so

t→1
RB/E

v and the proof in subcase (i) holds. Else, the derivations of both t→1
RB/E

w

and w→RB/E v have less than n rewrite steps so, by I.H., t→1
R/Ew and w→R/Ev with

derivations using the same number of rewrite steps as the original ones, and then
t→R/Ev with a derivation that uses n rewrite steps.

� t −−−−→
c,u,p,σ

1

RB/E
v in n > 0 rewrite steps. This case is exactly the same as the one in the

subcases (i) of the base case and the inductive step, so the same proofs hold.

Our de�nition of the relation →1
R,B will require the use of a single representative for all the

instances of each E0-equivalence class that may appear in the topΣ0
positions of the subterm

that we are rewriting. We use some auxiliary de�nitions needed for the proofs in the Appendix.

De�nition 21 (Representative of a Σ0-term over a set of Σ0 terms). Let t be a term in TΣ0

and let û = {u1, . . . , un} ⊆ TΣ0 such that t ∈ û. We de�ne the Σ0-representative of t over û as
rep◦û(t) = umin({i|ui=E0

t)}). We homomorphically extend the de�nition to lists and sets of terms.

De�nition 22 (Representative of a term over a set of Σ0 terms). Let t be a term in TΣ, where
topΣ0

(t) = p̂, and let û ⊆ TΣ0 such that t|p̂ ⊆ û. We de�ne the representative of t over û, as
repû(t) = t[rep◦û(t|p̄)]p̄. We homomorphically extend the de�nition to lists and sets of terms.

Then repû(û) will be a set containing one element for each E0-equivalence class that appears
in û, the representative of the class over û.
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Remark 1. From the previous de�nitions it is immediate that:

� if t is a term in TΣ then t =E0 repû(t),

� if t is a term in TΣ0 then rep◦û(t) = repû(t),

� if topΣ0
(t) = p̂ and t|p̂ ⊆ û then rep◦û(t|p̂) = repû(t|p̂) ⊆ repû(û),

� if t is a term in repû(û) then repû(t) = t, and

� if u1 and u2 are two elements of repû(û) and u1 =E0 u2 then u1 = u2.

De�nition 23 (Representative of a substitution over a set of Σ0-terms). Let σ be a ground sub-
stitution and let û ⊆ TΣ0 such that

⋃
z∈dom(σ){(zσ)|topΣ0

(zσ)} ⊆ û. We de�ne the representative

of σ as repû(σ) = {z 7→ repû(zσ) | z ∈ dom(σ)}, i.e., each topΣ0
-term in σ is replaced by its

representative with respect to û, so σ =E0 repû(σ).

De�nition 24 (Representative of a term). Let t be a term in TΣ, where topΣ0
(t) = p̂. We de�ne

the representative of t as rep(t) = rept|p̂(t).

The transitive closure of the relation→1
R,B, inductively de�ned below, is denoted→

+
R,B. The

relation →R,B is de�ned as →R,B= (→+
R,B ∪ =E).

De�nition 25 (R,B-rewriting). Given a rewrite theory R = (Σ, E0 ∪B,R), terms t, v in HΣ,
and a rule c : l → r if

∧n
i=1 li → ri | φ in R, if abstractΣ1(l) = 〈λx̄.l◦; θ◦;φ◦〉 and there exist

a position p in posΣ1
(t) and a substitution σ : x̄ ∪ vars(c) → TΣ such that rep(t|p) =B l◦σ,

v =E t[rσ]p, liσ →R,B riσ, for 1 ≤ i ≤ n, and E0 � (φ ∧ φ◦)σ, then we say there is a one-step
transition t→1

R,B v.

We write t −−→
c,p,σ

1

R,B
v, when we need to make explicit the rule, position, and substitution.

Any of these items can be omitted when it is irrelevant. The following examples show the
motivation behind all the previous de�nitions.

Example 8. We justify the need of rep: consider a rewrite theory R where B = ∅, E0 is
integer arithmetic, there is one non-E0 sort s, with two function symbols g : s → s and f :
s s → s, and R = {c : f(ys, ys) → ys}, so abstractΣ1(f(ys, ys)) = 〈λ.f(ys, ys); none; true〉.
Let t = f(g(3), g(1 + 2)). t does not match f(ys, ys), but rep(t) = f(g(3), g(3)) does, with
σ = {ys 7→ g(3)}, so t →1

R,B g(3). As t =E rep(t), because t =E0 rep(t), and B = ∅ then also

t→1
R/E g(3).

Example 9. In example 7, R1 = (Σ, B, {l : f(a, b) → c}) and R2 = (Σ, B, lB), as E0 =
∅, no abstraction of terms has to be performed when rewriting with →1

R2,B
(abstractΣ1(l) =

〈λ.l; none; true〉 for any left side l of a Σ-rule). Then, the term f(f(a, a), b) is not a normal
form in →1

R2,B
because lB has the rule l : f(xs, f(a, b)) → f(xs, c) that can be applied on top

of the term f(f(a, a), b) with matching xs 7→ a, modulo associativity and commutativity, leading
to f(f(a, a), b) →1

R2,B
f(a, c). Also f(f(a, a), b) →1

R1/E
f(a, c) and f(f(a, a), b) →1

R2/E
f(a, c),

because f(f(a, a), b) =E f(a, f(a, b)).

The added rule l : f(xs, f(a, b))→ f(xs, c) has allowed us to imitate→1
R1/E

(=→1
R2/E

) with

→1
R2,B

.

De�nition 26 (Normalized substitution). Given a rewrite theory R = (Σ, E,R) with built-in
subtheory (Σ0, E0), a substitution σ is R/E-normalized (resp. R,B-normalized) i� for each
variable x in dom(σ) there is no term t in TΣ(X ) such that xσ →1

R/E t (resp. xσ →
1
R,B t).
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Theorem 1 (Equivalence of R/E and R,B-rewriting). If R = (Σ, E0 ∪ B,R) is an associ-
ated rewrite theory closed under B-extensions of R0 = (Σ, E0 ∪B,R0), then →1

R,B=→1
R/E and

→R,B=→R/E.

Proof. There is a special case to consider when there are no rewrite steps involved in the deduc-
tions.
(i) →1

R,B⊆→1
R/E and →R,B⊆→R/E .

In the special case, t →R,B v with no rewrite steps. As →R,B= (→+
R,B ∪ =E) then t =E v,

so t →R/E v. The other cases are proved using induction in the total number of →1
R,B rewrite

steps in the derivation.

� Base case

t →1
R,B t[rσ]p =E v with only one →1

R,B rewrite step in the derivation, where c : l →
r if

∧m
i=1 li → ri | φ in R, abstractΣ1(l) = 〈λx̄.l◦; θ◦;φ◦〉, x̄ = x1, . . . , xn, l◦ = l[x̄]q̄,

φ◦ =
∧n
j=1(xj = l|qj )), p in posΣ1

(t), and σ : x̄ ∪ vars(c)→ TΣ such that rep(t|p) =B l◦σ,
v =E t[rσ]p, l̄σ =E r̄σ, and E0 � (φ ∧ φ◦)σ.
AsE0 � φ◦σ then lσ = lσ[lσ|q1 ]q1 · · · [σqn ]qn =E lσ[x1σ]q1 · · · [xnσ]qn = l◦σ =B rep(t|p) =E0

t|p, so lσ =E t|p.
As t|p =E lσ and l̄σ =E r̄σ, then t = t[t|p]p =E t[lσ]p →1

R t[rσ]p =E v with rule c in R,
that is, t→1

R/E v, so t→R/E v.

� Induction case

There are two subcases to consider:

1. t→1
R,B t[rσ]p =E v with several →1

R,B rewrite steps in the derivation. As in the base
case, c : l→ r if

∧m
i=1 li → ri | φ in R, abstractΣ1(l) = 〈λx̄.l◦; θ◦;φ◦〉, x̄ = x1, . . . , xn,

l◦ = l[x̄]q̄, φ◦ =
∧n
j=1(xj = l|qj )), p in posΣ1

(t), and σ : x̄ ∪ vars(c) → TΣ such that
rep(t|p) =B l◦σ, v =E t[rσ]p, l̄σ =E r̄σ, and E0 � (φ ∧ φ◦)σ.
By induction hypothesis liσ →R/E riσ, for 1 ≤ i ≤ m. As in the base case, E0 � φσ
and t|p =E lσ, so t = t[t|p]p =E t[lσ]p →1

R t[rσ]p =E v, i.e., t→1
R/E v, so t→R/E v.

2. t →1
R,B u →+

R,B w =E v. By the previous subcase t →1
R/E u →+

R,B w =E v, and, by

I.H., t→1
R/E u→

+
R/E w =E v, i.e., t→∗R/E w =E v, or t→R/E v.

(ii) →1
R/E⊆→

1
R,B and →R/E⊆→R,B.

In the special case, t→R/E v with no rewrite steps because t =E v. As→R,B= (→+
R,B ∪ =E)

then t→R,B v. The other cases are proved using induction in the total number of→1
R/E rewrite

steps in the derivation.

� Base case: t→1
R/E v with only one→

1
R/E rewrite step in the derivation using a rule c : l→

r if C in R, where C =
∧m
i=1 li → ri | φ, and a substitution σ. We can assume that c is a

rule in R0 since any→1
R/E step given at position p of t′′ using a rule c1 : w[l]q → w[r]q if C

in R \ R0 can also be achieved using rule c at position p.q of t′′, so t =E t′′ →1
R u =E v,

t′′ = t′′[lσ]p, u = t′′[rσ]p, l̄σ =E r̄σ, and E0 � φσ.
By Proposition 7 there exists a term t′ in HΣ such that t =B t′ =E0 t′′ →1

R u =E v.

We have t
ax1←→B · · ·

axl←→B t′, where axi (linear and regular), for 1 ≤ i ≤ l has the form
wi = w′i, let axi be w′i = wi, so each topΣ0

subterm of t is moved by ax1 · · · axl and
becomes another topΣ0

subterm of t′. Then, axl · · · ax1 moves the topΣ0
subterms of t′′ in

the opposite way, so there exists a term t0 in TΣ such that t′′
axl←→B · · ·

ax1←→B t0 =E0 t.

We have t =E0 t0 =B t′′ = t′′[lσ]p, so t′′|p = lσ. The more general case, where t0 =B

t′′|p =B lσ is studied in Theorem 2 and Corollary 2 in [Mes17], where it is proved that

16



there is a position q in pos(t0), a rule c0 : l0 → r0 if C in R, maybe the original c, and
a substitution σ0, such that t0|q =B l0σ0, t0[r0σ0]q =B u, and Cσ0 = Cσ, which is also
valid for our particular case where t′′|p = lσ. As, by de�nition of rule, l0 ∈ HΣ(X ), then
q ∈ posΣ1

(t0), so t0|q =E0 t|q. Let topΣ0
(t|q) = ẑ. Then rept|q.ẑ is the function that

given a term in TΣ returns the same term with each topΣ0
term on it replaced with the

representative for that topΣ0
term in rep(t|q), if it exists, so rep(t|q) = rept|q.ẑ(t0|q) =B

rept|q.ẑ(l0σ0).

Let abstractΣ1(l0) = 〈λȳ.l◦0; θ◦0;φ◦0〉, ȳ = y1, . . . , yk, l◦0 = l0[ȳ]ō, φ◦ =
∧k
j=1 yj = l0|oj .

De�ne σ′ : dom(σ0) ∪ ŷ → TΣ as: if z = yj ∈ ŷ then zσ′ = rept|q.ẑ(l0|ojσ0) else zσ′ =

rept|q.ẑ(zσ0)(=E0 zσ0). As, for 1 ≤ j ≤ k, yjσ′ = rept|q.ẑ(l0|ojσ0) =E0 l0|ojσ0 =E0 l0|ojσ′,
because ŷ ∩ Vl0|oj = ∅, then E0 � φ◦σ′. Also, as Cσ0 = Cσ and if z ∈ dom(σ0) then

zσ′ =E0 zσ0 then l̄σ′ =E0 l̄σ0 =E r̄σ0 =E0 r̄σ
′, i.e., l̄σ′ =E r̄σ

′, and φσ′ =E0 φσ0 = φσ, so
E0 � φσ′. As φσ′ and φ◦σ′ are ground, because rept|q.ẑ is replacing each ground subterm
with another ground subterm, then E0 � (φ ∧ φ◦)σ′.
As

� l0[]ōσ
′ = l0σ

′[]ō = rept|q.ẑ(l0σ0[]ō), and

� yjσ
′ = rept|q.ẑ(l0|ojσ0), for 1 ≤ j ≤ k,

then l◦0σ
′ = l0[ȳ]ōσ

′ = rept|q.ẑ(l0σ0[l0|ōσ0]ō) = rept|q.ẑ(l0[l0|ō]ōσ0) = rept|q.ẑ(l0σ0) =B

rep(t|q), i.e., rep(t|q) =B l◦0σ
′ so, as t[r0σ

′]q =E0 t[r0σ0]q =E0 t0[r0σ0]q =B u =E v,
i.e., t[r0σ

′]q =E v, we have t→1
R,B v.

� Induction case:

again, there are two subcases to consider:

1. t →1
R/E t[rσ]p =E v with several →1

R/E rewrite steps in the derivation. The proof

is the same as the one in the base case, except that instead of having l̄σ′ =E r̄σ′

now we have liσ →R/E riσ, for 1 ≤ i ≤ m, so by I.H., as (li, ri)σ = (li, ri)σ
′, also

liσ
′ →R,B riσ

′ hence t→1
R,B v.

2. t→1
R/E u→+

R/E w =E v. By the previous subcase t→1
R,B u→+

R/E w =E v, and, by

I.H., t→1
R,B u→+

R,B w =E v, i.e., t→∗R,B w =E v, or t→R,B v.

Corollary 1. If R = (Σ, E0 ∪B,R) is an associated rewrite theory closed under B-extensions,
then any substitution is R/E-normalized i� it is R,B-normalized.

Proposition 5 (Decomposition of a normalized substitution). Let R = (Σ, E0 ∪ B,R) be a
rewrite theory with built-in subtheory (Σ0, E0). If σ is an R/E-normalized substitution and
σ = σ1 · σ2, with dom(σ1) ∩ (ran(σ1) ∪ dom(σ2)) = ∅, then σ1 and σ2 are R/E-normalized.

Proof. We prove that each substitution is normalized by reductio ad absurdum:

� If σ1 is not R/E-normalized, then there exists a variable x in dom(σ1) ⊆ dom(σ) and a
term t such that xσ1 is in HΣ, so xσ1 = xσ1σ2 = xσ, and xσ1 →1

R/E t. As xσ1 = xσ, then

also xσ →1
R/E t hence, as x is in dom(σ), σ is not R/E-normalized, a contradiction.

� If σ2 is not R/E-normalized, then there exists a variable x in dom(σ2) and a term t such
that xσ2 is in HΣ and xσ2 →1

R/E t, where either x in dom(σ) or not.
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� If x is in dom(σ) then xσ2 = xσ, so also xσ →1
R/E t hence, as x is in dom(σ), σ is

not R/E-normalized, a contradiction.

� If x is not in dom(σ) then, as σ = σ1σ2, x is in ran(σ1), so there exists y in dom(σ1) ⊆
dom(σ) and a position p such that yσ1|p = x. Then yσ|p = yσ1σ2|p = yσ1|pσ2 = xσ2,
so yσ|p →1

R/E t, hence also yσ →1
R/E t. As y is in dom(σ), then σ is not R/E-

normalized, a contradiction.

Proposition 6 (Preservation of the normalized property under generalization). LetR = (Σ, E0∪
B,R) be a rewrite theory with built-in subtheory (Σ0, E0). If ρ is an R/E-normalized substitution
and σ is a more general substitution than ρ, then σ is R/E-normalized.

Proof. We proceed again by reductio ad absurdum. By de�nition of �E , there exist a substi-
tution η such that ρV =E (ση)V . If σ is not R/E-normalized, then there exists a variable x in
dom(σ) ⊆ dom(ρ) and a term t such that xσ is in HΣ, so xσ = xση =E xρ, and xσ →1

R/E t.

But then, also xρ→1
R/E t so, as x is in dom(ρ), ρ is not R/E-normalized, a contradiction.

Proposition 7 (Decomposition of E-equality in B-equality plus E0-equality [AMPP17]). Let
R = (Σ, E0 ∪B,R) be a rewrite theory with built-in subtheory (Σ0, E0). If t and t′′ are terms in
HΣ(X ) and t =E t

′′ then there exists a term t′ in HΣ(X ) such that t =B t′ =E0 t
′′.

Rewriting with →1
R,B does not depend on the chosen representative for a class of terms

modulo E0.

Lemma 3 (Independence of R,B-rewriting under E0-equality). Given a rewrite theory R =
(Σ, E0 ∪ B,R) with built-in subtheory (Σ0, E0), and terms t, u, and v in HΣ, if t =E0 u and
u→1

R,B v then there exists a term w in HΣ such that t→1
R,B w and v =E0 w.

Proof. As u →1
R◦,B v, there are rules c : l → r if

∧m
i=1 li → ri | φ ∈ R and c◦ = l◦ →

r if
∧m
i=1 li → ri | φ ∧ φ◦ ∈ R◦, where topΣ0

(l) = q̂ and l◦ = l[x̄]q̄, a position p ∈ pos(u),
and a substitution σ : vars(c◦) → TΣ such that rep(u|p) = l◦σ, liσ →R,B riσ, for 1 ≤ i ≤ m,
and E0 � (φ ∧ φ◦)σ, so v = u[rσ]p. Also u|p ∈ HΣ because l◦ ∈ TΣ1(X ) so, by Proposition 3,
t|p =E0 u|p = l◦σ. Let w = t[rσ]p.

rep(u|p) = l◦σ has the form lσ[x̄σ]q̄. By Proposition 4, topΣ0
(u|p) = topΣ0

(rep(u|p)) =
topΣ0

(l◦σ) = q̂. As rep(t|p) =E0 t|p =E0 u|p =E0 rep(u|p) then, again by Proposition 3,
topΣ0

(rep(t|p)) = q̂, rep(t|p) = rep(u|p)[rep(t|p)|q̄]q̄, so rep(t|p)[]q̄ = rep(u|p)[]q̄, and rep(t|p)|qi =E0

rep(u|p)|qi , for 1 ≤ i ≤ n. Let σ′ = σdom(σ)\x̂ ∪
⋃n
j=1{xj 7→ rep(t|p)|qj}, where if xi = xj , with

1 ≤ i < j ≤ n, then xiσ = xjσ =E0 xiσ
′ = xjσ

′, so σ′ is well de�ned.
As rep(t|p)[]q̄ = rep(u|p)[]q̄ and rep(u|p) = l◦σ = lσ[x̄σ]q̄, then we have l◦σ′ = lσ[x̄σ′]q̄ =

rep(u|p)[rep(t|p)|q̄]q̄ = rep(t|p)[rep(t|p)|q̄]q̄ = rep(t|p). Also, as vars(c) ∩ x̄ = ∅, rσ′ = rσ,
liσ
′ = liσ, riσ′ = riσ, for 1 ≤ i ≤ m, and φσ′ = φσ, then liσ

′ = liσ →R,B riσ = riσ
′, for

1 ≤ i ≤ m, and E0 � φσ′.
E0 � φ◦σ, where φ◦σ =

∧n
j=1((xjσ = l|qjσ) =

∧n
j=1((u|p.qjσ = l|qjσ). As φ◦σ′ =∧n

j=1((xjσ
′ = l|qjσ′) =

∧n
j=1(t|p.qj = l|qjσ) and t|p.qi =E0 u|p.qi , for 1 ≤ i ≤ n, then E0 � φ◦σ′,

so E0 � (φ∧φ◦)σ′ and t→1
R◦,B t[rσ]p = w. As t =E0 u then t[rσ]p =E0 u[rσ]p, i.e., v =E0 w.

The following results will be used in the proof of the completeness of the calculus.

Proposition 8 (Bijection between topΣ0
positions in B-equal terms). Given an OS equational

theory E = (Σ, E0 ∪B) and two terms u and v in HΣ(X ) such that u =B v, where u = u0
ax1←→B

· · · axn←→B un = v, call ax = ax1 , . . . , axn , with âx ⊂ B ∪B−1, if topΣ0
(u) = p̂ and topΣ0

(v) = q̂
then there exists a bijective function destax : p̂→ q̂ such that u|pi = v|destax (pi), for each position
pi in p̂.

18



Proof. We inductively de�ne the function dest l that tracks the �nal position of a subterm for a
list of axioms l = a1 , . . . , am . Given a position p′:

1. destnil (p
′) = p′,

2. for a1 in B ∪ B−1 with the form f [x̄]q̄ = f ′[x̄]r̄, where vars(f [x̄]q̄) = vars(f ′[x̄]r̄) = x̂, if
p′ = qj .sj , with qj in q̂, then desta1 (p′) = rj .sj , else desta1 (p′) = p′, and

3. for l = a1 , . . . , am , with m > 1, if desta1 (p′) = p′′ then dest l(p
′) = desta2 ,...,am (p′′).

As, by de�nition, the axioms in B are regular, linear, and only have function symbols from
F1, then in each step ui−1

axi←→B ui, 1 ≤ i ≤ n, if ax i has the form f [x̄]q̄ = f ′[x̄]r̄, where
vars(f [x̄]q̄) = vars(f ′[x̄]r̄) = x̂ and it is used in a subterm ui−1|p then:

� if ax i moves a subterm in a position p.qj from topΣ0
(ui−1), where qj in q̂, with parent in

F1 since ax i has only symbols in F1, then the subterm is moved to the position p.rj , with
parent also in F1 for the same reason as before, hence it remains a topΣ0

position,

� if ax i moves a subterm t in a position p.qj .sj .kj from topΣ0
(ui−1), where qj in q̂, sj may

be ε, kj is an integer, and the parent of t in position p.qj .sj is a function symbol f ′′ from
F1, then t is moved to the position p.rj .sj .kj , where its parent at position p.rj .sj is the
same function symbol f ′′ from F1, since f ′′ is also moved by ax i from p.qj .rj to p.qj .sj ,
hence it remains a topΣ0

position,

� the rest of positions in topΣ0
(ui−1) remain unchanged.

Then destax is injective, by its de�nition, and it also has to be surjective, since any position in q̂
not in the image of destax could be always related to a single position in p̂ just by using the list
of axioms axn

−1, . . . , ax1
−1, all of them in B ∪ B−1, a contradiction with dest being total and

surjective. We will write dest instead of destax when ax is irrelevant, homomorphically extend
the de�nition of dest to lists and sets of positions, and de�ne orig = dest−1.

Corollary 2 (Bijection between topΣ0
positions in E-equal terms). Given an OS equational

theory E = (Σ, E0 ∪B) and two terms u and v in HΣ(X ) such that u =E v, if topΣ0
(u) = p̂ and

topΣ0
(v) = q̂ then there exists a bijective function dest : p̂ → q̂, hence q̂ = dest(p̂), such that

u|pi =E0 v|dest(pi), for each position pi in p̂.

Proof. As u =E v then, by Proposition 7, there exists a term w in HΣ(X ) such that u =E0

w =B v. As u =E0 w then, by Proposition 3, topΣ0
(u) = topΣ0

(w) = p̂ and u|pi =E0 w|pi , for
each position pi in p̂. But, by Proposition 8, w|pi = v|dest(pi), so u|pi =E0 w|pi = v|dest(pi), for
each position pi in p̂.

Lemma 4 (Relation between E-uni�ers and B-uni�ers of abstractions). Given an OS equa-
tional theory E = (Σ, E0 ∪ B) and two terms u and v in HΣ(X ), if abstractΣ1((u, v)) =
〈λ(x̄, ȳ).(u◦, v◦); (θ◦u, θ

◦
v); (φ◦u, φ

◦
v)〉 and σ′ is a ground substitution such that Vu,v ⊆ dom(σ′),

uσ′ =E vσ′, and dom(σ′) ∩ (x̂ ∪ ŷ) = ∅ then there exists another ground substitution σ◦ such
that u◦σ◦ =B v◦σ◦, E0 � (φ◦u ∧ φ◦v)σ◦, dom(σ◦) = dom(σ′) ∪ x̂ ∪ ŷ, so V(u◦,v◦,φ◦u,φ

◦
v)σ◦ = ∅, and

σ′ =E0 σ
◦
dom(σ′).

Proof. Let x̄ = {x1, . . . , xix} and ȳ = {y1, . . . , yiy}, so u◦ = u[x̄]p̄, φ◦u = (
∧ix
i=1 xi = u|pi),

v◦ = v[ȳ]q̄, φ◦v = (
∧iy
j=1 yj = v|qj ), for proper p̄ and q̄ such that p̂ = topΣ0

(u) and q̂ = topΣ0
(v).

Also, let u = u[x̄′]p̄′ and v = v[ȳ′]q̄′ , where posX1
(u) = p̂′, Vu ∩ X1 = x̂′, posX1

(v) = q̂′, and
Vv ∩ X1 = ŷ′, so u◦ = u[x̄]p̄[x̄

′]p̄′ and v◦ = v[ȳ]q̄[ȳ
′]q̄′ . As uγ′ and vσ′ are ground terms then

x̂′ ∪ ŷ′ ⊆ dom(σ′).
As u◦ = u[x̄]p̄ then posX0

(u◦) = p̂, hence Vu[]p̄ ∩X0 = ∅, i.e., Vu[]p̄ = x̂′ ⊂ X1, so Vu[]p̄[]p̄′
= ∅,

and u[]p̄[]p̄′ = uσ′[]p̄[]p̄′ . In the same way, Vv[]q̄ = ŷ′ ⊂ X1, Vv[]q̄ []q̄′
= ∅, and v[]q̄[]q̄′ = vσ′[]q̄[]q̄′ .
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Let t̂σ
′

Σ0
=

⋃
t∈dom(σ′)σ′ t|topΣ0

(t), i.e., the set of all topΣ0
terms that appear in zσ′, where z

ranges over the variables in dom(σ′). Now, let t̂ = u|p̂σ′ ∪ v|q̂σ′ ∪ t̂σ
′

Σ0
. As x̂′ ∪ ŷ′ ⊆ dom(σ′),

then t̂ includes all the topΣ0
-terms that appear in uσ′ and vσ′, either from their topΣ0

positions
or as subterms of the instances of the variables in their X1 positions.

De�ne σ◦ = rep t̂(σ
′) ∪ {xi 7→ rep t̂(u|piσ′) | xi ∈ x̂} ∪ {yj 7→ rep t̂(v|qjσ′) | yj ∈ ŷ}, so

rep t̂(σ) = σ◦dom(σ′), hence dom(σ◦) = dom(σ′) ∪ x̂ ∪ ŷ and σ′ =E0 σ
◦
dom(σ′). Then:

� as x̂′ ∪ ȳ′ ⊆ dom(σ′) = dom(σ′rep) then x̂ ∪ ŷ ∪ x̂′ ∪ ŷ′ ⊆ dom(σ◦),

� u◦σ◦ = u[x̄]p̄[x̄
′]p̄′σ

◦ = u[x̄σ◦]p̄[x̄
′σ◦]p̄′ = u[rep t̂(u|p̄σ′)]p̄[x̄′σ′rep ]p̄′ =E0 u[u|p̄σ′]p̄[x̄′σ′]p̄′ =

uσ′[u|p̄σ′]p̄[x̄′σ′]p̄′ = u[u|p̄]p̄[x̄]′p̄′σ
′ = uσ′,

� v◦σ◦ = v[ȳ]q̄[ȳ
′]q̄′σ

◦ = v[ȳσ◦]q̄[ȳ
′σ◦]q̄′ = v[rep t̂(v|q̄σ′)]q̄[ȳ′σ′rep ]q̄′ =E0 v[v|q̄σ′]q̄[ȳ′σ′]q̄′ =

vσ′[v|q̄σ′]q̄[ȳ′σ′]q̄′ = v[v|q̄]q̄[ȳ′]q̄′σ′ = vσ′,

� as uσ′ =E vσ
′, then u◦σ◦ =E0 uσ

′ =E vσ
′ =E0 v

◦σ◦, i.e., u◦σ◦ =E v
◦σ◦.

By Proposition 7, there exists a term w such that u◦σ◦ =B w =E0 v
◦σ◦, let r̂ = topΣ0

(w). We
prove v◦σ◦ = w, so u◦σ◦ =B v◦σ◦:

� as u◦σ◦ = u[rep t̂(u|p̄σ′)]p̄[x̄′σ′rep ]p̄′ =B w then, by Proposition 8, there exists a bijection
dest1 such that dest1(topΣ0

(u◦σ◦)) = r̂ and w|ri = u◦σ◦|orig1(ri), for each position ri in r̂.
As Vu[]p̄[]p̄′

= ∅ then either:

(i) orig1(ri) is a position pj in p̂, so w|ri = rep t̂(u|pjσ′). As u|pjσ′ is an element of t̂,
then w|ri is an element of rep t̂(t̂); or

(ii) orig1(ri) has the form p′j .sk, where p
′
j is a position in p̂′, so sk is a topΣ0

-position of
u◦σ◦|p′j . Then the variable x′j in x̂

′, call ŝ = topΣ0
(x′jσ

′
rep) so sk ∈ ŝ, veri�es x′jσ′rep =

rep t̂(x
′
jσ
′), so sk ∈ topΣ0

(rep t̂(x
′
jσ
′)), rep t̂(x

′
jσ
′) = x′jσ

′[rep◦
t̂
(x′jσ

′|s̄)]s̄, and w|ri =
(x′jσ

′
rep)|sk = rep t̂(x

′
jσ
′)|sk = rep◦

t̂
(x′jσ

′|sk) = rep t̂(x
′
jσ
′|sk). Then, as rep t̂(x

′
jσ
′|ŝ) ⊆

rep t̂(t̂), w|ri is an element of rep t̂(t̂).

In conclusion, w|r̂ ⊆ rep t̂(t̂), hence w = w[rep t̂(w|r̄)]r̄.

� v◦σ◦ = v[rep t̂(v|q̄σ′)]q̄[ȳ′σ′rep ]q̄′ =E0 w = w[rep t̂(w|r̄)]r̄. By Proposition 3, topΣ0
(v◦σ◦) =

topΣ0
(w) = r̂. As v = v[ȳ′]q̄′ , Vv[]q̄ = ŷ′, and topΣ0

(v) = q̂ then, for each position ri in r̂,
either:

(i) ri is a position qj in q̂, so rep t̂(w|ri) = wri =E0 v
◦σ◦|qj = rep t̂(v|qjσ′). As rep t̂(w|ri) =E0

rep t̂(v|qjσ′) then, by Remark 1, rep t̂(w|ri) = rep t̂(v|qjσ′), i.e., wri = v◦σ◦|qj = v◦σ◦|ri ;
or

(ii) ri has the form q′j .sk, where q
′
j is a position in q̂′. As ȳ′ ⊆ dom(σ′rep) then v◦σ◦|q′j =

y′jσ
′
rep = rep t̂(y

′
jσ
′), call ŝ = topΣ0

(rep t̂(y
′
jσ
′)), so sk ∈ ŝ and rep t̂(w|ri) = wri =E0

v◦σ◦|q′j .sk = rep t̂(y
′
jσ
′)|sk = rep◦

t̂
(y′jσ

′|sk) = rep t̂(y
′
jσ
′|sk). As rep t̂(w|ri) =E0 rep t̂(y

′
jσ
′|sk)

then, by Remark 1, rep t̂(w|ri) = rep t̂(y
′
jσ
′|sk), i.e., wri = v◦σ◦|qj .sk = v◦σ◦|ri .

In conclusion, as v◦σ◦[]r̄ = w[]r̄, v◦σ◦ = v◦σ◦[v◦σ◦|r̄]r̄ = w[v◦σ◦|r̄]r̄ = w[w|r̄]r̄ = w.

We have just proved u◦σ◦ =B v◦σ◦, but also:

� as φ◦u = (
∧ix
i=1 xi = u|pi) and x̄σ◦ = rep t̂(u|p̄σ′) =E0 u|p̄σ′ = u|p̄σ◦ then E0 � φ◦uσ

◦, and

� as φ◦v = (
∧iy
j=1 yj = v|qj ) and ȳσ◦ = rep t̂(v|q̄σ′) =E0 v|q̄σ′ = v|q̄σ◦ then E0 � φ◦vσ

◦,

so E0 � (φ◦u ∧ φ◦v)σ◦.
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5 Strategies

In this section we present the combinators of a strategy language suitable for narrowing, which
is a subset of the Maude strategy language [MOMV04, EMOMV07,RMPV18], a set-theoretic
semantics for the language, and an interpretation of this semantics. We also de�ne the set of
variables of a strategy and the result of the application of a substitution to a strategy.

A call strategy is a name given to a strategy to simplify the development of more complex
strategies. A call strategy de�nition is a user-de�ned association of a strategy to one call strategy.

A rewrite theory R = (Σ, E,R) and a set of call strategy de�nitions for R, written CallR,
have an associated set of derivation rules DR,CallR that will be used in the following.

5.1 Open and closed goals, derivation rules and proof trees

De�nition 27 (Open and closed goal). An open goal has the form t → v/ST , where t, its
head, and v are terms in HΣ, and ST is a strategy; a closed goal has the form G , with G an
open goal.

De�nition 28 (Derivation rule). A derivation rule has the form G or G1···Gn
G , where G and

each Gi, 1 ≤ i ≤ n, are open goals. In either case the head of the rule is G.

De�nition 29 (Proof tree). Given a rewrite theory R = (Σ, E0∪B,R) and a set of call strategy
de�nitions CallR, a proof tree T , its depth, and its number of nodes are inductively de�ned as
either:

� an open or closed goal, G or G , with depth 1 and number of nodes 1, or

� a derivation tree T1···Tn
G , constructed by application of the derivation rules in DR,CallR,

where each Ti, 1 ≤ i ≤ n, is a proof tree, we call T1 · · ·Tn a forest, the depth of T is 1 plus
the maximum of the depths of T , and the number of nodes of T is 1 plus the sum of the
number of nodes in T .

The head of T is G in all cases, and we write head(T ) = G. T is said to be closed if it has no
open goals on it. We denote by VT the set of all the variables appearing in T , VR to the set of all
the variables appearing in R and B, VCallR the set of all the variables appearing in CallR, and
VR,CallR = VR ∪ VCallR . We will use the letter F , with or without subindex, to represent forests
in a closed proof tree, c.p.t. from now on.

De�nition 30 (Application of a derivation rule to an open goal). Given any open goal t→ v/ST
in a proof tree and a derivation rule with head t′ → v′/ST such that t =E t′ and v =E v′, the
application of the rule to the open goal consists in putting the derivation rule in place of the open
goal, but replacing t′ with t and v′ with v anywhere in the rule.

5.2 Strategies and their semantics

We present now the semantics that de�nes the result of the application of a strategy to the
equivalence class of a term, which is based on the construction of closed proof trees. It is given
by a function (in mix-�x notation)

_@_ : StratR,CallR ×HΣ/E −→ P(HΣ/E),

with R = (Σ, E0 ∪ B,R) and E = E0 ∪ B, where [v]E is an element of ST @ [t]E if and only
if a c.p.t. with head t → v/ST can be constructed using the derivation rules in DR,CallR , also
de�ned below.

If [v]E ∈ ST @ [t]E , as any subtree of a c.p.t. for t → v/ST , with head say t′ → v′/ST ′, is
closed then also [v′]E ∈ ST ′ @ [t′]E .
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The set DR,CallR does not need to be computable. We will prove in this work that if a c.p.t.
can be formed from an instance Gσ of a goal G (i.e., σ is a solution of G), then the narrowing
calculus that we present can �nd a more general solution to the goal G, i.e., one that can be
instantiated to σ.

In this work we also assume, without loss of generality, that vars(B)∩ vars(ST ) = ∅ for any
strategy ST in CallR, by renaming the variables in B. Now, we de�ne CallR, StratR,CallR , and
DR,CallR .

We will use the following set of strategies for narrowing, which is a subset of the Maude
strategy language for rewriting [MOMV04,EMOMV07,RMPV18]:

5.2.1 Idle and fail

These are constant strategies that always belong to StratR,CallR . While the �rst always succeeds,
the second always fails. For each equivalence class [t]E ∈ HΣ/E there is a derivation rule

t→t/idle in DR,CallR . There are no derivation rules for fail. Then, idle @ [t]E = {[t]E} and
fail @ [t]E = ∅. We de�ne vars(idle) = vars(fail) = ∅. For any substitution δ we de�ne
idle δ = idle, and fail δ = fail.

Example 10. Suppose that t =E v and we have the open goal t→ v/idle in a derivation tree.
There is a term t′ and a derivation rule t′→t′/idle in DR,CallR such that t =E t

′. As t =E v then

also v =E t
′, so we can apply this rule to the open goal. Thus, we replace the �rst t′ in the rule

with t and the second one with v, yielding t→v/idle , a c.p.t. that we put in place of the open goal,

so [v]E ∈ idle @ [t]E. The result [v]E ∈ idle @ [t]E was expected, since idle @ [t]E = {[t]E}
and t =E v imply [v]E = [t]E.

5.2.2 Rule application

A rule of R that has no rewrite conditions and a substitution form a rule application.
〈AlphaNum〉
〈Label〉

〈Assignment〉
〈Assignment List〉

〈Substitution〉

〈RuleApplic〉
〈Strat〉

::=
::=
|

::=
::=
|

::=
|

::=
::=

A | · · · | Z | a | · · · | z | 0 | · · · | 9
〈AlphaNum〉
〈AlphaNum〉〈Label〉
〈Variable〉 7→ 〈TΣ(X )-term〉
〈Assignment〉
〈Assignment〉 ; 〈Assignment List〉
none
〈Assignment List〉
〈Label〉 [〈Substitution〉]
〈RuleApplic〉

If c : l → r if ψ is a rule in R, and γ : X → TΣ(X \ VR,CallR) is a substitution such that
dom(γ) ⊆ vars(c), then c[γ] is a rule application in StratR,CallR . For each pair of terms t, v in
HΣ, if t −→

cγ

1

R
v then there is a derivation rule

t→ v/c[γ]

in DR,CallR .
We de�ne vars(c[γ]) = ran(γ). The application of δ : X → TΣ(X \VR,CallR) to c[γ] is de�ned

as c[γ]δ = c[(γδ)dom(γ)].

Example 11. The set CallR for the running example contains the rule application kitchen[none].

For rules with rewrite conditions, a strategy must be supplied for each rewrite condition.
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〈StratList〉 ::= 〈Strat〉
| 〈Strat〉 , 〈StratList〉

〈RuleApplic〉 ::= 〈Label〉 [ 〈Substitution〉 ] { 〈StratList〉 }

If c : l → r if
∧m
j=1 lj → rj | ψ is a rule in R, γ : X → TΣ(X \ VR,CallR) is a substitution

such that dom(γ) ⊆ vars(c), and ST = ST 1, . . . ,STm is an ordered list of strategies such that
dom(γ) ∩ vars(ST ) = ∅, then RA = c[γ]{ST} is a rule application in StratR,CallR .

We de�ne vars(RA) = ran(γ) ∪ vars(ST ). The application of δ : X → TΣ(X \ VR,CallR)
to RA is de�ned as RAδ = c[(γδ)dom(γ)]{STδ}. For each substitution δ : vars(cγ) → TΣ such
that E0 � ψγδ, each term u in HΣ, and each position p in pos(u) such that u|p = lγδ there is a
derivation rule

l1γδ → r1γδ/ST 1δ · · · lmγδ → rmγδ/STmδ

u→ u[rγδ]p/RA

in DR,CallR .
[t]E ∈ c[γ]@[u|p]E implies [u[t]p]E ∈ c[γ]@[u]E , and [t]E ∈ c[γ]{ST}@[u|p]E implies [u[t]p]E ∈

c[γ]{ST}@[u]E because no speci�c position is required for rewriting using a rule application.

Example 12. The set CallR for the running example contains and enhanced version of the
rule application cook[none]{(toast1[none] | toast2[none]), (toast1[none] | toast2[none])}),
where the symbol | represents the or strategy (de�ned below). Rule [cook] : cook(y;hrt vt, z) →
y + z;h′rt v

′
t if toast(hrt, z) → h′rt ∧ toast(vt, z) → v′t, will be applied only if we can apply

either the rule application toast1[none] or the rule application toast2[none] to each condition
in the rule.

5.2.3 Top

It is possible to restrict the application of a rule in R only to the top of the term. This is useful
for structural rules, that are applied to the whole state, or for the strategies applied on the
conditional part of a rule, as will be shown in our running example.

〈Strat〉 ::= top( 〈RuleApplic〉 )

If c : l→ r if ψ is a rule in R and γ : X → TΣ(X \VR,CallR) is a substitution such that dom(γ) ⊆
vars(c), then top(c[γ]) is a strategy in StratR,CallR . We de�ne vars(top(c[γ])) = vars(c[γ]) and
top(c[γ])δ = top(c[γ] δ). For each substitution δ : vars(cγ)→ TΣ such that E0 � ψγδ there is a
derivation rule

lγδ → rγδ/top(c[γ])

in DR,CallR .
If c : l → r if

∧m
j=1 lj → rj | ψ is a rule in R, γ : X → TΣ(X \ VR,CallR) is a substitution

such that dom(γ) ⊆ vars(c), ST = ST 1, . . . ,STm is an ordered list of strategies such that
dom(γ)∩ vars(ST ) = ∅ and we call RA = c[γ]{ST}, then top(RA) is a strategy in StratR,CallR .
We de�ne vars(top(RA)) = vars(RA) and top(RA)δ = top(RA δ), for δ : X → TΣ(X\VR,CallR).
For each substitution δ : vars(cγ)→ TΣ such that E0 � ψγδ, there is a derivation rule

l1γδ → r1γδ/ST 1δ · · · lmγδ → rmγδ/STmδ

lγδ → rγδ/top(RA)

in DR,CallR .

Example 13. Whenever a rule application appears in the set CallR for the running example,
it is as part of a top strategy, e.g., top(kitchen[none]).
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5.2.4 Call strategy

Call strategy de�nitions allow the use of parameters and the implementation of recursive strate-
gies. A call strategy de�nition can be either unconditional or conditional.
〈VarList〉

〈Equational Condition〉

〈Strat Condition〉

〈Call Strat〉

〈Arguments〉

〈Strat〉

::=
|

::=
|

::=
|

::=
|

::=
|

::=
|

〈Variable〉
〈Variable〉 , 〈VarList〉
〈HΣ(X )-term〉 = 〈HΣ(X )-term〉
〈Equational Condition〉 ∧ 〈Equational Condition〉
〈quanti�er-free formula〉
〈Equational Condition〉 ∧ 〈quanti�er-free formula〉
sd 〈Label〉 ::= 〈Strat〉
sd 〈Label〉(〈VarList〉) := 〈Strat〉
csd 〈Label〉(〈VarList〉) := 〈Strat〉 if 〈Strat Condition〉
〈HΣ(X )-term〉
〈HΣ(X )-term〉 , 〈Arguments〉
〈Label〉
〈Label〉 (〈Arguments〉)

The semantics for call strategy invocations, given a pair of terms t and v in HΣ such that
ls(t) ≡≤ ls(v) is:

� If sd CS := ST ∈ CallR then the call strategy invocation CS is a strategy in StratR,CallR .
We de�ne vars(CS ) = ∅ and, for any substitution δ, CSδ = CS . For every renaming γ
such that dom(γ) ⊆ vars(ST ) and ran(γ) is away from any known variable, there is a
derivation rule

t→ v/STγ

t→ v/CS

in DR,CallR .

� If sd CS (x̄) := ST ∈ CallR, where x̄ = x1
s1 , . . . , x

n
sn are the parameters of CS , x̂ ⊆

vars(ST ), t1, . . . , tn are terms in TΣ(X \ VR,CallR), with sorts s1, . . . , sn respectively, and
we call t̄ = t1, . . . , tn, then the call strategy invocation CS (t̄) is a strategy in StratR,CallR .
If ρ = {x̄ 7→ t̄} then vars(CS (t̄)) = ran(ρ). If δ : X → TΣ(X \ x̂), then we de�ne
CS (t̄)δ = CS (̄tδ). For every renaming γ such that dom(γ) ⊆ vars(ST ) \ x̂ and ran(γ) is
away from any known variable, there is a derivation rule

t→ v/ST (γ ∪ ρ)

t→ v/CS (t̄)

in DR,CallR .

� If csd CS (x̄) := ST if C ∈ CallR, with x̄ = x1
s1 , . . . , x

n
sn and C =

∧m
j=1(lj = rj) ∧ φ,

call VCS = vars(ST ) ∪ vars(C), x̂ ⊆ VCS , t1, . . . , tn are terms in TΣ(X \ VR,CallR), with
sorts s1, . . . , sn respectively, call t̄ = t1, . . . , tn, then the call strategy invocation CS (t̄)
is a strategy in StratR,CallR . If ρ = {x̄ 7→ t̄} then vars(CS (t̄)) = ran(ρ). If δ : X →
TΣ(X \ (ran(ρ) ∪ VR,CallR)), then we de�ne CS (t̄)δ = CS (̄tδ). For every renaming γ
such that dom(γ) ⊆ VCS \ x̂ and ran(γ) is away from any known variable, and each
substitution δ : vars(C(γ ∪ ρ)) → TΣ such that lj(γ ∪ ρ)δ =E rj(γ ∪ ρ)δ, for 1 ≤ j ≤ n,
and E0 � φ(γ ∪ ρ)δ, there is a derivation rule

t→ v/ST (γ ∪ ρ)δ

t→ v/CS (t̄)

in DR,CallR .
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The meaning of γ in all three cases is that the names of the variables in ST that we could call
free, with respect to CS , have no relevance. By using renaming, di�erent instances of a call
strategy will get di�erent variable names in the narrowing calculus that we have developed.

Example 14. The call strategy de�nition sd toasts := top(toast1[none]) | top(toast2[none])
allows us to rewrite the strategy in example 12 as top(cook[none]{toasts, toasts}).

5.2.5 Tests

Tests are strategies that check a property on an equivalence class [t]E in HΣ/E . If the property
holds then the test returns a set containing [t]E as its only element. Otherwise, the test returns
the empty set.

〈Test〉 ::= match 〈HΣ(X )-term〉 s.t. 〈Strat Condition〉
〈Strat〉 ::= 〈Test〉

For simplicity of notation, there will always be one quanti�er-free formula φ ∈ QF (X0) as
last element of the test condition, which will be the boolean term true if there are no built-in
conditions to check.

For each equivalence class [t]E in HΣ/E , and each test strategy TS = match u s.t.
∧m
j=1(lj =

rj) ∧ φ, if there exists a substitution δ : vars(TS )→ TΣ, where we de�ne vars(TS ) = vars(u) ∪
vars(φ) ∪

⋃m
j=1 vars((lj , rj)), such that t =E uδ, ljδ =E rjδ, for 1 ≤ j ≤ m, and E0 � φδ, then

there is a rule

t→ t/match u s.t.
∧m
j=1(lj = rj) ∧ φ

in DR,CallR . If δ : X → TΣ(X\vars(TS )) then TSδ = match uδ s.t.
∧m
j=1(ljδ = rjδ) ∧ φδ.

Example 15. The set CallR for the running example contains the de�nition
sd test := match N/Bb/Y ;VtWt/OK s.t. Y < ft .
This test will be used to verify that the system has not reached the fail time.

5.2.6 If-then-else

Strategies can be combined to be applied over execution paths in several ways. The �rst way
is the if-then-else strategy where a subset of the test strategies, called simple test, is used. The
term must match some pattern u. If the quanti�er-free formula φ instantiated with the matching
substitution holds, the strategy in the then clause is applied; if not, the strategy in the else clause
is applied.

〈Simple Test〉 ::= match 〈HΣ(X )-term〉 s.t. 〈quanti�er-free formula〉
〈Strat〉 ::= 〈Simple Test〉 ? 〈Strat〉 : 〈Strat〉

For each pair of equivalence classes [t]E and [v]E in HΣ/E , each if-then-else strategy IS =
match u s.t. φ ? ST 1 : ST 2 and each substitution δ : vars(u)∪ vars(φ)→ TΣ such that t =E uδ,
if E0 � φδ, then there is a rule

t→ v/ST 1δ

t→ v/match u s.t. φ ? ST 1 : ST 2

in DR,CallR , and if E0 � ¬φδ then there is a rule

t→ v/ST 2δ

t→ v/match u s.t. φ ? ST 1 : ST 2
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in DR,CallR . We de�ne vars(IS ) = vars(u) ∪ vars(φ) ∪ vars(ST 1) ∪ vars(ST 2).
ISδ = match uδ s.t. φδ ? ST 1δ : ST 2δ, for any substitution δ : X → TΣ(X\vars(IS )).
The restriction to SMT conditions is needed to ensure the completeness of the narrowing

calculus since, in general, a reachability condition cannot be proved false.

Example 16. One alternative set CallR for the running example contained the de�nition
sd checkExtract := matchN/Bb/Y ; [ct, ct]Vt/OK s.t. true ? top(dish[none]) : idle

This if-then-else strategy was meant to force the extraction of a fully cooked toast to the dish,
pruning the state space of the search for a solution.

5.2.7 Regular expressions

Another way of combining strategies is the use of regular expressions.

<Strat> ::= <Strat> ; <Strat> concatenation
<Strat> ::= <Strat> | <Strat> union
<Strat> ::= <Strat> + iteration (1 or more)
<Strat> ::= <Strat> * iteration (0 or more)
Of course, ST∗ = idle | ST+. Let ST and ST ′ be strategies, and let t, v and u be terms in

HΣ such that ls(t) ≡≤ ls(u) ≡≤ ls(v). Then, we have rules

t→ u/ST 1 u→ v/ST 2

t→ v/ST 1 ; ST 2

t→ v/ST 1

t→ v/ST 1 | ST 2

t→ v/ST 2

t→ v/ST 1 | ST 2

t→ v/ST

t→ v/ST+

t→ v/ST ; ST+

t→ v/ST+

in DR,CallR .
We de�ne vars(ST 1 ; ST 2) = vars(ST 1 | ST 2) = vars(ST 1)∪ vars(ST 2), and vars(ST+) =

vars(ST ). The concatenation and union combinators are de�ned to be right associative, e.g.,
ST 1;ST 2;ST 3 = ST 1;(ST 2;ST 3). The scope of this work is restricted to concatenated strategies
that have no variables in common; this forces iterated strategies to be ground. Substitutions are
applied to all the strategies in the regular expression.

We de�ne tokens(ST+) = tokens(ST ), tokens(ST 1 op ST 2) = tokens(ST 1) ∪ tokens(ST 2)
if op is a binary combinator, and tokens(ST ) = ST otherwise.

Example 17. The set CallR for the running example contains the de�nition
sd kitchCook := top(kitchen[none]) ; top(cook[none]{toasts, toasts}).
After applying the strategy top(kitchen[none]) to a term with sort Kitchen, the strategy

top(cook[none]{toasts, toasts}) will be applied to each term in the resulting set.

5.2.8 Rewriting of subterms

The matchrew combinator allows the selection of a subterm to apply a rule and extends the
scope of the substitution that validates a test strategy to subsequent steps of the execution
path.

〈TermStratList〉 ::= 〈Variable〉 using 〈Strat〉
| 〈TermStratList〉 , 〈TermStratList〉

〈Strat〉 ::= matchrew 〈HΣ(X )-term〉 s.t. 〈Strat Condition〉 by 〈TermStratList〉

Matchrew strategies have the form MS = matchrew u s.t.
∧m
j=1(lj = rj) ∧ φ by x1

s1using

ST 1, . . . , x
n
sn using STn, where x̄ = x1

s1 , . . . , x
n
sn are the match parameters of MS , x̂ ⊂ X1,

|x̂| = n, u = u[x̄]p̄, for proper p̄, l̂∪r̂ ⊂ HΣ(X ), and, for 1 ≤ i ≤ n, xisi does not appear as a match
parameter of another matchrew strategy in ST and for each i ∈ {1, . . . , n} such that ST i 6= idle

there exists j ∈ {1, . . . ,m} such that lj = xisi and rj ∈ HΣ(X ) \ X . We de�ne vars(MS ) =
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Vu,φ,l̄,r̄,ST . We will also use the short-form MS = matchrew u s.t. l̄ = r̄ ∧ φ by x̄ using ST .
If δ : X → TΣ(X\vars(MS )), call δ′ = δ\x̂, then MSδ = matchrew uδ′ s.t. l̄δ′ = r̄δ′ ∧
φδ′ by x̄ using STδ′. For each n-tuple (t1, . . . , tn) of terms in HnΣ such that ls(t̄) ≤ s̄, and
each substitution δ such that δvars(MS) : X → TΣ(X\vars(MS )), so δvars(MS) is idempotent,
uδ ∈ TΣ, {ljδ, rjδ}mj=1 ⊂ TΣ, l̄δ =E r̄δ, φδ ∈ TΣ, and E0 � φδ, so ran(δvars(MS)) ⊆ vars(STδ),
there is a derivation rule

x1
s1δ → t1/ST 1δ · · ·xnsnδ → tn/STnδ

uδ → uδ[t1, . . . , tn]p1...pn/MS

in DR,CallR . For any structure ∆, we call matchParam(∆) the set of all the match parameters
that appear in ∆.

In narrowing, rewrite rules are intended to be applied, using uni�cation, to non variable
terms. The restriction that forces a variable xisi to match with a non variable term of HΣ(X ),
ensures that the narrowing calculus developed does not loose any solution, because this variable
will be instantiated to a non variable term prior to trying to apply a rewrite rule to it.

Example 18. The set CallR for the running example contains the de�nition
sd cook1 := matchrew N/Bb/Kk/OK s.t. Kk = Y ;RrtVt by Kk using kitchCook.
The strategy kitchCook will be applied to the Kitchen Kk of a State, whenever there is a

RealToast (Rrt) in Kk, and Kk will get instantiated to a non-variable term by the condition.

De�nition 31 (Subterms, holes, and replacement in a strategy). We extend the use of subterms
and holes to strategies. If ST is a strategy, i is a positive integer, p is a position, and t is a
term, then ST |i.p is the subterm that appears at position p in the term i of the tuple formed
by all terms that appear in ST , taken from left to right, ST []i.p consists in the replacement in
ST |i of its subterm at position p with [], and ST [t]i.p consists in the replacement in ST |i of its
subterm at position p with t.

De�nition 32 (Equality modulo of strategies). Given two strategies ST and ST ′, we say that
ST is equal modulo E to ST ′, and write ST =E ST ′ i� ST = ST ′[t̄]p̄, for proper t̄ and p̄, and
for each position p in p̄ ST |p =E ST ′|p and VST |p = VST ′|p .

5.3 Interpretation of the semantics. Generalization of strategies

Lemma 5 (Interpretation of the semantics). Given a rewrite theory R = (Σ, E0 ∪ B,R), a
set of call strategy de�nitions CallR, and terms t, v ∈ HΣ, for each c.p.t. T formed using
the rules in DR,CallR with head t → v/ST , so [v]E ∈ ST@[t]E, each renaming α such that
ran(α) ∩ (VT ∪ VR,CallR) = ∅, and each strategy ST ′ =E ST it holds that:

1. Main property: t →R/E v and there exist closed proof trees for [v]E ∈ STα@[t]E and
[v]E ∈ ST ′@[t]E with the same depth and number of nodes as T .

2. If ST = idle then [t]E = [v]E.

3. If ST = c[γ] then t −−→
cγ

1

R/E
v.

4. If ST = top(c[γ]), then t −−→
cγ,ε

1

R/E
v (i.e., the rewrite happens at the top position of t).

5. If ST = match u s.t.
∧m
j=1(lj = rj) ∧ φ then [t]E = [v]E and there exists a substitution σ

such that t =E uσ, ljσ =E rjσ, for 1 ≤ j ≤ m, and E0 � φσ.

6. If ST = ST 1 ; ST 2 then there exists a term u ∈ HΣ such that [u]E ∈ ST 1@[t]E and
[v]E ∈ ST 2@[u]E.
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7. If ST = ST 1+ then there exist i + 1 terms u0 = t, u1, . . . , ui−1, ui = v ∈ HΣ, with i > 0,
such that [uj ]E ∈ ST 1@[uj−1]E, for 1 ≤ j ≤ i, where i is equal to one plus the number of

times that a rule with the form w1→w2/ST1 ; ST1+
w1→w2/ST1+ , followed by the application of a rule with

the form w1→w′/ST1 w′→w2/ST1+

w1→w2/ST1 ; ST1+ , is applied in the rightmost branch of the subtree before

applying a rule with the form w1→w2/ST1

w1→w2/ST1+ .

8. If ST = ST 1 | ST 2 then [v]E ∈ ST 1@[t]E or [v]E ∈ ST 2@[t]E.

9. If ST = match u s.t. φ ? ST 1 : ST 2 then there exists a substitution δ such that t =E uδ
and either E0 � φδ and [v]E ∈ ST 1δ@[t]E or E0 � ¬φδ and [v]E ∈ ST 2δ@[t]E.

10. If ST = CS , where sd CS := ST 1 ∈ CallR, then: (i) [v]E ∈ ST 1@[t]E, and (ii)
[v]E ∈ ST 1γ@[t]E, for every renaming γ such that dom(γ) ⊆ vars(ST 1)\VR and ran(γ)∩
VR,CallR = ∅.

11. If ST = CS (t̄), where sd CS (x̄) := ST 1 ∈ CallR, x̄ = x1
s1 , . . . , x

n
sn, t̄ = t1, . . . , tn,

and ρ = {x̄ 7→ t̄}, then: (i) [v]E ∈ ST 1ρ@[t]E and (ii) if γ is a renaming such that

dom(γ) ⊆ vars(ST 1)\x̂ and ran(γ)∩(ran(ρ)∪VR,CallR) = ∅ (so t→v/ST1(γ∪ρ)
t→v/CS(t̄) ∈ DR,CallR),

then [v]E ∈ ST 1(γ ∪ ρ)@[t]E.

12. If ST = CS (t̄), where csd CS (x̄) := ST 1 if C ∈ CallR, with x̄ = x1
s1 , . . . , x

n
sn and

C =
∧m
j=1(lj = rj) ∧ φ, call VCS = vars(ST 1) ∪ vars(C), x̂ ⊆ VCS , t̄ = t1, . . . , tn, and ρ =

{x̄ 7→ t̄}, then (i) there exists a substitution δ1 : vars(Cρ)→ TΣ, such that ljρδ1 =E rjρδ1,

for 1 ≤ j ≤ n, E0 � φρδ1 (so t→v/ST1ρδ1
t→v/CS(t̄) ∈ DR,CallR), and [v]E ∈ ST 1ρδ1@[t]E, and (ii)

for every renaming γ such that dom(γ) ⊆ VCS \x̂ and ran(γ)∩(ran(ρ)∪VR,CallR) = ∅, there
exists a substitution δ2 : vars(C(γ ∪ ρ)) → TΣ, such that lj(γ ∪ ρ)δ2 =E rj(γ ∪ ρ)δ2, for

1 ≤ j ≤ n, E0 � φ(γ ∪ ρ)δ2 (so t→v/ST1(γ∪ρ)δ2
t→v/CS(t̄) ∈ DR,CallR), and [v]E ∈ ST 1(γ ∪ ρ)δ2@[t]E.

13. If ST = c[γ]{ST 1, . . . ,STm}, with c : l→ r if
∧m
j=1 lj → rj | ψ a rule in R, then there is

a substitution δ such that [riγδ]E ∈ ST iδ @ [liγδ]E, for 1 ≤ i ≤ m, and t −−→
c,γδ

1

R/E

v.

14. If ST = top(c[γ]{ST 1, . . . ,STm}), with c : l → r if
∧m
j=1 lj → rj | ψ a rule in R then

there is a substitution δ such that [riγδ]E ∈ ST iδ@[liγδ]E, for 1 ≤ i ≤ m, and t −−→
c,ε,γδ

1

R/E

v.

15. If ST = matchrew u s.t.
∧m
j=1(lj = rj) ∧ φ by x1

s1 using ST 1, . . . , x
n
sn using STn, where

u = u[x1
s1 , . . . , x

n
sn ]p1...pn then there exist a substitution δ, where δVu,φ,l̄,r̄ is ground, and

terms t1, . . . , tn ∈ HΣ such that t =E uδ, ljδ =E rjδ, for 1 ≤ j ≤ m, E0 � φδ, [ti]E ∈
ST iδ @ [xisiδ]E, for 1 ≤ i ≤ n, and v =E uδ[t1, . . . , tn]p1...pn.

Proof. The proof is done by induction on the depth of the c.p.t for t→ v/ST .

Lemma 6 (Generalization of strategies). Given a rewrite theory R = (Σ, E0 ∪ B,R), a set of
call strategy de�nitions CallR, terms t, v ∈ HΣ, a strategy ST ∈ StratR,CallR , and a substitution
σ such that dom(σ) ∩ VR = ∅ and ran(σ) ∩ (VR ∪ VST ) = ∅, if [v]E ∈ STσ@[t]E can be proved
with a c.p.t. T then [v]E ∈ ST@[t]E and a c.p.t. T ′ with head t→ v/ST and the same depth as
T can be constructed.

Proof. The proof is done by structural induction on the depth of T .
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6 Reachability problems

In this section we present the concept of reachability problem, together with its solutions and
the properties that a solution to one of these problems has. From now on, we will consider
as valid those rewrite theories R = (Σ, E0 ∪ B,R) whose axioms B are any combination of
associativity, commutativity, and identity (ACU rewrite theories).

Then, the only rules that will be added to the closure under B-extensions of R will have
the form l : f(xs, f(t1, t2)) → f(xs, t3) for each rule l : f(t1, t2) → t3 ∈ R such that f has
the associative property (it could also be l : f(f(t1, t2), xs) → f(t3, xs), we choose the other
form). The commutative property has no non-variable subterms, and for the identity property,
f(xs, 0) = xs, the non-variable subterm 0 only matches rules of the form l : 0→ t yielding a rule
l : f(xs, 0) → f(xs, t), which is subsumed by the original rule l : 0 → t with the substitution
{xs 7→ 0}.

De�nition 33 (Reachability problem). Given a rewrite theory R = (Σ, E0 ∪ B,R) and a set
of call strategy de�nitions CallR, a reachability problem is an expression P with the form∧n
i=1 ui → vi/ST i | φ | V, ν, where ui and vi are terms in HΣ(X ), ST i is a strategy in

StratR,CallR, φ ∈ QF (X0), V is the �nite set of parameters of the problem, i.e., variables
of X that have to be given a ground value, and ν is a substitution such that dom(ν) ⊆ V and
ran(ν) consists only of new variables, not seen before, that may hold the initial values, either
constants or patterns, of some of these parameters. The formula φ is the reachability formula of
P . We de�ne vars(P ) = vars(ū, v̄, φ). The set V allows the declaration of variables in VR,CallR

or VST , as parameters of the problem. V must always verify:

1. vars(P ) ⊆ V , vars(B)∩V = ∅, and VR∩VCallR ⊆ V , i.e, VR and VCallR have no variables
in common, with the exception of the parameters of the problem,

2. concatenated strategies may have in common only variables from V , since they will be given
a ground value; this is also mandatory for strategies from di�erent open goals; also, only
variables from V may appear in iterated strategies and call strategy invocations, since they
may become concatenated ones, and

3. V cannot contain:

� any variable in dom(γ) for any strategy c[γ] that may appear in CallR or ST i, 1 ≤
i ≤ n,

� any variable in x̂ for any call strategy de�nition sd C(x̄) or csd C(x̄) that may appear
in CallR, or

� any variable in matchParam(ST ) ∪matchParam(CallR).

De�nition 34 (Instances). Given a rewrite theory R = (Σ, E0 ∪ B,R), a set of call strategy
declarations CallR, and a substitution σ such that vars(B)∩(dom(σ)∪ran(σ)) = ∅, the instance
Rσ of R is the rewrite theory that results from the simultaneous replacement of every instance in
R of any variable x ∈ dom(σ) with xσ, CallσR is the set of call strategy declarations that results
from the simultaneous replacement of every instance in CallR of any variable x ∈ dom(σ) with
xσ, and StratσR,CallR

is their set of associated strategies. For every strategy ST in StratR,CallR we
denote by STσ its corresponding strategy in StratσR,CallR

. We denote by DσR,CallR
the associated

set of derivation rules. If γ is a substitution, dom(γ)∩ (dom(σ)∪ ran(σ)) = ∅, and ST = ST 1γ
then STσ = STσ

1 (γ · σ). If t ∈ TΣ(X ), then tσ = tσ. If φ ∈ QF (X0), then φσ = φσ. For any
structure S formed with terms, formulas and strategies, the instance Sσ of S will consist in the
instantiation with σ of each one of its elements.

Although the label, say c, of an instantiated rule remains the same, we will use superscripts,
say cσ, when it is needed to distinguish which instance of the rule we are referring to.
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Proposition 9 (Equality of (Rσ)B and (RB)σ). For any ACU rewrite theory R = (Σ, E0∪B,R)
and any substitution σ such that vars(B)∩ (dom(σ)∪ ran(σ)) = ∅ it holds that (Rσ)B = (RB)σ.

Proof. We prove (cσ)B = (cB)σ for every rule c ∈ R. If c : l → r if C ∈ R then, by de�nition,
l ∈ HΣ(X ) \ X , so l has the form f(l̄), for proper f and l̄.

� If f is binary associative then c has the form c : f(l1, l2) → r if C ∈ R, and c :
f(xs, f(l1, l2))→ r if C ∈ cB, so c : f(xs, f(l1σ, l2σ))→ rσ if Cσ ∈ (cB)σ since xsσ = xs.
Then, c : f(l1σ, l2σ) → rσ if Cσ ∈ Rσ, so also c : f(xs, f(l1σ, l2σ)) → rσ if Cσ ∈ (cσ)B,
and (cσ)B = (cB)σ.

� Else, cB = {c}, and (cB)σ = {cσ}. Now, cσ has the form c : f(l̄σ)→ rσ if Cσ where f is
not binary associative, so also (cσ)B = {cσ}, hence (cσ)B = (cB)σ.

We will write RσB to refer to either (Rσ)B or (RB)σ, indistinctly.

De�nition 35 (Solution of a reachability problem). Given a rewrite theory R = (Σ, E0 ∪B,R)
and a set of call strategy de�nitions CallR, a solution of the reachability problem P =

∧n
i=1 ui →

vi/ST i | φ | V, ν is a substitution σ : V → TΣ such that σ = ν · σ′ for some substitution σ′,
E0 � φσ, and [viσ]E ∈ STσ

i @[uiσ]E (hence uiσ →Rσ/E viσ), for 1 ≤ i ≤ n.

Given a rewrite theory R = (Σ, E0 ∪B,R), a set of call strategy de�nitions CallR, and the
reachability problems P =

∧n
i=1 ui → vi/ST i | φ | V, ν and P ′ =

∧n
i=1 ui → vi/ST i ; idle | φ |

V, ν, both problems yield the same solutions. For any solution σ of P , E0 � φσ and [viσ]E in
STσ

i @[uiσ]E , for 1 ≤ i ≤ n, so there are closed proof trees

Fi
uiσ → viσ/STσ

i

,

where 1 ≤ i ≤ n, formed with the rules in DσR,CallR
. Then, also

Fi
uiσ→viσ/STσ

i viσ→viσ/idle

uiσ → viσ/STσ
i ; idle

,

where 1 ≤ i ≤ n, are closed proof trees, so σ is a solution of P ′, and vice versa.
Given a reachability problem

∧n
i=1 ui → vi/ST i | φ | V, ν, we will solve the equivalent

problem
∧n
i=1 ui → vi/ST i ; idle | φ | V, ν, since it will allow us to use a smaller set of

narrowing rules, by not having to distinguish between those strategies that are a concatenation
of strategies, to process one strategy after the other, and those that are not.

7 Strategies in reachability by conditional narrowing modulo SMT

and axioms

In this section, the narrowing calculus for reachability with strategies is introduced and its
soundness and weak completeness are stated, as well as its completeness for topmost rewrite
theories.
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7.1 Reachability goals and calculus

Some de�nitions and the calculus for reachability with strategies by conditional narrowing mod-
ulo SMT and axioms are presented now.

De�nition 36 (Instance of a set of variables). Given a set of variables V and a substitution ν,
we call V ν = (V \ dom(ν)) ∪ ran(νV ).

De�nition 37 (Reachability goal). Given a rewrite theory R = (Σ, E0 ∪B,R) and a set of call
strategy de�nitions CallR, a reachability goal G is an expression with the form

1. (
∧n
i=1 u

′
i → v′i/ST i | φ′)ν%ν | V, ν, or

2. (u′1|p →1 xk, u
′
1[xk]p → v′1/ST 1 ∧

∧n
i=2 u

′
i → v′i/ST i | φ′)ν%ν | V, ν,

where ν and %ν are substitutions, dom(ν) ⊆ V , dom(%ν) ∩ (V ∪ V ν) = ∅, V ⊂ X is �nite,
call (ū, v̄, φ) = (ū′, v̄′, φ′)ν%ν , n ≥ 1, u′i and v

′
i are terms in HΣ(X ), ST i ∈ StratR,CallR , for

1 ≤ i ≤ n, and φ ∈ QF (X0); also, in the second case, p ∈ pos(u1), k = [ls(u1|p)], the kind of
the least sort of u1|p, xk /∈ Vū′,v̄′,φ′,ST ∪ V ∪ ran(ν) ∪ dom(%ν) ∪ ran(%ν), and ST 1 has the form
RA ; ST , with RA a rule application.

In the �rst case, each one of the elements in the conjunctions is an open goal, for which
we de�ne Vu→v/ST = Vu,v, and VG = Vū,v̄,φ ∪ V ν ; in the second case, we say that xk is the
connecting variable of the goal and we de�ne VG = {xk} ∪ Vū,v̄,φ ∪ V ν . We will write `goal' as a
synonym of reachability goal.

Reachability goals with the second form, where we always can recover u1 form u1|p and
u1[]p, can be generated by the calculus rules in Figures 3 - 5 from a reachability goal with the
�rst form when the �rst open goal has the form u1 → v1/RA; ST , with RA a rule application
strategy. This second form prevents the repeated application in a derivation of rule transitivity,
that maintains the problem in the second form, forcing the application to the �rst open goal of
the rule application rule, that reverts the problem to the �rst form.

The substitution %ν will be used in our calculus to hold instantiations or renamings, that
will be generated by the calculus rules, of the variables not in V .

De�nition 38 (Instance of a goal). If G is a goal of the form (
∧n
i=1 Si | φ)ν%ν | V, ν and σ is a

substitution such that dom(σ)∩V ν 6= ∅, then we de�ne the instance Gσ of G as Gσ = (
∧n
i=1 Si |

φ)µ%µ | V, µ, where µ = (νσ)V and %µ = (%νσ)VG\V .

De�nition 39 (Instance of a conjunction of open goals). If G is a goal of the form (
∧n
i=1 Si |

φ)ν%ν | V, ν, let SG = (
∧n
i=1 Si)

ν%ν , and σ is a substitution such that dom(σ)∩V ν 6= ∅, then we
de�ne the instance SGσ of SG as SGσ = (

∧n
i=1 Si)

µ%µ, where µ = (νσ)V and %µ = (%νσ)VSG\V .

When dom(σ) ∩ V ν = ∅, σ is directly applied to every term and formula in G and SG ,
respectively, thus avoiding circularity in these de�nitions.

De�nition 40 (Admissible goals). From now on, we will only consider in our work two types
of goals:

(a) those goals coming from a reachability problem
∧n
i=1 ui → vi/ST i | φ | V, ν, which is trans-

formed into the goal
∧n
i=1 uiν → viν/ST ν

i ; idle | φν | V, ν, with %ν = none, and

(b) those goals generated by repeatedly applying the calculus rules in Figures 3 - 5 to one goal
of type (a).

The notation G [r],σ G
′, will be used in the calculus to indicate that rule [r] of the calculus

has been applied with substitution σ to G, yielding G′. We call this application a narrowing
step. If σ is the identity substitution it can be omitted. The rule [r] can also be omitted in the
expression. The superscripts  n, with n > 0,  +, and  ∗ will be used with their standard
meanings, maybe with no rule in the subscript ( and  1 are equivalent).
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Proposition 10 (Invariants of the goals). Given a rewrite theory R = (Σ, E0 ∪B,R) and a set
of call strategy de�nitions CallR, and an admissible goal G with the form

�
∧n
i=1 ui → vi/ST ν

i %ν | φ | V, ν, or

� u1|p →1 xk, u1[xk]p → v1/ST ν
1%ν ∧

∧n
i=2 ui → vi/ST ν

i %ν | φ | V, ν,

if G0 is a goal of type (a), with substitution ν0 (%ν0 = none by de�nition), and G0  ∗θ G then
the following invariants hold:

1. vars(B) ∩ V = ∅ and VR ∩ VCallR ⊆ V ,

2. V ∩ ran(ν) = ∅ and ν = (ν0θ)V , hence dom(ν) ⊆ V , so dom(ν) satis�es the restrictions
given for V in De�nition 33.2,

3. %ν = θ\V , hence dom(%ν) ∩ V = ∅ and %ν is idempotent,

4. ran(θ) ∩ (V ∪ VR,CallR ∪ vars(ST )) = ∅ and ran(%ν) ∩ V = ∅,

5. dom(%ν) ∩ ran(ν) = ∅,

6. dom(%ν) ∩ V ν = ∅,

7. VRν ∩ VCallRν ⊆ V ν ,

8. if t ∈ TΣ(X ) then tν%ν = t(ν ] %ν),

9. ui, vi, 1 ≤ i ≤ n, and each term in φ̂ have the form tν%ν ,

10. vars(ū, v̄, φ) ∩ dom(ν) = ∅, and

11. G has also the form Gν1%
′
ν , where %

′
ν = θVG1

\V , so dom(%′ν) ⊆ VG1 \ V .

Proof. By induction on the number of applied calculus rules from Figures 3 and 4.

We extend the de�nition of solution of a reachability problem to goals.

De�nition 41 (Solution of a goal). Given a rewrite theory R = (Σ, E0 ∪ B,R), a set of call
strategy de�nitions CallR for R, and a goal G, a substitution σ : vars(G) → TΣ, where ν

′ =
(νσ)V and %ν′ = (%νσ)\V , is a solution of G i�:

1. if G =
∧n
i=1 ui → vi/ST ν

i %ν | φ | V, ν then E0 � φσ and [viσ]E ∈ ST ν′
i %ν′@[uiσ]E (hence

uiσ →Rν′/E viσ), for 1 ≤ i ≤ n, and

2. if G = u1|p →1 xk, u1[xk]p → v1/ST ν
1%ν ∧

∧n
i=2 ui → vi/ST ν

i %ν | φ | V, ν, where ST 1 =

RA; ST , then E0 � φσ, [xkσ]E ∈ RAν′%ν′ @ [u1σ|p]E, [v1σ]E ∈ ST ν′%ν′@[u1[xk]pσ]E, and

[viσ]E ∈ ST ν′
i %ν′@[uiσ]E, for 2 ≤ i ≤ n.

In the second case, as [xkσ]E ∈ RAν′%ν′ @ [u1|pσ]E implies [u1[xk]pσ]E ∈ RAν′%ν′ @ [u1σ]E ,
and [v1σ]E ∈ ST ν′%ν′@[u1[xk]pσ]E then [v1σ\{xk}]E ∈ ST ν′

1 (%ν′)\{xk}@[u1σ\{xk}]E , i.e., σ\{xk} is
a solution of

∧n
i=1 ui → vi/ST ν

i %ν | φ | V, ν.
We call nil | φ | V, ν, where φ is satis�able and ν : X → TΣ(X ) such that dom(ν) ⊆ V ,

an empty goal. Given RB = (Σ, E0 ∪ B,RB), a closed under B-extensions associated rewrite
theory of R = (Σ, E0 ∪ B,R), both with built-in subtheory (Σ0, E0), a reachability problem
P =

∧n
i=1 ui → vi/ST i | φ | V, ν is solved by applying the calculus rules in Figures 3 and 4,

starting with G =
∧n
i=1 uiν → viν/(ST ν

i ; idle) | φν | V, ν in a top-down manner, until an

empty goal is obtained, where (
∧n
i=1 ui → vi/ST ν

i %ν)σ =
∧n
i=1 uiσ → viσ/ST

(νσ)V
i (%νσ)\V .
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� [d1] idle
u→ v/idle (∧∆) | φ | V, ν

(∆σ) | ψ | V, (νσ)V

where abstractΣ1((u, v)) = 〈λ(x̄, ȳ).(u◦, v◦); (θ◦u, θ
◦
v); (φ◦u, φ

◦
v)〉, σ in CSUB (u◦ = v◦),

vars(ψ) ⊆ vars((φ ∧ φ◦u ∧ φ◦v)σ), E0 ` ψ ⇔ (φ ∧ φ◦u ∧ φ◦v)σ, and ψ is satis�able

� [d2] idle
u→ v/idle ; ST (∧∆) | φ | V, ν

u→ v/ST (∧∆) | φ | V, ν

� [o1] or
u→ v/(ST 1 | ST 2) ; ST (∧∆) | φ | V, ν

u→ v/ST 1 ; ST (∧∆) | φ | V, ν

� [o2] or
u→ v/(ST 1 | ST 2) ; ST (∧∆) | φ | V, ν

u→ v/ST 2 ; ST (∧∆) | φ | V, ν

� [p1] plus
u→ v/ST 1+ ; ST (∧∆) | φ | V, ν
u→ v/ST 1 ; ST (∧∆) | φ | V, ν

� [p2] plus
u→ v/ST 1+ ; ST (∧∆) | φ | V, ν

u→ v/ST 1 ; ST 1+ ; ST (∧∆) | φ | V, ν

� [s1] star
u→ v/ST 1∗ ; ST (∧∆) | φ | V, ν

u→ v/ST (∧∆) | φ | V, ν

� [s2] star
u→ v/ST 1∗ ; ST (∧∆) | φ | V, ν
u→ v/ST 1+ ; ST (∧∆) | φ | V, ν

� [i1] if then else

u→ v/match t s.t. φ′ ? ST 1 : ST 2 ; ST (∧∆) | φ | V, ν
(u→ v /ST 1 ; ST (∧∆))σ | ψ | V, (νσ)V

where abstractΣ1((u, t)) = 〈λ(x̄, ȳ).(u◦, t◦); (θ◦u, θ
◦
t ); (φ◦u, φ

◦
t )〉, σ in CSUB (u◦ = t◦),

vars(ψ) ⊆ vars((φ ∧ φ′ ∧ φ◦u ∧ φ◦t )σ), E0 ` ψ ⇔ (φ ∧ φ′ ∧ φ◦u ∧ φ◦t )σ, and ψ is satis�able

� [i2] if then else

u→ v/match t s.t. φ′ ? ST 1 : ST 2 ; ST (∧∆) | φ | V, ν
(u→ v /ST 2 ; ST (∧∆))σ | ψ | V, (νσ)V

where abstractΣ1((u, t)) = 〈λ(x̄, ȳ).(u◦, t◦); (θ◦u, θ
◦
t ); (φ◦u, φ

◦
t )〉, σ in CSUB (u◦ = t◦),

vars(ψ) ⊆ vars((φ ∧ ¬φ′ ∧ φ◦u ∧ φ◦t )σ), E0 ` ψ ⇔ (φ ∧ ¬φ′ ∧ φ◦u ∧ φ◦t )σ, and ψ is satis�able

Figure 3: Inference rules for reachability with strategies modulo SMT plus axioms I
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� [t] transitivity
u→ v/RA ; ST (∧∆) | φ | V, ν

u→1 xk, xk → v/RA ; ST (∧∆) | φ | V, ν

where RA is a rule application, u ∈ HΣ(X ) \ X , k = [ls(u)], and xk fresh variable

� [c] congruence
u|p →1 xk, u[xk]p → v/RA ; ST (∧∆) | φ | V, ν
ui →1 yk′ , u[yk′ ]p.i → v/RA ; ST (∧∆) | φ | V, ν

where RA is a rule application, u|p = f(u1, . . . , un), ui ∈ HΣ(X ) \ X ,

k′ = [ls(ui)], yk′ fresh variable, and σ1 = {xk 7→ u|p[yk′ ]i}

� [r] rule application

u|p →1 xk, u[xk]p → v/c[γ]{ST 1, . . . ,STn} ; ST (∧∆) | φ | V, ν
(
∧n
i=1(liγ → riγ/ST i; idle) ∧ u[rγ]p → v /ST (∧∆))σ | ψ | V, (νσ)V

where c : l→ r if
∧n
i=1(li → ri) | φ′ fresh version, except for dom(γ) ∪ V ν , of a rule c in Rν ,

abstractΣ1((u|p, lγ)) = 〈λ(ū, ȳ).(u◦, l◦); (σ◦u, σ
◦); (φ◦u, φ

◦
l )〉, σ′ in CSUB (u◦ = l◦),

σ = σ′ ∪ {xk 7→ rγσ′}, vars(ψ) ⊆ vars((φ ∧ φ◦u ∧ φ◦l ∧ (φ′γ))σ),

E0 ` ψ ⇔ (φ ∧ φ◦u ∧ φ◦l ∧ (φ′γ))σ, and ψ is satis�able

� [tp] top
u→ v/top(c[γ]{ST 1, . . . ,STn}) ; ST (∧∆) | φ | V, ν

(
∧n
i=1(liγ → riγ/ST i; idle) ∧ rγ → v /ST (∧∆))σ | ψ | V, (νσ)V

where c : l→ r if
∧n
i=1(li → ri) | φ′ fresh version, except for dom(γ) ∪ V ν , of a rule c in Rν ,

abstractΣ1((u, lγ)) = 〈λ(ū, ȳ).(u◦, l◦); (σ◦u, σ
◦); (φ◦u, φ

◦
l )〉, σ in CSUB (u◦ = l◦),

vars(ψ) ⊆ vars((φ ∧ φ◦u ∧ φ◦l ∧ (φ′γ))σ), E0 ` ψ ⇔ (φ ∧ φ◦u ∧ φ◦l ∧ (φ′γ))σ, and ψ is satis�able

Figure 4: Inference rules for reachability with strategies modulo SMT plus axioms II
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� [m] match
u→ v/match t s.t.

∧m
j=1(lj = rj) ∧ φ′ ; ST (∧∆) | φ | V, ν

(
∧m
j=1(lj → rj/idle) ∧ u→ v /ST (∧∆))σ | ψ | V, (νσ)V

where abstractΣ1((u, t)) = 〈λ(x̄, ȳ).(u◦, t◦); (θ◦u, θ
◦
t ); (φ◦u, φ

◦
t )〉, σ in CSUB (u◦ = t◦),

vars(ψ) ⊆ vars((φ ∧ φ′ ∧ φ◦u ∧ φ◦t )σ), E0 ` ψ ⇔ (φ ∧ φ′ ∧ φ◦u ∧ φ◦t )σ, and ψ is satis�able

� [w] matchrew

u→ v/matchrew t[z̄]p̄ s.t.
∧m

j=1(lj = rj) ∧ φ′ by z1 using ST 1, . . . , zn using STn ; ST (∧∆) | φ | V, ν
(
∧m

j=1(ljγ → rjγ/idle) ∧
∧n

i=1(xi → yi/ST iγ; idle) ∧ t[ȳ]p̄ → v/ ST (∧∆))σ | ψ | V, (νσ)V

where z̄ = z1, . . . , zn, x̄ and ȳ fresh versions of z̄, γ renaming from z̄ to x̄,

abstractΣ1((u, t[x̄]p̄)) = 〈λ(w̄, w̄′).(u◦, t◦); (θ◦u, θ
◦
t ); (φ◦u, φ

◦
t )〉, σ in CSUB (u◦ = t◦),

vars(ψ) ⊆ vars((φ ∧ φ′ ∧ φ◦u ∧ φ◦t )σ), E0 ` ψ ⇔ (φ ∧ φ′ ∧ φ◦u ∧ φ◦t )σ, and ψ is satis�able

� [c1] call strategy

u→ v/CS ; ST (∧∆) | φ | V, ν
u→ v/ST 2 ; ST (∧∆) | φ | V, ν

u→ v/CS (t̄) ; ST (∧∆) | φ | V, ν
u→ v/ST 2γ ; ST (∧∆) | φ | V, ν

where sd CS := ST 1, or sd CS(x̄) := ST 1 in CallνR, γ = {x̄ 7→ t̄},

and ST 2 fresh version of ST 1, except for dom(γ) ∪ V ν

� [c2] call strategy

u→ v/CS (t̄) ; ST (∧∆) | φ | V, ν∧m
j=1(ljγ → rjγ/idle) ∧ u→ v/ST 2γ ; ST (∧∆) | ψ | V, ν

where csd CS(x̄) := ST 1 if C in CallνR, γ = {x̄ 7→ t̄},

ST 2 if
∧m
j=1(lj = rj) ∧ φ′ fresh version of ST 1 if C, except for dom(γ) ∪ V ν ,

vars(ψ) ⊆ vars(φ′γ ∧ φ), E0 ` ψ ⇔ φ′γ ∧ φ, and ψ is satis�able

Figure 5: Inference rules for reachability with strategies modulo SMT plus axioms III
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We brie�y explain rule [w] (matchrew): we rename the matching parameters from z̄ to the
fresh variables x̄ with γ. Once abstracted u and t[x̄]p̄ to u◦ and t◦ and B-uni�ed u◦ and t◦

with σ, we search for a uni�er of l̄γσ and r̄γσ, say α, using the idle strategy. Once found, the
open goals (x̄σ → ȳ/STγσ)α, where ȳ is fresh, will �nd a substitution β that makes [yiβ]E an
element of ST iγσαβ@[xiσαβ]E , for 1 ≤ i ≤ n, and go on trying to �nd solutions for the open
goal (t[ȳ]p̄ → v/ST )σαβ.

De�nition 42 (Narrowing path and computed answer). Given RB = (Σ, E0 ∪ B,RB), an
associated rewrite theory of R = (Σ, E0 ∪ B,R) closed under B-extensions, and a goal G with
set of parameters V and substitution ν0, if there is a narrowing path G σ1 G1  σ2 · · · σn−1

Gn−1  σn nil | ψ | V, ν, using the calculus rules in Figures 3 and 4, hence ψ is satis�able, then
we write G n

σ nil | ψ | V, ν, where σ = σ1 · · ·σn, and we call ν | ψ a computed answer for G.

If ν0 = none then ν is the restriction of σ to V by construction. In this case, as the
uni�ers σi, 1 ≤ i ≤ n, returned by CSUB are idempotent and away from all the variables that
have previously appeared in the computation, so ran(σi) ∩

⋃i−1
j=1 ran(σj) = ∅, then ν is also

idempotent.
Although several rules allow for simpli�cation in the reachability formula obtained, e.g., we

can replace X − Y + Z > 0 ∧ X = Y with Z > 0, it is always possible to obtain the same
computed answer without using simpli�cations.

Proposition 11 (Canonical narrowing path). Given RB = (Σ, E0 ∪ B,RB), an associated
rewrite theory of R = (Σ, E0 ∪ B,R) closed under B-extensions, and a narrowing path from a
goal G (with set of parameters V ), G = ∆0 | ψ0 | V,none  σ1 ∆1 | ψ1 | V, ν1  σ2 · · ·∆m−1 |
ψm−1 | V, νm−1  σm nil | ψm | V, νm, there exists another narrowing path G = ∆0 | ψ0 |
V,none  σ1 ∆1 | χ1 | V, ν1  σ2 · · ·∆m−1 | χm−1 | V, νm−1  σm nil | χm | V, νm, where the
same inference rule, with the same substitution, is applied at each step in both paths, there is no
simpli�cation of the reachability formula on the second path, and E0 ` ψi ⇔ χi, for 1 ≤ i ≤ m.

Proof. As the applied rule at each step i only depends on ∆i−1 which is the same on both paths,
as long as ψi and χi are satis�able, all that it has to be proved is E0 ` ψi ⇔ χi. Then as ψi is
satis�able so is χi.

By the de�nition of the proposition, χ0 = ψ0, so E0 ` ψ0 ⇔ χ0. The check for E0 ` ψi−1 ⇔
χi−1 implies E0 ` ψi ⇔ χi, for 1 ≤ i ≤ m, is trivial since there are only two type of inference
rules in the calculus:

� those rules that do not modify the formula, so ψi = ψi−1, χi = χi−1, and E0 ` ψi−1 ⇔ χi−1

implies E0 ` ψi ⇔ χi, and

� those rules where χi = (χi−1∧χ′i−1)θ, for suitable χ′i−1 and θ, and E0 ` ψi ⇔ (χi−1∧χ′i−1)θ,
i.e., E0 ` ψi ⇔ χi.

The aim of this work is to solve reachability problems; it must be born in mind that a goal
with the second form comes from a reachability problem. Now it is proved that the calculus
rules are a sound method for solving goals. A distinction is made depending on the form of the
goal. For goals of the second form it is necessary to be very careful with the connecting variable
of the goal, since this variable does not appear in the original reachability problem.

7.2 Soundness and weak completeness of the calculus

The soundness and weak completeness, i.e., completeness with respect to R/E-normalized solu-
tions, of the calculus for reachability problems are now proved.
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Theorem 2 (Soundness of the Calculus for Reachability Goals). Given an associated rewrite
theory R = (Σ, E0 ∪ B,R) closed under B-extensions and a reachability goal G, if ν | ψ is a
computed answer for G then for each substitution ρ : V ν → TΣ such that ψρ is satis�able, ν · ρ
is a solution for G.

Proof. By structural induction over the length of the corresponding canonical narrowing path
and the �rst inference rule applied.

The following lemma will be used in the proof of the weak completeness of the calculus.

Lemma 7 (Narrowing of equational conditions). Given an associated rewrite theory R =
(Σ, E0∪B,R) closed under B-extensions, and a goal G =

∧m
j=1(lj → rj/idle)∧∆µ%µ | ψ | V, µ,

if α is a ground substitution such that VG ⊆ dom(α), E0 � ψα, and l̄α =E r̄α, then there exist a
ground substitution α◦, substitutions β1, . . . , βm from CSUs, let βki = βiβi+1 · · ·βk, and abstrac-

tions abstractΣ1((ljβ
j−1
1 , rjβ

j−1
1 )) = 〈λ(x̄j , ȳj).(l

◦
j , r
◦
j ); (θ◦lj , θ

◦
rj ); (φ◦lj , φ

◦
rj )〉, for 1 ≤ j ≤ m, where

β0
1 = none, let β = βm1 , such that dom(α◦) = dom(α) ∪ Vˆ̂x,ˆ̂y, α =E0 α

◦
dom(α), l̄

◦α◦ =E r̄◦α◦,

α◦ �E βdom(α◦), G  
m
[d1] ∆ν%ν | ψβ ∧

∧m
j=1(φ◦lj ∧ φ

◦
rj )β

m
j | V, ν, and for every pair of substi-

tutions ρ and γ such that ran(ρ) is away from all known variables, α◦ �E (βρ)dom(α◦), and
α◦ =E (βρ)dom(α◦) · γ, it holds that E0 � (ψβ ∧

∧m
j=1(φ◦lj ∧φ

◦
rj )β

m
j )ργ and ∆µ%µα =E ∆µ%µβργ.

Theorem 3 (Weak Completeness of the Calculus for Reachability Goals). Given an associated
rewrite theory R = (Σ, E0 ∪ B,R) closed under B-extensions and a reachability problem P =∧n
i=1 ui → vi/ST i | φ | V, µ, where µ is R/E-normalized, if σ : V → TΣ is a R/E-normalized

solution for P then there exist a formula ψ ∈ QF (X0) and two substitutions, say λ and ρ, such
that

∧n
i=1 uiµ → viµ/STµ

i ; idle | φµ | V, µ  +
λ nil | ψ | V, ν, σ =E ν·ρ, and ψρ is satis�able,

where ν = (µλ)V .

Proof. The proof is by induction over the sum of the number of nodes in each closed proof
tree.

Remark 2. In the previous theorem, by De�nition 35 there exists a substitution σ′ such that
σ = µ · σ′. As σ is R/E-normalized then, by Proposition 5, µ has to be R/E-normalized too.
Also, as σ is R/E-normalized and the substitution η obtained after each narrowing step is always
a generalization of σ then, by Proposition 6, η is R/E-normalized too.

7.3 Completeness of the calculus, for topmost rewrite theories

In the proof of weak completeness of the calculus for reachability, the only places where the
hypothesis of σ being R/E-normalized is used are in the initial substitution µ and in the induc-
tion case, (ii), where it limits the positions where rewriting can happen at some proper subterm
of u1σ, an instance of the �rst term in the reachability problem P (u1). It is immediate then
to prove the completeness of the calculus for topmost rewrite theories, those rewrite theories
R = (Σ, E,R) such that for some top sort state, no operator in Σ has state as argument sort,
each rule l → r if

∧n
i=1 li → ri | φ in R satis�es l, r ∈ TΣ(X )state and li, ri ∈ TΣ(X )state, for

1 ≤ i ≤ n, since rewriting always happens at position ε of u1σ, so the hypothesis of σ being
R/E-normalized is not needed for this type of rewrite theories in the proof of completeness,
when no variable in V has sort state, so µ is R/E-normalized.

8 Example

Three applications of the calculus using the running example are shown, recall the abbrevia-
tions: i− Integer, p− Pan, rt− RealToast, t− Toast, k− Kitchen, b− Bin, s− System,
cti − cookTime, and fti − failTime. We will omit the use of the subindex i in all variables
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for readability. In both cases we take ct = 20. In the �rst case, from an initial system with an
empty toaster, an empty dish, and at most one toast in the bin, we want to reach in no more
than 60 seconds the same �nal system as in the previous case. In the second case, we want to
know if there is value for ft lower than 61 seconds that allows us to get from an initial system
where there are three toasts in the bag and the remaining elements are empty to a �nal system
where there are three toasts in the dish and all the remaining elements are empty.

We choose CallR to consist of the following call strategy de�nitions:

� sd test := match N/Bb/Y ;VtWt/OK s.t. Y < ft

� sd cook1 := matchrew N/Bb/Kk/OK s.t. Kk = Y ;RrtVt by Kk using kitchCook

� sd kitchCook := top(kitchen[none]) ; top(cook[none]{toasts, toasts})

� sd toasts := top(toast1[none]) | top(toast2[none])

� sd noCook := top(bin[none]) | top(pan[none]) | top(dish[none])

� sd loop := (noCook | (cook1 ; test ; noCook))+

� sd solve1 := top(bag[none]) ; top(bag[none]) ; top(bag[none]) ; loop.

� sd solve2 := top(bag[none]) ; top(bag[none]) ; (top(bag[none]) | idle) ; loop.

Our reachability problems are:
P1 = N / Tt / 0 ; zt zt / 0 → 0 / zt / Y ; zt zt / 3 / solve2 | N > 0 ∧ N < 3 |

{ct, ft, N, Tt, Y }, {ct 7→ 20, ft 7→ 61}, and
P2 = 3 / zt/ 0 ; zt zt / 0 → 0 / zt / Y ; zt zt / 3 / solve1 | ft < 61 |

{ct, ft, Y }, {ct 7→ 20}.
The most important feature of CallR is the invocation of the call strategy test after each

invocation of cook1. This renders the search state space of both problems �nite, since there is
a limit in both cases in the value of ft that gets checked against the timer, which initially has
value 0, through the invocation of test.

Further pruning of the search tree is achieved through several facts: (i) all rule applications
are used inside top strategies, preventing rule congruence of the narrowing calculus to be applied,
(ii) in the call strategy de�nition cook1, where a rule must be applied in a subterm of the state,
the matchrew strategy selects the precise subterm where to apply a top strategy in a much
e�cient way that the blind search of rule applications, and (iii) the use of the call strategy
noCook after test prevents consecutive calls to cook1 since rule toast2 always well-toasts one
side, so it cannot be invoked in the next strategy call. The de�nition of noCook could be further
optimized but it is left as is for the sake of simplicity.

In P1, as we can infer from the problem that, initially, there must be either two or three toasts
in the bag, we impose the application of the rule bag twice, followed by the nondeterministic
strategy top(bag[none]) | idle, before applying any other rule, also preventing its application
later, pruning the search tree. In the initial state we use the variable Tt to represent the bin.
This use is valid because Toast is a subsort of Bin, and it also covers both initial cases: the
one without toasts in the bin and the one with one toast in the bin, since both EmptyToast and
RealToast are subsorts of Toast.

Among the answers returned by the prototype we have:

a - ct 7→ 20, ft 7→ 61, N 7→ 3, Y 7→ 60, Tt 7→ zt,

b - ct 7→ 20, ft 7→ 61, N 7→ 2, Y 7→ 60, Tt 7→ [0, 0],

c - ct 7→ 20, ft 7→ 61, N 7→ 2, Y 7→ 40, Tt 7→ [20, 20], and
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d - ct 7→ 20, ft 7→ 61, N 7→ 2, Y 7→ 40 + U + V, Tt 7→ [C,D] such that

C + U = 20 ∧D + V = 20 ∧ U + V ≤ 20 ∧ U > 0 ∧ V > 0,

stating that we need 60 seconds when (a) 3 toasts are in the bag or (b) 2 toasts are in the bag
and one fresh toast is in the bin. The required amount of time can be smaller: (c) 40 seconds
if the toast in the bin is well-cooked or, if it is not, (d) 40 seconds plus the remaining toasting
time for the toast in the bin, as long as this remaining time is not above 20 seconds.

In P2, as we know that there are three toasts in the bag, we impose the application of the
rule bag three times before applying any other rule, also preventing its application later, pruning
the search tree. This problem has only one initial state, but what we are trying to �nd is a value
for the parameter ft that �ts the restrictions of the problem. The search for a solution ends,
since our search state space is �nite thanks to the call strategy test, without �nding a solution.

For the third example, if we take P2 and we allow ft to be below 62 seconds instead of 61,
then the prototype returns the answer Y 7→ 60 such that ft < 62 ∧ ft > 60, i.e., we can cook
three toasts in 60 seconds when ft = 61, ful�lling all the restrictions of the problem.

9 Conclusions and related work

In our previous work [AMPP17], we extended the admissible conditions in [RMM17] by: (i)
allowing for reachability subgoals in the rewrite rules and (ii) removing all restrictions regarding
the variables that appear in the rewrite rules. A narrowing calculus for conditional narrowing
modulo E0 ∪ B when E0 is a subset of the theories handled by SMT solvers, B are the axioms
not related to the algebraic data types handled by the SMT solvers, and the conditions in the
rules in the rewrite theory are either rewrite conditions or quanti�er-free SMT formulas, was
presented, and the soundness and weak completeness of the calculus, as well as the completeness
of the calculus for topmost rewrite theories was proved.

The current work extends the previous one by adding two novel features: (1) the use of
strategies, to drive the search and reduce the state space, and (2) the support for parameters both
in the rewrite theories and in the strategies, that allows for the resolution of some reachability
problems that could not be speci�ed in the previous calculi that we had developed. A calculus
for conditional narrowing modulo E0 ∪ B with strategies and parameters has been presented,
and the soundness and weak completeness of the calculus have been proved. To the best of our
knowledge, a similar calculus did not previously exist in the literature.

The strategy language that we have proved suitable for our narrowing calculus in this work
is a subset of the Maude strategy language [MOMV04, EMOMV07, RMPV18]. This strategy
language and a connection with SMT solvers have been incorporated into the latest version of
the Maude language [DEE+20], which is being used to develop the prototype for the calculus in
this work.

A classic reference in equational conditional narrowing modulo is the work of Bockmayr
[Boc93]. The topic is addressed here for Church-Rosser equational conditional term rewriting
systems without axioms. The intimate relationship between rewriting and reachability problems
was shown by Hullot [Hul80], where he proved that any normalized solution to a reachability
problem could be lifted to a narrowing derivation that computed a more general solution.

Narrowing modulo order-sorted unconditional equational logics is covered by Meseguer and
Thati [MT07], being currently used for cryptographic protocol analysis.

The idea of constraint solving by narrowing in combined algebraic domains was presented
by Kirchner and Ringeissen [KR94], where the supported theories had unconstrained equalities
and the rewrite rules had constraints from an algebraic built-in structure, but they did not allow
for reachability problems.

Escobar, Sasse, and Meseguer [ESM12] have developed the concepts of variant and folding
variant narrowing, a narrowing strategy for order-sorted unconditional rewrite theories that
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terminates on those theories having the �nite variant property, but it has no counterpart for
conditional rewrite theories and it does not allow the use of constraint solvers or strategies.

Foundations for order-sorted conditional rewriting have been published by Meseguer [Mes17].
Cholewa, Escobar, and Meseguer [CEM15] have de�ned a new hierarchical method, called lay-
ered constraint narrowing, to solve narrowing problems in order-sorted conditional equational
theories, an approach similar to ours, and given new theoretical results on that matter, including
the de�nition of constrained variants for order-sorted conditional rewrite theories, but with no
speci�c support for SMT solvers.

In [Mes20], Meseguer studies reachability in Generalized Rewrite Theories, that include
constructors and variants, using equational theories beyond our setup of E0 ∪B (that only asks
for strict B-coherence), but with no rewrite conditions in the rules. Frozenness is used as a type
of strategy.

In previous work [AMPP14,AMPP15], the relationship between veri�able and computable
answers for reachability problems in rewrite theories with an underlying membership equational
logic has been studied, presenting two correct and weakly complete narrowing calculi, the second
being a re�nement of the �rst one. In this second calculus only normalized terms, in a similar
way to the reduction phase of Fribourg in the language SLOG [Fri85], were considered in order
to �nd an answer to a reachability problem. The rewriting language Maude [CDE+07], which
allows the use of re�ection, was used as a framework to develop the prototype for the calculus.

Order-sorted conditional rewriting with constraint solvers has been addressed by Rocha et
al. [RMM17], where the only admitted conditions in the rules are quanti�er-free SMT formulas,
and the only non-ground terms admitted in the reachability problems are those whose variables
have sorts belonging to the SMT sorts supported.

Future work will focus in broadening the applicability of the calculus. One line of work will
involve the development of a narrowing calculus for E0 ∪ (E1 ∪ B) uni�cation with strategies,
where E1 is a non-SMT equational theory; another line of work will study the extension of the
strategies and reachability problems supported by the calculus.
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A Appendix

This appendix holds the rest of the proofs of this work.

Lemma 5. Given a rewrite theory R = (Σ, E0 ∪B,R), a set of call strategy de�nitions CallR,
and terms t, v ∈ HΣ, for each c.p.t. T formed using the rules in DR,CallR with head t→ v/ST ,
so [v]E ∈ ST@[t]E , each renaming α such that ran(α) ∩ (VT ∪ VR,CallR) = ∅, and each strategy
ST ′ =E ST it holds that:

1. Main property: t →R/E v and there exist closed proof trees for [v]E ∈ STα@[t]E and
[v]E ∈ ST ′@[t]E with the same depth and number of nodes as T .

2. If ST = idle then [t]E = [v]E .

3. If ST = c[γ] then t −−→
cγ

1

R/E
v.

4. If ST = top(c[γ]), then t −−→
cγ,ε

1

R/E
v (i.e., the rewrite happens at the top position of t).

5. If ST = match u s.t.
∧m
j=1(lj = rj) ∧ φ then [t]E = [v]E and there exists a substitution σ

such that t =E uσ, ljσ =E rjσ, for 1 ≤ j ≤ m, and E0 � φσ.

6. If ST = ST 1 ; ST 2 then there exists a term u ∈ HΣ such that [u]E ∈ ST 1@[t]E and
[v]E ∈ ST 2@[u]E .

7. If ST = ST 1+ then there exist i + 1 terms u0 = t, u1, . . . , ui−1, ui = v ∈ HΣ, with i > 0,
such that [uj ]E ∈ ST 1@[uj−1]E , for 1 ≤ j ≤ i, where i is equal to one plus the number

of times that a rule with the form w1→w2/ST1 ; ST1+
w1→w2/ST1+ , followed by the application of a rule

with the form w1→w′/ST1 w′→w2/ST1+

w1→w2/ST1 ; ST1+ , is applied in the rightmost branch of the subtree

before applying a rule with the form w1→w2/ST1

w1→w2/ST1+ .

8. If ST = ST 1 | ST 2 then [v]E ∈ ST 1@[t]E or [v]E ∈ ST 2@[t]E .

9. If ST = match u s.t. φ ? ST 1 : ST 2 then there exists a substitution δ such that t =E uδ
and either E0 � φδ and [v]E ∈ ST 1δ@[t]E or E0 � ¬φδ and [v]E ∈ ST 2δ@[t]E .

10. If ST = CS , where sd CS := ST 1 ∈ CallR, then: (i) [v]E ∈ ST 1@[t]E , and (ii) [v]E ∈
ST 1γ@[t]E , for every renaming γ such that dom(γ) ⊆ vars(ST 1) \ VR and ran(γ) ∩
VR,CallR = ∅.

11. If ST = CS (t̄), where sd CS (x̄) := ST 1 ∈ CallR, x̄ = x1
s1 , . . . , x

n
sn , t̄ = t1, . . . , tn,

and ρ = {x̄ 7→ t̄}, then: (i) [v]E ∈ ST 1ρ@[t]E and (ii) if γ is a renaming such that
dom(γ) ⊆ vars(ST 1)\x̂ and ran(γ)∩(ran(ρ)∪VR,CallR) = ∅ (so t→v/ST1(γ∪ρ)

t→v/CS(t̄) ∈ DR,CallR),
then [v]E ∈ ST 1(γ ∪ ρ)@[t]E .

12. If ST = CS (t̄), where csd CS (x̄) := ST 1 if C ∈ CallR, with x̄ = x1
s1 , . . . , x

n
sn and

C =
∧m
j=1(lj = rj) ∧ φ, call VCS = vars(ST 1) ∪ vars(C), x̂ ⊆ VCS , t̄ = t1, . . . , tn, and ρ =

{x̄ 7→ t̄}, then (i) there exists a substitution δ1 : vars(Cρ)→ TΣ, such that ljρδ1 =E rjρδ1,

for 1 ≤ j ≤ n, E0 � φρδ1 (so
t→v/ST1ρδ1
t→v/CS(t̄) ∈ DR,CallR), and [v]E ∈ ST 1ρδ1@[t]E , and (ii) for

every renaming γ such that dom(γ) ⊆ VCS \ x̂ and ran(γ)∩ (ran(ρ)∪VR,CallR) = ∅, there
exists a substitution δ2 : vars(C(γ ∪ ρ)) → TΣ, such that lj(γ ∪ ρ)δ2 =E rj(γ ∪ ρ)δ2, for

1 ≤ j ≤ n, E0 � φ(γ ∪ ρ)δ2 (so t→v/ST1(γ∪ρ)δ2
t→v/CS(t̄) ∈ DR,CallR), and [v]E ∈ ST 1(γ ∪ ρ)δ2@[t]E .
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13. If ST = c[γ]{ST 1, . . . ,STm}, with c : l→ r if
∧m
j=1 lj → rj | ψ a rule in R, then there is

a substitution δ such that [riγδ]E ∈ ST iδ @ [liγδ]E , for 1 ≤ i ≤ m, and t −−→
c,γδ

1

R/E

v.

14. If ST = top(c[γ]{ST 1, . . . ,STm}), with c : l → r if
∧m
j=1 lj → rj | ψ a rule in R then

there is a substitution δ such that [riγδ]E ∈ ST iδ@[liγδ]E , for 1 ≤ i ≤ m, and t −−→
c,ε,γδ

1

R/E

v.

15. If ST = matchrew u s.t.
∧m
j=1(lj = rj) ∧ φ by x1

s1 using ST 1, . . . , x
n
sn using STn, where

u = u[x1
s1 , . . . , x

n
sn ]p1...pn then there exist a substitution δ, where δVu,φ,l̄,r̄ is ground, and

terms t1, . . . , tn ∈ HΣ such that t =E uδ, ljδ =E rjδ, for 1 ≤ j ≤ m, E0 � φδ, [ti]E ∈
ST iδ @ [xisiδ]E , for 1 ≤ i ≤ n, and v =E uδ[t1, . . . , tn]p1...pn .

Proof. The proof for the �rst property is done by induction on the depth of the c.p.t. T for
t → v/ST . The rest of the properties are proved when the related strategy is treated in the
proof for the �rst property. As ran(α) ∩ vars(ST ) = ∅ then vars(ST ) ∩ dom(α−1) = ∅, so
STαα−1 = ST .

� There are �ve strategies in the base case: fail, idle, c[γ], top(c[γ]), and the match test.
The depth and number of nodes of all the closed proof trees is one in this case.

1. As there are no derivation rules for fail, there is nothing to prove in this case.

2. If [v]E ∈ idle@[t]E = {[t]E} then, as shown in example 10, [v]E = [t]E (property
2), so v =E t and, by de�nition, t →R/E v. As idle α = idle then also [v]E ∈
idle α@[t]E using the original c.p.t. T . As only idle =E idle, there is nothing to
prove about the strategies that are equal modulo E to idle.

3. If [v]E ∈ c[γ]@[t]E , with c : l → r if φ, then t→v/c[γ] must come from a derivation

rule t′→v′/c[γ] in DR,CallR , where t
′ −−−→
c,p,γδ

1

R

v′ for proper p and δ such that t =E t
′ =

t′[lγδ]p, v =E v
′ = t′[rγδ]p, and E0 � φγδ, so t −−−→

c,p,γδ

1

R/E

v (property 3).

c[γ]α = c[(γα)dom(γ)], call β = (γα)dom(γ) and let δ′ = α−1δ. As ran(α) ∩ (VT ∪
VR,CallR) = ∅ then cβδ′ = c(γα)dom(γ)α

−1δ = cγδ, so also t −−−−−→
c,βδ′

1

R/E

v, and there

is a derivation rule t′→v′/c[β] ∈ DR,CallR , so t→v/c[γ]α is a c.p.t. for [v]E ∈ c[γ]α@[t]E
because t =E t

′, v =E v
′, and c[γ]α = c[β].

As ST = c[γ] =E ST ′, then ST ′ = c[γ′] where γ =E γ′, so (l, r, φ)γ =E (l, r, φ)γ′,
with Vlγ = Vlγ′ and Vrγ = Vrγ′ , hence E0 � φγ′δ, t =E t′[lγδ]p =E t′[lγ′δ]p and
v =E t′[rγδ]p =E t′[rγ′δ]p, ground terms, and t′[lγ′δ]p −−−→

c,p,γ′δ

1

R

t′[rγ′δ]p. Then, there

is a derivation rule t′[lγ′δ]p→t′[rγ′δ]p/c[γ′] in DR,CallR , so t→v/c[γ′] is a c.p.t. for [v]E ∈
c[γ′]@[t]E .

4. If [v]E ∈ top(c[γ])@[t]E , where c : l → r is a rule in R, then T = t→v/top(c[γ]) must

come from a derivation rule lγδ→rγδ/top(c[γ]) ∈ DR,CallR , meaning that lγδ −−−−→
c,ε,γδ

1

R

rγδ, such that lγδ =E t and rγδ =E v, so t −−−−→
c,ε,γδ

1

R/E

v (property 4). Call β =

(γα)dom(γ). As in the previous case, top(c[γ])α = top(c[γ]α) = top(c[β]). If we take
δ′ = α−1δ, then cβδ′ = cγδ so also lγδ −−−−→

c,ε,βδ′
1

R

rγδ and lγδ→rγδ/top(c[β]) ∈ DR,CallR ,

so t→v/top(c[γ])α is a c.p.t. for [v]E ∈ top(c[γ])α@[t]E , because lγδ =E t, rγδ =E v,
and top(c[γ])α = top(c[β]).

As ST = top(c[γ]) =E ST ′ then ST ′ = top(c[γ′]) where γ =E γ′, so (l, r, φ)γ =E

(l, r, φ)γ′, with Vlγ = Vlγ′ and Vrγ = Vrγ′ , hence E0 � φγ′δ, t =E lγδ =E lγ′δ
and v =E rγδ =E rγ′δ, ground terms, and lγ′δ −−−−→

c,ε,γ′δ

1

R

rγ′δ. Then, there is a
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derivation rule t′[lγ′δ]p→t′[rγ′δ]p/top(c[γ′]) in DR,CallR , so t→v/top(c[γ′]) is a c.p.t. for

[v]E ∈ top(c[γ′])@[t]E .

5. If ST = match u s.t.
∧m
j=1(lj = rj) ∧ φ and [v]E ∈ ST@[t]E , then T = t→v/ST must

come from a rule w→w/ST in DR,CallR such that t =E w and v =E w, so t =E v

(i.e. [t]E = [v]E), and there exists a substitution σ such that w =E uσ, so t =E uσ,
ljσ =E rjσ, for 1 ≤ j ≤ m, and E0 � φσ (property 5). As t =E v then, by
de�nition, t→R/E v.

As STα = match uα s.t.
∧m
j=1(ljα = rjα) ∧ φα, if we take σ′ = α−1σ then, trivially,

w =E uασ′, so t =E uασ′, ljασ′ =E rjασ
′, for 1 ≤ j ≤ m, and E0 � φασ′, so there

is a rule w→w/STα ∈ DR,CallR , hence t→v/STα is a c.p.t. for [v]E ∈ STα@[t]E .

As ST =E ST ′, then ST ′ = match u′ s.t.
∧m
j=1(l′j = r′j) ∧ φ′ where (u, l̄, r̄, φ) =E

(u′, l̄′, r̄′, φ′), with Vu,l̄,r̄,φ = Vu′,l̄′,r̄′,φ′ , so V(u′,l̄′,r̄′,φ′)σ = ∅, hence
w→w/ST ′ is a deriva-

tion rule in DR,CallR , since w =E uσ =E u
′σ, l̄′σ =E l̄σ =E r̄σ =E r̄

′σ, and E0 � φσ
and φ =E φ′ implies E0 � φ′σ. Then, as t =E w and v =E w,

t→v/ST ′ is a c.p.t. for

[v]E ∈ ST ′@[t]E .

� Inductive step:

6. ST = ST 1 ; ST 2.

If [v]E ∈ ST@[t]E then T = T1 T2
t→v/ST1 ; ST2

comes from a rule t→u/ST1 u→v/ST2

t→v/ST1 ; ST2
, where

T1 and T2 are closed proof trees with head t→ u/ST 1 and u→ v/ST 2, respectively,
so [u]E ∈ ST 1@[t]E and [v]E ∈ ST 2@[u]E (property 6). As these closed proof trees
are of a smaller depth then, by I.H. and property 1, t →R/E u and u →R/E v, so
t→R/E v.

As STα = ST 1α ;ST 2α, we can apply the I.H. to T1 and T2, so there are closed proof
trees T ′1 and T ′2 with head t→ u/ST 1α and u→ v/ST 2α, respectively. As there is a

rule t→u/ST1α u→v/ST2α
t→v/STα ∈ DR,CallR then T ′1 T ′2

t→v/STα is a c.p.t. for [v]E ∈ STα@[t]E .

As ST =E ST ′, then ST ′ = ST ′1 ; ST ′2 where ST 1 =E ST ′1 and ST 2 =E ST ′2. As T1

and T2 are of a smaller depth than T then, by I.H., there are closed proof trees T ′1
and T ′2 for [u]E ∈ ST ′1@[t]E and [v]E ∈ ST ′2@[u]E , with the same depth and number

of nodes as T1 and T2, respectively, and
T ′1 T ′2
t→v/ST ′ is a c.p.t. for [v]E ∈ ST ′@[t]E with

the same depth and number of nodes as T .

7. ST = ST 1+.

T must be either of the form T1
t→v/ST1+ or T2

t→v/ST1+ , where T1 has head t→ v/ST 1

or T2 has head t→ v/ST 1 ; ST 1+.

In the �rst case, i = 1 because no rule with the form w1→w2/ST1 ;ST1+
w1→w2/ST1+ has been

applied, and there are 2 terms, u0 (we take t) and u1 (we take v), in HΣ such that
u0 = t, u1 = v, and [u1]E ∈ ST 1@[u0]E , because we have a c.p.t. for t→ v/ST 1.

In the second case, we can apply I.H. to the c.p.t. for u1 → v/ST 1+ so there are i
terms w0 = u1, . . . , wi−2, wi−1 = v such that [wj ]E ∈ ST 1@[wj−1]E , for 1 ≤ j ≤ i− 1.
As there is a c.p.t. for t → u1/ST 1 in the left branch, then also [u1]E ∈ ST 1@[t]E .
Taking u0 = t and uj+1 = wj for 1 ≤ j ≤ i− 1 we get u0 = t, ui = wi−1 = v, and
[uj ]E ∈ ST 1@[uj−1]E , for 1 ≤ j ≤ i (property 7).

In either case we also have a c.p.t. of a smaller depth whose head has the form
t → v/ . . . so, by I.H., t →R/E v. Also by I.H., we have either a c.p.t. T ′1 with head
= t → v/ST 1α or T ′2 with head t → v/ST 1α ; ST 1α+ with depth equal, whichever

the case, to depth(T ) − 1. As ST 1 + α = ST 1α+ and there are rules t→v/ST1α
t→v/ST1α+
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and t→v/ST1α ; ST1α+
t→v/ST1α+ in DR,CallR then either T ′1

t→v/ST1α+ or T ′2
t→v/ST1α+ is a c.p.t. for

[v]E ∈ STα@[t]E with the same depth and number of nodes as T .
As ST =E ST ′, then ST ′ = ST ′1+ where ST 1 =E ST ′1. As Tj , where j in {1, 2},
has smaller depth than T then, by I.H., there is a c.p.t. T ′ for [v]E ∈ ST ′1@[t]E
or [v]E ∈ ST ′1 ; ST 1 + @[t]E with the same depth and number of nodes as Tj , and

T ′

t→v/ST ′ is a c.p.t. for [v]E ∈ ST ′@[t]E with the same depth and number of nodes as
T .

8. ST = ST 1 | ST 2.
T must be either of the form T1

t→v/ST1 | ST2
or T2

t→v/ST1 | ST2
, where T1 has head t →

v/ST 1 or T2 has head t → v/ST 2, so either [v]E ∈ ST 1@[t]E or [v]E ∈ ST 2@[t]E
must hold (property 8) and, by I.H., t →R/E v. Also by I.H. there is a c.p.t T ′1,
with head t → v/ST 1α, or T ′2, with head t → v/ST 2α with depth equal, whichever
the case, to depth(T )− 1.

As STα = ST 1α | ST 2α and there are rules t→v/ST1α
t→v/ST1α | ST2α

and t→v/ST2α
t→v/ST1α | ST2α

in DR,CallR , then either T ′1
t→v/ST1α | ST2α

or T ′2
t→v/ST1α | ST2α

is a c.p.t. for [v]E ∈
STα@[t]E with the same depth and number of nodes as T .
As ST =E ST ′, then ST ′ = ST ′1 | ST ′2 where ST 1 =E ST ′1 and ST 2 =E ST ′2. As
Tj , where j in {1, 2}, has smaller depth than T then, by I.H., there is a c.p.t. T ′ for
[v]E ∈ ST ′1@[t]E or [v]E ∈ ST ′2@[t]E , with the same depth and number of nodes as
Tj , and T ′

t→v/ST ′ is a c.p.t. for [v]E ∈ ST ′@[t]E with the same depth and number of
nodes as T .

9. ST = match u s.t. φ ? ST 1 : ST 2.
By the de�nition of the derivation rules for the if-then-else strategy, T must be of the
form T1

t→v/ST or T2
t→v/ST , where T1 has head t→ v/ST 1δ or T2 has head t→ v/ST 2δ,

coming from the application of a rule with the form t′→v′/ST1δ
t′→v′/ST or t′→v′/ST2δ

t′→v′/ST , with

t =E t
′ =E uδ and v =E v

′. In the �rst case, by de�nition of the rule, E0 � φδ and, as
T1 is a c.p.t. for t→ v/ST 1δ, [v]E ∈ ST 1δ@[t]E ; in the second case, also by de�nition
of the rule, E0 � ¬φδ and, as T2 is a c.p.t. for t → v/ST 2δ, [v]E ∈ ST 2δ@[t]E
(property 9). In either case, as T1 and T2 are closed proof trees of a smaller depth
whose head has the form t→ v/ . . . then, by I.H., t→R/E v.
STα = match uα s.t. φα ? ST 1α : ST 2α. If we take δ′ = α−1δ then αδ′ = δ, so
uαδ′ = uδ, φαδ′ = φδ, ST 1αδ

′ = ST 1δ, and ST 2αδ
′ = ST 2δ.

� If E0 � φαδ′ (so E0 � φδ) then T1 exists and there is a rule t′→v′/ST1αδ′

t′→v′/STα (i.e.,
t′→v′/ST1δ
t′→v′/STα ) in DR,CallR , so

T1
t→v/STα is a c.p.t. for [v]E ∈ STα@[t]E with the

same depth and number of nodes as T .

� Else, T2 exists and there is a rule t′→v′/ST2αδ′

t′→v′/STα (i.e., t′→v′/ST2δ
t′→v′/STα in DR,CallR), so

T2
t→v/STα is a c.p.t. for [v]E ∈ STα@[t]E with the same depth and number of
nodes as T .

As ST =E ST ′, then ST ′ = match u′ s.t. φ′ ? ST ′1 : ST ′2 where u =E u′, φ =E φ′,
ST 1 =E ST ′1, ST 2 =E ST ′2, Vu = Vu′ , Vφ = Vφ′ , VST1 = VST ′1 , and VST2 = VST ′2 .
We prove the case where E0 � φδ, the case where E0 � ¬φδ is proved in exactly the
same way. As φ =E φ

′ and Vφ = Vφ′ then E0 � φ′δ, ground formula. Also, as u =E u
′

and Vu = Vu′ , then t =E t′ =E uδ =E u′δ, so there is a derivation rule t′→v′/ST ′1δ
t′→v′/ST ′ .

As ST 1 =E ST ′1 then ST 1δ =E ST ′1δ so, by I.H. since t =E t′, v =E v′, and T1 has
smaller depth than T , there is a c.p.t. T ′1 = T ′

t→v/ST ′1δ
for [v]E ∈ ST ′1δ@[t]E , with the

same depth and number of nodes as T1, and
T ′1

t→v/ST ′ is a c.p.t. for [v]E ∈ ST ′@[t]E
with the same depth and number of nodes as T .
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10. ST = CS , where sd CS := ST 1, and γ renaming such that dom(γ) ⊆ vars(ST 1)\VR
and ran(γ) ∩ VR,CallR = ∅.
T must be of the form T1

t→v/CS , where T1 has head t→ v/ST 1β, so t→R/E v, by I.H.,

for some renaming β such that ran(β) ∩ VR,CallR = ∅ (hence dom(β−1) ∩ VR = ∅).
Also by I.H., if we take β−1, as dom(β−1) ∩ VR = ∅ then there is a c.p.t. T ′1 with
head t→ v/ST 1 and the same depth and number of nodes as T1, so [v]E ∈ ST 1@[t]E
(i), and if we take γ′ = β−1γ, as also dom(γ) ∩ VR = ∅, there must be a c.p.t. with
head t → v/ST 1βγ

′ (i.e., t → v/ST 1γ), with the same depth and number of nodes
as T1, so [v]E ∈ ST 1γ@[t]E (ii) (property 10).
As dom(α) ⊆ vars(CS) = ∅ then α = none, so STα = CS and T is also a c.p.t. for
[v]E ∈ STα@[t]E .
As ST ′ =E ST , then ST ′ = CS = ST , and T is also a c.p.t. for [v]E ∈ ST ′@[t]E .

11. ST = CS (t̄), where t̄ = t1, . . . , tn, sd CS (x̄) := ST 1 ∈ CallR, x̄ = x1
s1 , . . . , x

n
sn ,

x̂ ⊆ VCS , ρ = {x1
s1 7→ t1, . . . , x

n
sn 7→ tn}, with ran(ρ) ⊂ X \ VR,CallR by the de�nition

of call strategy, and γ is a renaming such that dom(γ) ⊆ vars(ST 1) \ x̂ and ran(γ)∩
(ran(ρ) ∪ VR,CallR) = ∅.
T must be of the form T1

t→v/CS(t̄) , where T1 has head t→ v/ST 1(β ∪ ρ) (so, by I.H.,
t →R/E v) for some renaming β such that dom(β) ⊆ vars(ST 1) \ (x̂ ∪ VR) and
ran(β) ∩ (ran(ρ) ∪ VR,CallR) = ∅, hence (β ∪ ρ)β−1 = ρ. Then, by I.H., there must
exist a c.p.t T2 with head t → v/ST 1ρ and the same depth and number of nodes as
T1 so [v]E ∈ ST 1ρ@[t]E (i).
As dom(γ) ⊆ vars(ST 1) \ x̂ ⊆ VR,CallR , dom(ρ) = x̂, and ran(ρ) ⊂ X \ VR,CallR ,
so ran(ρ) ∩ dom(γ) = ∅, then ST 1(γ ∪ ρ) = ST 1ργ, with dom(γ) ⊆ vars(ST 1ρ).
Then dom(γ) ⊆ vars(ST 1ρ). As T2 has head t → v/ST 1ρ and the same depth and
number of nodes as T1, dom(γ) ⊆ vars(ST 1ρ \ VR), and ran(γ) ∩ (vars(ST 1ρ) ∪
VR,CallR) = ∅ then, by I.H., there must exist a c.p.t. T3 with head t → v/ST 1ργ
(i.e., t→ v/ST 1(γ ∪ ρ)), so [v]E ∈ ST 1(γ ∪ ρ)@[t]E (ii) (property 11).
As dom(α) ⊆ vars(ST ) \ x̂ = vars(CS (t̄)) \ x̂ = ran(ρ), because x̂ /∈ vars(CS (t̄))
and ran(ρ) ∩ VR,CallR = ∅, then STα = CS (t̄α) and as ran(ρ) ⊂ X \ VR,CallR ⊂
X \ vars(ST 1), so dom(α)∩ vars(ST 1) = ∅, then ST 1(ρα) = (ST 1ρ)α and there is a
derivation rule t→v/(ST1ρ)α

t→v/CS(t̄α) in DR,CallR . Now, as T2 has head t→ v/ST 1ρ and depth
one less than the depth of T , dom(α) ⊆ ran(ρ) ⊆ vars(ST 1ρ) and vars(ST 1) ⊆
VR,CallR , so ran(α) ∩ (vars(ST 1ρ) ∪ VR,CallR) ⊆ ran(α) ∩ (ran(ρ) ∪ VR,CallR) =
ran(α) ∩ (vars(ST ) ∪ VR,CallR) = ∅ then, by I.H., there is a c.p.t. T4 with head
t → v/(ST 1ρ)α and the same depth and number of nodes as T1, so

T4
t→v/STα is a

c.p.t. for [v]E ∈ STα@[t]E with the same depth and number of nodes as T .
As ST ′ =E ST , then ST ′ = CS (t̄′), where t̄ =E t̄′. Let ρ′ = x̄ 7→ t̄′, so ρ′ =E ρ.
As T = T1

t→v/CS(t̄) , where T1 has head t → v/ST 1(β ∪ ρ), then there is a derivation

rule t→v/ST1(β∪ρ)
t→v/CS(t̄) , so there is also a derivation rule t→v/ST1(β∪ρ′)

t→v/CS(t̄′) . As ST 1(β ∪ ρ) =E

ST 1(β ∪ ρ′) then, by I.H., there is a c.p.t. T ′1 for [v]E ∈ ST 1(β ∪ ρ′)@[t]E with the

same depth and number of nodes as T1, so
T ′1

t→v/CS(t̄′) is a c.p.t. for [v]E ∈ CS (t̄′)@[t]E
with the same depth and number of nodes as T .

12. ST = CS (t̄), where t̄ = t1, . . . , tn, csd CS (x̄) := ST 1 if C ∈ CallR, with x̄ =
x1
s1 , . . . , x

n
sn , x̂ ⊆ VCS , and C =

∧m
j=1(lj = rj) ∧ φ, call VC = vars(C), VCS =

vars(ST 1) ∪ VC , and ρ = {x1
s1 7→ t1, . . . , x

n
sn 7→ tn}, with ran(ρ) ∩ VR,CallR = ∅, and

γ is a renaming such that dom(γ) ⊆ VCS \ x̂ = VCS \ dom(ρ) and ran(γ) ∩ (ran(ρ) ∪
VR,CallR) = ∅, so C(γ ∪ ρ)(γvars(C))

−1 = Cρ.

T must be of the form T1
t→v/CS(t̄) , where T1 has head t→ v/ST 1(β ∪ ρ)δ (so, by I.H.,

t →R/E v) for some renaming β such that dom(β) ⊆ VCS \ x̂ = VCS \ dom(ρ), so
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dom(β) ∩ dom(ρ) = ∅ and ran(β) ∩ (ran(ρ) ∪ VR,CallR) = ∅, so ran(β) ∩ (ran(ρ) ∪
dom(ρ)) = ∅ hence ρβ = β ∪ ρ, and some substitution δ : vars(C(β ∪ ρ))→ TΣ such
that l̄(β ∪ ρ)δ =E r̄(β ∪ ρ)δ and E0 � φ(β ∪ ρ)δ.
Call δ1 = βδ. As ρβ = β ∪ ρ then δ1 : vars(Cρ) → TΣ is a substitution such that
ljρδ1 =E rjρδ1, for 1 ≤ j ≤ n, E0 � φρδ1. Also as ρβ = β∪ρ, so (β∪ρ)δ = ρβδ = ρδ1,
T1 is a c.p.t with head t→ v/ST 1ρδ1 so, by de�nition, [v]E ∈ ST 1ρδ1@[t]E (i).
As C(γ∪ρ)(γVC )−1 = Cρ then C(γ∪ρ)(γVC )−1δ1 = Cρδ1, call δ2 = (γVC )−1δ1, hence
δ2 : vars(C(γ ∪ ρ)) → TΣ is a substitution such that lj(γ ∪ ρ)δ2 =E rj(γ ∪ ρ)δ2, for
1 ≤ j ≤ n, and E0 � φ(γ∪ρ)δ2. As dom(δ1) = vars(Cρ) then ST 1(γ∪ρ)δ2 = ST 1(γ∪
ρ)(γVC )−1δ1 = ST 1(γVC ∪ γ\VC ∪ ρ)(γVC )−1δ1 = ST 1(γ\VC ∪ ρ)δ1 = ST 1(γ\VC ∪ ρδ1),
because as ran(γ) ∩ (ran(ρ) ∪ VR,CallR) = ∅ and vars(ST 1) ⊆ VR,CallR then after
γ\VC instantiates ST 1 in ST 1(γ\VC ∪ρ), δ1 does not instantiate any renamed variable
in ran(γ\VC ). Now, as δ1 ground implies ran(ρδ1) ⊆ ran(ρ), ran(ρ) ∩ VR,CallR = ∅,
and dom(γ\VC ) ⊆ vars(ST 1) ⊆ VR,CallR , then ST 1(γ\VC ∪ ρδ1) = ST 1ρδ1γ\VC , i.e.,
ST 1(γ ∪ ρ)δ2 = ST 1ρδ1γ\VC .
In order to use I.H. we need to prove ran(γ\VC )∩ (vars(ST 1ρδ1)∪ VR,CallR) = ∅ and
dom(γ\VC ) ⊆ vars(ST 1ρδ1).

� By de�nition, ran(γ) ∩ (ran(ρ) ∪ VR,CallR) = ∅. As ran(ρδ1) ⊆ ran(ρ) then also
ran(γ)∩ (ran(ρδ1)∪VR,CallR) = ∅, so ran(γ\VC )∩ (vars(ST 1ρδ1)∪VR,CallR) = ∅
because vars(ST 1) ⊆ VR,CallR .

� As dom(γ) ⊆ VCS \ dom(ρ) and VCS = vars(ST 1) ∪ VC then dom(γ\VC ) ⊆
vars(ST 1) \ (dom(ρ) ∪ VC) so dom(γ\VC ) ⊆ vars(ST 1ρ) \ VC . Now, as ran(ρ) ∩
VR,CallR = ∅, so ran(ρ) ∩ vars(ST 1) = ∅, and dom(γ\VC ) ⊆ vars(ST 1) \ VC ,
then dom(γ\VC ) ⊆ vars(ST 1ρ) \ (VC ∪ ran(ρ)) so, as dom(δ1) = vars(Cρ) ⊆
VC ∪ ran(ρ), then dom(γ\VC ) ⊆ vars(ST 1ρδ1).

Then, by I.H., there is a c.p.t. for [v]E ∈ ST 1ρδ1γ\VC@[t]E hence, as ST 1(γ ∪ ρ)δ2 =
ST 1ρδ1γ\VC , also [v]E ∈ ST 1(γ ∪ ρ)δ2@[t]E (ii) (property 12).
As dom(α) ⊆ vars(ST )\ x̂ = vars(CS (t̄))\ x̂ = ran(ρ), because x̂ /∈ vars(CS (t̄)) and
ran(ρ)∩VR,CallR = ∅, then STα = CS (t̄α). Also, as ran(α)∩(vars(ST )∪VR,CallR) =
∅, then ran(α) ∩ (ran(ρ) ∪ dom(ρ)) = ∅ and dom(α−1) ∩ (vars(ST ) ∪ VR,CallR) = ∅
so, as VCS ⊆ VR,CallR , Cραα

−1 = Cρ and ST 1ραα
−1 = ST 1ρ, hence Cραα−1δ1 =

Cρδ1 and ST 1ραα
−1δ1 = ST 1ρδ1, call δ3 = α−1δ1, so δ3 : vars(Cρα) → TΣ is a

substitution such that ljραδ3 =E rjραδ3, for 1 ≤ j ≤ n and E0 � φραδ3 and there

is a derivation rule t→v/ST1ραδ3
t→v/CS(t̄α) ∈ DR,CallR . Then, as ST 1ραδ3 = ST 1ρδ1 implies

t → v/ST 1ραδ3 = t → v/ST 1ρδ1 and T1 has head t → v/ST 1ρδ1,
T1

t→v/CS(t̄α) is a
c.p.t. for [v]E ∈ STα@[t]E with the same depth and number of nodes as T .
As ST ′ =E ST , then ST ′ = CS (t̄′), where t̄ =E t̄′. Let ρ′ = x̄ 7→ t̄′, so ρ′ =E ρ. As
T = T1

t→v/CS(t̄) , where T1 has head t→ v/ST 1(β ∪ ρ), then there is a derivation rule
t→v/ST1(β∪ρ)
t→v/CS(t̄) . As ρ =E ρ

′, then l̄(β∪ρ′)δ =E l̄(β∪ρ)δ =E r̄(β∪ρ)δ =E r̄(β∪ρ′)δ and
E0 � φ(β ∪ ρ′)δ, so there is also a derivation rule t→v/ST1(β∪ρ′)

t→v/CS(t̄′) . As ST 1(β ∪ ρ) =E

ST 1(β ∪ ρ′) then, by I.H., there is a c.p.t. T ′1 for [v]E ∈ ST 1(β ∪ ρ′)@[t]E with the

same depth and number of nodes as T1, so
T ′1

t→v/CS(t̄′) is a c.p.t. for [v]E ∈ CS (t̄′)@[t]E
with the same depth and number of nodes as T .

13. ST = c[γ]{ST}, with c : l→ r if
∧m
j=1 lj → rj | ψ a rule in R, ST = ST 1, . . . ,STm,

and dom(γ) ∩ vars(ST ) = ∅.
T must be of the form T1···Tm

t→v/c[γ]{ST} , where Ti, 1 ≤ i ≤ m, are closed proof trees with

head liγδ → riγδ/ST iδ (so, by I.H., liγδ →R/E riγδ and [rjγδ]E ∈ STj δ@[ljγδ]E),

because there is a derivation rule l1γδ→r1γδ/ST1δ···lmγδ→rmγδ/STmδ

u→u[rγδ]p/c[γ]{ST} ∈ DR,CallR , where
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u ∈ HΣ, p ∈ pos(u), δ : vars(cγ) → TΣ, u = u[lγδ]p =E t, u[rγδ]p =E v, and
E0 � ψγδ so, by de�nition as also liγδ →R/E riγδ, 1 ≤ i ≤ m, t −−−−→

c,u,p,γδ

1

R/E

v

(property 13).

Call γ′ = (γα)dom(γ) so STα = c[γ′]{STα}.
If we take δ′ = α−1δ, as dom(α−1) = ran(α), ran(α) ∩ (VT ∪ VR,CallR) = ∅, δ :
vars(cγ) → TΣ, then cγ′δ′ = c(γα)dom(γ)α

−1δ = cγδ, so δ′ : vars(cγ′) → TΣ with
E0 � ψγ′δ′, u|p = lγ′δ′, and STαδ′ = STδ.

Then, l1γ′δ′→r1γ′δ′/ST1αδ′···lmγ′δ′→rmγ′δ′/STmαδ′

u→u[rγ′δ′]p/STα
, i.e., l1γδ→r1γδ/ST1δ···lmγδ→rmγδ/STmδ

u→u[rγδ]p/STα

is a derivation rule in DR,CallR , so
T1···Tm
t→v/STα is a c.p.t. for [v]E ∈ STα@[t]E with the

same depth and number of nodes as T .

As ST = c[γ]{ST} =E ST ′, then ST ′ = c[γ′]{ST
′} where ST =E ST

′
and γ =E γ′,

so (l, r, ψ, l̄, r̄)γ =E (l, r, ψ, l̄′, r̄′)γ′, with Vlγ = Vlγ′ , Vrγ = Vrγ′ , Vl̄γ = Vl̄γ′ and
Vr̄γ = Vr̄γ′ , hence E0 � ψγ′δ, t =E t

′[lγδ]p =E t
′[lγ′δ]p and v =E t

′[rγδ]p =E t
′[rγ′δ]p,

ground terms and formula. Then, l1γ′δ→r1γ′δ/ST ′1δ···lmγ′δ→rmγ′δ/ST ′mδ
u→u[rγ′δ]p/c[γ′]{ST

′}
is a derivation

rule in DR,CallR . Again, by I.H., since STδ =E ST
′
δ and (l̄, r̄)γδ =E (l̄, r̄)γ′δ, there

exist a c.p.t. T ′j with the same depth and number of nodes as Tj for [rjγ
′δ]E ∈

ST ′jδ@[ljγ
′δ]E , for 1 ≤ j ≤ m, so T ′1···T ′m

t→v/c[γ′]{ST ′}
is a c.p.t. for [v]E ∈ c[γ′]{ST

′}@[t]E .

14. ST = top(c[γ]{ST}), with c : l → r if
∧m
j=1 lj → rj | ψ a rule in R, ST =

ST 1, . . . ,STm, and dom(γ) ∩ vars(ST ) = ∅.
T must be of the form T1···Tm

t→v/c[γ]{ST} , where Ti, 1 ≤ i ≤ m, are closed proof trees with

head liγδ → riγδ/ST iδ (so, by I.H., liγδ →R/E riγδ and [rjγδ]E ∈ STj δ@[ljγδ]E),

because there is a derivation rule l1γδ→r1γδ/ST1δ···lmγδ→rmγδ/STmδ
lγδ→rγδ/top(c[γ]{ST1,...,STm}) ∈ DR,CallR , where

δ : vars(cγ)→ TΣ, lγδ =E t, rγδ =E v, and E0 � ψγδ.

As liγδ →R/E riγδ, 1 ≤ i ≤ m, t =E lγδ, v =E rγδ, and E0 � ψγδ then, by de�nition,
t −−−−→
c,u,ε,γδ

1

R/E

v (property 14).

The proofs for the existence of a c.p.t. for [v]E ∈ STα@[t]E and [v]E ∈ ST ′@[t]E
with the same depth and number of nodes as T are the same proofs shown in the
previous subcase, particularized for the position p = ε, so u = lγδ and u[rγδ]p = rγδ.

15. ST = matchrew u s.t. C by x1
s1 using ST 1, . . . , x

n
sn using STn, call x̄ = x1

s1 , . . . , x
n
sn ,

where C =
∧m
j=1(lj = rj) ∧ φ, u = u[x1

s1 , . . . , x
n
sn ]p1...pn , and x̂ = {x̄}.

T must be of the form T1···Tn
t→v/ST , where each Ti is a c.p.t. with head xisiδ → ti/ST iδ,

1 ≤ i ≤ n, by application of a rule
x1
s1
δ→t1/ST1δ···xnsnδ→tn/STnδ

uδ→uδ[t̄]p̄/ST ∈ DR,CallR , so

V(u,l̄,r̄,φ)δ = ∅ and VSTδ ⊆ VT , where δVST : X → TΣ(X\VST ), ran(δVST ) ⊆ VSTδ,

t =E uδ, v =E uδ[t̄]p̄, l̄δ =E r̄δ, and E0 � φδ so, by I.H., [tj ]E ∈ STj δ@[xjsjδ]E , for

1 ≤ j ≤ n (property 15). Also by I.H., xjsjδ →R/E tj , for 1 ≤ j ≤ n. Then, by con-
gruence of rewriting, t =E uδ[x

1
s1δ, . . . , x

n
snδ]p1...pn →R/E uδ[t̄]p̄ =E v (i.e., t→R/E v).

Call α′ = α\x̄. Then STα has the form matchrew uα′ s.t. Cα′ by x1
s1 using ST 1α

′, . . . ,
xnsn using STnα

′, i.e., STα = STα′, with ran(α) ∩ (VT ∪ VR,CallR) = ∅. Call δ′ =
(α′)−1δ. As ran(α)∩VT = ∅, ran(δVST ) ⊆ VSTδ ⊆ VT , and ran(δVST )∩VST = ∅, then
ran(α) ∩ ran(δVST ) = ∅, hence ran(α′) ∩ ran(δVST ) = ∅. As also VST ∩ ran(δVST ) = ∅
and VSTα′ ⊆ VST ∪ ran(α′) then, for each x ∈ VST , xα′δ′ = xδ and:

� if x ∈ dom(δ) then Vxδ ⊆ ran(δVST ), so Vxδ ∩ VSTα′ = ∅, i.e., Vxα′δ′ ∩ VSTα′ = ∅,
and

� if x /∈ dom(δ) then xδ = x and:
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* if x ∈ dom(α′) then, as ran(α) ∩ VT = ∅, hence also ran(α′) ∩ VT = ∅, and
x ∈ VST ⊆ VT , then x /∈ VSTα′ , i.e., ∅ = Vxδ ∩ VSTα′ = Vxα′δ′ ∩ VSTα′ ;

* if x /∈ dom(α′) then x ∈ VSTα′ \ ran(α′) = VSTα′ \ dom((α′)−1), so xδ′ =
x(α′)−1δ = xδ = x, i.e., x /∈ dom(δ′VSTα′

).

Then δ′VSTα′
: X → TΣ(X\vars(STα′)) and STαδ′ = STα′δ′ = STδ, hence t =E

uα′δ′ = uδ ∈ TΣ, l̄α′δ′ = l̄δ =E r̄δ = r̄α′δ′, so {ljα′δ′, rjα′δ′}mj=1 ⊂ TΣ, φα′δ′ = φδ ∈

TΣ, and E0 � φα′δ′, hence there is a derivation rule
x1
s1
α′δ′→t1/ST1α′δ′···xnsnα

′δ′→tn/STnα′δ′

uα′δ′→uα′δ′[t̄]p̄/STα′

in DR,CallR . As uα
′δ′ = uδ, STα = STα′, STα′δ′ = STδ, and x̄α′δ′ = x̄δ, because

x̄ ⊆ mp(ST ), this is the same as
x1
s1
δ→t1/ST1δ···xnsnδ→tn/STnδ

uδ→uδ[t̄]p̄/STα ∈ DR,CallR . Then, as

t =E uδ and v =E uδ[t̄]p̄,
T1···Tn

t→v/STα is a c.p.t. for [v]E ∈ STα@[t]E .

As ST =E ST ′, then ST ′ = matchrew u′ s.t. C ′ by x̄ using ST
′
where ST =E ST

′

C =E C
′ =

∧m
j=1(l′j = r′j)∧φ′, so (φ, l̄, r̄) =E (φ′, l̄′, r̄′), with Vu = Vu′ = x̂, Vφ = Vφ′ ,

Vl̄γ = Vl̄γ′ and Vr̄γ = Vr̄γ′ , so t =E uδ =E u′δ, v =E uδ[t̄]p̄ =E uδ′[t̄]p̄, l̄δ =E r̄δ, and
E0 � φ′δ, ground terms and formula.

Then, there is a derivation rule
x1
s1
δ→t1/ST ′1δ···xnsnδ→tn/ST

′
nδ

u′δ→uδ[t̄]p̄/ST ′ ∈ DR,CallR in DR,CallR .

Again, by I.H., since STδ =E ST
′
δ, there exist a c.p.t. T ′j with the same depth and

number of nodes as Tj , for [tj ]E ∈ ST ′jδ@[xjsjδ]E , for 1 ≤ j ≤ n, so T ′1···T ′n
t→v/ST ′ is a c.p.t.

for [v]E ∈ ST
′
@[t]E with the same depth and number of nodes as T .

Lemma 6. Given a rewrite theory R = (Σ, E0 ∪B,R), a set of call strategy de�nitions CallR,
terms t, v ∈ HΣ, a strategy ST ∈ StratR,CallR , and a substitution σ such that dom(σ)∩ VR = ∅
and ran(σ) ∩ (VR ∪ VST ) = ∅, if [v]E ∈ STσ@[t]E can be proved with a c.p.t. T then [v]E ∈
ST@[t]E and a c.p.t. T ′ with head t → v/ST and the same depth and number of nodes as T
can be constructed.

Proof. The proof is done by structural induction on the depth of T .

� There are �ve strategies in the base case: fail, idle, c[γ], top(c[γ]), and the match test.
The depth of all the closed proof trees is one in this case.

� As there are no derivation rules for fail, there is nothing to prove in this case.

� If ST = idle then STσ = ST and T ′ = T .

� If ST = c[γ] then STσ = c[(γσ)dom(γ)]. As dom(σ) ∩ VR = ∅ then c(γσ)dom(γ) =
cγσran(γ). T = t→v/STσ because c has the form c : l→ r if φ, and there exist u ∈ HΣ,

p ∈ pos(u), and δ : Vcγσran(γ)
→ TΣ such that u −−−−−−−−→

cγσran(γ),p,δ

1

R

w, i.e., u = u[lγσran(γ)δ]p

and E0 � φγσran(γ)δ, so there is a derivation rule u→w/STσ in DR,CallR , t =E u, and

w = u[rγσran(γ)δ]p =E v. Then, also u −−−−−−−−→
cγ,p,σran(γ)δ

1

R

w, because as, by de�nition,

dom(γ) ⊆ vars(c) then σran(γ)δ : Vcγ → TΣ, so there is a derivation rule u→w/ST in

DR,CallR and T ′ = t→v/ST .

� if ST = top(c[γ]) then STσ = top(c[γσran(γ)]). As dom(σ)∩VR = ∅ then c(γσ)dom(γ) =
cγσran(γ). T = t→v/STσ because c has the form c : l → r if φ, there exists δ :
Vcγσran(γ)

→ TΣ such that E0 � φγσran(γ)δ, so lγσran(γ)→rγσran(γ)/STσ
is a deriva-

tion rule in DR,CallR , t =E lγσran(γ)δ, and rγσran(γ)δ =E v. Again, by de�nition,
dom(γ) ⊆ vars(c) so σran(γ)δ : Vcγ → TΣ and, as E0 � φγσran(γ)δ, there is a derivation
rule lγσran(γ)→rγσran(γ)/ST

in DR,CallR , so T
′ = t→v/ST .
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� if ST = match u s.t.
∧m
j=1(lj = rj) ∧ φ then there exists a substitution δ such that

t =E uσδ, ljσδ =E rjσδ, for 1 ≤ j ≤ m, and E0 � φσδ, so there are derivation rules

w→w/STσ and w→w/ST in DR,CallR , where w =E uσδ, and T = t→v/STσ because

t =E w =E v, so also T ′ = t→v/ST .

� Inductive step:

� ST = ST 1 ; ST 2 and T has the form
T1

t→w/ST1σ
T2

w→v/ST2σ

t→v/STσ . By I.H there are closed

proof trees with the forms T ′1
t→w/ST1

and T ′2
w→v/ST2

where T ′1 and T ′2 have the same

depth and number of nodes as T1 and T2, respectively, so T ′ =
T ′1

t→w/ST1

T ′2
t→w/ST2

t→v/ST is
a c.p.t. with the same depth and number of nodes as T .

� ST = ST 1+ and T must be either of the form
T1

t→v/ST1σ

t→v/STσ or
T2

t→v/ST1σ ; ST1σ+

t→v/STσ . As
ST 1σ ; ST 1σ+ = (ST 1 ; ST 1+)σ then, by I.H., there is either a c.p.t. with the form

T ′1
t→v/ST1

or T ′2
t→v/ST1 ; ST1+ , hence either T

′ =
T ′1

t→v/ST1
t→v/ST or T ′ =

T ′2
t→v/ST1 ; ST1+

t→v/ST .

� ST = ST 1|ST 2 and T must be either of the form
T1

t→v/ST1σ

t→v/STσ or
T2

t→v/ST2σ

t→v/STσ . Then, by I.H.,

there is either a c.p.t. with the form T ′1
t→v/ST1

or T ′2
t→v/ST2

, hence either T ′ =
T ′1

t→v/ST1
t→v/ST

or T ′ =
T ′2

t→v/ST2
t→v/ST .

� ST = match u s.t. φ ? ST 1 : ST 2 and T must be either of the form
T1

t→v/ST1σδ

t→v/STσ or
T2

t→v/ST2σδ

t→v/STσ where δ : Vuσ,φσ → TΣ, t =E uσδ, and either E0 � φσδ or E0 � ¬φσδ,
respectively.
Let α = σVu,φ , so dom(δ) = Vu,φ \ dom(α), and β = σ\Vu,φ , so dom(δ) ∩ dom(β) = ∅.
Then σ = α] β, (uσδ, φσδ) = (uαδ, φαδ), so E0 � φσδ iif E0 � φαδ, and αδ : Vu,φ →
TΣ, so there is a derivation rule of the form t→v/ST1αδ

t→v/ST or t→v/ST2αδ
t→v/ST in DR,CallR .

Consider the open goal t → v/(ST iαδ)β, where i = 1 if E0 � φαδ and i = 2 if
E0 � ¬φαδ. As δ is ground and dom(δ) ∩ dom(β) = ∅ then αδβ = αβδ = σδ and

Ti
t→v/(ST iαδ)β

is a c.p.t. so, by I.H., there is a c.p.t. with the form T ′i
t→v/ST iαδ

, where

T ′i has the same depth and number of nodes as Ti, and T ′ =
T ′i

t→v/STiαδ
t→v/ST .

� ST = CS , where sd CS := ST 1 ∈ CallR and T has the form
T1

t→v/ST1γ

t→v/STσ , for some

renaming γ, because STσ = CSσ = CS = ST , so T ′ =
T1

t→v/ST1γ

t→v/ST .

� ST = CS (t̄), where sd CS (x̄) := ST 1 ∈ CallR, x̄ = x1
s1 , . . . , x

n
sn , t̄ = t1, . . . , tn,

and ρ = {x̄ 7→ t̄}, call ρ′ = {x̄ 7→ t̄σ}, and T has the form
T1

t→v/ST1(γ∪ρ′)
t→v/STσ , because

ST1σ = CS (t̄)σ = CS (t̄σ), and for some renaming γ such that dom(γ) ⊆ VST1 \ x̂
and ran(γ) is away from any known variable, so VST1 = x̄ ∪ ran(γ). As we also
have dom(ρ′) = dom(ρ) = x̂, then ST 1(γ ∪ ρ′) = ST 1γρ

′ = ST 1γρσ and also
ST 1(γ ∪ ρ) = ST 1γρ. As T1

t→v/ST1γρσ
is a c.p.t. then, by I.H., there is a c.p.t.

T ′1
t→v/ST1γρ

, and T ′ =
T ′1

t→v/ST1(γ∪ρ)
t→v/ST .

� ST = CS (t̄), where csd CS (x̄) := ST 1 if C ∈ CallR, with x̄ = x1
s1 , . . . , x

n
sn and

C =
∧m
j=1(lj = rj)∧φ, x̂ ⊆ VCS , t̄ = t1, . . . , tn, and ρ = {x̄ 7→ t̄}, call ρ′ = {x̄ 7→ t̄σ},
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and T has the form
T1

t→v/ST1(γ∪ρ′)δ
t→v/STσ , because ST1σ = CS (t̄)σ = CS (t̄σ), and for some

renaming γ such that dom(γ) ⊆ VST1 \x̂ and ran(γ) is away from any known variable,
so VST1 = x̄ ∪ ran(γ), and there is a substitution δ : vars(CS (γ ∪ ρ′)) → TΣ such
that lj(γ ∪ ρ′)δ =E rj(γ ∪ ρ′)δ, for 1 ≤ j ≤ n, and E0 � φ(γ ∪ ρ′)δ.
Let δ′ = δran(γ) ∪ (σδ\ran(γ)). As δ is ground and ran(γ) is away from all known
variables, then (γ ∪ ρ)δ′ = (γ ∪ ρ)δran(γ) ∪ (σδ\ran(γ)) = (γδran(γ)) ∪ (ρσδ\ran(γ))) =
(γδran(γ))∪(ρ′δ\ran(γ))) = (γ∪ρ′)δ, so δ′ : vars(C(γ ∪ ρ))→ TΣ veri�es lj(γ∪ρ)δ′ =E

rj(γ ∪ ρ)δ′, for 1 ≤ j ≤ n, and E0 � φ(γ ∪ ρ)δ′, and there is a derivation rule

t→v/ST1(γ∪ρ)δ′

t→v/ST in DR,CallR . Since (γ ∪ ρ)δ′ = (γ ∪ ρ′)δ, then T ′ =
T1

t→v/ST1(γ∪ρ)δ′

t→v/ST .

� ST = c[γ]{ST 1, . . . ,STm}. As dom(σ) ∩ VR = ∅ then c(γσ)dom(γ) = cγσran(γ).
c : l → r if

∧m
j=1 lj → rj | ψ is a rule in R and T has the form T1···Tm

t→v/STσ , where Ti

has the form T ′i
liγδ′→riγδ′/ST iσδ

, for 1 ≤ i ≤ m, δ : vars(cγσran(γ))→ TΣ, δ′ = σran(γ)δ,
E0 � ψγσran(γ)δ, and there are u in HΣ and p in pos(u) such that t =E u, u|p =
lγσran(γ)δ, and u[rγσran(γ)δ]p =E v.

As δ′ = σran(γ)δ, then δ′ : vars(cγ) → TΣ, and E0 � ψγδ′, u|p = lγδ′, so there

is a derivation rule l1γδ′→r1γδ′/ST1δ′···lmγδ′→rmγδ′/STmδ′

u→u[rγδ′]p/ST
in DR,CallR . Also u[rγδ′]p =

u[rγσran(γ)δ]p =E v.

As dom(σ) ∩ VR = ∅ and dom(δ) ⊆ Vc ∪ ran(γ) ⊆ VR ∪ VST then dom(δ) ∩
dom(σ\ran(γ)) = ∅ so, as ran(σ)∩(VR∪VST ) = ∅ and δ is ground, σ\ran(γ)δ = δσ\ran(γ)

and σδ = (σran(γ)]σ\ran(γ))δ = σran(γ)σ\ran(γ)δ = σran(γ)δσ\ran(γ) = δ′σ\ran(γ), hence,

for 1 ≤ i ≤ m, Ti =
T ′i

liγδ′→riγδ′/ST iδ′σ\ran(γ)
, and, by I.H., there is a c.p.t. T ′′i with

the form T ′′′i
liγδ′→riγδ′/ST iδ′

and the same depth and number of nodes as Ti. Then, as

t =E u and u[rγδ′]p =E v, T ′ =
T ′′1 ···T ′′m
t→v/ST .

� ST = top(c[γ]{ST 1, . . . ,STm}). As dom(σ) ∩ VR = ∅ then c(γσ)dom(γ) = cγσran(γ).
c : l → r if

∧m
j=1 lj → rj | ψ is a rule in R and T has the form T1···Tm

t→v/STσ , where Ti

has the form T ′i
liγδ′→riγδ′/ST iσδ

, for 1 ≤ i ≤ m, δ : vars(cγσran(γ))→ TΣ, δ′ = σran(γ)δ,
E0 � ψγσran(γ)δ, t =E lγσran(γ)δ, and rγσran(γ)δ =E v.

As δ′ = σran(γ)δ, then δ
′ : vars(cγ) → TΣ and E0 � ψγδ

′, then there is a derivation

rule l1γδ′→r1γδ′/ST1δ′···lmγδ′→rmγδ′/STmδ′

lγδ′→rγδ′/ST in DR,CallR . Also t =E lγσran(γ)δ = lγδ′ and

rγδ′ = rγσran(γ)δ =E v.

As in the previous case, for 1 ≤ i ≤ m there is a c.p.t. T ′′i with the form T ′′′i
liγδ′→riγδ′/ST iδ′

and the same depth and number of nodes as Ti. Then, as t =E lγδ′ and rγδ′ =E v,
T ′ =

T ′′1 ···T ′′m
t→v/ST .

� ST = matchrew u s.t.
∧m
j=1(lj = rj)∧φ by x1

s1 using ST 1, . . . , x
n
sn using STn, where

u = u[x1
s1 , . . . , x

n
sn ]p1...pn and T has the form T1···Tm

t→v/STσ , where Ti has head xisiδ →
ti/ST iσδ, for 1 ≤ i ≤ n, with t̂ ⊂ TΣ, δVSTσ : X → TΣ(X\VSTσ) such that,
ran(δVSTσ) ⊆ VSTσδ, t =E uσδ ∈ TΣ, uσδ[t̄]p̄ =E v, {ljσδ, rjσδ}mj=1 ⊂ TΣ, l̄σδ =E

r̄σδ, φσδ ∈ TΣ, and E0 � φσδ.

The fact that ran(δVSTσ) ⊆ VSTσδ does not ensure that ran(δVSTσ) ∩ VST = ∅. Let
α be a renaming such that dom(α) = VST ∩ ran(δVSTσ) and ran(α) is away from all
know variables and call δ′ = σδα. Then δ′VST : X → TΣ(X\VST ). By Lemma 5, as

Ti has head xisiδ → ti/ST iσδ, there is also a c.p.t. with the form T ′i
xisiδ→ti/ST iδ′

, for

1 ≤ i ≤ n.
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As δ′VST : X → TΣ(X\VST ), t =E uδ = uδ′ ∈ TΣ, uδ′[t̄]p̄ =E v, l̄δ′ = l̄δ =E r̄δ = r̄δ′,
so {ljδ′, rjδ′}mj=1 ⊂ TΣ, and φδ′ = φδ ∈ TΣ, so E0 � φδ′ then there is a derivation

rule
x1
s1
δ′→t1/ST1δ′···xnsnδ

′→tn/STnδ′

uδ′→uδ′[t̄]p̄/ST in DR,CallR . As uδ
′[x̄δ′]p̄ = uδ′ = uδ = uδ[x̄δ]p̄, so

also x̄δ′ = x̄δ′, the derivation rule can be written
x1
s1
δ→t1/ST1δ′···xnsnδ→tn/STnδ′

uδ→uδ[t̄]p̄/ST , hence

T ′ =

T ′1
x1
s1
δ→t1/ST1δ

′ ···
T ′n

xnsnδ→tn/STnδ
′

uδ→uδ[t̄]p̄/ST .

Proposition 10. Given a rewrite theory R = (Σ, E0∪B,R) and a set of call strategy de�nitions
CallR, and an admissible goal G with the form

�
∧n
i=1 ui → vi/ST ν

i %ν | φ | V, ν, or

� u1|p →1 xk, u1[xk]p → v1/ST ν
1%ν ∧

∧n
i=2 ui → vi/ST ν

i %ν | φ | V, ν,

if G0 is a goal of type (a), with substitution ν0 (%ν0 = none by de�nition), and G0  ∗θ G then
the following invariants hold:

1. vars(B) ∩ V = ∅ and VR ∩ VCallR ⊆ V ,

2. V ∩ ran(ν) = ∅ and ν = (ν0θ)V , hence dom(ν) ⊆ V , so dom(ν) satis�es the restrictions
given for V in De�nition 33.2,

3. %ν = θ\V , hence dom(%ν) ∩ V = ∅ and %ν is idempotent,

4. ran(θ) ∩ (V ∪ VR,CallR ∪ vars(ST )) = ∅ and ran(%ν) ∩ V = ∅,

5. dom(%ν) ∩ ran(ν) = ∅,

6. dom(%ν) ∩ V ν = ∅,

7. VRν ∩ VCallRν ⊆ V ν ,

8. if t ∈ TΣ(X ) then tν%ν = t(ν ] %ν),

9. ui, vi, 1 ≤ i ≤ n, and each term in φ̂ have the form tν%ν ,

10. vars(ū, v̄, φ) ∩ dom(ν) = ∅, and

11. G has also the form Gν1%
′
ν , where %

′
ν = θVG1

\V , so dom(%′ν) ⊆ VG1 \ V .

Proof. - If G is a goal of type (a) then we have that G = G0, θ = none, and %ν = %ν0 = none.
The invariants 1−7 and 11 are direct consequence of the de�nitions of reachability problem and
goal of type (a), and the fact if θ = σ1 . . . σm then ran(σi) is away from any known variable, for
1 ≤ i ≤ m, by the de�nition of the calculus rules. We prove invariants 8− 10.

8. As %ν = none, then tν%ν = tν = tν = t(ν ] %ν).

9. We have to prove w ∈ û ∪ v̂ ∪ φ̂ =⇒ ∃t, , w = tν%ν . As, by the previous point, tν%ν = tν,
then we prove w ∈ û ∪ v̂ ∪ φ̂ =⇒ ∃t, , w = tν. Now, as G is a goal of type (a), G
has the form

∧n
i=1 u

0
i ν → v0

i ν/ST ν
i | φ0ν | V, ν, so ū = ū0ν, v̄ = v̄0ν, φ̄ = φ̄0ν, hence

w ∈ û ∪ v̂ ∪ φ̂ =⇒ ∃t, , t ∈ û0 ∪ v̂0 ∪ φ̂0 ∧ w = tν.

10. As G is a goal of type (a) then dom(ν) ∩ ran(ν) = ∅. By the previous point, there exists
û0 ∪ v̂0 ∪ φ̂0 such that û ∪ v̂ ∪ φ̂ = û0ν ∪ v̂0ν ∪ φ̂0ν. As dom(ν) ∩ ran(ν) = ∅ then
vars(ū0ν, v̄0ν, φ0ν) ∩ dom(ν) = ∅, i.e., vars(ū, v̄, φ) ∩ dom(ν) = ∅.
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- We prove the invariants for goals of type (b) by induction on the number of applied calculus
rules from Figures 3 and 4 in G0  ∗σ′ G

′  [r],σ G, so θ = σ′σ, using the fact that the properties

hold in G′. We call ū′, v̄′, φ′, ν ′, and ST ′ the structures in G′ in place of ū, v̄, φ, ν, and ST ,
so either ν = ν ′ or there is a substitution σ such that ν = (ν ′σ)V where, for proper t1 and t2,
σ ∈ CSUB (t1, t2) so V ∩ ran(σ) = ∅ by de�nition of CSUB . Also, as dom(ν0) ∩ ran(ν0) = ∅,
ν = (ν0θ)V and θ is a composition of several CSU s, so ran(θ) is away from all known variables,
then dom(ν) ∩ ran(ν) = ∅ and, as V ν = (V \ dom(ν)) ∪ ran(ν), also dom(ν) ∩ V ν = ∅.

1. Immediate, since the invariant holds in G′, by I.H, and no rule modi�es V .

2. As either ν = ν ′ or ν = (ν ′σ)V , V ∩ ran(σ) = ∅, and V ∩ ran(ν ′) = ∅, by I.H., then
V ∩ ran(ν) = ∅ in either case. Also, by I.H., ν ′ = (ν0σ

′)V , so ν = (ν ′σ)V = ((ν0σ
′)V σ)V =

(ν0σ
′σ)V = (ν0θ)V .

3. By I.H., %ν′ = σ′\V , with dom(%ν′) ∩ (V ∪ ran(ν ′)) = ∅ and ran(%ν′) ∩ V = ∅, i.e.,
ran(σ′\V ) ∩ V = ∅. Then:

� If [r] computes a CSUB of two terms, say σ, then we can �nd in G (depending on
the actual calculus [r] applied):

� open goals that are an instance with σ of one open goal in G′ with the form
u′ → v′/ST ν′%ν′ . The strategy of one open goal in G will be an instance with σ
of part of ST ν′%ν′ in the case of rules if then else and match,

� new open goals with the form (u→ v/idle)σ which are equal to (u→ v/idle%ν′)σ,
or

� new open goals with the form (u→ v/ST%ν′ ; idle)σ, where ST%ν′ is an already
existing strategy in G′, which are equal to (u→ v/(ST ; idle)%ν′)σ.

In any of these cases, by Def. 38, %ν = (%ν′σ)\V , hence %ν = (%ν′σ)\V = (σ′\V σ)\V =

(σ′σ)\V = θ\V .

� If [r] is a call strategy rule, applied to a open goal with the form u′ → v′/CS ; ST ν′%ν′

or u′ → v′/CS (t̄ν
′
%ν′) ; ST ν′%ν′ , where CS has parameters x̄, then σ = none, ν = ν ′,

%ν = %ν′ = σ′\V = (σ′σ)\V = θ\V , and dom(%ν) ∩ (V ∪ ran(ν)) = ∅. Apart from the
rest of existing open goals, that remain unchanged, we can �nd in G:

� for conditional call strategies, new open goals with the form u → v/idle which
are equal to u→ v/idle %ν , and

� a new open goal u→ v/ST ν
2γ; ST ν%ν , where if the call strategy has no parameters

then: (i) γ = none, call γ0 = none, or else (ii) γ = {x̄ 7→ t̄ν%ν}, call γ0 = {x̄ 7→ t̄},
and ST ν

2 is a fresh version of the strategy ST ν
1 in the call strategy de�nition for

CS in CallνR, except for dom(γ) ∪ V ν . As dom(%ν) ∩ (V ∪ ran(ν)) = ∅ and
vars(ST ν

2) ∩ dom(ν) = ∅ then vars(ST ν
2) ∩ dom(%ν) = ∅ so, if either (i) or (ii)

holds, ST ν
2γ = (ST 2γ0)ν%ν .

� σ = none for the rest of the rules, so ν = ν ′ and %ν = %ν′ = σ′\V = (σ′σ)\V = θ\V ,
and no new strategies are added. In these rules, for any open goal u′ → v′/STG ∈ G
there is one open goal u′ → v′/ST ν′%ν′ ∈ G′ such that if ST 1 ∈ tokens(STG) then
ST 1 ∈ tokens(ST ν′%ν′), so ST 1 has the form ST ν′

2 %ν′ , i.e., ST ν
2%ν .

4. Immediate, since θ is a composition of several CSUs, where the range of each CSU is away
from all known variables (so dom(θ) ∩ ran(θ) = ∅), including V , and, by the previous
point, %ν = θ\V .

5. If σ = none there is nothing to prove. Else, as %ν = (%ν′σ)\V and ν = (ν ′σ)V then
dom(%ν) = dom(%ν′)∪(dom(σ)\(V ∪ran(%ν′)) and ran(ν) = ran(σV )∪(ran(ν ′)\dom(σ)).
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As ran(σ) is away from all known variables and, by I.H., dom(%ν′) ∩ ran(ν ′) = ∅ then
dom(%ν) ∩ ran(ν) =

(dom(%ν′) ∪ (dom(σ) \ (V ∪ ran(%ν′))) ∩ (ran(σV ) ∪ (ran(ν ′) \ dom(σ))) =

(dom(%ν′) ∪ (dom(σ) \ (V ∪ ran(%ν′))) ∩ (ran(ν ′) \ dom(σ)) =

(dom(σ) \ (V ∪ ran(%ν′)) ∩ (ran(ν ′) \ dom(σ)) ⊆ dom(σ) ∩ (ran(ν ′) \ dom(σ)) = ∅.

6. As dom(%ν)∩V = ∅, dom(%ν)∩ran(ν) = ∅, and V µ ⊆ V ∪ran(ν), then dom(%ν)∩V ν = ∅.

7. Immediate, since VR ∩ VCallR ⊆ V , in R and CallR we are replacing each variable v ∈
dom(ν) with vν, and V ν = ran(ν) ∪ (V \ dom(ν)).

8. Immediate, since dom(ν) ⊆ V and dom(%ν)∩ (V ∪ ran(ν)) = ∅, invariant 5, imply tν%ν =
t(ν ] %ν)

9. Let w ∈ ū′ ∪ v̄′ ∪ φ′ such that wσ ∈ ū ∪ v̄ ∪ φ. By I.H., w = tν
′
%ν′ , for proper t. By I.H.

and the previous point, w = t(ν ′ ] %ν′). As, by I.H., dom(ν ′) ⊆ V and dom(%ν′) ∩ V = ∅,
then wσ = t(ν ′ ] %ν′)σ = t(ν ′V ] (%ν′)\V )σ = t((ν ′σ)V ] (%ν′σ)\V ) = t(ν ] %ν) so, by the
previous point, wσ = tν%ν .

10. By I.H., vars(ū′, v̄′, φ′) ∩ dom(ν ′) = ∅, with dom(ν ′) ⊆ V . As ν = (ν ′σ)V , then dom(ν) =
dom(ν ′) ∪ dom(σV ), so vars(ū′σ, v̄′σ, φ′σ) ∩ dom(ν) = ∅. Then we only have to check
vars(ū, v̄, φ) \ vars(ū′σ, v̄′σ, φ′)σ, i.e., those variables introduced by the rule that do not
belong to the instantiation of vars(ū′, v̄′, φ′) with σ.

� Each one of the variables, say x, introduced by abstractΣ1 is new so, as ν = (ν ′σ)V :

� if x ∈ dom(σ) then vars(xσ) ∩ dom(ν) ⊆ ran(σ) ∩ dom(ν) ⊆ ran(σ) ∩ V = ∅,
and

� if x /∈ dom(σ) then, as x is new (so x /∈ V ), vars(xσ)∩dom(ν) = {x}∩dom(ν) ⊆
{x} ∩ V = ∅ (�).

This covers all the rules in Figure 3, except rule transitivity. It also covers rule match

and it partially covers the rest of rules in Figure 4.

� Both rules transitivity and congruence introduce one new variable not in dom(ν), so
(�) applies (σ = none).

� Rulematchrew introduces one vector of new variables (ȳ) not in dom(ν), so (�) applies.

� The next case is rule rule application, with strategy c[γ]{ST} and substitution σ. By
I.H. c[γ]{ST} has the form (c[δ]{ST ′})ν′%ν′ , for proper δ, so c[γ] = cν

′
[δ(ν ′]%ν′)ran(δ)],

where dom(δ) = dom(γ). The calculus rule uses a version, say cν
′

1 , of c
ν′ where all

the variables are new except for dom(γ)∪V ν′ . The new variables of vars(cν
′

1 ) are not
in dom(ν), so (�) applies. We check the rest of the variables in vars(cν

′
1 ). For each

x ∈ vars(cν
′

1 ) ∩ (dom(γ) ∪ V ν′):

� if x ∈ V ν′ then:
* if x ∈ dom(σ) then vars(xσ) ⊆ ran(ν) so, as dom(ν) ∩ ran(ν) = ∅ then

vars(xσ) ∩ dom(ν) = ∅;
* else xσ = x, so x ∈ V ν , and:

· if x ∈ V then x /∈ dom(ν) so, as xσ = x, vars(xσ) ∩ dom(ν) = ∅;
· else x ∈ ran(ν ′) so, as xσ = x, x ∈ ran(ν). Then, as xσ = x and

dom(ν) ∩ ran(ν) = ∅, vars(xσ) ∩ dom(ν) = ∅;
� else x ∈ dom(γ) (= dom(δ)), and xγσ = xδ(ν ′ ] %ν′)ran(δ)σ = xδ(ν ] %ν)ran(δ),
call α = (ν ] %ν)ran(δ). By de�nition of the rule application strategy, ran(δ) ⊆
TΣ(X \ VR,CallR) so, as dom(δ) ⊆ VR,CallR , ran(δ) ∩ dom(δ) = ∅. Then for each
y ∈ vars(xδ), y ∈ ran(δ), x 6= y, and:
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* if y /∈ dom(α) then yα = y and y /∈ dom(ν)ran(δ). In particular, as y ∈ ran(δ),
y /∈ dom(ν), so vars(yα) ∩ dom(ν) = ∅;

* else y ∈ dom(α) (= dom((ν ] %ν)ran(δ))). Then:

· if y ∈ dom(νran(δ)) then vars(yα) ⊆ ran(ν) so, as dom(ν) ∩ ran(ν) = ∅,
vars(yα) ∩ dom(ν) = ∅, and

· if y ∈ dom((%ν)ran(δ)) then, as we have already proved %ν = θ\V and θ is a
composition of several CSU s, so ran(θ) is away from all known variables,
vars(yα) ∩ dom(ν) = ∅.

In conclusion, vars(xγσ) ∩ dom(ν) = ∅.
� The proof for rule top, with strategy top(c[γ]{ST}) and substitution σ, is exactly
the same as the previous one.

� In rule [c1] call strategy, (ū, v̄, φ) = (ū′σ, v̄′σ, φ′σ), where σ = none, so there is nothing
to prove.

� Now, we check rule [c2] call strategy with strategy invocation CS (t̄) and substitution
γ = {x̄ 7→ t̄}. By I.H. CS (t̄) has the form (CS (w̄))ν

′
%ν′ , for proper w̄, so t̄ =

w̄(ν ′ ] %ν′) = w̄(ν ] %ν) = w̄(ν ] %ν) (σ = none), hence γ = {x̄ 7→ w̄(ν ] %ν)}, call
α = ν ] %ν . The calculus rule uses a version of the condition C in the right-side
of the call strategy de�nition, call it C ′, where all the variables are new except for
dom(γ) ∪ V ν′ . The new variables in C ′ are not in dom(ν), so (�) applies. We check
the rest of the variables in C ′. For each x ∈ vars(C ′) ∩ (dom(γ) ∪ V ν′):

� if x ∈ V ν′ then x ∈ V ν , because σ = none, and:

* if x ∈ V then x /∈ dom(ν) so, as xσ = x, vars(xσ) ∩ dom(ν) = ∅;
* else x ∈ ran(ν). Then, as xσ = x and dom(ν) ∩ ran(ν) = ∅, vars(xσ) ∩

dom(ν) = ∅;
� else x ∈ dom(γ) (= x̄), say x = xi, so xγ = wiα (α = ν ] %ν). For every
y ∈ vars(wi):

* if y ∈ dom(ν) then vars(yα) ⊆ ran(ν) so, as dom(ν)∩ran(ν) = ∅, vars(yα)∩
dom(ν) = ∅,

* if y ∈ dom(%ν) then, as we have already proved %ν = θ\V and θ is a
composition of several CSU s, so ran(θ) is away from all known variables,
vars(yα) ∩ dom(ν) = ∅,

* else y /∈ (dom(ν) ∪ dom(%ν)), so yα = y. Then, as y /∈ dom(ν), vars(yα) ∩
dom(ν) = ∅.

In conclusion, vars(xγ) ∩ dom(ν) = ∅.

11. The last calculus rule applied to get G from a goal of the form Gν1%ν , where G0  ∗θ′ G
ν
1%ν

and, by I.H. and invariant 3, %ν = θ′\V :

� may have generated G as an instance of Gν1%ν with a substitution σ, so θ = θ′σ. Then
De�nition 38 ensures that %µ = (%νσ)VG\V = (θ′\V σ)VG\V = (θ′σ)VG\V = θVG\V , and
we take %′µ = %µ, or

� it may have not generated an instance, so θ = θ′, and we take %′µ = (%ν)VG =
(θ′\V )VG = θ′VG\V = θVG\V .

Theorem 2. Given an associated rewrite theory R = (Σ, E0 ∪B,R) closed under B-extensions
and a reachability goal G, if ν | ψ is a computed answer for G then for each substitution
ρ : V ν → TΣ such that ψρ is satis�able, ν · ρ is a solution for G.
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Proof. By structural induction over the depth of the corresponding canonical narrowing path
and the �rst inference rule applied. Remember that V µ = (V \ dom(µ)) ∪ ran(µ), (

∧n
i=1 ui →

vi/STµ
i (%µ)i)σ =

∧n
i=1 uiσ → viσ/ST

(µσ)V
i ((%µ)iσ)\V , and vars(G) = vars(φ)∪

⋃n
i=1 vars({ui, vi})∪

V µ or vars(G) = {xk} ∪ vars(φ) ∪
⋃n
i=1 vars({ui, vi}) ∪ V µ (for rules [c] and [r]).

� Base case

Rule [d1] (idle):

G = u1 → v1/idle | ψ1 | V, µ  [d1 ],σ nil | ψ | V, (µσ)V , where abstractΣ1((u, v)) =
〈λ(x̄, ȳ).(u◦1, v

◦
1); (θ◦u, θ

◦
v); (φ◦u, φ

◦
v)〉, ψ = (ψ1 ∧ φ◦u ∧ φ◦v)σ, x̄ = {x1, . . . , xix}, u◦1 = u1[x̄]p̄,

φ◦u = (
∧ix
i=1 xi = u1|pi), ȳ = {y1, . . . , yiy}, v◦1 = v1[ȳ]q̄, φ◦v = (

∧iy
j=1 yj = v1|qj ), σ ∈

CSUB (u◦1 = v◦1), so u◦1σ =B v◦1σ, and ψ is satis�able, for proper p̄ and q̄.

As ρ is a ground substitution such that dom(ρ) = vars(Gσ) and ψρ is satis�able, i.e.,
(ψ1 ∧ φ◦u ∧ φ◦v)σρ is satis�able, then ψ1σρ is ground, so E0 � ψ1σρ, and (φ◦u ∧ φ◦v)σρ
is satis�able, where u1σρ and v1σρ are ground terms, so there exists a substitution ρ′ :
Vx̄σρ,ȳσρ → TΣ such that x̄σρρ′ =E0 u1|p̄σρρ′ = u1|p̄σρ and ȳσρρ′ =E0 v1|q̄σρρ′ = v1|q̄σρ.
Let γ = σρρ′. As u1σρ and v1σρ are terms in TΣ, the theory inclusion (Σ0, E0) ⊆ (Σ, E) is
protecting, and u◦1σρ =B v◦1σρ, then u1σρ = u1σρ[u1|p̄σρ]p̄ =E0 u1σρ[x̄γ]p̄ = u1γ[x̄γ]p̄ =
u◦1γ =B v◦1γ = v1γ[ȳγ]q̄ = v1σρ[ȳγ]q̄ =E0 v1σρ[v1|q̄σρ]q̄ = v1σρ, so u1σρ =E v1σρ. As
vars({u1, v1, ψ1}) ⊆ vars(G) then u1σvars(G)ρ = u1σρ =E v1σρ = v1σvars(G)ρ and E0 �
ψ1σρ implies E0 � ψ1σvars(G)ρ so, as in example 10, [v1σvars(G)ρ]E ∈ idle@[u1σvars(G)ρ]E ,
and σvars(G)ρ is a solution of G.

� Inductive step

G =
∧n
i=1 ui → vi/STµ

i (%µ)i | ψ1 | V, µ or G = u1|p →1 x, u1[x]p → v1/STµ
1 (%µ)1 ∧∧n

i=2 ui → vi/STµ
i (%µ)i | ψ1 | V, µ. We let ∆ =

∧n
i=2 ui → vi/STµ

i (%µ)i. When the
substitution applied in the �rst narrowing step is none, ∆, ψ1, and µ remain unchanged,
so I.H. ensures that ∆ and ψ1 comply with the thesis of the theorem, as it is shown in the
proof for the second subcase. We will omit this proof in the rest of related subcases, as
the proof is always the same.

1. Rule [d1] (idle):

G = u1 → v1/idle ∧∆ | ψ1 | V, µ  [d1 ],σ1
∆ ◦ σ1 | ψ1σ1 ∧ φ◦σ1 | V, (µσ1)V = G′σ1,

with G′ = ∆ | ψ1 ∧φ◦ | V, µ, where abstractΣ1(v1) = 〈λx̄.v◦1; θ◦;φ◦〉, x̄ = {x1, . . . , xl},
v◦1 = v1[x1, . . . , xl]q1...ql , φ

◦ = (
∧l
i=1 xi = v1|qi), σ1 ∈ CSUB (u1 = v◦1), ψ1σ1 ∧ φ◦σ1 is

satis�able, and G′σ1  
+
σ′ nil | ψ | V, ν, call σ = σ1σ

′, so σvars(G) | ψ is a computed
answer for G, and σ′vars(G′σ1) | ψ is a computed answer for G′σ1.

If ρ : vars(Gσ) → TΣ is a substitution such that ψρ is satis�able, then let ρ1 =
ρvars(G′σ), so also ψρ1 is satis�able. As dom(ρ) = vars(Gσ) then dom(ρ1) = vars(Gσ)∩
vars(G′σ). Let ρ2 = ρvars(Gσ)\vars(G′σ), so ρ = ρ1 ] ρ2, and let ρ′1 : vars(G′σ) \
vars(Gσ) → TΣ, so dom(ρ1) ∩ dom(ρ′1) = ∅ and dom(ρ1) ∪ dom(ρ′1) = vars(G′σ),
such that ψ(ρ1 ] ρ′1) is satis�able, and call ρ′ = ρ1 ] ρ′1, so ρ′ : vars(G′σ)→ TΣ.

As dom(ρ′1) = vars(G′σ)\vars(Gσ) and dom(ρ1) = vars(Gσ)∩vars(G′σ) ⊆ vars(Gσ),
then ρ′vars(Gσ) = (ρ1]ρ′1)vars(Gσ) = (ρ1)vars(Gσ) = ρ1, so by I.H., as ρ′ : vars(G′(σ1σ

′))→
TΣ and ψρ′ is satis�able, σ′vars(G′σ1)ρ

′ is a solution for G′σ1, meaning that E0 � (ψ1 ∧
φ◦)σ1σ

′
vars(G′σ1)ρ

′ and there are closed proof trees for each open goal in ∆σ1σ
′
vars(G′σ1)ρ

′

with respect to the instantiation D
(µσ1σ′vars(G′σ1)

ρ′)V

R,CallR
. We prove (a) ∆σ1σ

′
vars(G′σ1)ρ

′ =

∆σvars(G)ρ and (b) (µσ1σ
′
vars(G′σ1)ρ

′)V = (µσvars(G)ρ)V :

(a) As ∆ appears both in G and G′ then vars(∆σ1) ⊆ vars(Gσ1) ∩ vars(G′σ1) ⊆
vars(G′σ1), so ∆σ1σ

′
vars(G′σ1) = ∆σ1σ

′ and vars(∆σ1σ
′
vars(G′σ1)) = vars(∆σ1σ

′) ⊆
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vars(Gσ1σ
′) ∩ vars(G′σ1σ

′) = vars(Gσ) ∩ vars(G′σ), hence ∆σ1σ
′
vars(G′σ1)ρ

′ =

∆σ1σ
′ρ′ = ∆σ1σ

′ρ1 = ∆σ1σ
′ρ = ∆σρ = ∆σvars(G)ρ.

(b) If v ∈ V then either

� v /∈ dom(µ) and vµ = v, so vars(vµ) ⊆ V \ dom(µ) ⊆ vars(G), or

� v ∈ dom(µ), so vars(vµ) ⊆ ran(µ) \ dom(µ) ⊆ vars(G).

Also, either

� v /∈ dom(µσ1) and vµσ1 = v, so vars(vµσ1) ⊆ V \ dom(µσ1) ⊆ vars(Gσ1) ∩
vars(G′σ1), or

� v ∈ dom(µσ1), so vars(vµσ1) ⊆ ran(µσ1)\dom(µσ1), and also vars(vµσ1) ⊆
vars(Gσ1) ∩ vars(G′σ1).

As in the previous case, then vµσ1σ
′
vars(G′σ1) = vµσ1σ

′, vars(vµσ) = vars(vµσ1σ
′) =

vars(vµσ1σ
′
vars(G′σ1)) ⊆ vars(Gσ1σ

′
vars(G′σ1))∩vars(G′σ1σ

′
vars(G′σ1)) = vars(Gσ1σ

′)∩
vars(G′σ1σ

′) = vars(Gσ)∩vars(G′σ). Then vµσ1σ
′
vars(G′σ1)ρ

′ = vµσρ′ = vµσρ1 =

vµσρ = vµσvars(G)ρ hence (µσ1σ
′
vars(G′σ1)ρ

′)V = (µσvars(G)ρ)V .

Then, from (a) and (b), the same closed proof trees are also valid for each open goal

in ∆σvars(G)ρ with respect to the instantiation D(µσvars(G)ρ)V
R,CallR

.

As vars(ψ1 ∧ φ◦) ⊆ vars(G′) then (ψ1∧φ◦)σ1σ
′
vars(G′σ1) = (ψ1∧φ◦)σ1σ

′ = (ψ1∧φ◦)σ,
so E0 � (ψ1∧φ◦)σρ′, hence E0 � ψ1σρ

′ and E0 � φ◦σρ′, where (ψ1∧φ◦)σρ′ is ground,
because vars((ψ1 ∧ φ◦)σ) ⊆ vars(G′σ) and ρ′ : vars(G′σ) → TΣ. Now, dom(ρ1) =
vars(Gσ)∩ vars(G′σ), and vars(v1|qi) ⊆ vars(Gσ)∩ vars(G′σ) implies v1|qiσρ1 ∈ TΣ

so, as ρ′ = ρ1 ] ρ′1, v1|qiσρ′ = v1|qiσ(ρ1 ] ρ′1) = v1|qiσρ1 = v1|qiσ(ρ1 ] ρ2) = v1|qiσρ,
for 1 ≤ i ≤ l, hence φ◦σρ′ = (

∧l
i=1 xiσρ

′ = v1|qiσρ). As also vars(ψ1σ) ⊆ vars(Gσ)∩
vars(G′σ) then, reasoning exactly in the same way, ψ1σρ

′ = ψ1σρ, so E0 � ψ1σρ.

Let γ = σ(ρ1 ] ρ2 ] ρ′1), where ρ1 ] ρ2 ] ρ′1 = ρ ] ρ′1 = ρ′ ] ρ2. As u1σ1 =B

v◦1σ1 then u1σ =B v◦1σ, so u1γ =B v◦1γ. Also, u1σρ and v1σρ ∈ TΣ, because
vars({u1σ, v1σ}) ⊆ dom(ρ) = vars(Gσ), so u1γ = u1σρ and v1γ = v1σρ. Fi-
nally, φ◦σρ′ ground implies xiσρ′ ground, so xiσρ′ = xiγ, for 1 ≤ i ≤ l. Then,
u1σρ = u1γ =B v◦1γ = v1γ[x1γ, . . . , xlγ]q1...ql = v1σρ[x1σρ

′, . . . , xlσρ
′]q1...ql =E0

v1σρ[v1|q1σρ, . . . , v1|ql...ql = v1σρ, so, as E = B ∪ E0, u1σρ =E v1σρ, and, as
vars({u1, v1}) ⊆ vars(G), u1σvars(G)ρ =E v1σvars(G)ρ. Then, as in example 10,
[v1σvars(G)ρ]E ∈ idle@[u1σvars(G)ρ]E . As also E0 � ψ1σvars(G)ρ, and there are

closed proof trees for each open goal in ∆σvars(G)ρ with respect to D(µσvars(G)ρ)V
R,CallR

,
then σvars(G)ρ is a solution of G.

2. Rule [d2] (idle):

G = u1 → v1/idle; STµ%µ ∧ ∆ | ψ1 | V, µ  [d2 ],none u1 → v1/STµ%µ ∧ ∆ | ψ1 |
V, µ = G′ and G′  +

σ nil | ψ | V, ν, where ν = (µσ)V , so σvars(G) | ψ is a com-
puted answer for both G and G′, since vars(G) = vars(G′). For any substitution ρ
that satis�es the premises of the theorem, by I.H., σvars(G)ρ is a solution for G′, call
δ = σvars(G)ρ, ν

′ = (µδ)V , and %ν′ = (%µδ)\V , so E0 � ψ1δ, there are closed proof
trees for each open goal in ∆δ, and also a c.p.t. F

u1δ→v1δ/ST
ν′%ν′

, all of them with

respect to Dν′R,CallR
. As there is a rule u1δ→u1δ/idle u1δ→v1δ/ST

ν′%ν′

u1δ→v1δ/idle ; STν′%ν′
∈ Dν′R,CallR

, then

u1δ→u1δ/idle
F

u1δ→v1δ/STν
′
%ν′

u1δ→v1δ/idle ; STν′%ν′
is also a c.p.t., with respect to Dν′R , so σvars(G)ρ, is also a

solution of G.

3. Rules [o1] and [o2] (or):
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we prove [o1]; the proof for [o2] is exactly the same, with ST 2 instead of ST 1. G =
u1 → v1/((STµ

1 | STµ
2 ) ; STµ)%µ ∧∆ | ψ1 | V, µ [o1 ],none u1 → v1/(STµ

1 ; STµ)%µ ∧
∆ | ψ1 | V, µ = G′, so vars(G) = vars(G′), and G′  +

σ nil | ψ | V, ν, where
ν = (µσ)V , so σvars(G)|ψ is a computed answer for G and σvars(G′)|ψ is a computed
answer for G′. Call ∆1 = u1 → v1/(STµ

1 ; STµ)%µ. By I.H., for any substitution
ρ : vars(G′σ) → TΣ such that ψρ is satis�able, σvars(G′)ρ is a solution for G′, call
δ = σvars(G′)ρ (= σvars(G)ρ), ν ′ = (µδ)V , and %ν′ = (%µδ)\V , so there is a c.p.t. for

∆1δ with respect to Dν′R,CallR
. The c.p.t. has the form

F1

u1δ→t/STν
′

1 %ν′

F2

t→v1δ/STν
′
%ν′

u1δ→v1δ/(ST
ν′
1 ; STν′ )%ν′

for some term t ∈ HΣ. As there are rules u1δ→t/(STν′
1 |STν′

2 )%ν′ t→v1δ/ST
ν′%ν′

u1δ→v1δ/((ST
ν′
1 |STν′

2 ) ; STν′ )%ν′
and

u1δ→t/STν′
1 %ν′

u1δ→t/(STν′
1 |STν′

2 )%ν′
in Dν′R,CallR

, then the proof tree

F1

u1δ→t/STν
′

1 %ν′

u1δ→t/(STν′
1 |STν′

2 )%ν′

F2

t→v1δ/ST
ν′%ν′

u1δ → v1δ/((ST ν′
1 | ST ν′

2 ) ; ST ν′)%ν′

is closed, so, as vars(G) = vars(G′), ρ : vars(Gσ) → TΣ, ψρ is satis�able, and
σvars(G)ρ is a solution of G.

4. Rule [p1] (plus):

G = u1 → v1/(STµ
1 + ; STµ)%µ ∧∆ | ψ1 | V, µ  [p1 ],none u1 → v1/(STµ

1 ; STµ)%µ ∧
∆ | ψ1 | V, µ = G′, so vars(G) = vars(G′), and G′  +

σ nil | ψ | V, ν, where
ν = (µσ)V , hence σvars(G)|ψ is a computed answer for both G and G′. Call ∆1 =
u1 → v1/(STµ

1 ; STµ)%µ. By I.H., for any substitution ρ : vars(Gσ) → TΣ such
that ψρ is satis�able, σvars(G)ρ is a solution for G′, call δ = σvars(G′)ρ (= σvars(G)ρ),

ν ′ = (µδ)V , and %ν′ = (%µδ)\V , so there is a c.p.t. for ∆1δ with respect to Dν′R,CallR
.

The c.p.t. has the form

F1

u1δ→t/STν
′

1 %ν′

F2

t→v1δ/STν
′
%ν′

u1δ→v1δ/(ST
ν′
1 ; STν′ )%ν′

for some term t ∈ HΣ. As there

are rules u1δ→t/(STν′
1 %ν′ )+ t→v1δ/ST

ν′%ν′

u1δ→v1δ/(ST
ν′
1 + ; STν′ )%ν′

and u1δ→t/STν′
1 %ν′

u1δ→t/(STν′
1 %ν′ )+

in Dν′R,CallR
, then

F1

u1δ→t/STν
′

1 %ν′

u1δ→t/(STν′
1 %ν′ )+

F2

t→v1δ/ST
ν′%ν′

u1δ → v1δ/(ST ν′
1 + ; ST ν′)%ν′

is a c.p.t., so ρ : vars(Gσ)→ TΣ, ψρ is satis�able, and σvars(G)ρ is a solution of G.

5. Rule [p2] (plus):

G = u1 → v1/(STµ
1 +; STµ)%µ∧∆ | ψ1 | V, µ [p2 ],none u1 → v1/(STµ

1 ; STµ
1 +; STµ)%µ∧

∆ | ψ1 | V, µ = G′, so vars(G) = vars(G′), and G′  +
σ nil | ψ | V, ν, where

ν = (µσ)V , hence σvars(G)|ψ is a computed answer for both G and G′. Call ∆1 =
u1 → v1/(STµ

1 ; STµ
1 +)%µ ; STµ. By I.H., for any substitution ρ : vars(Gσ)→ TΣ such

that ψρ is satis�able, σvars(G)ρ is a solution for G′, call δ = σvars(G′)ρ (= σvars(G)ρ),

ν ′ = (µδ)V , and %ν′ = (%µδ)\V , so there is a c.p.t. for ∆1δ with respect to Dν′R,CallR
.

The c.p.t. has the form

F1

u1δ→t1/STν
′

1 %ν′

F2

t1→t2/(STν
′

1 %ν′ )+
F3

t2→v1δ/STν
′
%ν′

t1→v1δ/(STν
′

1 + ; STν
′
)%ν′

u1δ→v1δ/(ST
ν′
1 ; STν′

1 + ; STν′ )%ν′
, for terms t1 and
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t2 ∈ HΣ. As there are rules
u1δ→t2/(STν′

1 %ν′ )+ t2→v1δ/ST
ν′%ν′

u1δ→v1δ/(ST
ν′
1 + ; STν′ )%ν′

, u1δ→t2/(STν′
1 ; STν′

1 +)%ν′

u1δ→t2/(STν′
1 %ν′ )+

,

and u1δ→t1/STν′
1 %ν′ t1→t2/(STν′

1 %ν′ )+

u1δ→t2/STν′
1 %ν′ ; STν′

1 +
in Dν′R,CallR

, then

F1

u1δ→t1/STν
′

1 %ν′

F2

t1→t2/(STν
′

1 %ν′ )+

u1δ→t2/(STν
′

1 ; STν
′

1 +)%ν′
u1δ→t2/(STν

′
1 %ν′ )+

F3

t2→v1δ/ST
ν′%ν′

u1δ → v1δ/(ST ν′
1 + ; ST ν′)%ν′

is a c.p.t., so ρ : vars(Gσ)→ TΣ, ψρ is satis�able, and σvars(G)ρ is a solution of G.

6. Rule [s1] (star):

G = u1 → v1/(STµ
1∗ ; STµ)%µ ∧∆ | ψ1 | V, µ  [s1 ],none u1 → v1/STµ%µ ∧∆ | ψ1 |

V, µ = G′, so vars(G) = vars(G′), and G′  +
σ nil | ψ | V, ν, where ν = (µσ)V , so

σvars(G)|ψ is a computed answer for G and σvars(G′)|ψ is a computed answer for G′.
Call ∆1 = u1 → v1/STµ%µ. By I.H., for any substitution ρ : vars(G′σ) → TΣ such
that ψρ is satis�able, σvars(G′)ρ is a solution for G′, call δ = σvars(G′)ρ (= σvars(G)ρ),

ν ′ = (µδ)V , and %ν′ = (%µδ)\V , so there is a c.p.t. for ∆1δ with respect to Dν′R,CallR
.

The c.p.t. has the form F1

u1δ→v1δ/ST
ν′%ν′

.

As, by de�nition, (ST ν′
1 %ν′)∗ = idle | (ST ν′

1 %ν′)+ and there are rules u1δ→u1δ/idle
,

u1δ→u1δ/idle

u1δ→u1δ/idle|(STν′
1 %ν′ )+

, and u1δ→u1δ/idle|(STν′
1 %ν′ )+ u1δ→v1δ/ST

ν′%ν′

u1δ→v1δ/(idle|STν′
1 + ; STν′ )%ν′

in Dν′R,CallR
, then

the proof tree
u1δ→u1δ/idle

u1δ→u1δ/idle|(STν′
1 %ν′ )+

F1

u1δ→v1δ/ST
ν′%ν′

u1δ → v1δ/((idle | ST ν′
1 +) ; ST ν′)%ν′

is closed, so ρ : vars(Gσ)→ TΣ, ψρ is satis�able, and σvars(G)ρ is a solution of G.

7. Rule [s2] (star):

G = u1 → v1/(STµ
1∗; STµ)%µ∧∆ | ψ1 | V, µ [s2 ],none u1 → v1/(STµ

1 +; STµ)%µ∧∆ |
ψ1 | V, µ = G′, so vars(G) = vars(G′), and G′  +

σ nil | ψ | V, ν, where ν = (µσ)V ,
hence σvars(G)|ψ is a computed answer for both G and G′. Call ∆1 = (STµ

1 +; STµ)%µ.
By I.H., for any substitution ρ : vars(Gσ)→ TΣ such that ψρ is satis�able, σvars(G)ρ
is a solution for G′, call δ = σvars(G′)ρ (= σvars(G)ρ), ν ′ = (µδ)V , and %ν′ = (%µδ)\V ,

so there is a c.p.t. for the goal ∆1δ with respect to Dν′R,CallR
.

The c.p.t. has the form

F1

u1δ→t/(STν
′

1 %ν′ )+
F2

t→v1δ/STν
′
%ν′

u1δ→v1δ/(ST
ν′
1 %ν′ )+ ; STν′%ν′

for some term t ∈ HΣ. As, by

de�nition, (ST ν′
1 %ν′)∗ = idle | (ST ν′

1 %ν′)+ and there are rules u1δ→t/(STν′
1 %ν′ )+

u1δ→t/idle|(STν′
1 %ν′ )+

and u1δ→t/idle|(STν′
1 %ν′ )+ t→v1δ/ST1δ

u1δ→v1δ/((idle|STν′
1 +) ; STν′ )%ν′

in Dν′R,CallR
, then

F1

u1δ→t/(STν
′

1 %ν′ )+

u1δ→t/idle|(STν′
1 %ν′ )+

F2

t→v1δ/ST
ν′%ν′

u1δ → v1δ/((idle | ST ν′
1 +) ; ST ν′)%ν′

is a c.p.t., so ρ : vars(Gσ)→ TΣ, ψρ is satis�able, and σvars(G)ρ is a solution of G.
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8. Rule [i1] (if then else):

G = u1 → v1 / (match t1 s.t. φ1 ? ST 1 : ST 2 ; ST )µ%µ (∧∆) | ψ1 | V, µ [i1 ],σ1
(u1 →

v1/(ST 1 ; ST )µ%µ (∧ ∆) | ψ2 | V, µ)σ1 = G′σ1, call t = tµ1%µ and φ = φµ1%µ, where
abstractΣ1(t) = 〈λx̄.t◦;σ◦;φ◦〉, t◦ = t[x̄]q̄, with x̄ = x1, . . . , xl and q̄ = q1, . . . , ql,
φ◦ = (

∧l
i=1 xi = t|qi), hence Vt◦∪Vφ◦ = Vt∪ x̂, σ1 ∈ CSUB (u1 = t◦), ψ2 = ψ1∧φ∧φ◦,

so VG ⊆ VG′ , ψ2σ1 is satis�able, and G′σ1  
+
σ′ nil | ψ | V, ν, call σ = σ1σ

′, where
ν = (µσ)V = (µσ1σ

′)V , so σVG | ψ is a computed answer for G and σ′VG′σ1
| ψ is a

computed answer for G′σ1.

Let ρ : VGσ → TΣ be a substitution such that ψρ is satis�able, call δ = σVGρ,
ν ′ = (µδ)V , so dom(ν ′) = V and ran(ν ′) = ∅, and %ν′ = (%µδ)\V , so δ : VG → TΣ.
As dom(ρ) = VGσ and VG ⊆ VG′ , so VGσ ⊆ VG′σ, then dom(ρ) ⊆ VG′σ. Let ρ′1 :
VG′σ \VGσ → TΣ, so dom(ρ)∪ dom(ρ′1) = VG′σ, such that ψ(ρ] ρ′1) is satis�able, and
call ρ′ = ρ ] ρ′1, so ρ′ : VG′σ → TΣ and ρ′VGσ = ρ.

By I.H., as ρ′ : VG′σ1σ′ → TΣ and ψρ′ is satis�able, σ′VG′σ1
ρ′ is a solution for G′σ1,

call δ′ = σ1σ
′
VG′σ1

ρ′, %′ = (%µδ
′)\V , and ρ

′′ = δ′Vt,φ\VG .

We prove several intermediate results:

� (µδ)V = (µδ′)V .
We prove the equivalent fact, x ∈ vars(V µ) =⇒ xδ = xδ′: as V µ = (V \
dom(µ)) ∪ ran(µ) then VV µ = V µ so if x ∈ VV µ = V µ ⊆ VG then x ∈ VG, xσ1 ∈
VGσ1 ⊆ VG′σ1 , and x(σ1σ

′)VG = xσ1σ
′
VG′σ1

. Now, as xδ (= xσVGρ) is ground,

xδ = xσVGρ = xσVG(ρ ] ρ′1) = xσVGρ
′ = x(σ1σ

′)VGρ
′ = xσ1σ

′
VG′σ1

ρ′ = xδ′.

� V(tσ,φσ) ⊆ VG′σ.
As Vt◦ ∪ Vφ◦ = Vt ∪ x̂, ψ2 = ψ1 ∧ φ ∧ φ◦, and σ1 ∈ CSUB (u1 = t◦), so Vt◦σ1 =
Vu1σ1 ⊆ VGσ1 , because B is regular, hence VGσ1 ∪ Vt◦σ1 = VGσ1 , then VG′σ1 =
VGσ1 ∪ Vφ◦σ1 ∪ Vφσ1 = VGσ1 ∪ Vt◦σ1 ∪ Vφ◦σ1 ∪ Vφσ1 = VGσ1 ∪ Vtσ1 ∪ Vx̄σ1 ∪ Vφσ1 =
VGσ1 ∪ V(tσ1,φσ1) ∪ Vx̄σ1 , so V(tσ1,φσ1) ⊆ VG′σ1 , hence V(tσ,φσ) ⊆ VG′σ.

� V
(tν
′

1 ,φ
ν′
1 )
⊆ V(tµ1 ,φ

µ
1 ).

This is immediate since dom(µ) ⊆ V , ν ′ = (µδ)V , so dom(µ) ⊆ dom(ν ′), and
ν ′ : V → TΣ.

� V(tµ1 ,φ
µ
1 ) \ V(tν

′
1 ,φ

ν′
1 )
⊆ V µ.

As dom(µ) ⊆ V and ν ′ = (µδ)V then the variables in V(tµ1 ,φ
µ
1 ) instantiated in

V
(tν
′

1 ,φ
ν′
1 )

must belong either to V \ dom(µ) or to ran(µ), i.e., to V µ. Since

ν ′ : V → TΣ then V
(tν
′

1 ,φ
ν′
1 )
\ V(tµ1 ,φ

µ
1 ) = ∅ and the result follows.

� φσρ′ = φν
′

1 %ν′ρ
′′.

As (µδ)V = (µδ′)V then φσρ′ = φδ′ = (φµ1%µ)δ′ = φ
(µδ′)V
1 (%µδ

′)\V = φ
(µδ)V
1 %′ =

φν
′

1 %
′, so we prove the equivalent φν

′
1 %
′ = φν

′
1 %ν′ρ

′′ by proving x ∈ Vφ1 =⇒
xν
′
%′ = xν

′
%ν′ρ

′′. We consider two cases:

* if x ∈ V then xν
′
is ground, so xν

′
%′ = xν

′
%ν′ρ

′′.

* if x /∈ V then xν
′

= x, so xν
′
/∈ V . Also, as x /∈ V , xµ = x so, as x ∈ Vφ1 ,

x ∈ Vφµ1 . As x /∈ V and xν
′

= x then xν
′
%′ = x%′ = x(%µδ

′)\V = x%µδ
′ and

xν
′
%ν′ρ

′′ = x%ν′ρ
′′ = x(%µδ)\V ρ

′′ = x%µδρ
′′, so we check x%µδ′ = x%µδρ

′′ by
checking y ∈ Vx%µ =⇒ yδ′ = yδρ′′:

· as x ∈ Vφµ1 and y ∈ Vx%µ then y ∈ Vφµ1 %µ , i.e., y ∈ Vφ;
· again, we consider two cases:

(a) if y ∈ VG then yδ is ground, so yδρ′′ = yδ = yσVGρ = yσρ = yσ1σ
′ρ.

Also, as VG ⊆ VG′ , y ∈ VG′ and Vyσ1 ⊆ VG′σ1 , so yδ
′ = yσ1σ

′
VG′σ1

ρ =

yσ1σ
′ρ = yδρ′′;
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(b) if y /∈ VG then, as y ∈ Vφ, y ∈ Vφ\G ⊆ V(φ,t)\G so, as also y /∈ VG and
δ : VG → TΣ, yδρ′′ = yρ′′ = yδ′V(φ1,t)\G

= yδ′.

� tσρ′ = tν
′

1 %ν′ρ
′′.

The proof is the same as the previous one, just exchanging φ and t everywhere,
even when they appear with subscripts and/or superscripts.

As σ′VG′σ1
ρ′ is a solution for G′σ1 then, by I.H.:

(a) E0 � ψ2δ
′, i.e., E0 � (ψ1 ∧ φ ∧ φ◦)δ′,

(b) there are closed proof trees for each open goal in ∆δ′, with respect to D(µδ′)V
R,CallR

(=Dν′R,CallR
, we use ν ′ instead of (µδ′)V in (c)), and

(c) [v1δ
′]E ∈ (ST 1 ; ST )ν

′
%′@[u1δ

′]E ,

so:

(a) i. Vψ2 ⊆ VG′ implies ψ2σ1σ
′
VG′σ1

= ψ2σ1σ
′ = ψ2σ, so E0 � ψ2σρ

′, where ψ2σρ
′

is ground, because Vψ2σ ⊆ VG′σ and ρ′ : VG′σ → TΣ, hence E0 � ψ1σρ
′,

E0 � φ◦σρ′, and E0 � φσρ′, all ground expressions.

ii. Vψ1σ ⊆ VGσ and dom(ρ) = VGσ implies ψ1σρ ∈ TΣ so, as ρ′ = ρ ] ρ′1,
ψ1σρ

′ = ψ1σ(ρ ] ρ′1) = ψ1σρ = ψ1δ, hence E0 � ψ1δ (�).

(b) As in subcase (a)-ii, V∆ ⊆ VG implies ∆δ′ = ∆δ, and the same closed proof trees
are valid for each open goal in ∆δ with respect to Dν′R,CallR

(��).

(c) Again, Vv1,u1 ⊆ VG implies that v1δ
′ = v1δ and u1δ

′ = u1δ. Then there is a c.p.t.

of the form

F1

u1δ→w/STν
′

1 %′
F2

w→v1δ/STν
′
%ν′

u1δ→v1δ/(ST1;ST )ν′%′
, for some term w ∈ HΣ, with respect to

Dν′R,CallR
.

We prove (a) ST ν′%ν′ρ
′′ = ST ν′%′ and (b) dom(ρ′′) = Vt,φ \ VG:

(a) As %ν′ = (%µδ)\V , δ = σVGρ, σ = σ1σ
′, δ′ = σ1σ

′
VG′σ1

ρ′, %′ = (%µδ
′)\V , and

V
STν′ ∩ V = ∅ this is the same as ST ν′%µ(σ1σ

′)VGρρ
′′ = ST ν′%µσ1σ

′
VG′σ1

ρ′.

Let y ∈ V
STν′%µ

, so y /∈ V . There are two options:

i. y ∈ VG. Then Vyσ1 ⊆ VGσ1 ⊆ VG′σ1 , so y(σ1σ
′)VG = yσ1σ

′ = yσ1σ
′
VG′σ1

. Also

y(σ1σ
′)VG = yσ, hence Vy(σ1σ′)VG

⊆ VGσ. Then, as ρ : VGσ → TΣ, y(σ1σ
′)VGρ

is ground, so y(σ1σ
′)VGρρ

′′ = y(σ1σ
′)VGρ = yσ1σ

′
VG′σ1

ρ = yσ1σ
′
VG′σ1

(ρ∪ρ′1) =

yσ1σ
′
VG′σ1

ρ′;

ii. y /∈ VG, so y(σ1σ
′)VG = y. As ran(σ) ∩ VSTµ%µ = ∅ and V

STν′%µ
⊆ VSTµ%µ

then ran(σ)∩V
STν′%µ

= ∅ so y /∈ VGσ and, as dom(ρ) = VGσ, y(σ1σ
′)VGρ = y.

Then:

A. if y ∈ Vt,φ then y(σ1σ
′)VGρρ

′′ = yρ′′ = yδ′Vt,φ\VG = yδ′ = yσ1σ
′
VG′σ1

ρ′,

ground term because Vyσ1 ⊆ Vtσ1,φσ1 ⊆ VG′σ1 and ρ′ : VG′σ1σ′ → TΣ;

B. if y /∈ Vt,φ then y(σ1σ
′)VGρρ

′′ = yρ′′ = yδ′Vt,φ\VG = y. As dom(σ1) ⊆
(Vu1 ∪ Vt◦) ⊆ (VG ∪ Vt,φ ∪ x̄) and y /∈ (VG ∪ Vt,φ) then yσ1 = y so, as
ran(σ1) ∩ V

STν′%µ
= ∅, yσ1 /∈ VGσ1 , and yσ1σ

′
VG′σ1

= y /∈ VGσ1σ′VG′σ1

so, as

ρ′ : VG′σ1σ′ → TΣ, yσ1σ
′
VG′σ1

ρ′ = y = y(σ1σ
′)VGρρ

′′.

(b) As dom(ρ′′) ⊆ (Vt,φ \ VG) and, from (a.ii.A), y ∈ (Vt,φ \ VG) =⇒ Vyρ′′ = ∅ then
dom(ρ′′) = Vt,φ \ VG, hence ρ′′ : Vt,φ \ VG → TΣ.

In exactly the same way as the proof for (a), ST ν′
1 %ν′ρ

′′ = ST ν′
1 %
′ and ST ν′

2 %ν′ρ
′′ =

ST ν′
2 %
′.
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Now, we prove (a) dom(ρ′′) = V
(tν
′

1 %ν′ ,φ
ν′
1 %ν′ )

, (b) E0 � φν
′

1 %ν′ρ
′′, and (c) u1δ =E

tν
′

1 %ν′ρ
′′:

(a) As dom(ρ′′) = Vt,φ \ VG, V(tν
′

1 ,φ
ν′
1 )
⊆ V(tµ1 ,φ

µ
1 ), V(tµ1 ,φ

µ
1 ) \ V(tν

′
1 ,φ

ν′
1 )
⊆ V µ ⊆ VG, and

dom(%µ)∩V µ = ∅, then dom(ρ′′) = V(t,φ)\VG = V(tµ1 %µ,φ
µ
1 %µ)\VG = V

(tν
′

1 %µ,φ
ν′
1 %µ)
\

VG.
As %ν′ = (%µδ)\V and V

(tν
′

1 ,φ
ν′
1 )
∩V = ∅, then V

(tν
′

1 %ν′ ,φ
ν′
1 %ν′ )

= V
(tν
′

1 (%µδ)\V ,φ
ν′
1 (%µδ)\V )

=

V
(tν
′

1 %µδ,φ
ν′
1 %µδ)

, so we prove V
(tν
′

1 %µδ,φ
ν′
1 %µδ)

= V
(tν
′

1 %µ,φ
ν′
1 %µ)

\ VG, which is trivial,
since δ : VG → TΣ.

(b) Immediate, since E0 � φσρ′ and φσρ′ = φν
′

1 %ν′ρ
′′.

(c) u1σ1 =B t◦σ1 and σ = σ1σ
′ imply u1σ =B t◦σ so, as Vu1 ⊆ VG, u1σvars(G) =

u1σ =B t◦σ. As ρ : VGσ → TΣ, so u1σVGρ is a ground term, and ρ′ = ρ] ρ′1 then
u1δ = u1σVGρ = u1σVGρ

′ =B t◦σρ′ = t[x̄]q̄σρ
′ = tσρ′[x̄σρ′]q̄.

As E0 � φ◦σρ′ then tσρ′[x̄σρ′]q̄ =E0 tσρ
′[t|q1σρ′, . . . , t|qlσρ′]q̄ = tσρ′[tσρ′|q̄]q̄ =

tσρ′ = tν
′

1 %ν′ρ
′′, because tσρ′ = tν

′
1 %ν′ρ

′′, so u1δ =B t◦σρ′ =E0 tν
′

1 %ν′ρ
′′, i.e.,

u1δ =E t
ν′
1 %ν′ρ

′′.

Then, as ρ′′ : V
(tν
′

1 %ν′ ,φ
ν′
1 %ν′ )

→ TΣ, E0 � φν
′

1 %ν′ρ
′′, u1δ =E tν

′
1 %ν′ρ

′′, and ST ν′
1 %ν′ρ

′′ =

ST ν′
1 %
′, there is a derivation rule u1δ→w/STν′

1 %
′

u1δ→w/match tν
′

1 %ν′ s.t. φ
ν′
1 %ν′ ? STν′

1 %ν′ :ST
ν′
2 %ν′

∈ Dν′R,CallR
.

Now,
F1

u1δ→w/STν
′

1 %′

u1δ→w/match tν
′

1 %ν′ s.t. φ
ν′
1 %ν′ ? STν′

1 %ν′ :ST
ν′
2 %ν′

F2

w→v1δ/ST
ν′%ν′

u1δ → v1δ/(match tν
′

1 %ν′ s.t. φ
ν′
1 %ν′ ? ST ν′

1 %ν′ : ST ν′
2 %ν′); ST ν′%ν′

is a c.p.t., ρ : vars(Gσ) → TΣ, ψρ is satis�able, E0 � ψ1δ (�), and there are closed
proof trees for each open goal in ∆δ with respect to Dν′R,CallR

(��), hence σvars(G)ρ is
a solution of G.

9. Rule [i2] (if then else):

G = u1 → v1 / (match t1 s.t. φ1 ? ST 1 : ST 2 ; ST )µ%µ (∧∆) | ψ1 | V, µ [i1 ],σ1
(u1 →

v1/(ST 2 ; ST )µ%µ (∧ ∆) | ψ2 | V, µ)σ1 = G′σ1, call t = tµ1%µ and φ = φµ1%µ, where
abstractΣ1(t) = 〈λx̄.t◦;σ◦;φ◦〉, t◦ = t[x̄]q̄, with x̄ = x1, . . . , xl and q̄ = q1, . . . , ql,
φ◦ = (

∧l
i=1 xi = t|qi), hence Vt◦∪Vφ◦ = Vt∪x̂, σ1 ∈ CSUB (u1 = t◦), ψ2 = ψ1∧¬φ∧φ◦,

so VG ⊆ VG′ , ψ2σ1 is satis�able, and G′σ1  
+
σ′ nil | ψ | V, ν.

The proof is the same as the one for rule [i1], just replacing φ with ¬φ, and ex-
changing ST 1 and ST 2 everywhere except in the match strategy at the beginning
�match t1 s.t. φ1 ? ST 1 : ST 2 ; ST �.

10. Rule [t] (transitivity):

G = u1 → v1/(RA; ST )µ%µ(∧∆) | ψ1 | V, µ [t ] u1 →1 xk, xk → v1/(RA; ST )µ%µ(∧∆) |
ψ1 | V, µ = G′, so VG ⊆ VG ∪{xk} = VG′ , and G′  +

σ nil | ψ | V, ν, where ν = (µσ)V ,
hence σVG |ψ is a computed answer for G and σVG′ |ψ is a computed answer for G′.
Let ρ : VGσ → TΣ such that ψρ is satis�able, call δ = σVGρ, ν

′ = (µδ)V , and
%ν′ = (%µδ)\V , where dom(ν ′) = V and ran(ν ′) = ∅, let % : VG′σ \ VGσ → TΣ, such
that ψ(ρ ] %) is satis�able, let ρ′ = ρ ] %, and call δ′ = σVG′ρ

′. As VG ⊆ VG′ then
ρ′ : VG′σ → TΣ and Gδ′ = Gδ.

By I.H., as ρ′ : VG′σ → TΣ and ψρ′ is satis�able, δ′ is a solution for G′, so [xkδ
′]E ∈

RAµ%µδ
′ @ [u1δ

′]E and [v1δ
′]E ∈ STµ%µδ

′@[xkδ
′]E . This is equivalent, since Gδ′ =
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Gδ, to [xkδ
′]E ∈ RAµ%µδ @ [u1δ]E and [v1δ]E ∈ STµ%µδ@[xkδ

′]E , i.e., [xkδ
′]E ∈

RAν′%ν′ @ [u1δ]E and [v1δ]E ∈ ST ν′%ν′@[xkδ
′]E , so there are closed proof trees of the

forms F1

u1δ→xkδ′/RAν
′
%ν′

and F2

xkδ′→v1δ/ST
ν′%ν′

with respect to Dν′R,CallR
. As there is a

rule u1δ→xkδ′/RAν
′
%ν′ xkδ

′→v1δ/ST
ν′%ν′

u1δ→v1δ/(RA ; ST )ν′%ν′
∈ Dν′R,CallR

, then

F1

u1δ→xkδ′/RAν
′
%ν′

F2

xkδ′→v1δ/ST
ν′%ν′

u1δ → v1δ/(RA ; ST )ν′%ν′

is a c.p.t. with ρ : vars(Gσ)→ TΣ and ψρ satis�able, so σvars(G)ρ is a solution of G.

11. Rule [c] (congruence):

G = u1|p →1 xk, u1[xk]p → v1/(RA ; ST )µ%µ (∧ ∆) | ψ1 | V, µ  [t ],σ1
u′i →1

yk′ , u1[yk′ ]p.i → v1/(RA ; ST )µ%µ (∧∆) | ψ1 | V, µ = G′, where u1|p = f(u′1, . . . , u
′
m),

u′i ∈ HΣ(X ) \ X , yk′ fresh variable, and σ1 = {xk 7→ u1|p[yk′ ]i}, so (µσ1)V = µ and
VGσ1 = VG′ , and G′  

+
σ′ nil | ψ | V, ν, call σ = σ1σ

′, where ν = (µσ′)V = (µσ)V ,
hence σVG |ψ is a computed answer for G and σ′VG′ |ψ is a computed answer for G′.

Let ρ : VGσ → TΣ such that ψρ is satis�able, call δ = σVGρ, ν
′ = (µδ)V , and

%ν′ = (%µδ)\V , where dom(ν ′) = V and ran(ν ′) = ∅. As VGσ1 = VG′ then VGσ =
VGσ1σ′ = VG′σ′ , so also ρ : VG′σ′ → TΣ, call δ′ = σ′VG′

ρ.

For every variable z ∈ VG ∩ VG′ , as dom(σ1) = {xk} and xk /∈ VG′ , zδ = zσVGρ =
zσρ = zσ1σ

′ρ = zσ′ρ = zσ′VG′
ρ = zδ′. As vars(u1|p) ⊆ VG and vars(u1[yk′ ]p.i) ⊆ VG′

then vars(u1|p[]i) ⊆ VG ∩ VG′ so u1|pδ[]i = u1|pδ′[]i.
By I.H., as ρ : VG′σ′ → TΣ and ψρ is satis�able, σ′VG′ρ is a solution for G

′, so [y′kδ
′]E ∈

RAµ%µδ
′ @ [u′iδ

′]E and [v1δ
′]E ∈ STµ%µδ

′@[u1[y′k]p.iδ
′]E . As VG′ = {yk′} ∪ VG \ {xk}

and VRAµ%µ ∩ {xk, yk′} = ∅, so RAµ%µ(σ1σ
′)VG = RAµ%µσ

′
VG
, then RAµ%µδ

′ =

RAµ%µσ
′
VG′

ρ = RAµ%µσ
′
VG
ρ = RAµ%µ(σ1σ

′)VGρ = RAµ%µσVGρ = RAµ%µδ = RAν′%ν′ .

In the same way, STµ%µδ
′ = ST ν′%ν′ . Then, [y′kδ

′]E ∈ RAν′%ν′ @ [u′iδ
′]E , [v1δ

′]E ∈
ST ν′%ν′@[u1[y′k]p.iδ

′]E , and there are closed proof trees of the forms (1)
u′iδ
′→y′kδ′/RAν

′
%ν′

or (2) F1

u′iδ
′→y′kδ′/RAν

′
%ν′

, and (3) F2

u1[y′k]p.iδ′→v1δ′/ST
ν′%ν′

with respect to Dν′R,CallR
.

� Case (1): RAν′ = cν
′
[γ], so RAν′%ν′ = cν

′
[γ(%ν′)ran(γ)], c

ν′ : l → r if φ and
there exist a substitution η, a position q, and terms t, t′ ∈ HΣ such that E0 �
φγ(%ν′)ran(γ)η, t −−−−−−−−−→

cν
′γ(%ν′ )ran(γ),q,η

1

R

t′, so
t→t′/RAν

′
%ν′

is a derivation rule inDν′R,CallR
,

u′iδ
′ =E t, and t′ =E y′kδ

′. By de�nition of →1
R, also u1δ|p[t]i −−−−−−−−−−→

cν′γ(%ν′ )ran(γ),i.q,η

1

R

u1δ|p[t′]i so there is a derivation rule
u1δ|p[t]i→u1δ|p[t′]i/RAν

′
%ν′
∈ Dν′R,CallR

.

Now, u′iδ = u′iδ
′ =E t, so u1δ|p[t]i =E u1δ|p[u′iδ]i = u1|p[u′i]iδ = u1|pδ, and xk ∈

VG, so xkδ = xkσvars(G)ρ = xkσρ = xkσ1σ
′ρ = u1|p[yk′ ]iσ′ρ = u1σ

′|p[yk′σ′]iρ =
u1σ|p[yk′σ′]iρ = u1σρ|p[yk′σ′ρ]i = u1δ|p[yk′δ′]i =E u1δ|p[t′]i.
If we apply the previous derivation rule, with u1δ|p[t]i =E u1|pδ and xkδ =E

u1δ|p[t′]i, then we get the c.p.t.
u1|pδ→xkδ/RAν

′
%ν′

, so [xkδ]E ∈ RAν′%ν′@[u1|pδ]E .

� Case (2): RAν′ = cν
′
[γ]{ST ν′

1 , . . . ,ST ν′
m}, RAν′%ν′ = cν

′
[γ(%ν′)ran(γ)]{ST

ν′
%ν′},

cν
′
γ(%ν′)ran(γ) has the form l→ rif

∧m
j=1 lj → rj | φ and there exist a substitution

η, a term t ∈ HΣ, and a position q ∈ pos(t) such that t|q = lη and E0 � φη, so

there is a derivation rule l1η→r1η/STν′
1 %ν′η···lmη→rmη/STν′

m%ν′η

t→t[rη]q/RAν
′
%ν′

∈ Dν′R,CallR
, Tj is a
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c.p.t. with root ljη → rjη/ST ν′
j %ν′η with respect to Dν′R,CallR

, for 1 ≤ j ≤ m,
u′iδ
′ =E t, and t[rη]q =E y

′
kδ
′.

We take w = u1|pδ[t]i and the position i.q. Then, as E0 � φη and w|i.q = t|q = lη,

there is also a derivation rule l1η→r1η/STν′
1 %ν′η···lmη→rmη/STν′

m%ν′η

w→w[rη]i.q/RAν
′
%ν′

∈ Dν′R,CallR
.

We have u′iδ
′ =E t and t[rη]q =E y′kδ

′. From the previous subcase we also know
that u′iδ = u′iδ

′ and xkδ = u1|pδ[yk′δ′]i. Then w = u1|pδ[t]i =E u1|pδ[u′iδ′]i =
u1|pδ[u′iδ]i = u1|pδ and w[rη]i.q = (u1|pδ[t]i)[rη]i.q = u1|pδ[t[rη]q]i =E u1|pδ[y′kδ′]i.
As σ1 = {xk 7→ u1|p[yk′ ]i}, xk ∈ VG, vars(u1[yk′ ]p.i) ⊆ VG′ , so vars(u1|p[yk′ ]i) ⊆
VG′ , and u1|pδ[]i = u1|pδ′[]i, then xkδ = xkσVGρ = xk(σ1σ

′)VGρ = u1|p[yk′ ]iσ′ρ =
u1|p[yk′ ]iσ′VG′ρ = u1|p[yk′ ]iδ′ = u1|pδ′[yk′δ′]i = u1|pδ[yk′δ′]i then w[rη]i.q =E xkδ

so, as w =E u1|pδ, we can apply the derivation rule with u1|pδ and xkδ and
complete a c.p.t. with T1, . . . , Tm, yielding

F1

u1|pδ→xkδ/RAν
′
%ν′

, hence [xkδ]E ∈

RAν′%ν′@[u1|pδ]E .
As V(v1,u1) ⊆ VG ∩ VG′ then v1δ

′ = v1δ and v1δ
′ = v1δ, so u1[xk]pδ = u1δ[xkδ]p =

u1δ[u1|pδ[yk′δ′]i]p = u1δ[yk′δ
′]p.i = u1δ

′[yk′δ
′]p.i, and the c.p.t. (3) can also be writ-

ten as F2

u1[xk]pδ→v1δ/ST
ν′%ν′

, hence [v1δ]E ∈ ST ν′%ν′@[u1[xk]pδ]E . As also [xkδ]E ∈

RAν′%ν′@[u1|pδ]E , either for case (1) or (2), and ψρ is satis�able then σvars(G)ρ is a
solution of G.

12. Rule [r] (rule application):
We prove this case for conditional rules. For rules without rewrite conditions, the
proof is the same just with the part dealing with the conditions removed from it.
G = u|p →1 xk, u[xk]p → v/(c[γr]{ST 1, . . . ,STm} ; ST )µ%µ (∧∆) | ψ1 | V, µ  [r ],σ1

(
∧n
i=1(liγ → riγ/STµ

i %µ; idle)∧u[rγ]p → v/STµ%µ(∧∆) | ψ2)σ1 | V, (µσ1)V = G′σ1,
where:

� γ = (γµr %µ)dom(γµr ) (so ran(γ) ⊆ VG), c ∈ R, c0 ∈ cB ⊆ RB has the form
c : lc → rc if

∧n
i=1(lci → rci ) | φc, cγ′ : l→ r if

∧n
i=1(li → ri) | φ is a fresh version

with some renaming γ′ of cµ0 ∈ R
µ
B, with dom(γ′) = vars(cµ0 ) \ (dom(γr) ] V µ),

so cγ′ = cµ0γ
′, call l′ = lγ;

� abstractΣ1(u|p) = 〈λū.u◦;σ◦u;φ◦u〉, u◦ = u|p[x̄]p̄, with x̄ = x1, . . . , xu and p̄ =
p1, . . . , pu, φ◦u = (

∧u
j=1 xj = u|p.pj );

� abstractΣ1(l′) = 〈λȳ.l◦;σ◦;φ◦〉, l◦ = l′[ȳ]q̄, with ȳ = y1, . . . , yl and q̄ = q1, . . . , ql,
φ◦ = (

∧l
i=1 yi = l′|qi);

� σ′1 ∈ CSUB (u◦ = l◦), σ1 = σ′1 ∪ {xk 7→ rγσ1σ
′
1}, ψ2 = ψ1 ∧ φ◦ ∧ φ◦u ∧ φγ, ψ2σ1 is

satis�able;

Then G′σ1  
+
σ′ nil | ψ | V, ν, call σ = σ1σ

′, where ν = (µσ)V = (µσ1σ
′)V =

(µσ′1σ
′)V , so σVG | ψ is a computed answer for G and σ′VG′σ1

| ψ is a computed answer

for G′σ1.
As γ = (γµr %µ)dom(γµr ) then dom(γr) = dom(γµr ) = dom(γ).
Let ρ : VGσ → TΣ be a substitution such that ψρ is satis�able, call δ = σVGρ
and %ν′ = (%µδ)\V , so δ : VG → TΣ, ρ1 = ρVG′σ , so also ψρ1 is satis�able, and
call ν ′ = (νρ)V , where dom(ν ′) = V and ran(ν ′) = ∅. As dom(ρ) = VGσ then
dom(ρ1) = VGσ∩VG′σ. Let ρ2 = ρVGσ\VG′σ , so ρ = ρ1]ρ2, and let ρ′1 : VG′σ\VGσ → TΣ,
so dom(ρ1) ∩ dom(ρ′1) = ∅ and dom(ρ1) ∪ dom(ρ′1) = VG′σ, such that ψ(ρ1 ] ρ′1) is
satis�able, and call ρ′ = ρ1 ] ρ′1, so ρ′ : VG′σ → TΣ.

We prove several intermediate results:
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� As ν = (µσ)V , V µ ⊆ VG ∩ VG′ , and dom(ρ1) = VGσ ∩ VG′σ then V ν ⊆ dom(ρ1)
so, as dom(ν ′) = V and ran(ν ′) = ∅, ν ′ = (νρ)V = (νρ1)V = (νρ′)V . Also, as
dom(µ) ⊆ V , ν ′ = (νρ)V = ((µσ)V ρ)V = (µσρ)V = µ(σρ)V µ .

� As dom(ρ′1) = VG′σ \ VGσ and dom(ρ1) = VGσ ∩ VG′σ ⊆ VGσ, then ρ′VGσ =
(ρ1 ] ρ′1)VGσ = (ρ1)VGσ = ρ1.

� As δV µ = (σVGρ)V µ , ρ : VGσ → TΣ, and V µ ⊆ VG, then δV µ = (σρ)V µ ,
ran(δV µ) = ∅, and dom(δV µ) = V µ (= (V \ dom(µ)) ∪ ran(µ), so ran(µ) ⊆
dom(δV µ)). Then ν ′ = (µσVGρ)V = µδV µ and cν

′
0 = c0ν

′ = c0µδV µ .

As σ′VG′σ1
| ψ is a computed answer for G′σ1, ρ′ : VG′σ1σ′ → TΣ, and ψρ′ is satis�able

then, by I.H., σ′VG′σ1
ρ′ is a solution for G′σ1, call δ′ = σ1σ

′
VG′σ1

ρ′ and %′ = (%µδ
′)\V ,

meaning that:

(a) E0 � ψ2δ
′,

(b) there are closed proof trees for each open goal in ∆δ′, with respect to D(νρ′)V
R,CallR

(=Dν′R,CallR
, we use ν ′ instead of (νρ′)V in (c) and (d)),

(c) [vδ′]E ∈ ST ν′%′@[u[rγ]pδ
′]E , i.e., [vδ′]E ∈ ST ν′%′@[uδ′[rγδ′]p]E , and

(d) [riγδ
′]E ∈ ST ν′

i %
′@[liγδ

′]E , for 1 ≤ i ≤ n.
Then:

(a) i. Vψ2 ⊆ VG′ implies Vψ2σ1 ⊆ VG′σ1 and Vψ2σ ⊆ VG′σ, so ψ2δ
′ = ψ2σ1σ

′
VG′σ1

ρ′ =

ψ2σ1σ
′ρ′ = ψ2σρ

′, hence E0 � ψ2σρ
′, where ψ2σρ

′ is ground, because Vψ2σ ⊆
VG′σ and ρ′ : VG′σ → TΣ. As ψ2 = ψ1 ∧ φ◦ ∧ φ◦u ∧ φγ, then ψ1δ

′ = ψ1σρ
′,

E0 � ψ1σρ
′, E0 � φ◦σρ′, E0 � φ◦uσρ

′, and E0 � φγσρ′, all ground formulas.
ii. Also as ψ2 = ψ1 ∧ φ◦ ∧ φγ, so Vψ1 ⊆ VG ∩ VG′ hence Vψ1σ ⊆ VGσ ∩ VG′σ, and

dom(ρ1) = VGσ ∩ VG′σ imply ψ1σρ1 ∈ TΣ. Then, as ρ′ = ρ1 ] ρ′1, we have
ψ1σρ

′ = ψ1σ(ρ1 ] ρ′1) = ψ1σρ1 = ψ1σ(ρ1 ] ρ2) = ψ1σρ = ψ1δ, so E0 � ψ1δ
(1).

iii. As ψ1δ
′ = ψ1σρ

′ and ψ1σρ
′ = ψ1δ then ψ1δ

′ = ψ1δ.
(b) As in subcases (a)-ii and (a)-iii, V∆ ⊆ VG ∩ VG′ implies ∆δ′ = ∆δ, and the same

closed proof trees are valid for each open goal in ∆δ with respect to Dν′R,CallR
(2).

(c) i. Again, Vv,u[ ]p ⊆ VG ∩ VG′ implies that vδ′ = vδ and uδ′[ ]p = uδ[ ]p.

ii. We prove that ST ν′%′ = ST ν′%ν′ .
As %ν′ = (%µδ)\V , δ = σVGρ, σ = σ1σ

′, δ′ = σ1σ
′
VG′σ1

ρ′, %′ = (%µδ
′)\V , and

V
STν′ ∩ V = ∅, this is the same as ST ν′%µ(σ1σ

′)VGρ = ST ν′%µσ1σ
′
VG′σ1

ρ′.

Let x ∈ V
STν′%µ

. As V
STν′%µ

⊆ VSTµ%µ ⊆ VG ∩ VG′ , then x ∈ VG ∩ VG′
and Vxσ1 ⊆ VGσ1 ∩ VG′σ1 ⊆ VG′σ1 , so x(σ1σ

′)VG = xσ1σ
′ = xσ1σ

′
VG′σ1

. Also

x(σ1σ
′)VG = xσ, hence Vx(σ1σ′)VG

⊆ VGσ. Then, as ρ : VGσ → TΣ, x(σ1σ
′)VGρ

is ground, so x(σ1σ
′)VGρ = xσ1σ

′
VG′σ1

ρ = xσ1σ
′
VG′σ1

(ρ ∪ ρ′1) = xσ1σ
′
VG′σ1

ρ′.

iii. As in subcase (a)-i, Vrγ ⊆ VG′ implies rγδ′ = rγσρ′.
As xkσ1 = rγσ1 and σ = σ1σ

′ then xkσ = rγσ so, as xk ∈ VG, rγσ = xkσVG
and rγσρ′ = xkσVGρ

′, ground terms. But, as VxkσVG ⊆ VGσ then xkσVGρ
′ =

xkσVG(ρ1]ρ′1) = xkσVGρ1 = xkσVG(ρ1]ρ2) = xkσVGρ = xkδ, so rγσρ′ = xkδ
(3).

From (i)-(iii), [vδ]E ∈ ST ν′%ν′@[uδ[xkδ]p]E , i.e, [vδ]E ∈ ST ν′%ν′@[u[xk]pδ]E (4),
holds.

(d) Using the same proof as in the previous case, [riγδ
′]E ∈ ST ν′

i %
′@[liγδ

′]E , Vliγ,riγ ⊆
VG′ , and VSTν′

i %
′ ⊆ VG ∩ VG′ imply [riγσρ

′]E ∈ ST ν′
i %ν′@[liγσρ

′]E , for 1 ≤ i ≤ n,
where each term and strategy are ground (5).
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Now:

(a) Vu|p ⊆ VG imply u|pσVG = u|pσ, hence u|pσVGθ = u|pσθ, and u◦σ′1 =B l◦σ′1 imply
u◦σθ =B l◦σθ.

(b) As E0 � φ◦uσθ, ground formula, then u◦σθ = u|p[x̄]p̄σθ = u|pσθ[x̄σθ]p̄ =E0

u|pσθ[u|p.p̄σθ]p̄ = u|pσθ, all ground terms.

(c) AsE0 � φ◦σθ, ground formula, then l◦σθ = l′[ȳ]q̄σθ = l′σθ[ȳσθ]q̄ =E0 l
′σθ[l′|q̄σθ]q̄ =

l′σθ, all ground terms (6).

(d) As ρ : VGσ → TΣ, so u|pσVGρ (= u|pδ) is a ground term, then u|pδ = u|pσVGρ =
u|pσVGθ = u|pσθ =E0 u

◦σθ =B l◦σθ =E0 l
′σθ = lγσθ (7).

Recall that c[γr]{ST}ν′%ν′ = cν ′[(γν
′
r %ν′)dom(γν′r )]{ST

ν′
%ν′}. Now, we prove [xkδ]E ∈

c[γr]{ST}ν′%ν′ @ [u|pδ]E .
As dom(γ′) = vars(cµ0 ) \ (dom(γ) ] V µ), cµ0 = c0µ, and dom(δV µ) = V µ, then
Vc0µ ⊆ dom(δV µ) ] dom(γ) ] dom(γ′). Then, as c0ν

′ = c0µδV µ and δV µ is a
ground substitution, it follows that Vc0ν′ = dom(γ)] dom(γ′), hence Vc0ν′(γδ)dom(γ)

=
Vran(γ)δran(γ)

∪ Vdom(γ′)(γδ)dom(γ)
.

Then:

� As (γδ)dom(γ) is a ground substitution, if z is a variable in ran(γ) then zδran(γ)

is a ground term, so Vran(γ)δran(γ)
= ∅.

� As dom(γ) ∩ dom(γ′) = ∅, if z is a variable in dom(γ′) then z(γδ)dom(γ) = z, so
Vdom(γ′)(γδ)dom(γ)

= dom(γ′).

In conclusion, Vc0ν′γδran(γ)
= dom(γ′).

Call ν ′′ = ν ′(γδ)dom(γ) (= ν ′] (γδ)dom(γ) because dom(ν ′)∩dom(γ) = V ∩dom(γ) =
∅). We must �nd a substitution τ : Vc0ν′′ → TΣ such that E0 � φcν ′′τ . Let θ = ρ2]ρ1]
ρ′1(= ρ2 ] ρ′), so dom(θ) = VGσ ∪ VG′σ. We choose τ = (γ′σθ)dom(γ′) = γ′(σθ)ran(γ′),
so dom(τ) = dom(γ′) = Vc0ν′′ and (c0ν

′′)τ = (c0ν
′′)γ′σθ.

We prove that τ is a ground substitution by proving that (c0ν
′′)γ′σθ is ground.

Call δ′′ = δV µγδran(γ). As δV µ and γδran(γ) are ground substitutions, dom(δV µ) ∩
(dom(γ′)∪ran(γ′)) = ∅, and Vc0ν′ = dom(γ)]dom(γ′), then (c0ν

′′)γ′ = c0ν
′(γδran(γ)]

γ′) = cµ0δV µ(γδran(γ) ] γ′) = cµ0δV µγ
′γδran(γ) = cµ0γ

′δV µγδran(γ) = cµ0γ
′δ′′ = cγ′δ

′′. If
z ∈ Vcγ′δ′′ then, as δV µ is ground, either z ∈ VG′ or z ∈ Vl′ \ VG′ , because l′ is the
only term of cγ′γ that does not appear in G′. then:

� If z ∈ VG′ then Vzσ ⊆ VG′σ, so zσθ is a ground term because dom(θ) = VGσ∪VG′σ.
� If z ∈ Vl′ \ VG′ , as z ∈ Vl′ and, by (6), l′σθ is ground, then zσθ is a ground term.

Now, we prove E0 � φcν ′′τ .

� As ran(γ) ⊆ VG and δ is a ground substitution, then γδran(γ) is a ground sub-

stitution so, as cν
′

0 = c0µδV µ and ν ′′ = ν ′γδran(γ), φ
cν ′′τ = φcµδV µγδran(γ)τ =

φcµδV µ(γδran(γ) ] τ).

� As δV µ is a ground substitution, VφcµδV µ ⊆ Vcµ0 δV µ = dom(γ)]dom(γ′), dom(τ) =

dom(γ′), and dom(γδran(γ)) = dom(γ) then φcµδV µ(γδran(γ) ] τ) = φcµ(δV µ ]
γδran(γ) ] τ) = φcµ((σρ)V µ ] γ(σρ)ran(γ) ] τ) = φcµ((σθ)V µ ] γ(σθ)ran(γ) ]
γ′(σθ)ran(γ′)),
because as φcµδ′′τ is ground, it remains the same if we substitute the appearances
of ρ, ground substitution, with θ = ρ ] ρ′.

� As (σθ)V µ is ground then φcµ((σθ)V µ]γ(σθ)ran(γ)]γ′(σθ)ran(γ′)) = φcµ(γ′]γ)σθ,
the last equality because as the formula is ground, no new instantiation will come
from an unrestricted substitution.
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� As dom(γ)∩ dom(γ′) = ∅ and dom(γ)∩ ran(γ′) = ∅, we can apply the substitu-
tions one after the other, so φcµ(γ′ ] γ)σθ = φcµγ′γσθ = φγσθ.

� As Vφγσ ⊆ VG′σ, ρ′ : VG′σ → TΣ, and θ = ρ2 ] ρ′ then φγσθ = φγσρ′.

Joining all the equalities, we get φcν ′′τ = φγσρ′. Then, as E0 � φγσρ′, also E0 �
φcν ′′τ .
Now, we prove the existence of a needed derivation rule in Dν′R,CallR

. As %ν′ = (%µδ)\V
and ν ′ = (µδ)V , both ground,

⋃m
i=1 V

µ
ST i

%µ ⊆ VG, and δ : VG → TΣ, then STµ
i %µδ =

ST ν′
i %ν′ and V

STν′
i %ν′

= ∅, for 1 ≤ i ≤ m, and (c[γr])
µ%µδ = cµ[(γµr %µ)dom(γµr )]δ =

cµ[γ]δ = cν
′
[(γδ)dom(γ)].

Recall that c0 ∈ RB has the form c : lc → rc if
∧n
i=1(lci → rci ) | φc and ν ′′ =

ν ′(γδ)dom(γ). There are two cases to consider now:

(a) c0 ∈ R:
as τ : Vc0ν′′ → TΣ, E0 � φcν ′′τ , lcν ′′τ and rcν ′′τ are terms in HΣ, ε is a position in

pos(lcν ′′τ) such that (lcν ′′τ)|ε = lcν ′′τ , and ST
ν′
%ν′ are ground strategies, then

there is a derivation rule

lc1ν
′′τ → rc1ν

′′τ/ST ν′
1 %ν′ · · · lcmν ′′τ → rcmν

′′τ/ST ν′
m%ν′

lcν ′′τ → rcν ′′τ/c[(γδ)dom(γ)]{ST
ν′
%ν′}

in Dν′R,CallR
.

(b) c0 /∈ R:
then there is a rule c1 : f(t, t′) → t′′ if C ∈ R such that c0 has the form c :
f(xs, f(t, t′))→ f(xs, t

′′) if C, where dom(γr) ⊆ Vc1 and C =
∧n
i=1(lci → rci ) | φc.

Let τ ′ = τVc1ν′′
. As Vc1 ⊂ Vc0 and τ : Vc0ν′′ → TΣ then τ ′ : Vc1ν′′ → TΣ. Also, as

Vc1 ⊂ Vc0 and E0 � φcν ′′τ then E0 � φcν ′′τ ′.
As lcν ′′τ is a term in HΣ, 2 is a position in pos(lcν ′′τ) such that (lcν ′′τ)|2 =

f(t, t′)ν ′′τ , E0 � φcν ′′τ ′, t′′ν ′′τ ′ = t′′ν ′′τ , and ST
ν′
%ν′ are ground strategies, then

there is a derivation rule

lc1ν
′′τ → rc1ν

′′τ/ST ν′
1 %ν′ · · · lcmν ′′τ → rcmν

′′τ/ST ν′
m%ν′

lcν ′′τ → lcν ′′τ [t′′ν ′′τ ]2/c[(γδ)dom(γ)]{ST
ν′
%ν′}

in Dν′R,CallR
. As lc[]2 = rc[]2 = f(xs, []), and rcν ′′τ [t′′ν ′′τ ]2 = rc[t′′]2ν

′′τ = rcν ′′τ ,
this is the same as

lc1ν
′′τ → rc1ν

′′τ/ST ν′
1 %ν′ · · · lcmν ′′τ → rcmν

′′τ/ST ν′
m%ν′

lcν ′′τ → rcν ′′τ/c[(γδ)dom(γ)]{ST
ν′
%ν′}

,

so in both cases we have the same derivation rule. Now, as:

� ν ′′ = ν ′] (γδ)dom(γ) is ground, ν
′ = µδV µ , δ = σVGρ, θ = ρ]ρ′1, and dom(δV µ) =

V µ,

� τ = γ′(σθ)ran(γ′) and δV µ ] (γδ)dom(γ) are ground substitutions,

� c0 : lc → rc if
∧n
i=1(lci → rci ) | φc and c0ν

′′τ is ground,

� cγ′ : l→ r if
∧n
i=1(li → ri) | φ, and

� cγ′ is a fresh version of cµ0 except for dom(γ) ] dom(δV µ), with renaming γ′ :
vars(cµ0 ) \ (dom(γ) ] dom(δV µ))→ vars(cγ′) \ (dom(γ) ] dom(δV µ)),

then, c0ν
′′γ′ = c0(ν ′′ ] γ′) = c0(ν ′ ] (γδ)dom(γ) ] γ′) = c0((µδV µ)] (γδ)dom(γ) ] γ′) =

cµ0 (δV µ ] (γδ)dom(γ) ] γ′) = cγ′(δV µ ] (γδ)dom(γ)), so c0ν
′′τ = c0ν

′′γ′(σθ)ran(γ′) =
cγ′(δV µ ] (γδ)dom(γ))(σθ)ran(γ′) = cγ′(δV µ ] (γδ)dom(γ) ] σθ) = cγ′(δ ] γδ ] σθ) =
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cγ′((σVGρ)](γσVGρ)]σθ) = cγ′((σρ)](γσρ)]σθ) = cγ′((σθ)](γσθ)]σθ) = cγ′γσθ,
all because c0ν

′′τ is ground, and we can write the derivation rule as

l1γσθ → r1γσθ/ST ν′
1 %ν′ · · · lmγσθ → rmγσθ/ST ν′

m%ν′

lγσθ → rγσθ/c[(γδ)dom(γ)]{ST
ν′
%ν′}

(8)

Also, as δ′ = σ1σ
′
VG′σ1

ρ′, Vriγσ1,liγσ1 ⊆ VG′σ1 , [riγδ
′]E ∈ ST ν′

i %ν′@[liγδ
′]E , for 1 ≤ i ≤

n, where each term is ground, σ = σ1σ
′, and θ = ρ′]ρ2, then riγδ′ = riγσ1σ

′
VG′σ1

ρ′ =

riγσ1σ
′ρ′ = riγσρ

′ = riγσθ (and liγδ′ = liγσθ), so [riγσθ]E ∈ ST ν′
i %ν′@[liγσθ]E , and

there are closed proof trees of the form Fi
liγσθ→riγσθ/STν′

i %ν′
, with respect to Dν′R,CallR

.

As dom(γ′) = vars(cµ0 ) \ (dom(γ) ] V µ) then dom(γ) ∩ dom(γ′) = ∅, so γ′γ =
γ′ ] γ = γγ′. We already know that rγσρ′ = xkδ (3) and u|pδ =E lγσθ (7) so,
as rγσρ′ is ground and θ = ρ′ ] ρ2, then also rγσθ = rγσρ′ = xkδ, and we can
apply the derivation rule (8) to u|pδ and xkδ and construct the c.p.t. for [xkδ]E ∈
(c[γr]{ST})µ%µδ @ [u|pδ]E , i.e., [xkδ]E ∈ c[γδran(γ)]{ST

ν′
%ν′}@ [u|pδ]E , with respect

to Dν′R,CallR
:

F1
l1γσθ→r1γσθ/ST1δ

· · · Fm
lmγσθ→rmγσθ/STmδ

u|pδ → xkδ/c[(γδ)dom(γ)]{ST
ν′
%ν′}

.

As we have shown before that E0 � ψ1δ (1), that there are closed proof trees for each
open goal in ∆δ with respect to Dν′R,CallR

(2), and that [vδ]E ∈ ST ν′%ν′@[u[xk]pδ]E
(4), then δ = σvars(G)ρ is a solution of G.

13. Rule [tp] (top):

Again, we prove this case for conditional rules. For unconditional rules the proof is
the same, just with the part dealing with the conditions removed from it.

G = u→ v/(top(c[γr]{ST 1, . . . ,STm}); ST )µ%µ(∧∆) | ψ1 | V, µ [tp],σ1
(
∧n
i=1(liγ →

riγ/STµ
i %µ; idle) ∧ rγ → v /STµ%µ (∧∆) | ψ2)σ1 | V, (µσ1)V = G′σ1, where:

� γ = (γµr %µ)dom(γµr ) (so ran(γ) ⊆ VG), c ∈ R, c0 ∈ cB ⊆ RB has the form
c : lc → rc if

∧n
i=1(lci → rci ) | φc, cγ′ : l→ r if

∧n
i=1(li → ri) | φ is a fresh version

with some renaming γ′ of cµ0 ∈ R
µ
B, with dom(γ′) = vars(cµ0 ) \ (dom(γr) ] V µ),

so cγ′ = cµ0γ
′, call l′ = lγ;

� abstractΣ1(u|p) = 〈λū.u◦;σ◦u;φ◦u〉, u◦ = u|p[x̄]p̄, with x̄ = x1, . . . , xu and p̄ =
p1, . . . , pu, φ◦u = (

∧u
j=1 xj = u|p.pj );

� abstractΣ1(l′) = 〈λȳ.l◦;σ◦1;φ◦〉, l◦ = l′[ȳ]q̄, with ȳ = y1, . . . , yl and q̄ = q1, . . . , ql,
φ◦ = (

∧l
i=1 yi = l′|qi);

� σ1 ∈ CSUB (u◦ = l◦), ψ2 = ψ1 ∧ φ◦ ∧ φ◦u ∧ φγ, ψ2σ1 is satis�able;

Then G′σ1  
+
σ′ nil | ψ | V, ν, call σ = σ1σ

′, where ν = (µσ)V = (µσ1σ
′)V =

(µσ′1σ
′)V , so σVG | ψ is a computed answer for G and σ′VG′σ1

| ψ is a computed answer

for G′σ1.

As γ = γµr (%µ)ran(γµr ) then dom(γr) = dom(γµr ) = dom(γ).
Let ρ : VGσ → TΣ be a substitution such that ψρ is satis�able, call δ = σVGρ
and %ν′ = (%µδ)\V , so δ : VG → TΣ, ρ1 = ρVG′σ , so also ψρ1 is satis�able, and
call ν ′ = (νρ)V , where dom(ν ′) = V and ran(ν ′) = ∅. As dom(ρ) = VGσ then
dom(ρ1) = VGσ∩VG′σ. Let ρ2 = ρVGσ\VG′σ , so ρ = ρ1]ρ2, and let ρ′1 : VG′σ\VGσ → TΣ,
so dom(ρ1) ∩ dom(ρ′1) = ∅ and dom(ρ1) ∪ dom(ρ′1) = VG′σ, such that ψ(ρ1 ] ρ′1) is
satis�able, and call ρ′ = ρ1 ] ρ′1, so ρ′ : VG′σ → TΣ.
We prove several intermediate results:
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� As ν = (µσ)V , V µ ⊆ VG ∩ VG′ , and dom(ρ1) = VGσ ∩ VG′σ then V ν ⊆ dom(ρ1)
so, as dom(ν ′) = V and ran(ν ′) = ∅, ν ′ = (νρ)V = (νρ1)V = (νρ′)V . Also, as
dom(µ) ⊆ V , ν ′ = (νρ)V = ((µσ)V ρ)V = (µσρ)V = µ(σρ)V µ .

� As dom(ρ′1) = VG′σ \ VGσ and dom(ρ1) = VGσ ∩ VG′σ ⊆ VGσ, then ρ′VGσ =
(ρ1 ] ρ′1)VGσ = (ρ1)VGσ = ρ1.

� As δV µ = (σVGρ)V µ , ρ : VGσ → TΣ, and V µ ⊆ VG, then δV µ = (σρ)V µ ,
ran(δV µ) = ∅, and dom(δV µ) = V µ (= (V \ dom(µ)) ∪ ran(µ), so ran(µ) ⊆
dom(δV µ)). Then ν ′ = (µσVGρ)V = µδV µ and cν

′
0 = c0ν

′ = c0µδV µ .

As σ′VG′σ1
| ψ is a computed answer for G′σ1, ρ′ : VG′σ1σ′ → TΣ, and ψρ′ is satis�able

then, by I.H., σ′VG′σ1
ρ′ is a solution for G′σ1, call δ′ = σ1σ

′
VG′σ1

ρ′ and %′ = (%µδ
′)\V ,

meaning that:

(a) E0 � ψ2δ
′,

(b) there are closed proof trees for each open goal in ∆δ′, with respect to D(νρ′)V
R,CallR

(=Dν′R,CallR
, we use ν ′ instead of (νρ′)V in (c) and (d)),

(c) [vδ′]E ∈ ST ν′%′@[rγδ′]E , and

(d) [riγδ
′]E ∈ ST ν′

i %
′@[liγδ

′]E , for 1 ≤ i ≤ n.
Then:

(a) i. Vψ2 ⊆ VG′ implies Vψ2σ1 ⊆ VG′σ1 and Vψ2σ ⊆ VG′σ, so ψ2δ
′ = ψ2σ1σ

′
VG′σ1

ρ′ =

ψ2σ1σ
′ρ′ = ψ2σρ

′, hence E0 � ψ2σρ
′, where ψ2σρ

′ is ground, because Vψ2σ ⊆
VG′σ and ρ′ : VG′σ → TΣ. As ψ2 = ψ1 ∧ φ◦ ∧ φγ, then ψ1δ

′ = ψ1σρ
′,

E0 � ψ1σρ
′, E0 � φ◦σρ′, E0 � φ◦uσρ

′, and E0 � φγσρ′, all ground formulas.

ii. Also as ψ2 = ψ1 ∧ φ◦ ∧ φγ, so Vψ1 ⊆ VG ∩ VG′ hence Vψ1σ ⊆ VGσ ∩ VG′σ, and
dom(ρ1) = VGσ ∩ VG′σ imply ψ1σρ1 ∈ TΣ. Then, as ρ′ = ρ1 ] ρ′1, we have
ψ1σρ

′ = ψ1σ(ρ1 ] ρ′1) = ψ1σρ1 = ψ1σ(ρ1 ] ρ2) = ψ1σρ = ψ1δ, so E0 � ψ1δ
(1).

iii. As ψ1δ
′ = ψ1σρ

′ and ψ1σρ
′ = ψ1δ then ψ1δ

′ = ψ1δ.

(b) As in subcases (a)-ii and (a)-iii, V∆ ⊆ VG ∩ VG′ implies ∆δ′ = ∆δ, and the same
closed proof trees are valid for each open goal in ∆δ with respect to Dν′R,CallR

(2).

(c) i. Again, Vv ⊆ VG ∩ VG′ implies that vδ′ = vδ.

ii. We prove that ST ν′%′ = ST ν′%ν′ .
As %ν′ = (%µδ)\V , δ = σVGρ, σ = σ1σ

′, δ′ = σ1σ
′
VG′σ1

ρ′, %′ = (%µδ
′)\V , and

V
STν′ ∩ V = ∅, this is the same as ST ν′%µ(σ1σ

′)VGρ = ST ν′%µσ1σ
′
VG′σ1

ρ′.

Let x ∈ V
STν′%µ

. As V
STν′%µ

⊆ VSTµ%µ ⊆ VG ∩ VG′ , then x ∈ VG ∩ VG′
and Vxσ1 ⊆ VGσ1 ∩ VG′σ1 ⊆ VG′σ1 , so x(σ1σ

′)VG = xσ1σ
′ = xσ1σ

′
VG′σ1

. Also

x(σ1σ
′)VG = xσ, hence Vx(σ1σ′)VG

⊆ VGσ. Then, as ρ : VGσ → TΣ, x(σ1σ
′)VGρ

is ground, so x(σ1σ
′)VGρ = xσ1σ

′
VG′σ1

ρ = xσ1σ
′
VG′σ1

(ρ ∪ ρ′1) = xσ1σ
′
VG′σ1

ρ′.

iii. As in subcase (a)-i, Vrγ ⊆ VG′ implies rγδ′ = rγσρ′.
Joining all the results, we get [vδ]E ∈ ST ν′%ν′@[rγσρ′]E , so there is a c.p.t. of
the form F

rγσρ′→vδ/STν′%ν′
with respect to Dν′R,CallR

(3).

(d) Using the same proof as in the previous case, [riγδ
′]E ∈ ST ν′

i %
′@[liγδ

′]E , Vliγ,riγ ⊆
VG′ , and VSTν′

i %
′ ⊆ VG ∩ VG′ imply [riγσρ

′]E ∈ ST ν′
i %ν′@[liγσρ

′]E , for 1 ≤ i ≤ n,
where each term and strategy are ground (4).

Now:
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(a) Vu ⊆ VG imply uσVG = uσ, hence uσVGθ = uσθ, and u◦σ′1 =B l◦σ′1 imply
u◦σθ =B l◦σθ.

(b) AsE0 � φ◦uσθ, ground formula, then u
◦σθ = u[x̄]p̄σθ = uσθ[x̄σθ]p̄ =E0 uσθ[u|p̄σθ]p̄ =

uσθ, all ground terms.

(c) AsE0 � φ◦σθ, ground formula, then l◦σθ = l′[ȳ]q̄σθ = l′σθ[ȳσθ]q̄ =E0 l
′σθ[l′|q̄σθ]q̄ =

l′σθ, all ground terms (5).

(d) As ρ : VGσ → TΣ, so uσVGρ (= uδ) is a ground term, then uδ = uσVGρ =
uσVGθ = uσθ =E0 u

◦σθ =B l◦σθ =E0 l
′σθ = lγσθ (6).

We need to prove:

[rγσρ′]E ∈ c[γr]{ST}ν′%ν′@[uδ]E , where c[γr]{ST}ν′%ν′ = cν ′[(γν
′
r %ν′)dom(γν′r )]{ST

ν′
%ν′}.

As dom(γ′) = vars(cµ0 ) \ (dom(γ) ] V µ), cµ0 = c0µ, and dom(δV µ) = V µ, then
Vc0µ ⊆ dom(δV µ) ] dom(γ) ] dom(γ′). Then, as c0ν

′ = c0µδV µ and δV µ is a ground
substitution, it follows that Vc0ν′ = dom(γ)]dom(γ′), hence Vc0ν′γ = ran(γ)∪dom(γ′)
and Vc0ν′(γδ)dom(γ)

= Vran(γ)δran(γ)
∪ Vdom(γ′)(γδ)dom(γ)

. Then:

� As (γδ)dom(γ) is a ground substitution, if z is a variable in ran(γ) then zδran(γ)

is a ground term, so Vran(γ)δran(γ)
= ∅.

� As dom(γ) ∩ dom(γ′) = ∅, if z is a variable in dom(γ′) then z(γδ)dom(γ) = z, so
Vdom(γ′)(γδ)dom(γ)

= dom(γ′).

In conclusion, Vc0ν′(γδ)dom(γ)
= dom(γ′).

Call ν ′′ = ν ′(γδ)dom(γ) (= ν ′] (γδ)dom(γ) because dom(ν ′)∩dom(γ) = V ∩dom(γ) =
∅). We must �nd a substitution τ : Vc0ν′′ → TΣ such that E0 � φcν ′′τ . Let θ = ρ2]ρ1]
ρ′1(= ρ2 ] ρ′), so dom(θ) = VGσ ∪ VG′σ. We choose τ = (γ′σθ)dom(γ′) = γ′(σθ)ran(γ′),
so dom(τ) = dom(γ′) = Vc0ν′′ and (c0ν

′′)τ = (c0ν
′′)γ′σθ.

We prove that τ is a ground substitution by proving that (c0ν
′′)γ′σθ is ground.

Call δ′′ = δV µγδran(γ). As δV µ and γδran(γ) are ground substitutions, dom(δV µ) ∩
(dom(γ′)∪ran(γ′)) = ∅, and Vc0ν′ = dom(γ)]dom(γ′), then (c0ν

′′)γ′ = c0ν
′(γδran(γ)]

γ′) = cµ0δV µ(γδran(γ) ] γ′) = cµ0δV µγ
′γδran(γ) = cµ0γ

′δV µγδran(γ) = cµ0γ
′δ′′ = cγ′δ

′′. If
z ∈ Vcγ′δ′′ then, as δV µ is ground, either z ∈ VG′ or z ∈ Vl′ \ VG′ , because l′ is the
only term of cγ′γ that does not appear in G′. We check each case:

� If z ∈ VG′ then Vzσ ⊆ VG′σ, so zσθ is a ground term because dom(θ) = VGσ∪VG′σ.
� If z ∈ Vl′ \ VG′ , as z ∈ Vl′ and, by (5), l′σθ is ground, then zσθ is a ground term.

We prove E0 � φcν ′′τ .

� As ran(γ) ⊆ VG and δ is a ground substitution, then γδran(γ) is a ground sub-

stitution so, as cν
′

0 = c0µδV µ and ν ′′ = ν ′γδran(γ), φ
cν ′′τ = φcµδV µγδran(γ)τ =

φcµδV µ(γδran(γ) ] τ).

� As δV µ is a ground substitution, VφcµδV µ ⊆ Vcµ0 δV µ = dom(γ)]dom(γ′), dom(τ) =

dom(γ′), and dom(γδran(γ)) = dom(γ) then φcµδV µ(γδran(γ) ] τ) = φcµ(δV µ ]
γδran(γ) ] τ) = φcµ((σρ)V µ ] γ(σρ)ran(γ) ] τ) = φcµ((σθ)V µ ] γ(σθ)ran(γ) ]
γ′(σθ)ran(γ′)),
because as φcµδ′′τ is ground, it remains the same if we substitute the appearances
of ρ, ground substitution, with θ = ρ ] ρ′.

� As (σθ)V µ is ground then φcµ((σθ)V µ]γ(σθ)ran(γ)]γ′(σθ)ran(γ′)) = φcµ(γ′]γ)σθ,
the last equality because as the formula is ground, no new instantiation will come
from an unrestricted substitution.

� As dom(γ)∩ dom(γ′) = ∅ and dom(γ)∩ ran(γ′) = ∅, we can apply the substitu-
tions one after the other, so φcµ(γ′ ] γ)σθ = φcµγ′γσθ = φγσθ.
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� As Vφγσ ⊆ VG′σ, ρ′ : VG′σ → TΣ, and θ = ρ2 ] ρ′ then φγσθ = φγσρ′.

Joining all the equalities, we get φcν ′′τ = φγσρ′. Then, as E0 � φγσρ′, also E0 �
φcν ′′τ .
Now, we prove the existence of a needed derivation rule in Dν′R,CallR

. As %ν′ = (%µδ)\V
and ν ′ = (µδ)V , both ground,

⋃m
i=1 V

µ
ST i

%µ ⊆ VG, and δ : VG → TΣ, then STµ
i %µδ =

ST ν′
i %ν′ and V

STν′
i %ν′

= ∅, for 1 ≤ i ≤ m, and (c[γr])
µ%µδ = cµ[(γµr %µ)dom(γµr )]δ =

cµ[γ]δ = cν
′
[(γδ)dom(γ)].

Recall that c0 ∈ R has the form c : lc → rc if
∧n
i=1(lci → rci ) | φc and ν ′′ = ν ′γδran(γ).

As τ : Vc0ν′′ → TΣ, E0 � φcν ′′τ , lcν ′′τ and rcν ′′τ are terms in HΣ, ε is a position in

pos(lcν ′′τ) such that (lcν ′′τ)|ε = lcν ′′τ , and ST
ν′
%ν′ are ground strategies, then there

is a derivation rule

lc1ν
′′τ → rc1ν

′′τ/ST ν′
1 %ν′ · · · lcmν ′′τ → rcmν

′′τ/ST ν′
m%ν′

lcν ′′τ → rcν ′′τ/c[(γδ)dom(γ)]{ST
ν′
%ν′}

in Dν′R,CallR
.

Now, as:

� ν ′′ = ν ′] (γδ)dom(γ) is ground, ν
′ = µδV µ , δ = σVGρ, θ = ρ]ρ′1, and dom(δV µ) =

V µ,

� τ = γ′(σθ)ran(γ′) and δV µ ] (γδ)dom(γ) are ground substitutions,

� c0 : lc → rc if
∧n
i=1(lci → rci ) | φc and c0ν

′′τ is ground,

� cγ′ : l→ r if
∧n
i=1(li → ri) | φ, and

� cγ′ is a fresh version of cµ0 except for dom(γ) ] dom(δV µ), with renaming γ′ :
vars(cµ0 ) \ (dom(γ) ] dom(δV µ))→ vars(cγ′) \ (dom(γ) ] dom(δV µ)),

then, c0ν
′′γ′ = c0(ν ′′ ] γ′) = c0(ν ′ ] (γδ)dom(γ) ] γ′) = c0((µδV µ)] (γδ)dom(γ) ] γ′) =

cµ0 (δV µ ] (γδ)dom(γ) ] γ′) = cγ′(δV µ ] (γδ)dom(γ)), so c0ν
′′τ = c0ν

′′γ′(σθ)ran(γ′) =
cγ′(δV µ ] (γδ)dom(γ))(σθ)ran(γ′) = cγ′(δV µ ] (γδ)dom(γ) ] σθ) = cγ′(δ ] (γδ) ] σθ) =
cγ′((σVGρ)](γσVGρ)]σθ) = cγ′((σρ)](γσρ)]σθ) = cγ′((σθ)](γσθ)]σθ) = cγ′γσθ,
all because c0ν

′′τ is ground, and we can write the derivation rule as

l1γσθ → r1γσθ/ST ν′
1 %ν′ · · · lmγσθ → rmγσθ/ST ν′

m%ν′

lγσθ → rγσθ/c[(γδ)dom(γ)]{ST
ν′
%ν′}

(7)

Also, as δ′ = σ1σ
′
VG′σ1

ρ′, Vriγσ1,liγσ1 ⊆ VG′σ1 , [riγδ
′]E ∈ ST ν′

i %ν′@[liγδ
′]E , for 1 ≤

i ≤ n, where each term is ground (4), σ = σ1σ
′, and θ = ρ′ ] ρ2, then riγδ

′ =
riγσ1σ

′
VG′σ1

ρ′ = riγσ1σ
′ρ′ = riγσρ

′ = riγσθ (and liγδ
′ = liγσθ), so [riγσθ]E ∈

ST ν′
i %ν′@[liγσθ]E , and there are closed proof trees of the form Fi

liγσθ→riγσθ/STν′
i %ν′

,

with respect to Dν′R,CallR
.

There is also a derivation rule
uδ→rγσθ/c[(γδ)dom(γ)]{ST

ν′
%ν′} rγσρ′→vδ/STν′%ν′

uδ→vδ/(c[(γδ)dom(γ)]{ST
ν′
%ν′} ;STν′%ν′

inDν′R,CallR
,

as seen in subsection 5.2.7.

We already know that there is a c.p.t. of the form F

rγσρ′→vδ/STν′%ν′
with respect

to Dν′R,CallR
(3). As rγσρ′ is ground and θ = ρ′ ] ρ2 then rγσρ′ = rγσθ, hence

F

rγσθ→vδ/STν′%ν′
is a c.p.t. with respect to Dν′R,CallR

.

We also know that uδ =E lγσθ (6), so we can apply the derivation rule (7) to
uδ and rγσθ, and construct the c.p.t. for [vδ]E ∈ (c[γr]{ST})µ%µδ @ [uδ]E , i.e.,
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[vδ]E ∈ c[γδran(γ)]{ST
ν′
%ν′}@ [uδ]E with respect to Dν′R,CallR

:

F1

l1γσθ→r1γσθ/STν
′

1 %ν′
··· Fm

lmγσθ→rmγσθ/STν
′
m%ν′

uδ→rγσθ/c[(γδ)dom(γ)]{ST
ν′
%ν′}

F

rγσθ→vδ/STν′%ν′

uδ → vδ/c[(γδ)dom(γ)]{ST
ν′
%ν′} ; ST ν′%ν′

.

As we have shown before that E0 � ψ1δ (1) and that there are closed proof trees for
each open goal in ∆δ with respect to Dν′R,CallR

(2), then δ = σvars(G)ρ is a solution of
G.

14. Rule [c1] (call strategy):

There are two versions of the rule where in CallR we have either (a) sd CS := ST 1

or (b) sd CS (x̄) := ST 1.

(a) G = u1 → v1/CSµ%µ ; STµ%µ (∧ ∆) | ψ1 | V, µ, where CSµ%µ = CSµ, G  [c1 ]

u1 → v1/ST 2 ; STµ%µ (∧ ∆) | ψ1 | V, µ = G′ and G′  +
σ nil | ψ | V, ν, where

sd CS := ST 1 ∈ CallµR, ν = (µσ)V , and ST 2 is a fresh version of ST 1, with
some renaming γ′, where dom(γ′) = VST1 \ V µ, so ST 2 = ST 1γ

′, hence σVG |ψ is
a computed answer for G and σVG′ |ψ is a computed answer for G′. As VCS = ∅
then VG ⊆ VG′ , so ran(σVG) ⊆ ran(σVG′ ). Then:

i. as sd CS := ST 1 ∈ CallµR then there is sd CS := ST 0 ∈ CallR such that
STµ

0 = ST 1, hence ST 2 = ST 1γ
′ = STµ

0γ
′ = (ST 0γ

′)µ, since dom(γ′)∩V µ =
∅ and ran(γ′) ∩ dom(µ) = ∅, and

ii. as dom(%µ) ∩ V µ = ∅, invariant for admissible goals, and ST 2 has only new
variables except for V µ, then ST 2 = ST 2%µ = (ST 0γ

′)µ%µ.

Let ρ : VGσ → TΣ such that ψρ is satis�able, call δ = σVGρ, so δ : VG → TΣ, and
call ν ′ = (νρ)V , where dom(ν ′) = V and ran(ν ′) = ∅. Let ρ1 : VG′σ\VGσ → TΣ, so
dom(ρ)∩dom(ρ1) = ∅ and dom(ρ)∪dom(ρ1) = VG′σ, such that ψ(ρ]ρ1) is satis�-
able. Call ρ′ = ρ]ρ1, so ρ′ : VG′σ → TΣ, and call δ′ = σVG′ρ

′, so δ′ : VG′ → TΣ. As
dom(ν ′) = V and ran(ν ′) = ∅ then (νρ′)V = (νρ)V = ν ′. Then Gδ′ = GσVG′ρ

′ =
GσVG′ (ρ]ρ1) = G(σVG]σVG′\VG)(ρ]ρ1) = G(σVGρ]σVG′\VGρ1) = GσVGρ = Gδ.

By I.H,E0 � ψ1δ
′ and there is a c.p.t. of the form

F1

u1δ
′→t/(ST0γ

′)ν′%ν′

F2

t→v1δ′/STν
′
%ν′

u1δ′→v1δ′/(ST0γ′ ;ST ))ν′%ν′
,

for some term t ∈ HΣ, with respect to Dν′R,CallR
. By Lemma 6, there is also a

c.p.t. of the form F3

u1δ′→t/(ST0γ′)ν
′ .

As CS ν
′
%ν′ = CS , (ST 0γ

′)ν
′

= ST ν′
0 γ
′, since (dom(γ′) ∪ ran(γ′)) ∩ V = ∅,

and there are derivation rules u1δ′→t/CS t→v1δ′/ST
ν′%ν′

u1δ′→v1δ′/(CS ;ST )ν′%ν′
and u1δ′→t/STν′

0 γ
′

u1δ′→t/CS , i.e.,

u1δ′→t/(ST0γ′)ν
′

u1δ′→t/CS in Dν′R,CallR
, then

F3

u1δ
′→t/(ST0γ

′)ν′

u1δ
′→t/CS

F2

t→v1δ′/STν
′
%ν′

u1δ′→v1δ′/(CS ;ST )ν′%ν′
is a c.p.t., so

v1δ
′ ∈ (CS ; ST )ν

′
%ν′@u1δ

′.
As Gδ′ = Gδ, this is the same as v1δ ∈ (CS ; ST )ν

′
%ν′@u1δ and E0 � ψ1δ, so

σvars(G)ρ is a solution of G.

(b) G = u1 → v1/CS (t̄)µ%µ ; STµ%µ (∧∆) | ψ1 | V, µ, where CS (t̄)µ%µ = CSµ(t̄µ%µ),
G  [c1 ] u1 → v1/ST 2γ ; ST : (∧ ∆) | ψ1 | V, µ = G′, and G′  +

σ nil | ψ |
V, ν, where ν = (µσ)V , we call %ν = (%µσ)\V , sd CS (x̄) := ST 1 ∈ CallµR,
γ = {x̄ 7→ t̄µ%µ}, ST 2 is a fresh version of ST 1, with some renaming γ′, where
dom(γ′) = VST1 \ (x̂∪ V µ), so ST 2 = ST 1γ

′, hence σVG |ψ is a computed answer
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for G and σVG′ |ψ is a computed answer for G′. As VCSµ(t̄µ%µ) = ran(γ) and
x̂ ⊆ VST2 then VG ⊆ VG′ , so ran(σVG) ⊆ ran(σVG′ ). ST 2 = ST 2[x̄′]p̄, for proper
x̄′ and p̄, where x̂′ = x̂ and VST2[]p̄ ∩ x̄ = ∅, so ST 2γ = ST 2[x̄′]p̄γ = ST 2[x̄′γ]p̄.
Call γ0 = {x̄ 7→ t̄}, so x̄′γ = x̄′γ0µ%µ. Then:

i. as dom(%µ)∩V µ = ∅, invariant for admissible goals, and ST 2[]p̄ has only new
variables except for V µ, then ST 2[]p̄ = ST 2[]p̄%µ = ST 2%µ[]p̄ = ST 1γ

′%µ[]p̄,
and

ii. as sd CS (x̄) := ST 1 ∈ CallµR then there is a de�nition sd CS (x̄) := ST 0

in CallR such that STµ
0 = ST 1. Then, we get ST 2γ = ST 2[x̄′γ]p̄ =

ST 1γ
′%µ[x̄′γ]p̄ = ST 1γ

′%µ[x̄′γ]p̄ = STµ
0γ
′%µ[x̄′γ0µ%µ]p̄ = (STµ

0γ
′[x̄′γ0µ]p̄)%µ =

((ST 0γ
′)µ[x̄′γ0µ]p̄)%µ = (ST 0γ

′[x̄′γ0]p̄)
µ%µ, since dom(γ′) ∩ V µ = ∅ and

ran(γ′) ∩ dom(µ) = ∅.
Let ρ : VGσ → TΣ such that ψρ is satis�able, call δ = σVGρ, so δ : VG → TΣ, call
ν ′ = (νρ)V , where dom(ν ′) = V and ran(ν ′) = ∅, and call %ν′ = (%νρ)\V . Let
ρ1 : VG′σ \ VGσ → TΣ, so dom(ρ) ∩ dom(ρ1) = ∅ and dom(ρ) ∪ dom(ρ1) = VG′σ,
such that ψ(ρ ] ρ1) is satis�able. Call ρ′ = ρ ] ρ1, so ρ′ : VG′σ → TΣ, and
call δ′ = σVG′ρ

′, so δ′ : VG′ → TΣ. As dom(ν ′) = V and ran(ν ′) = ∅ then
(νρ′)V = (νρ)V = ν ′. Also, as VG ⊆ VG′ and dom(ρ1) = VG′σ \ VGσ, then
Gδ′ = GσVG′ρ

′ = GσVGρ
′ = Gσρ′ = Gσ(ρ ] ρ1) = Gσρ = GσVGρ = Gδ.

By I.H, E0 � ψ1δ
′, so

F1

u1δ
′→w/(ST0γ

′[x̄′γ0]p̄)ν
′
%ν′

F2

w→v1δ′/STν
′
%ν′

u1δ′→v1δ′/(ST0γ′[x̄′γ0]p̄ ;ST ))ν′%ν′
is a c.p.t., for some

term w ∈ HΣ, with respect to Dν
′
R,CallR

. As %ν is idempotent and ρ is ground then
%ν′ is also idempotent. Then, as ν ′ is ground, dom(ν ′) = V , and dom(%ν′)∩V =
∅, we can write F1

u1δ′→w/(ST0γ′[x̄′γ0]p̄)ν′%ν′
as F1

u1δ′→w/(ST0γ′[x̄′γ0%ν′ ]p̄)ν′%ν′
. Let α

be a renaming such that dom(α) = V%ν′ and ran(α) is away from all known
variables. By Lemma 5 there is a c.p.t. of the form F3

u1δ′→w/(ST0γ′[x̄′γ0%ν′ ]p̄)ν′ (%ν′α)
.

Now, we can apply Lemma 6, so there is also a closed proof tree of the form
F4

u1δ′→w/(ST0γ′[x̄′γ0%ν′ ]p̄)ν′
. This c.p.t. shows that partial generalization of dom(%ν′)

is also valid.
As (ST 0γ

′[x̄′γ0%ν′ ]p̄)
ν′ = ST ν′

0 γ
′[x̄′γ0%ν′ν

′]p̄ = ST ν′
0 γ
′[x̄′γ0ν

′%ν′ ]p̄ = ST ν′
0 (γ′ ∪

γ′′), where γ′′ = {x̄ 7→ t̄ν ′%ν′}, since (dom(γ′) ∪ ran(γ′)) ∩ V = ∅, ν ′ is ground,
dom(ν ′) = V , and dom(%ν′) ∩ V = ∅, and also CS (t̄)ν

′
%ν′ = CS (t̄ν ′%ν′), then

Dν′R,CallR
has derivation rules u1δ′→w/STν′

0 (γ′∪γ′′)
u1δ′→w/CS(t̄ν′%ν′ )

, i.e., u1δ′→w/(ST0γ′[x̄′γ0%ν′ ]p̄)ν
′

u1δ′→w/CS(t̄ν′%ν′ )
,

and u1δ′→w/CS(t̄ν′%ν′ ) w→v1δ′/ST
ν′%ν′

u1δ′→v1δ′/(CS(t̄) ;ST )ν′%ν′
. Then

F4

u1δ
′→w/(ST0γ

′[x̄′γ0%ν′ ]p̄)ν
′

u1δ
′→w/CS(t̄ν′%ν′ )

F2

w→v1δ′/STν
′
%ν′

u1δ′→v1δ′/(CS(t̄) ;ST )ν′%ν′

is a c.p.t., so [v1δ
′]E ∈ (CS (t̄) ; ST )ν

′
%ν′@[u1δ

′]E . As Gδ′ = Gδ, this is the same
as [v1δ]E ∈ (CS (t̄) ; ST )ν

′
%ν′@[u1δ]E and E0 � ψ1δ

′ is the same as E0 � ψ1δ, so
σvars(G)ρ is a solution of G.

15. Rule [c2] (call strategy):

G = u1 → v1/CS (t̄)µ%µ ; STµ%µ (∧ ∆) | ψ1 | V, µ, where CS (t̄)µ%µ = CSµ(t̄µ%µ),
G  [c2 ]

∧m
j=1(ljγ

′γ → rjγ
′γ/idle) ∧ u1 → v1/ST 2γ ; STµ%µ (∧∆) | ψ2 | V, µ = G′,

G′  ∗σ′ u1σ
′ → v1σ

′/(ST 2γ ; STµ%µ)σ′ (∧ ∆σ′) | ψ3 | V, (µσ′)V = G′′, and G′′  +
σ′′

nil | ψ | V, ν, call σ = σ′σ′′, where ν = (µσ)V , csd CS (x̄) := ST 1 if C ∈ CallµR,
C =

∧m
j=1 lj → rj ∧φ, γ = {x̄ 7→ t̄µ%µ}, call C = l̄, r̄, φ, ST 2 if Cγ′ is a fresh version

of ST 1 if C, with some renaming γ′, dom(γ′) = VST1,C \ (x̂∪ V µ), so ST 2 = ST 1γ
′,

ψ2 = ψ1 ∧ φγ′γ, and ψ3 = ψ2σ
′ ∧ ψ4 = ψ1σ

′ ∧ φγ′γσ′ ∧ ψ4, for proper ψ4, hence
VCγ′γσ′ ⊆ VG′σ′ ⊆ VG′′ , call ψ5 = φγ′γσ′ ∧ ψ4, σVG |ψ is a computed answer for G,
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and σVG′ |ψ is a computed answer for G′, where ψ = ψ3σ
′′ ∧ ψ6, for proper ψ6. We

call %ν = (%µσ)VG′\V .
By invariant 11, G has the form Gµ0%µ, so (u1, v1, ψ1) = (u0, v0, ψ0)µ%µ, for proper
u0, v0, and ψ0, and there exists ∆0 such that ∆ = ∆µ

0%µ. As VCSµ(t̄µ%µ) = ran(γ)
and x̂ ⊆ VCγ′,ST2

then VG ⊆ VG′ , so σVG = (σVG′ )VG and G′ has the form Gµ1%µ,

where %µ = (%µ)VG1
\V , by invariant 11. Also by invariant 11, G

′′ has the form Gµ
′

2 %µ′ ,
where µ′ = (µσ′)V and %µ′ = (%µσ

′)VG2
\V . Then, ψ3 = ψ1σ

′ ∧ ψ5 = (ψ0µ%µ)σ′ ∧
ψ5 = ψ0µ

′%µ′ ∧ ψ5 has the form (ψ0 ∧ φ0)µ′%µ′ , for proper φ0, and (u1, v1)σ′ =
(u0, v0)µ%µσ

′ = (u0, v0)µ′%µ′ , so VG0 ⊆ VG2 , hence VG = VGµ0 %µ ⊆ VGµ2 %µ , VGσ′ ⊆
VGµ2 %µσ′ = V

Gµ
′

2 %µ′
= VG′′ , and VGσ ⊆ VGµ2 %µσ = VGµ2 %µσ′σ′′ = V

Gµ
′

2 %µ′σ
′′ = VG′′σ′′ .

(ST 2, C) = (ST 2[x̄′]p̄, C[x̄′′]q̄), for proper (x̄′′, x̄′, q̄, p̄), where V(ST2[]p̄),C[]q̄
∩ x̂ = ∅ and

x̂′ ∪ x̂′′ = x̂, and Cγ′ = C[x̄′′]q̄γ
′ = Cγ′[x̄′′γ′]q̄ = Cγ′[x̄′′]q̄, since dom(γ′) ∩ x̂ = ∅.

Call γ0 = {x̄ 7→ t̄}, so (ST 2, Cγ
′)γ = (ST 2[x̄′]p̄, Cγ

′[x̄′′]q̄)γ = (ST 2[x̄′γ]p̄, Cγ
′[x̄′′γ]q̄).

Then:

(a) as dom(%µ) ∩ V µ = ∅, invariant for admissible goals, and (ST 2[]p̄, Cγ
′[]q̄) has

only new variables except for V µ, then (ST 2[]p̄, Cγ
′[]q̄) = (ST 2[]p̄, Cγ

′[]q̄)%µ =
(ST 2%µ[]p̄, Cγ

′%µ[]q̄) = (ST 1γ
′%µ[]p̄, Cγ

′%µ[]q̄), and
(b) as sd CS (x̄) := ST 1 if C ∈ CallµR then there is a call strategy de�nition

sd CS (x̄) := ST 0 if C ′ ∈ CallR, C ′ =
∧m
j=1 l

′
j → r′j ∧ φ′, call C

′
= l̄′, r̄′, φ′,

such that (ST 0, C
′
)µ = (ST 1, C), so C

′
µ = C = C[x̄′′]q̄, hence C

′
µ = C

′
µ[x̄′′]q̄

and C
′

= C
′
[x̄′′]q̄, since dom(µ) ∩ x̂ = ∅. Then, since dom(γ′) ∩ V µ = ∅ and

ran(γ′) ∩ dom(µ) = ∅:
� ST 2γ = ST 2[x̄′γ]p̄ = ST 1γ

′%µ[x̄′γ]p̄ = STµ
0γ
′[x̄′γ0µ]p̄%µ = STµ

0γ
′[x̄′γ0µ]p̄%µ =

(ST 0γ
′[x̄′γ0]p̄)

µ%µ, call ST ′0 = ST 0γ
′[x̄′γ0]p̄, and

� Cγ′ = Cγ′[x̄′′γ]q̄ = Cγ′%µ[x̄′′γ]q̄ = C
′µ
γ′%µ[x̄′′γ]q̄ = C

′µ
γ′%µ[x̄′′γ0µ%µ]q̄ =

C
′µ
γ′[x̄′′γ0µ]q̄%µ = (C

′
γ′[x̄′′γ0]q̄)

µ%µ = (C
′
γ′[x̄′′]q̄γ0)µ%µ = (C

′
[x̄′′]q̄γ

′γ0)µ%µ =

(C
′
γ′γ0)µ%µ.

As G′′ = Gµ
′

2 %µ′ , then G2 = u0 → v0/ST ′0 ; ST (∧ ∆0) | ψ0 ∧ φ0 | V,none, hence
(ST ′0 ; ST )µ

′
%µ′ is a strategy in G′′.

Let ρ : VGσ → TΣ such that ψρ is satis�able, call δ = σVGρ, so δ : VG → TΣ, call ν ′ =
(νρ)V = (µσρ)V , where dom(ν ′) = V and ran(ν ′) = ∅, and call %ν′ = (%νρ)VG1

\V =
(%µσρ)VG1

\V . As dom(ρ) = VGσ and VG ⊆ VGµ2 %µ , so VGσ ⊆ VGµ2 %µσ = VGµ2 %µσ′σ′′ =

VG′′σ′′ , then dom(ρ) ⊆ VG′′σ′′. Let ρ1 : VG′′σ′′ \ VGσ → TΣ, so dom(ρ) ∩ dom(ρ1) = ∅
and dom(ρ) ∪ dom(ρ1) = VG′′σ′′ , such that ψ(ρ ] ρ1) is satis�able. Call ρ′ = ρ ] ρ1,
so ρ′ : VG′′σ′′ → TΣ and ρ′VGσ = ρ.
By I.H., as ρ′ : VG′′σ′′ → TΣ and ψρ′ is satis�able, σ′′VG′′ρ

′ is a solution for G′′, call
δ′ = σ′′VG′′

ρ′, so δ′ : VG′′ → TΣ and ψ1σ
′δ′ is ground. As dom(ν ′) = V and ran(ν ′) = ∅

then (νρ′)V = (νρ)V = ν ′. Also, as VGσ′ ⊆ VG′′ and dom(ρ1) = VG′′σ′′ \ VGσ,
then Gσ′δ′ = Gσ′σ′′VG′′

ρ′ = Gσ′σ′′VGσ′
ρ′ = Gσ′σ′′ρ′ = Gσρ′ = Gσ(ρ ] ρ1) = Gσρ =

GσVGρ = Gδ. Also, as Vψ1 ⊆ VG, so ψ1σ
′δ′ = ψ1δ, and ψ1σ

′δ′ is a subformula of ψρ′,
so ψ1σ

′δ′ is ground and satis�able, then E0 � ψ1δ.
As δ′ is a solution for G′′ = Gµ

′

2 %µ′ and G2 = u0 → v0/ST ′0 ; ST (∧ ∆0) | ψ0 ∧ φ0 |
V,none, then [v0µ

′%µ′δ
′]E ∈ (ST ′0; ST )µ

′
%µ′δ

′@[u0µ
′%µ′δ

′]E (�). Now, as (u0, v0)µ%µ =
(u1, v1) and δ′ = σ′′VG′′

ρ′, then we can write (�) as [v1δ
′]E ∈ (ST ′0; ST )µ

′
%µ′σ

′′
VG′′

ρ′@[u1δ
′]E

(��).
As (ST ′0; ST )µ

′
%µ′ is a strategy inG′′, then (ST ′0; ST )µ

′
%µ′σ

′′
VG′′

ρ′ = (ST ′0; ST )µ
′
%µ′σ

′′ρ′ =

(ST ′0 ; ST )µ%µσ
′σ′′ρ′ = (ST ′0 ; ST )µ%µσρ

′ = (ST ′0 ; ST )ν%νρ
′ = (ST ′0 ; ST )ν%νρ =

(ST ′0 ; ST )ν
′
%ν′ , because Gσρ′ = Gσρ and (ST ′0 ; ST )ν%ν is a strategy in Gσ, so we
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can write (��) as [v1δ
′]E ∈ (ST ′0 ; ST )ν

′
%ν′@[u1δ

′]E , hence there is a closed proof tree
F1

u1δ
′→w/(ST ′0)ν

′
%ν′

F2

w→v1δ′/STν
′
%ν′

u1δ′→v1δ′/(ST
′
0 ;ST )ν′%ν′

, for some term w ∈ HΣ, with respect to Dν′R,CallR
.

As %ν is idempotent and ρ is ground then %ν′ is also idempotent. Then, as ν ′

is ground, dom(ν ′) = V , and dom(%ν′) ∩ V = ∅, we can write F1

u1δ′→w/(ST ′0)ν′%ν′

as F1

u1δ′→w/(ST0γ′[x̄′γ0%ν′ ]p̄)ν′%ν′
. Let α be a renaming such that dom(α) = V%ν′ and

ran(α) is away from all known variables. By Lemma 5 there is a c.p.t. of the form
F3

u1δ′→w/(ST0γ′[x̄′γ0%ν′ ]p̄)ν′ (%ν′α)
. Now, we can apply Lemma 6, so there is also a c.p.t.

of the form F4

u1δ′→w/(ST0γ′[x̄′γ0%ν′ ]p̄)ν′
.

As G′  ∗σ′ G
′′ and all the calculus rules apply always to the leftmost open goal of

any goal, then also G′′′ =
∧m
j=1(ljγ

′γ → rjγ
′γ/idle) | ψ2 | V, µ ∗σ′ nil | ψ2σ

′ ∧ ψ4 |
V, (µσ′)V . Then, by I.H., for every substitution θ : VG′′′σ′ → TΣ such that (ψ2σ

′∧ψ4)θ
is satis�able, σ′VG′′′θ is a solution of G′′′, so l̄γ′γσ′θ =E r̄γ

′γσ′θ (�).

Call γ′′ = {x̄ 7→ t̄(ν ′ ] %ν′)}, so CS ν
′
(t̄ν ′%ν′) = ST ν′

0 γ
′′ if (C ′)ν

′
γ′′, call C ′′ =

(C ′)ν
′
(γ′ ∪ γ′′) = C ′ν ′(γ′ ∪ γ′′), and call δ′′ = σ′δ′. Then:

� C ′′δ′′VC′′
= C ′′δ′′ = C ′ν ′(γ′ ∪ γ′′)δ′′ = C ′ν ′(γ′ ∪ γ′′)δ′′ = C ′ν ′[x̄′′]q̄(γ

′ ∪ γ′′)δ′′ =
C ′γ′ν ′[x̄′′]q̄γ

′′δ′′ = C ′γ′ν ′[t̄(ν ′ ] %ν′)]q̄δ′′ = C ′γ′[t̄%ν′ ]q̄ν
′δ′′ = C ′γ′[t̄%ν′ ]q̄ν

′σ′δ′ =
C ′γ′[t̄%ν′ ]q̄ν

′σ′σ′′VG′′
ρ′ since (dom(γ′)∪ ran(γ′))∩ V = ∅, ν ′ is ground, dom(ν ′) =

V , and dom(%ν′) ∩ V = ∅,
� Cγ′γ = C ′µγ′γ = C ′µ[x̄′′]q̄γ

′γ = C ′γ′µ[x̄′′]q̄γ = C ′γ′µ[t̄µ%µ]q̄ = C ′γ′[t̄%µ]q̄µ =
C ′γ′[t̄(%µ)VG1

\V ]q̄µ, because γ′ is a renaming such that (dom(γ′) ∪ ran(γ′)) ∩
(dom(µ) ∪ ran(µ) ∪ x̂) = ∅ and Vt̄ ⊆ VG1 \ V ,

� as Cγ′γ = C ′γ′[t̄(%µ)VG1
\V ]q̄µ, VCγ′γσ′ ⊆ VG′′ , σ = σ′σ′′ is idempotent, and

σ′σ′′VG′′
is a restriction of σ, hence also idempotent, then Cγ′γσ′δ′ = Cγ′γσ′σ′′VG′′

ρ′ =

C ′γ′[t̄(%µ)VG1
\V ]q̄µσ

′σ′′VG′′
ρ′ = C ′γ′[t̄(%µσ

′σ′′VG′′
)VG1

\V ]q̄(µσ
′σ′′VG′′

)V σ
′σ′′VG′′

ρ′ =

C ′γ′[t̄(%µσ
′σ′′)VG1

\V ]q̄(µσ
′σ′′)V σ

′σ′′VG′′
ρ′ = C ′γ′[t̄(%µσ)VG1

\V ]q̄(µσ)V σ
′σ′′VG′′

ρ′, and

� as ρ′ = ρ ] ρ1, and ρ is ground, then C ′γ′[t̄(%µσ)VG1
\V ]q̄(µσ)V σ

′σ′′VG′′
ρ′ =

C ′γ′[t̄(%µσρ)VG1
\V ]q̄(µσρ)V σ

′σ′′VG′′
ρ′ = C ′γ′[t̄%ν′ ]q̄ν

′σ′σ′′VG′′
ρ′,

so C ′′δ′′VC′′ = Cγ′γσ′δ′. As Cγ′γσ′δ′ is ground, then δ′′VC′′ is ground, i.e., δ
′′
VC′′

: VC′′ →
TΣ, and φγ′γσ′δ′ is ground.
As ψρ′ is satis�able and ψρ′ = ψ3σ

′′ρ′ ∧ ψ6ρ
′, then also ψ3σ

′′ρ′ = (ψ2σ
′ ∧ ψ4)σ′′ρ′ =

(ψ2σ
′ ∧ψ4)σ′′VG′′

ρ′ = (ψ2σ
′ ∧ψ4)δ′ = ((ψ1 ∧ φγ′γ)σ′ ∧ψ4)δ′ is satis�able, so φγ′γσ′δ′,

i.e., φγ′γδ′′, is satis�able. As φγ′γσ′δ′ is also ground, then E0 � φγ′γδ′′.

By (�), as (ψ2σ
′∧ψ4)δ′ is satis�able, l̄γ′γσ′δ′ =E r̄γ

′γσ′δ′, i.e., l̄γ′γδ′′ =E r̄γ
′γδ′′. As

also CS (t̄)ν
′
%ν′ = CS (t̄ν ′%ν′), then there are derivation rules

u1δ′→w/STν′
0 (γ′∪γ′′)δ′′

u1δ′→w/CS(t̄ν′%ν′ )
, i.e.,

u1δ′→w/(ST0γ′[x̄′γ0%ν′ ]p̄)ν
′

u1δ′→w/CS(t̄ν′%ν′ )
, and u1δ′→w/CS(t̄ν′%ν′ ) w→v1δ′/ST

ν′%ν′

u1δ′→v1δ′/(CS(t̄) ;ST )ν′%ν′
in Dν′R,CallR

, so there is

a c.p.t.

F4

u1δ
′→w/(ST0γ

′[x̄′γ0%ν′ ]p̄)ν
′

u1δ
′→w/CS(t̄ν′%ν′ )

F2

w→v1δ′/STν
′
%ν′

u1δ′→v1δ′/(CS(t̄) ;ST )ν′%ν′
, and v1δ

′ ∈ (CS (t̄); ST )ν
′
%ν′@u1δ

′. As

Gδ′ = Gδ, this is the same as v1δ ∈ (CS (t̄) ; ST )ν
′
%ν′@u1δ so, as E0 � ψ1δ, σvars(G)ρ

is a solution of G.

16. Rule [m] (match):

G = u1 → v1 / (match t1 s.t.
∧m
j=1(l′j = r′j) ∧ φ1 ; ST )µ%µ (∧∆) | ψ1 | V, µ  [m],σ1

(
∧m
j=1(l′j → r′j/idle)µ%µ ∧ u1 → v1/STµ%µ (∧ ∆) | ψ2 | V, µ)σ1 = G′σ1, call t =

tµ1%µ, φ = φµ1%µ, l̄ = (l̄′)µ%µ, and r̄ = (r̄′)µ%µ, where abstractΣ1(t) = 〈λx̄.t◦;σ◦;φ◦〉,
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t◦ = t[x̄]q̄, with x̄ = x1, . . . , xl and q̄ = q1, . . . , ql, φ◦ = (
∧l
i=1 xi = t|qi), hence

Vt◦ ∪ Vφ◦ = Vt ∪ x̂, σ1 ∈ CSUB (u1 = t◦), ψ2 = ψ1 ∧ φ ∧ φ◦, so VG ⊆ VG′ , ψ2σ1 is
satis�able, and G′σ1  

+
σ′ nil | ψ | V, ν, call σ = σ1σ

′, where ν = (µσ)V = (µσ1σ
′)V ,

so σVG | ψ is a computed answer for G and σ′VG′σ1
| ψ is a computed answer for G′σ1.

Let ρ : VGσ → TΣ be a substitution such that ψρ is satis�able, call δ = σVGρ, so δ :
VG → TΣ, ρ1 = ρVG′σ , so also ψρ1 is satis�able, ν ′ = (νρ)V , where dom(ν ′) = V and
ran(ν ′) = ∅, and %ν′ = (%µδ)\V . As dom(ρ) = VGσ then dom(ρ1) = VGσ ∩ VG′σ. Let
ρ2 = ρVGσ\VG′σ , so ρ = ρ1]ρ2, and let ρ′1 : VG′σ\VGσ → TΣ, so dom(ρ1)∩dom(ρ′1) = ∅
and dom(ρ1)∪dom(ρ′1) = VG′σ, such that ψ(ρ1]ρ′1) is satis�able, and call ρ′ = ρ1]ρ′1,
so ρ′ : VG′σ → TΣ. By de�nition of ν and ρ1, ran(ν) ∪ (V \ dom(ν)) ⊆ dom(ρ1) so,
as dom(ν ′) = V and ran(ν ′) = ∅, ν ′ = (νρ)V = (νρ1)V = (νρ′)V .

By I.H., as ρ′ : VG′σ1σ′ → TΣ and ψρ′ is satis�able, σ′VG′σ1
ρ′ is a solution for G′σ1,

call δ′ = σ1σ
′
VG′σ1

ρ′, %′ = (%µδ
′)\V , and ρ

′′ = δ′Vt,φ,l̄,r̄\VG
.

As in rule [i1], if then else, and using the fact that Vl̄,r̄ ⊆ VG′ , we have the following
intermediate results:

� (µδ)V = (µδ′)V ,

� V(t,φ,l̄,r̄)σ ⊆ VG′σ,
� V(t1,φ1,l̄′,r̄′)ν

′ ⊆ V(t1,φ1,l̄′,r̄′)µ ,

� V(t1,φ1,l̄′,r̄′)µ \ V(t1,φ1,l̄′,r̄′)ν
′ ⊆ V µ, and

� (t, φ)σρ′ = (t1, φ1)ν
′
%ν′ρ

′′.

Using the proof for the last result we also get (l̄, r̄)σρ′ = (l̄′, r̄′)ν
′
%ν′ρ

′′.

As σ′VG′σ1
ρ′ is a solution for G′σ1 then, by I.H.:

(a) E0 � ψ2δ
′, i.e., E0 � (ψ1 ∧ φ ∧ φ◦)δ′,

(b) there are closed proof trees for each open goal in ∆δ′, with respect to D(µδ′)V
R,CallR

(=Dν′R,CallR
, we use ν ′ instead of (µδ′)V in (c) and (d)),

(c) [v1δ
′]E ∈ ST ν′%′@[u1δ

′]E , and

(d) [rjδ
′]E ∈ idle@[ljδ

′]E , for 1 ≤ j ≤ m, i.e., l̄δ′ =E r̄δ
′,

so:

(a) i. Vψ2 ⊆ VG′ implies ψ2σ1σ
′
VG′σ1

= ψ2σ1σ
′ = ψ2σ, so E0 � ψ2σρ

′, where ψ2σρ
′

is ground, because Vψ2σ ⊆ VG′σ and ρ′ : VG′σ → TΣ, hence E0 � ψ1σρ
′,

E0 � φ◦σρ′, and E0 � φσρ′, all ground expressions.

ii. Vψ1σ ⊆ VGσ and dom(ρ) = VGσ implies ψ1σρ ∈ TΣ so, as ρ′ = ρ ] ρ′1,
ψ1σρ

′ = ψ1σ(ρ ] ρ′1) = ψ1σρ = ψ1δ, hence E0 � ψ1δ (�).

(b) As in subcase (a)-ii, V∆ ⊆ VG implies ∆δ′ = ∆δ, and the same closed proof trees
are valid for each open goal in ∆δ with respect to Dν′R,CallR

(��).

(c) Again, Vv1,u1 ⊆ VG implies that v1δ
′ = v1δ and u1δ

′ = u1δ. Then there is a c.p.t.
of the form F

u1δ→v1δ/ST
ν′%′

, with respect to Dν′R,CallR
.

(d) As (l̄, r̄)δ′ = (l̄, r̄)σ1σ
′
VG′σ1

ρ′ = (l̄, r̄)σ1σ
′ρ′ = (l̄, r̄)σρ′ = (l̄′, r̄′)ν

′
%ν′ρ

′′, then

(l̄′)ν
′
%ν′ρ

′′ =E (r̄′)ν
′
%ν′ρ

′′.

We prove (a) ST ν′%ν′ρ
′′ = ST ν′%′ and (b) ρ′′ : Vt,φ,l̄,r̄ \ VG → TΣ:

(a) As %ν′ = (%µδ)\V , δ = σVGρ, σ = σ1σ
′, δ′ = σ1σ

′
VG′σ1

ρ′, %′ = (%µδ
′)\V , and

V
STν′ ∩ V = ∅ this is the same as ST ν′%µ(σ1σ

′)VGρρ
′′ = ST ν′%µσ1σ

′
VG′σ1

ρ′.

Let y ∈ V
STν′%µ

, so y /∈ V . There are two options:
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i. y ∈ VG. Then Vyσ1 ⊆ VGσ1 ⊆ VG′σ1 , so y(σ1σ
′)VG = yσ1σ

′ = yσ1σ
′
VG′σ1

. Also

y(σ1σ
′)VG = yσ, hence Vy(σ1σ′)VG

⊆ VGσ. Then, as ρ : VGσ → TΣ, y(σ1σ
′)VGρ

is ground, so y(σ1σ
′)VGρρ

′′ = y(σ1σ
′)VGρ = yσ1σ

′
VG′σ1

ρ = yσ1σ
′
VG′σ1

(ρ∪ρ′1) =

yσ1σ
′
VG′σ1

ρ′;

ii. y /∈ VG, so y(σ1σ
′)VG = y. As ran(σ) ∩ VSTµ%µ = ∅ and V

STν′%µ
⊆ VSTµ%µ

then ran(σ)∩V
STν′%µ

= ∅ so y /∈ VGσ and, as dom(ρ) = VGσ, y(σ1σ
′)VGρ = y.

Then:

A. if y ∈ Vt,φ,l̄,r̄ then y(σ1σ
′)VGρρ

′′ = yρ′′ = yδ′Vt,φ,l̄,r̄\VG
= yδ′ = yσ1σ

′
VG′σ1

ρ′,

ground term because Vyσ1 ⊆ V(t,φ,l̄,r̄)σ1
⊆ VG′σ1 and ρ′ : VG′σ1σ′ → TΣ;

B. if y /∈ Vt,φ,l̄,r̄ then y(σ1σ
′)VGρρ

′′ = yρ′′ = yδ′Vt,φ,l̄,r̄\VG
= y. As dom(σ1) ⊆

(Vu1 ∪ Vt◦) ⊆ (VG ∪ Vt,φ ∪ x̄) ⊆ (VG ∪ Vt,φ,l̄,r̄ ∪ x̄) and y /∈ (VG ∪ Vt,φ,l̄,r̄)
then yσ1 = y so, as ran(σ1) ∩ V

STν′%µ
= ∅, yσ1 /∈ VGσ1 , and yσ1σ

′
VG′σ1

=

y /∈ VGσ1σ′VG′σ1

so, as ρ′ : VG′σ1σ′ → TΣ, yσ1σ
′
VG′σ1

ρ′ = y = y(σ1σ
′)VGρρ

′′.

(b) As dom(ρ′′) ⊆ (Vt,φ,l̄,r̄ \ VG) and, from (a.ii.A), y ∈ (Vt,φ,l̄,r̄ \ VG) =⇒ Vyρ′′ = ∅
then dom(ρ′′) = Vt,φ,l̄,r̄ \ VG, hence ρ′′ : Vt,φ,l̄,r̄ \ VG → TΣ.

Now, we prove (a) dom(ρ′′) = V(t1,φ1,l̄′,r̄′)ν
′%ν′

, (b) E0 � φν
′

1 %ν′ρ
′′, and (c) u1δ =E

tν
′

1 %ν′ρ
′′:

(a) As dom(ρ′′) = Vt,φ,l̄,r̄\VG, V(t1,φ1,l̄′,r̄′)ν
′ ⊆ V(t1,φ1,l̄′,r̄′)µ , V(t1,φ1,l̄′,r̄′)µ\V(t1,φ1,l̄′,r̄′)ν

′ ⊆
V µ ⊆ VG, and dom(%µ)∩V µ = ∅, then dom(ρ′′) = V(t,φ,l̄,r̄) \VG = V(t1,φ1,l̄′,r̄′)µ%µ \
VG = V(t1,φ1,l̄′,r̄′)ν

′%µ
\ VG. Also, as %ν′ = (%µδ)\V and V(t1,φ1,l̄′,r̄′)ν

′ ∩ V = ∅, then
V(t1,φ1,l̄′,r̄′)ν

′%ν′
= V(t1,φ1,l̄′,r̄′)ν

′ (%µδ)\V
= V(t1,φ1,l̄′,r̄′)ν

′%µδ
, so we prove V(t1,φ1,l̄′,r̄′)ν

′%µδ
=

V(t1,φ1,l̄′,r̄′)ν
′%µ
\ VG, which is trivial, since δ : VG → TΣ.

(b) Immediate, since E0 � φσρ′ and φσρ′ = φν
′

1 %ν′ρ
′′.

(c) u1σ1 =B t◦σ1 and σ = σ1σ
′ imply u1σ =B t◦σ so, as Vu1 ⊆ VG, u1σvars(G) =

u1σ =B t◦σ. As ρ : VGσ → TΣ, so u1σVGρ is a ground term, and ρ′ = ρ] ρ′1 then
u1δ = u1σVGρ = u1σVGρ

′ =B t◦σρ′ = t[x̄]q̄σρ
′ = tσρ′[x̄σρ′]q̄.

As E0 � φ◦σρ′ then tσρ′[x̄σρ′]q̄ =E0 tσρ
′[t|q1σρ′, . . . , t|qlσρ′]q̄ = tσρ′[tσρ′|q̄]q̄ =

tσρ′ = tν
′

1 %ν′ρ
′′, because tσρ′ = tν

′
1 %ν′ρ

′′, so u1δ =B t◦σρ′ =E0 tν
′

1 %ν′ρ
′′, i.e.,

u1δ =E t
ν′
1 %ν′ρ

′′.

Then, as ρ′′ : V(t1,φ1,l̄′,r̄′)ν
′%ν′
→ TΣ, E0 � φν

′
1 %ν′ρ

′′, and (l̄′)ν
′
%ν′ρ

′′ =E (r̄′)ν
′
%ν′ρ

′′,

there is a derivation rule
w→w/match tν′1 %ν′ s.t. φν

′
1 %ν′

∈ Dν′R,CallR
, for some term w such

that tν
′

1 %ν′ρ
′′ =E w. As u1δ =E t

ν′
1 %ν′ρ

′′, then

u1δ→u1δ/match tν
′

1 %ν′ s.t. φ
ν′
1 %ν′

F

u1δ→v1δ/ST
ν′%ν′

u1δ → v1δ/match tν
′

1 %ν′ s.t. φ
ν′
1 %ν′ ; ST ν′%ν′

is a c.p.t., ρ : vars(Gσ) → TΣ, ψρ is satis�able, E0 � ψ1δ (�), and there are closed
proof trees for each open goal in ∆δ with respect to Dν′R,CallR

(��), hence σvars(G)ρ is
a solution of G.

17. Rule [w] (matchrew):

MS = matchrew t1 s.t. C1 by z1 using ST 1, . . . , zn using STn, call z̄ = {z1, . . . , zn},
where t1 = t1[z̄]p̄, for proper p̄ = {p1, . . . , pn}. G = u1 → v1/(MS ; ST )µ%µ (∧∆) |
ψ1 | V, µ, where C1 =

∧m
j=1(l′j = r′j) ∧ φ1, call t = tµ1%µ, φ = φµ1%µ, l̄ = (l̄′)µ%µ, and

r̄ = (r̄′)µ%µ.
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Now, G  [w],σ1
(
∧m
j=1(ljγ → rjγ/idle) ∧

∧n
i=1(xi → yi/STµ

i %µγ; idle) ∧ t[ȳ]p̄ →
v1/ STµ%µ (∧∆) | ψ2 | V, µ)σ1 = G′σ1, where x̄ and ȳ are fresh versions of z̄, γ is a
renaming from z̄ to x̄, abstractΣ1(t[x̄]p̄) = 〈λz̄.t◦;σ◦;φ◦〉, t◦ = t[z1, . . . , zl]q1...ql , φ

◦ =

(
∧l
i=1 zi = t|qi), σ1 ∈ CSUB (u1 = t◦), ψ2 = ψ1 ∧ φ ∧ φ◦, so VG ⊆ VG′ , ψ2σ1 is satis�-

able, G′σ1  ∗σ2

∧n
i=1(xi → yi/STµ

i %µγ; idle)σ1σ2∧(t[ȳ]p̄ → v1/STµ%µ)σ1σ2(∧∆σ1σ2) |
ψ3 | V, (µσ1σ2)V = G′′, and G′′  +

σ′′ nil | ψ | V, ν, call σ′ = σ2σ
′′ and σ = σ1σ

′,
where ν = (µσ)V , so σVG | ψ is a computed answer for G and σ′VG′σ1

| ψ is a computed

answer for G′σ1.

Let ρ : VGσ → TΣ be a substitution such that ψρ is satis�able, call δ = σVGρ,
so δ : VG → TΣ, ρ1 = ρVG′σ , so also ψρ1 is satis�able, and ν ′ = (νρ)V , where
dom(ν ′) = V and ran(ν ′) = ∅. As dom(ρ) = VGσ then dom(ρ1) = VGσ ∩ VG′σ. Let
ρ2 = ρVGσ\VG′σ , so ρ = ρ1]ρ2, and let ρ′1 : VG′σ\VGσ → TΣ, so dom(ρ1)∩dom(ρ′1) = ∅
and dom(ρ1)∪dom(ρ′1) = VG′σ, such that ψ(ρ1]ρ′1) is satis�able, and call ρ′ = ρ1]ρ′1,
so ρ′ : VG′σ → TΣ, call δ′ = σVG′ρ

′, δ′x̄ = δ′Vx̄ , and δ′ȳ = δ′Vȳ . By de�nition of ν
and ρ1, ran(ν) ∪ (V \ dom(ν)) ⊆ dom(ρ1) so, as dom(ν ′) = V and ran(ν ′) = ∅,
ν ′ = (νρ)V = (νρ1)V = (νρ′)V .

By I.H., as ρ′ : VG′σ1σ′ → TΣ and ψρ′ is satis�able, σ′VG′σ1
ρ′ is a solution for G′σ1,

call δ′ = σ1σ
′
VG′σ1

ρ′, %′ = (%µδ
′)\V , and ρ

′′ = δ′Vt,φ,l̄,r̄\VG
.

As in rule [m], match, we have the following intermediate results:

� (µδ)V = (µδ′)V ,

� V(t,φ,l̄,r̄)σ ⊆ VG′σ,
� V(t1,φ1,l̄′,r̄′)ν

′ ⊆ V(t1,φ1,l̄′,r̄′)µ ,

� V(t1,φ1,l̄′,r̄′)µ \ V(t1,φ1,l̄′,r̄′)ν
′ ⊆ V µ, and

� (t, φ, l̄, r̄)σρ′ = (t1, φ1, l̄
′, r̄′)ν

′
%ν′ρ

′′.

As σ′VG′σ1
ρ′ is a solution for G′σ1 then, by I.H.:

(a) E0 � ψ2δ
′, i.e., E0 � (ψ1 ∧ φ ∧ φ◦)δ′,

(b) there are closed proof trees for each open goal in ∆δ′, with respect to D(µδ′)V
R,CallR

(=Dν′R,CallR
, we use ν ′ instead of (µδ′)V in (c)-(e)),

(c) [v1δ
′]E ∈ ST ν′%′@[t[ȳ]p̄δ

′]E ,

(d) [rjδ
′]E ∈ idle@[ljδ

′]E , for 1 ≤ j ≤ m, i.e., l̄δ′ =E r̄δ
′, and

(e) [yiδ
′]E ∈ ST ν′

i %
′@[xiδ

′]E , for 1 ≤ i ≤ n,
so:

(a) i. Vψ2 ⊆ VG′ implies ψ2σ1σ
′
VG′σ1

= ψ2σ1σ
′ = ψ2σ, so E0 � ψ2σρ

′, where ψ2σρ
′

is ground, because Vψ2σ ⊆ VG′σ and ρ′ : VG′σ → TΣ, hence E0 � ψ1σρ
′,

E0 � φ◦σρ′, and E0 � φσρ′, so also E0 � φν
′

1 %ν′ρ
′′ (�), all ground expressions.

ii. Vψ1σ ⊆ VGσ and dom(ρ) = VGσ implies ψ1σρ ∈ TΣ so, as ρ′ = ρ ] ρ′1,
ψ1σρ

′ = ψ1σ(ρ ] ρ′1) = ψ1σρ = ψ1δ, hence E0 � ψ1δ (��).

(b) As in subcase (a)-ii, V∆ ⊆ VG implies ∆δ′ = ∆δ, and the same closed proof trees
are valid for each open goal in ∆δ with respect to Dν′R,CallR

(���).

(c) Again, Vv1 ⊆ VG implies that v1δ
′ = v1δ. Then there is a c.p.t. of the form

F

t[ȳ]p̄δ′→v1δ/ST
ν′%′

, with respect to Dν′R,CallR
.

(d) As (l̄, r̄)δ′ = (l̄, r̄)σ1σ
′
VG′σ1

ρ′ = (l̄, r̄)σ1σ
′ρ′ = (l̄, r̄)σρ′ = (l̄′, r̄′)ν

′
%ν′ρ

′′, then

(l̄′)ν
′
%ν′ρ

′′ =E (r̄′)ν
′
%ν′ρ

′′.

(e) As in the previous subcase, (x̄, ȳ)δ′ = (x̄′, ȳ′)ν
′
%ν′ρ

′′, so there are closed proof
trees of the form Fi

xν
′
i %ν′ρ

′′→yν′i %ν′ρ′′/ST
ν′
i %
′ , for 1 ≤ i ≤ n, with respect to Dν′R,CallR

.
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Using the same proofs shown in rule [m], match, we get ST ν′%ν′ρ
′′ = ST ν′%′ and

ρ′′ : Vt,φ,l̄,r̄ \ VG → TΣ.

Also using these proofs, we get: (a) dom(ρ′′) = V(t1,φ1,l̄′,r̄′)ν
′%ν′

, (b) E0 � φν
′

1 %ν′ρ
′′,

and (c) u1δ =E t
ν′
1 %ν′ρ

′′.

As V(t1,φ1,l̄′,r̄′)ν
′%ν′
⊆ V(t1,φ1,l̄′,r̄′)µ%µ ⊆ VMSµ%µ , then ρ

′′
VMSµ%µ

= ρ′′, so ran(ρ′′VMSµ%µ
) ⊆

TΣ ⊆ TΣ(X ) and, as t1 = t1[x̄]p̄, (l̄′)ν
′
%ν′ρ

′′ =E (r̄′)ν
′
%ν′ρ

′′ and E0 � φν
′

1 %ν′ρ
′′ (�),

there is a derivation rule xν
′

1 %ν′ρ
′′→yν′1 %ν′ρ

′′/STν′
1 %
′···xν′n %ν′ρ′′→yν

′
n %ν′ρ

′′/STν′
n %
′

tν
′

1 %ν′ρ
′′→t1[ȳ]ν

′
p̄ %ν′ρ

′′/MSν
′
%′

in Dν′R,CallR
.

Also
u1δ→t1[ȳ]ν

′
p̄ %ν′ρ

′′/MSν
′
%ν′ t1[ȳ]ν

′
p̄ %ν′ρ

′′→v1δ/ST
ν′%ν′

u1δ→v1δ/(MS ;ST )ν′%ν′
is a derivation rule in Dν′R,CallR

.

As u1δ =E t
ν′
1 %ν′ρ

′′, then

F1

xν
′

1 %ν′ρ
′′→yν′1 %ν′ρ

′′/STν′1 %′
··· Fn

xν
′
n %ν′ρ

′′→yν′n %ν′ρ
′′/STν′n %′

u1δ→t1[ȳ]ν
′
p̄ %ν′ρ

′′/MSν
′
%ν′

F

t1[ȳ]ν
′
p̄ %ν′ρ

′′→v1δ/ST
ν′%ν′

u1δ → v1δ/(MS ; ST )ν′%ν′

is a c.p.t. with respect to Dν′R,CallR
. As ρ : vars(Gσ)→ TΣ, ψρ is satis�able, E0 � ψ1δ

(��), and there are closed proof trees for each open goal in ∆δ with respect to Dν′R,CallR
(���), then σvars(G)ρ is a solution of G.

Lemma 7. Given RB = (Σ, E0 ∪ B,RB), an associated rewrite theory of R = (Σ, E0 ∪ B,R)
closed under B-extensions, and a goal G =

∧m
j=1(lj → rj/idle) ∧ ∆µ%µ | ψ | V, µ, if α is a

ground substitution such that VG ⊆ dom(α), E0 � ψα, and l̄α =E r̄α, then there exist a ground
substitution α◦, substitutions β1, . . . , βm from CSUs, let βki = βiβi+1 · · ·βk, and abstractions
abstractΣ1((ljβ

j−1
1 , rjβ

j−1
1 )) = 〈λ(x̄j , ȳj).(l

◦
j , r
◦
j ); (θ◦lj , θ

◦
rj ); (φ◦lj , φ

◦
rj )〉, for 1 ≤ j ≤ m, where β0

1 =

none, let β = βm1 , such that dom(α◦) = dom(α) ∪ Vˆ̂x,ˆ̂y, α =E0 α
◦
dom(α), l̄

◦α◦ =E r̄◦α◦, α◦ �E

βdom(α◦), G 
m
[d1] ∆ν%ν | ψβ∧

∧m
j=1(φ◦lj∧φ

◦
rj )β

m
j | V, ν, and for every pair of substitutions ρ and γ

such that ran(ρ) is away from all known variables, α◦ �E (βρ)dom(α◦), and α
◦ =E (βρ)dom(α◦) ·γ,

it holds that E0 � (ψβ ∧
∧m
j=1(φ◦lj ∧ φ

◦
rj )β

m
j )ργ and ∆µ%µα =E ∆µ%µβργ.

Proof. The proof is by induction over m, the number of equational conditions. We also prove
that dom(β) ⊆ dom(α◦) ∪

⋃m−1
j=1 ran(βj) (∗).

1. Base case, m = 1:

G = l → r/idle ∧ ∆µ%µ | ψ | V, µ, α is a ground substitution, VG ⊆ dom(α), E0 � ψα,
lα =E rα, and abstractΣ1((lβ0

1 , rβ
0
1)) = abstractΣ1((l, r)) = 〈λ(x̄, ȳ).(l◦, r◦); (θ◦l , θ

◦
r); (φ◦l , φ

◦
r)〉.

, where l◦ = l[x̄]p̄, r◦ = r[ȳ]q̄, φ◦l =
∧ix
i=1 xi = l|pi , and φ◦r =

∧iy
i=1 yi = r|qi for proper p̄, q̄,

ix, and iy, so Vl◦,r◦,φ◦l ,φ◦r = Vl,r ∪ x̂ ∪ ŷ ⊆ VG ∪ x̂ ∪ ŷ ⊆ dom(α) ∪ x̂ ∪ ŷ = dom(α◦), hence
Vφ◦l ,φ◦r ⊆ dom(α◦). As Vφ◦l ,φ◦r ⊂ X0 then also Vφ◦l ,φ◦r ⊆ dom(α◦) ∩ X0. Then:

� by Lemma 4, there exists a ground substitution α◦ such that l◦α◦ =B r◦α◦, E0 �
(φ◦l ∧ φ◦r)α◦, dom(α◦) = dom(α) ∪ x̂ ∪ ŷ, so V(l◦,r◦,φ◦l ,φ

◦
r)σ◦ = ∅, and α =E0 α

◦
dom(α),

hence there also exists a substitution β1 ∈ CSUB(l◦ = r◦), where in this base case
β = β1

1 = β1, such that dom(β) ⊆ dom(α◦) = dom(α) ∪ x̂ ∪ ŷ (∗) and α◦ �B β. As
β � βdom(α◦) then α

◦ �B βdom(α◦), hence α
◦ �E βdom(α◦);

� as E0 � (φ◦l ∧φ◦r)α◦, ψα is satis�able, dom(α◦) = dom(α)∪ x̂∪ ŷ, Vψ ∩ (x̂∪ ŷ) = ∅, so
ψα =E0 ψα

◦ hence ψα◦ is satis�able, and α◦ �B β, so α◦X0
� βX0 , then (ψ∧φ◦l ∧φ◦r)β

is satis�able, and G 1
[d1] ∆µ%µβ | (ψ ∧ φ◦l ∧ φ◦r))β | V, (µβ)V ;
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� let ρ such that α◦ �E (βρ)dom(α◦) and let γ such that α◦ =E (βρ)dom(α◦) · γ. Then:
(a) as VG ⊆ dom(α), Vψ ⊂ X0, and dom(α◦) = dom(α) ∪ x̂ ∪ ŷ then ψα = ψα◦ =E0

ψ(βρ)dom(α◦)γ = ψβργ so, as E0 � ψα, also E0 � ψβργ;

(b) as Vφ◦l ,φ◦r ⊆ dom(α◦) ∩ X0, then (φ◦l ∧ φ◦r)α◦ =E0 (φ◦l ∧ φ◦r)(βρ)dom(α◦)γ = (φ◦l ∧
φ◦r)βργ so, as E0 � (φ◦l ∧ φ◦r)α◦, also E0 � (φ◦l ∧ φ◦r)βργ.

From (a) and (b) we get E0 � (ψ ∧ φ◦l ∧ φ◦r)βργ.
� As VG ⊆ dom(α) ⊆ dom(α◦), dom(β) ⊆ dom(α◦), α◦ =E (βρ)dom(α◦) · γ, and ran(ρ)
is away from all known variables, then ∆µ%µα =E0 ∆µ%µα

◦ =E ∆µ%µ(βρ)dom(α◦) ·γ =
∆µ%µβργ.

2. Induction step, m > 1:

G = l1 → r1/idle∧
∧m
j=2(lj → rj/idle)∧∆µ%µ | ψ | V, µ, let ∆m

2 =
∧m
j=2(lj → rj/idle).

As in the base case, there exist a ground substitution δ◦ and a substitution β1 ∈ CSUB(l◦1 =
r◦1), so ran(β1) ∩ (VG ∪ Vˆ̂x,ˆ̂y ∪ Vl◦1 ,r◦1 ) = ∅, such that α =E0 δ

◦
dom(α), dom(β1) ⊆ dom(δ◦) =

dom(α) ∪ x̂1 ∪ ŷ1, δ◦ �B β1 � (β1)dom(δ◦), (ψ ∧ φ◦l ∧ φ◦r)β1 is satis�able, so G  1
[d1]

(∆m
2 ∧ ∆µ%µ)β1 | (ψ ∧ φ◦l1 ∧ φ

◦
r1))β1 | V, (µβ1)V = G1, and for every pair of substi-

tutions ρ and γ such that δ◦ �E (β1ρ)dom(δ◦) and δ◦ =E (β1ρ)dom(δ◦) · γ it holds that
E0 � (ψ ∧ φ◦l ∧ φ◦r)β1ργ and (∆m

2 ∧ ∆µ%µ)α =E (∆m
2 ∧ ∆µ%µ)β1ργ.

As δ◦ �B β1 and δ◦ is ground, then there exists a ground substitution δ1, such that
dom(δ1) = ran(β1) ∪ (dom(δ◦) \ dom(β1)), where ran(β1) ∩ VG = ∅, and δ◦ =B β1 · δ1, so
dom(β1δ1) = ran(β1) ∪ dom(δ◦) = ran(β1) ∪ dom(α) ∪ x̂1 ∪ ŷ1. Then:

� as δ◦ =B (β1δ1)\ran(β1), so δ◦X0
= (β1δ1)X0\ran(β1), dom(δ◦) = dom(α) ∪ x̂1 ∪ ŷ1,

and α =E0 δ◦dom(α) = δ◦\(x̂1∪ŷ1), then α =E0 δ◦\(x̂1∪ŷ1) =B (β1δ1)\(ran(β1)∪x̂1∪ŷ1) =

(β1δ1)dom(α), i.e., α =E (β1δ1)dom(α);

� V∆m
2
∩ (x̂1 ∪ ŷ1) = ∅ implies ∆m

2 β1δ1 = ∆m
2 (β1δ1)\(x̂1∪ŷ1) =E ∆m

2 α. Then, since∧m
j=2(ljα =E rjα),

∧m
j=2(ljβ1δ1 =E rjβ1δ1) (�);

� as E0 � ψα, Vψ ⊂ X0, δ◦X0
= (β1δ1)X0\ran(β1), and Vψ ∩ (ran(β1) ∪ x̂1 ∪ ŷ1) = ∅, then

ψβ1δ1 = ψ(β1δ1)\(x̂1∪ŷ1) =E0 ψα, so E0 � ψβ1δ1;

� as δ◦X0
= (β1δ1)X0\ran(β1) and Vφ◦l1 ,φ

◦
r1
∩ran(β1) = ∅, then (φ◦l1∧φ

◦
r1)β1δ1 = (φ◦l1∧φ

◦
r1)δ◦

so, as E0 � (φ◦l1 ∧ φ
◦
r1)δ◦, also E0 � (φ◦l1 ∧ φ

◦
r1)β1δ1; and

� as E0 � (φ◦l1 ∧ φ
◦
r1)β1δ1 and E0 � ψβ1δ1, then E0 � (ψ ∧ φ◦l1 ∧ φ

◦
r1)β1δ1(��).

Then, by (�) and (��), we can apply the I.H. and there exists a ground substitution δ◦1 ,
substitutions β2, . . . , βm from CSUs, and abstractions abstractΣ1((ljβ1β

j−1
2 , rjβ1β

j−1
2 )) =

〈λ(x̄j , ȳj).(l
◦
j , r
◦
j ); (θ◦lj , θ

◦
rj ); (φ◦lj , φ

◦
rj )〉, for 2 ≤ j ≤ m, where β1

2 = none, such that

dom(βm2 ) ⊆ dom(δ◦1)∪
⋃m−1
j=2 ran(βj), dom(δ◦1) = dom(β1δ1)∪ (Vˆ̂x,ˆ̂y \ (x̂1 ∪ ŷ1)), β1δ1 =E0

(δ◦1)dom(β1δ1), l
◦
j δ
◦
1 =E r◦j δ

◦
1 , for 2 ≤ j ≤ m, δ◦1 �E (βm2 )dom(δ◦1), G1  

m−1
[d1] ∆µ%µβ1β

m
2 |

(ψ ∧ φ◦l1 ∧ φ
◦
r1)β1β

m
2 ∧

∧m
j=2(φ◦lj ∧ φ

◦
rj )β

m
j | V, (µβ1β

m
2 )V , and for every pair of substitu-

tions ρ and γ such that δ◦1 �E (βm2 ρ)dom(δ◦1) and δ
◦
1 =E (βm2 ρ)dom(δ◦1) · γ it holds that E0 �

((ψ∧φ◦l1∧φ
◦
r1)β1β

m
2 ∧

∧m
j=2(φ◦lj∧φ

◦
rj )β

m
j )ργ and (∆m

2 ∧∆µ%µ)β1δ1 =E (∆m
2 ∧∆µ%µ)β1β

m
2 ργ.

As β1β
m
2 = βm1 = β, this is the same as G1  

m−1
[d1] ∆µ%µβ | ψβ ∧

∧m
j=1(φ◦lj ∧ φ

◦
rj )β

m
j |

V, (µβ)V , E0 � (ψβ ∧
∧m
j=1(φ◦lj ∧ φ

◦
rj )β

m
j )ργ, and (∆m

2 ∧∆µ%µ)β1δ1 =E (∆m
2 ∧∆µ%µ)βργ

(���).
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As dom(β1) ⊆ dom(δ◦) = dom(α) ∪ x̂1 ∪ ŷ1, dom(α◦) = dom(α) ∪ Vˆ̂x,ˆ̂y, so dom(β1) ∪
dom(δ◦) ⊆ dom(α◦), dom(δ◦1) = dom(β1δ1) ∪ (Vˆ̂x,ˆ̂y \ (x̂1 ∪ ŷ1)), dom(δ1) = ran(β1) ∪
(dom(δ◦) \ dom(β1)), and dom(βm2 ) ⊆ dom(δ◦1) ∪

⋃m−1
j=2 ran(βj), then:

dom(β) = dom(β1β
m
2 ) = dom(β1)∪dom(βm2 ) ⊆ dom(α)∪x̂1∪ŷ1∪dom(δ◦1)∪

⋃m−1
j=2 ran(βj) =

dom(α)∪x̂1∪ŷ1∪dom(β1δ1)∪(Vˆ̂x,ˆ̂y\(x̂1∪ŷ1))∪
⋃m−1
j=2 ran(βj) = dom(α)∪Vˆ̂x,ˆ̂y∪dom(β1δ1)∪⋃m−1

j=2 ran(βj) = dom(α◦)∪dom(β1δ1)∪
⋃m−1
j=2 ran(βj) ⊆ (dom(α◦)∪dom(β1)∪dom(δ◦))∪

(ran(β1) ∪
⋃m−1
j=2 ran(βj)) = dom(α◦) ∪

⋃m−1
j=1 ran(βj) (∗).

Let α◦ = δ◦(δ◦1)Vˆ̂x, ˆ̂y\(x̂1∪ŷ1) = δ◦ ∪ (δ◦1)Vˆ̂x, ˆ̂y\(x̂1∪ŷ1), since δ
◦ is ground and dom(δ◦) =

dom(α) ∪ x̂1 ∪ ŷ1. Then:

(a) as G 1
[d1] G1, then:

G m
[d1] ∆µ%µβ | ψβ ∧

∧m
j=1(φ◦lj ∧ φ

◦
rj )β

m
j | V, (µβ)V .

(b) as dom(δ◦) = dom(α) ∪ x̂1 ∪ ŷ1, then:

dom(α◦) = dom(δ◦ ∪ (δ◦1)Vˆ̂x, ˆ̂y\(x̂1∪ŷ1)) = dom(δ◦)∪ (Vˆ̂x,ˆ̂y \ (x̂1 ∪ ŷ1)) = dom(α)∪ x̂1 ∪
ŷ1 ∪ (Vˆ̂x,ˆ̂y \ (x̂1 ∪ ŷ1)) = dom(α) ∪ Vˆ̂x,ˆ̂y, i.e., dom(α◦) = dom(α) ∪ Vˆ̂x,ˆ̂y;

(c) as α =E0 δ
◦
dom(α), dom(α) ∩ Vˆ̂x,ˆ̂y = ∅ and δ◦ is ground, then:

α◦dom(α) = (δ◦ ∪ (δ◦1)Vˆ̂x, ˆ̂y\(x̂1∪ŷ1))dom(α) = δ◦dom(α) =E0 α, i.e., α =E0 α
◦
dom(α);

(d) as δ◦ =B (β1δ1)\ran(β1), β1δ1 =E0 (δ◦1)dom(β1δ1), and dom(δ◦1) = dom(β1δ1) ∪ (Vˆ̂x,ˆ̂y \
(x̂1 ∪ ŷ1)), then:

α◦ = δ◦∪(δ◦1)Vˆ̂x, ˆ̂y\(x̂1∪ŷ1) =B (β1δ1)\ran(β1)∪(δ◦1)Vˆ̂x, ˆ̂y\(x̂1∪ŷ1) =E0 (δ◦1)dom(β1δ1)\ran(β1)∪
(δ◦1)Vˆ̂x, ˆ̂y\(x̂1∪ŷ1) = (δ◦1)\ran(β1), i.e., α

◦ =E (δ◦1)\ran(β1), so:

� as ran(β1) ∩ VG = ∅ and l◦j δ◦1 =E r◦j δ
◦
1 , for 2 ≤ j ≤ m then l◦jα

◦ =E r◦jα
◦, for

2 ≤ j ≤ m
� as ran(β1) ∩ Vl◦1 ,r◦1 = ∅ and l◦1β1 =B r◦1β1, then:

� l◦1(β1)\ran(β1) = l◦1β1 =B r◦1β1 = r◦1(β1)\ran(β1),

� l◦1(β1δ1)\ran(β1) =B r◦1(β1δ1)\ran(β1),

� l◦1(δ◦1)dom(β1δ1)\ran(β1) =E r
◦
1(δ◦1)dom(β1δ1)\ran(β1), and

� l◦1(δ◦1)\ran(β1) =E r
◦
1(δ◦1)\ran(β1), i.e., l

◦
1α
◦ =E r

◦
1α
◦.

In conclusion, l̄◦α◦ =E r̄
◦α◦;

(e) � as dom(β1δ1) = ran(β1)∪dom(α)∪x̂1∪ŷ1, then (β1δ1)\ran(β1) = (β1δ1)dom(α)∪x̂1∪ŷ1
;

� as β1δ1 =E0 (δ◦1)dom(β1δ1) = (δ◦1)dom(β1) ∪ (δ◦1)dom(δ1) then δ1 =E0 (δ◦1)dom(δ1);

� as dom(β1δ1) = ran(β1)∪ dom(α)∪ x̂1 ∪ ŷ1 then dom(δ1) ⊆ ran(β1)∪ dom(α)∪
x̂1 ∪ ŷ1;

� then, as δ◦ =B (β1δ1)\ran(β1) and dom(δ◦1) = dom(α◦) ∪ ran(β1):
α◦ = δ◦(δ◦1)Vˆ̂x, ˆ̂y\(x̂1∪ŷ1) = (δ◦(δ◦1)Vˆ̂x, ˆ̂y\(x̂1∪ŷ1))dom(α◦) =B

((β1δ1)\ran(β1)(δ
◦
1)Vˆ̂x, ˆ̂y\(x̂1∪ŷ1))dom(α◦) =

((β1δ1)dom(α)∪x̂1∪ŷ1
(δ◦1)Vˆ̂x, ˆ̂y\(x̂1∪ŷ1))dom(α◦) =E0

((β1(δ◦1)dom(δ1))dom(α)∪x̂1∪ŷ1
(δ◦1)Vˆ̂x, ˆ̂y\(x̂1∪ŷ1))dom(α◦) =

((β1δ
◦
1)dom(α)∪x̂1∪ŷ1

(δ◦1)Vˆ̂x, ˆ̂y\(x̂1∪ŷ1))dom(α◦) = ((β1δ
◦
1)dom(α)∪Vˆ̂x, ˆ̂y

)dom(α◦) =

(β1δ
◦
1)dom(α◦) �E (β1(βm2 )dom(δ◦1))dom(α◦) = (β1β

m
2 )dom(α◦) = (βm1 )dom(α◦).

In conclusion, α◦ �E (βm1 )dom(α◦);

(f) let ρ and γ such that α◦ �E (βρ)dom(α◦) and α
◦ =E (βρ)dom(α◦) · γ. Then:

� as δ1 =E0 (δ◦1)dom(δ1) then (β1δ1)dom(β1δ1) =E0 (β1δ
◦
1)dom(β1δ1), hence

(β1δ1)dom(α)∪x̂1∪ŷ1
=E0 (β1δ

◦
1)dom(α)∪x̂1∪ŷ1

;
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� then, as δ◦ =B (β1δ1)\ran(β1) and dom(β1δ1) = ran(β1) ∪ dom(α) ∪ x̂1 ∪ ŷ1:
α◦ = δ◦(δ◦1)Vˆ̂x, ˆ̂y\(x̂1∪ŷ1) =B (β1δ1)\ran(β1)(δ

◦
1)Vˆ̂x, ˆ̂y\(x̂1∪ŷ1) =

(β1δ1)dom(α)∪x̂1∪ŷ1
(δ◦1)Vˆ̂x, ˆ̂y\(x̂1∪ŷ1) =E0 (β1δ

◦
1)dom(α)∪x̂1∪ŷ1

(δ◦1)Vˆ̂x, ˆ̂y\(x̂1∪ŷ1) =

(β1δ
◦
1)dom(α◦), i.e., (β1δ

◦
1)dom(α◦) =E α

◦;

� as dom(δ◦1) = dom(α◦) ∪ ran(β1) and (β1δ
◦
1)dom(α◦) =E α◦ �E (βρ)dom(α◦) =

(β1β
m
2 ρ)dom(α◦), then (δ◦1)dom(α◦)∪ran(β1) �E (βm2 ρ)dom(α◦)∪ran(β1), i.e.,

δ◦1 �E (βm2 ρ)dom(δ◦1);

� as dom(δ◦1) = dom(α◦)∪ran(β1) and (β1β
m
2 ρ)dom(α◦)γ = (βρ)dom(α◦)γ =E α

◦ =E

(β1δ
◦
1)dom(α◦), then (βm2 ρ)dom(α◦)∪ran(β1)γ =E (δ◦1)dom(α◦)∪ran(β1), i.e.,

δ◦1 =E (βm2 ρ)dom(δ◦1)γ.

In conclusion, as δ◦1 �E (βm2 ρ)dom(δ◦1) and δ◦1 =E (βm2 ρ)dom(δ◦1)γ then, by (���),
E0 � (ψβ ∧

∧m
j=1(φ◦lj ∧ φ

◦
rj )β

m
j )ργ;

� Also by (���), (∆m
2 ∧∆µ%µ)β1δ1 =E (∆m

2 ∧∆µ%µ)βργ, so ∆µ%µβ1δ1 =E ∆µ%µβργ;

� As α =E0 δ◦dom(α), δ
◦ =B β1 · δ1, β1 is a CSU, so V µ

∆%µ ∩ ran(β1) = ∅, and
V µ

∆%µ ⊆ VG ⊆ dom(α), then:
∆µ%µβργ =E ∆µ%µβ1δ1 =B ∆µ%µδ

◦ = ∆µ%µδ
◦
dom(α) =E0 ∆µ%µα.

So also ∆µ%µα =E ∆µ%µβργ.

Theorem 3. Given an associated rewrite theory R = (Σ, E0 ∪B,R) closed under B-extensions
and a reachability problem P =

∧n
i=1 ui → vi/ST i | φ | V, µ, where µ is R/E-normalized, if

σ : V → TΣ is a R/E-normalized solution for P then there exist a formula ψ ∈ QF (X0) and two
substitutions, say λ and ρ, call ν = (µλ)V , such that

∧n
i=1 uiµ→ viµ/STµ

i ; idle | φµ | V, µ +
λ

nil | ψ | V, ν, σ =E ν·ρ, and ψρ is satis�able.

Proof. The proof is by induction over the sum h of the number of nodes in each c.p.t. for the
solution σ. No simpli�cation is applied to the reachability formulas that appear in the generated
path.

In the following we will make use of the following two facts. For any term t and substitution
α it holds that:

1. posΣ(t) ⊆ posΣ(tα) because, by de�nition, the variables of t that α instantiates are located
at positions in posX (t), and

2. topΣ0
(t) ⊆ topΣ0

(tα), because α only may add new topΣ0
positions for non-Σ0 variables in

its domain, but cannot remove any existing position in topΣ0
(t).

We will call u = u1µ and v = v1µ. In all cases σ = µ ·σ′, for proper σ′ such that dom(σ′) = V µ,
[v1σ]E ∈ STσ

1 @[u1σ]E , and E0 � φσ. As σ is ground and R/E-normalized, then σ′ has to be
also ground and, by Proposition 7, R/E-normalized.

(i) Base step: h = 1.
Then P has the form u1 → v1/ST 1 | φ | V, µ, with VP = Vu1,v1,φ ⊆ V and the c.p.t. T for

P0 and σ has the form
u1σ→v1σ/STσ1 v1σ→v1σ/idle

u1σ→v1σ/ST
σ
1 ;idle .

There are four strategies in the base case: idle, c[γ], top(c[γ]), and the match test.

1. ST 1 = idle.

P = u1 → v1/idle | φ | V, µ. As, by de�nition 33, Vu1,v1,φ ⊆ V then Vu,v,φµ ⊆ V µ =
dom(σ′), and as [v1σ]E ∈ idle@[u1σ]E then, as shown in example 10, u1σ =E v1σ, i.e.,
uσ′ =E vσ

′, all ground terms.
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Let abstractΣ1((u, v)) = 〈λ(x̄, ȳ).(u◦, v◦); (θ◦u, θ
◦
v); (φ◦u, φ

◦
v)〉. As dom(σ′) = V µ then, by

Lemma 4, there exists a ground substitution σ◦ such that u◦σ◦ =B v◦σ◦, E0 � (φ◦u∧φ◦v)σ◦,
dom(σ◦) = V µ ∪ x̂ ∪ ŷ, and σ′ =E0 σ

◦
V µ .

As u◦σ◦ =B v◦σ◦, then there exist substitutions ν ′ and ρ′ such that ν ′ ∈ CSUB (u◦ = v◦)
and σ◦ =B ν ′·ρ′, call ν = (µν ′)V and ρ = ρ′ran(ν)∪(V \dom(ν)). As dom(µ) ⊆ V and σ′ =E0

σ◦V µ then σ = µσ′ =E0 µσ
◦
V µ =B µ(ν ′ρ′)V µ = (µν ′ρ′)V = (µν ′)V ·ρ′ran((µν′)V )∪(V \dom((µν′)V )) =

ν·ρ′ran(ν)∪(V \dom(ν)) = ν·ρ, i.e., σ =E ν·ρ.

As E0 � φσ, Vφµ ⊆ V µ, and σ′ =E0 σ
◦
V µ then φµσ◦ =E0 φµσ

′ = φσ, so E0 � φµσ◦. Now,
as E0 � (φ◦u ∧φ◦v)σ◦, then E0 � (φµ∧φ◦u ∧φ◦v)σ◦, call ψ◦ = φµ∧φ◦u ∧φ◦v and let ψ = ψ◦ν ′.
As E0 � ψ◦σ◦, σ◦ =B ν ′·ρ′, and Vψ◦ ∩ran(ν ′) = ∅, so ψ◦σ◦ = ψ◦ν ′ρ′, and ρ is more general
than ρ′, then ψ◦ν ′ρ, i.e., ψρ, is satis�able, hence ψ is also satis�able.

As u = u1µ, v = v1µ, and ν ′ ∈ CSUB (u◦ = v◦), then u → v/idle; idle | φµ | V, µ  [d2]

u→ v/idle | φµ | V, µ [d1],ν′ nil | ψ | V, ν, where ψ is satis�able and σ =E νρ.

2. ST 1 = c[γ].

P = u1 → v1/c[γ] | φ | V, µ, with c : l → r if χ ∈ R, and [v1σ]E ∈ cσ[γσran(γ)]@[u1σ]E .
Then, by Lemma 5 point 3, u1σ −−−−−−→

cσγσran(γ)

1

Rσ/E

v1σ, so E0 � χσγσran(γ). Call c′ =

cσγσran(γ) (= cγσ because σ is ground and, by de�nition, dom(γ) ∩ dom(σ) = ∅, hence
E0 � χγσ), R(c′) = (Σ, E0∪B, {c′}), andRB(c′) = (Σ, E0∪B, c′B). Then also u1σ −→

c′
1

{c′}/E
v1σ so, by Theorem 1, u1σ →1

{c′},B v1σ.

As u1σ →1
{c′},B v1σ and vars(B)∩ vars(cγ) = ∅, then this rewrite step uses a rule c′1 ∈ c′B

where:

� if c′1 = c′ then c′1 has the form c′1 : lγσ → rγσ if χγσ, call l0 = l and r0 = r, and

� if c′1 6= c′ then c′1 has the form c′1 : w[lγσ]p′ → w[rγσ]p′ if χγσ, by De�nition 18,
for proper w and p′. As by De�nition 18, Vw ∩ Vc′ = ∅, by De�nition 33, Vw ∩ V =
∅, and also dom(γ) ⊆ Vc′ and dom(σ) ⊆ V , this is the same as c′1 : w[l]p′γσ →
w[r]p′γσ if χγσ, call l0 = w[l]p′ and r0 = w[r]p′ .

In either case, c′1 has the form, c′1 : l0γσ → r0γσ if χγσ. Let c0 : l0 → r0 if χ. As c′1 ∈ c
γσ
B

and c′1 = cγσ0 then, by proposition 6, c0 ∈ cB. Since σ = µσ′, if we call l1 = l0γµ and
r1 = r0γµ then c′1 has also the form c′1 : l1σ

′ → r1σ
′ if χγσ.

Let c2 : l2 → r2 if χ2 be a fresh version of c
µ
0 except for dom(γ)∪V µ (= dom(γ)∪dom(σ′)),

and let τ be the renaming that veri�es c2 = cµ0τ , so (l2, r2, χ2) = (l0, r0, χ)(µ ] τ), where
(dom(τ) ∪ ran(τ)) ∩ (dom(γ) ∪ V µ) = ∅. Then l2(γµ)dom(γ) = l0(µ ] τ)(γµ)dom(γ) =
l0((γµ)dom(γ)]µ] τ) = l0((γµ)dom(γ)]µ)τ = l0γµτ = l1τ , so also r2(γµ)dom(γ) = r1τ and
χ2(γµ)dom(γ) = χγµτ . Call lc = l2(γµ)dom(γ) and σ

′′ = τ−1σ′. Then lcσ′′ = l1ττ
−1σ′ =

l1σ
′. Now:

(a) abstractΣ1(lc) = 〈λȳ.l◦; θ◦l ;φ◦l 〉, where ȳ = y1, . . . , yiy , l
◦ = lc[ȳ]p̄, p̄ = p1, . . . , piy ,

p̂ = topΣ0
(lc), θ◦l =

⋃iy
i=1{yi 7→ lc|pi}, and φ◦l =

∧iy
i=1 yi = lc|pi ;

(b) since l1σ′ = lcσ
′′ and topΣ0

(lc) ⊆ topΣ0
(lcσ

′′) then abstractΣ1(l1σ
′) = abstractΣ1(lcσ

′′) =
〈λȳz̄.l◦cσ′′ ; θ◦cσ′′ ;φ◦cσ′′〉, where z̄ = z1, . . . , ziz , l

◦
cσ′′ = lcσ

′′[ȳ]p̄[z̄]q̄, q̂ = topΣ0
(lcσ

′′) \
topΣ0

(lc), θ◦cσ′′ =
⋃iy
i=1{yi 7→ lc|piσ′′} ∪

⋃iz
j=1{zj 7→ lcσ

′′|qj}, and φ◦cσ′′ = (
∧iy
i=1 yi =

lc|piσ′′ ∧
∧iz
j=1 zj = lcσ

′′|qj );
(c) as u1σ →1

{c′},B v1σ with c′1, then there are a position p in posΣ1
(u1σ) and a substi-

tution δ : ŷ ∪ ẑ ∪ Vc′1 → TΣ such that rep(u1σ|p) =B l◦cσ′′δ, v1σ =E u1σ[r0γσδ]p =
u1σ[r0γµσ

′δ]p = u1σ[r1σ
′δ]p, and E0 � (χγσ ∧ φ◦cσ′′)δ, so E0 � χγσδ, i.e., E0 �

χγµσ′δ, ȳδ =E0 lc|p̄σ′′δ and z̄δ =E0 lcσ
′′|q̄δ;
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(d) as p ∈ posΣ1
(u1σ) and σ is R/E-normalized, hence R,E-normalized by Theorem 1,

then p ∈ posΣ1
(u1), so u1σ|p = u1|pσ = u1|pµσ′ = u1µ|pσ′ = u|pσ′; and

(e) as τ is a fresh renaming then ∅ = Vu ∩ ran(τ) = Vu ∩ dom(τ−1), so u|pτ−1σ′ =
u|pσ′ = u1σ|p =E0 rep(u1σ|p) =B l◦cσ′′δ = lcσ

′′[ȳ]p̄[z̄]q̄δ =E0 lcσ
′′ = lcτ

−1σ′, i.e.,
u|pτ−1σ′ =E lcτ

−1σ′;

Let abstractΣ1(u|p) = 〈λx̄.u◦; θ◦u;φ◦u〉. As dom(τ−1σ′) = ran(τ) ∪ V µ then, by Lemma 4,
there exists a ground substitution σ◦ such that u◦σ◦ =B l◦σ◦, E0 � (φ◦u∧φ◦l )σ◦, dom(σ◦) =
dom(τ−1σ′) ∪ x̂ ∪ ŷ = ran(τ) ∪ V µ ∪ x̂ ∪ ŷ, and τ−1σ′ =E0 σ

◦
dom(τ−1σ′) = σ◦ran(τ)∪V µ , so

(τ−1σ′)V µ =E0 σ
◦
V µ . As (dom(τ) ∪ ran(τ)) ∩ V µ = ∅ and dom(σ′) = V µ then σ′ = σ′V µ =

(τ−1σ′)V µ =E0 σ
◦
V µ .

As u◦σ◦ =B l◦σ◦, then there exist substitutions ν ′ and ρ′ such that ν ′ ∈ CSUB (u◦ = l◦) and
σ◦ =B ν ′ρ′, call ν = (µν ′)V and ρ = ρ′ran(ν)∪(V \dom(ν)). As dom(µ) ⊆ V and σ′ =E0 σ

◦
V µ

then σ = µσ′ =E0 µσ
◦
V µ =B µ(ν ′ρ′)V µ = (µν ′ρ′)V = (µν ′)V ρ

′
ran((µν′)V )∪(V \dom((µν′)V )) =

νρ′ran(ν)∪(V \dom(ν)) = νρ, i.e., σ =E νρ.

As χ2(γµ)dom(γ) = χγµτ , dom(σ◦) = ran(τ) ∪ V µ ∪ x̂ ∪ ŷ, and τ−1σ′ =E0 σ◦ran(τ)∪V µ ,

then χ2(γµ)dom(γ)σ
◦δ = χγµτσ◦ran(τ)∪V µδ =E0 χγµττ

−1σ′δ = χγµσ′δ so, as E0 � χγµσ′δ,
E0 � χ2(γµ)dom(γ)σ

◦δ.

As E0 � φσ, Vφµ ⊆ V µ, and σ′ =E0 σ
◦
V µ then φµσ◦ =E0 φµσ

′ = φσ, so E0 � φµσ◦. Now,
as E0 � (φ◦u∧φ◦l )σ◦, then E0 � (φµ∧φ◦u∧φ◦l )σ◦ ground formula, so E0 � (φµ∧φ◦u∧φ◦l )σ◦δ
and E0 � (φµ ∧ φ◦u ∧ φ◦l ∧ χ2(γµ)dom(γ))σ

◦δ. Call ϕ◦ = φµ ∧ φ◦u ∧ φ◦l ∧ χ2(γµ)dom(γ), and
let ϕ = ϕ◦ν ′. As σ◦ =B ν ′ρ′, so ϕ◦σ◦ = ϕ◦ν ′ρ′ = ϕρ′, then E0 � ϕρ′δ, call δ′ = ρ′δ, hence
ϕ is also satis�able.

Now, G0 = u→ v/cµ[(γµ)dom(γ)]; idle | φµ | V, µ [t] u→1 x0, x0 → v/cµ[(γµ)dom(γ)]; idle |
φµ | V, µ ∗[c] u|p →

1 x, u[x]p → v/cµ[(γµ)dom(γ)]; idle | φµ | V, µ = G1, where u|p cannot
be a variable, say xu, because as p ∈ posΣ(u1) then, by (c), also xuσ′ →1

R,B r0γσδ, so
σ would not be R/E-normalized. As c2 : l2 → r2 if χ2, where r2(γµ)dom(γ) = r1τ , and
ν ′ ∈ CSUB (u◦ = l◦) then G1  [r],ν′∪{x 7→r1τν′} (u[r1τ ]p → v /idle)ν ′ | ϕ | V, ν = G2.

We already know that E0 � ϕδ′. We prove that u[r1τ ]pν
′δ′ =E vν

′δ′:

� as τ−1σ′ =E0 σ
◦
dom(τ−1σ′) and dom(σ◦) = dom(τ−1σ′)∪ x̂∪ ŷ, then τ−1σ′ ] σ◦x̂∪ŷ =E0

σ◦dom(τ−1σ′) ] σ
◦
x̂∪ŷ = σ◦, where VG2 ∩ (x̂ ∪ ŷ) = ∅, u = uτ−1, and v = vτ−1;

� u[r1τ ]pν
′δ′ =B u[r1τ ]pσ

◦δ =E0 u[r1τ ]p(τ
−1σ′ ] σ◦x̂∪ŷ)δ = u[r1τ ]pτ

−1σ′δ = u[r1]pσ
′δ;

� vν ′δ′ =B vσ◦δ =E0 v(τ−1σ′ ] σ◦x̂∪ŷ)δ = vτ−1σ′δ = vσ′δ;

� by (c), v1σ =E u1σ[r1σ
′δ]p, i.e., vσ′ =E uσ′[r1σ

′δ]p, ground expression so, as δ is
ground, vσ′δ =E uσ

′δ[r1σ
′δ]p = u[r1]pσ

′δ, hence u[r1τ ]pν
′δ′ =E vν

′δ′.

Let abstractΣ1((u[r1τ ]p, vν
′)) = 〈λ(x̄′, ȳ′).(r◦, v◦); (θ◦r , θ

◦
v); (φ◦r , φ

◦
v)〉. Then, by Lemma 4,

there exists a ground substitution δ◦ such that r◦δ◦ =B v◦δ◦, E0 � (φ◦r ∧φ◦v)δ◦, dom(δ◦) =
dom(δ′) ∪ x̂′ ∪ ŷ′, and δ′ =E0 δ

◦
dom(δ′), so there exist substitutions ν ′′ and ρ′′ such that

ν ′′ ∈ CSUB (r◦ = v◦) and δ◦ =B ν ′′ρ′′, call ν1 = (ν ′ν ′′)V and ρ1 = ρ′′ran(ν1)∪(V \dom(ν1)).

As E0 � ϕδ′, ground formula, and δ′ =E0 δ
◦
dom(δ′) then E0 � ϕδ◦ so E0 � (ϕ ∧ φ◦r ∧ φ◦v)δ◦,

call ψ′ = ϕ ∧ φ◦r ∧ φ◦v. Now, as δ◦ =B ν ′′ρ′′ implies ψ′δ◦ = ψ′ν ′′ρ′′, then also E0 � ψ′ν ′′ρ′′,
call ψ = ψ′ν ′′, so ψ and ψρ1 are satis�able.

As ν ′′ ∈ CSUB (r◦ = v◦) and ψ is satis�able, then G2  [d1],ν′′ nil | ψ | V, ν1, where
ν1 = (νν ′′)V . Then, as ψρ1 is satis�able, all that is left to prove is σ =E ν1ρ1.
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As dom(δ◦) = dom(δ′) ∪ x̂′ ∪ ŷ′ and δ′ =E0 δ
◦
dom(δ′) then dom(δ◦) ∩ V = dom(δ′) and

δ◦V =E0 δ
′
V , so, as dom(σ) = V and σ (=B µ(ν ′ρ′)V µ) is ground, call σB = µ(ν ′ρ′)V µ ,

then ν1ρ1 = (νν ′′)V ρ
′′
ran(ν1)∪(V \dom(ν1)) = (νν ′′ρ′′)V =B (νδ◦)V =E0 (νδ′)V = (µν ′δ′)V =

(µν ′ρ′δ)V = µ(ν ′ρ′δ)V µ = σBδran(σB)∪(V \dom(σB)) =B σδran(σ)∪(V \dom(σ)) = σδ∅ = σ, i.e.,
σ =E ν1ρ1.

3. ST 1 = top(c[γ]).

The proof is almost exactly the same as the previous one, particularized for the case p = ε.
The only di�erence is found in the initial narrowing steps, where instead of:

- G0 = u→ v/cµ[(γµ)dom(γ)]; idle | φµ | V, µ [t] u→1 x0, x0 → v/cµ[(γµ)dom(γ)]; idle |
φµ | V, µ ∗[c] u|p →

1 x, u[x]p → v/cµ[(γµ)dom(γ)]; idle | φµ | V, µ = G1 and

- G1  [r],ν′∪{x0 7→r1τν′} (u[r1τ ]p → v /idle)ν ′ | ϕ | V, ν = G2,

now we have:

G0 = u → v/top(cµ[(γµ)dom(γ)]); idle | φµ | V, µ  [tp],ν′ (r1τ → v /idle)ν ′ | ϕ | V, ν =
G2.

4. ST 1 = match t s.t.
∧m
j=1(lj = rj) ∧ χ.

P = u1 → v1/ST 1 | φ | V, µ, vars(P ) = vars(ū1, v̄1, φ) ⊆ V , STσ
1 = match tσ s.t.

∧m
j=1(ljσ =

rjσ) ∧ χσ, and there exists a substitution δ : VSTσ
1
→ TΣ, such that v1σ =E u1σ =E tσδ,

ljσδ =E rjσδ, for 1 ≤ j ≤ m, and E0 � (φ ∧ χ)µσ′δ.

Let abstractΣ1((u, tµ)) = 〈λ(x̄, ȳ).(u◦, t◦); (θ◦u, θ
◦
t ); (φ◦u, φ

◦
t )〉. As u1σ is ground then uσ′δ =

u1µσ
′δ = u1σδ = u1σ =E tσδ = tµσ′δ so, by Lemma 4, there exists a ground substitution

σ◦ such that u◦σ◦ =B t◦σ◦, E0 � (φ◦u ∧ φ◦t )σ◦, dom(σ◦) = dom(σ′δ) ∪ x̂ ∪ ŷ, and σ′δ =E0

σ◦dom(σ′δ).

Call ψ1 = (φ ∧ χ)µ ∧ φ◦u ∧ φ◦t . As E0 � (φ ∧ χ)µσ′δ, V(φ∧χ)µσ′δ ∩ (x̂ ∪ ŷ) = ∅, and
σ′δ =E0 σ

◦
dom(σ′δ) = σ◦\(x̂∪ŷ), then E0 � (φ ∧ χ)µσ◦, so E0 � ψ1σ

◦.

As u◦σ◦ =B t◦σ◦, then there exist substitutions ν and τ such that η ∈ CSUB (u◦ = t◦)
and σ◦ =B η·τ , so ψ1σ

◦ = ψ1ητ , hence E0 � ψ1ητ and ψ1η is satis�able.

Now, G0 = u→ v/STµ
1 ; idle | φµ | V, µ [m],η (

∧m
j=1(lj → rj/idle)∧u1 → v1/idle)µη |

ψ1η | V, (µη)V = G1.

As l̄σδ =E r̄σδ, σ′δ =E0 σ◦dom(σ′δ), σ
′δ =E0 σ◦\(x̂∪ŷ), σ

◦ =B η·τ , and Vl̂µ,r̂µ ∩ (x̂ ∪ ŷ ∪
ran(η)) = ∅, then (l̄, r̄)µητ = (l̄, r̄)µ(η · τ) =B (l̄, r̄)µσ◦ = (l̄, r̄)µσ◦\(x̂∪ŷ) =E0 (l̄, r̄)µσ′δ,

i.e., (l̄, r̄)µητ =E (l̄, r̄)σδ, so l̄µητ =E r̄µητ .

By Lemma 7, as τ is a substitution such that E0 � ψ1ητ and l̄µητ =E r̄µητ , then there
exist a ground substitution τ◦, substitutions β1, . . . , βm, let β = βm1 , and abstractions
abstractΣ1((ljβ

j−1
1 , rjβ

j−1
1 )) = 〈λ(x̄j , ȳj).(l

◦
j , r
◦
j ); (θ◦lj , θ

◦
rj ); (φ◦lj , φ

◦
rj )〉, for 1 ≤ j ≤ m, such

that dom(τ◦) = dom(τ) ∪ Vˆ̂x,ˆ̂y, τ =E0 τ
◦
dom(τ), l̄

◦τ◦ =E r̄◦τ◦, τ◦ �E βdom(τ◦), call ψ2 =

ψ1ηβ ∧
∧m
j=1(φ◦lj ∧ φ

◦
rj )β

m
j , G1  m

[d1] (u1 → v1 /idle)µηβ | ψ2 | V, (µηβ)V = G2, and for
every pair of substitutions ρ and γ such that τ◦ �E (βρ)dom(τ◦) and τ

◦ =E (βρ)dom(τ◦) · γ
it holds that E0 � ψ2ργ and (u1 → v1 /idle)µητ =E (u1 → v1 /idle)µηβργ (�).

Take ρ = none. As τ◦ �E βdom(τ◦), then there exists γ such that τ◦ =E βdom(τ◦) · γ and
ran(τ◦) = ran(βdom(τ◦) · γ), so as τ◦ is ground then γ is ground. By (�), E0 � ψ2γ and
(u1 → v1 /idle)µητ =E (u1 → v1 /idle)µηβγ. Now, as Vu1,v1 ⊆ V = dom(σ) and σ is
ground, then V σ = V σδ = V µσ′δ =E0 V µσ

◦ =B V µητ =E V µηβγ so, as u1σ =E v1σ,
also u1µηβγ =E v1µηβγ, ground Σ-equation, hence V(u1,v1)µηβ ⊆ dom(γ).

Let abstractΣ1((u1µηβ, v1µηβ)) = 〈λ(x̄′, ȳ′).(u◦, v◦); (θ◦u , θ
◦
v); (φ◦u, φ

◦
v)〉. As u1µηβγ =E

v1µηβγ, V(u1,v1)µηβ ⊆ dom(γ), and γ is ground then, by Lemma 4, there exists a ground
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substitution γ◦ such that u◦γ◦ =B v◦γ◦, E0 � (φ◦u ∧ φ◦v)γ◦, dom(γ◦) = dom(γ) ∪ x̂′ ∪ ŷ′,
and γ =E0 γ

◦
dom(γ).

As u◦γ◦ =B v◦γ◦, then there exist substitutions α and ε such that α ∈ CSUB (u◦ = v◦) and
γ◦ =B α ·ε. Now, as τ◦ =E βdom(τ◦) ·γ =E0 βdom(τ◦) ·γ◦dom(γ) =B βdom(τ◦) ·(α ·ε)dom(γ) and
τ◦ is ground, then τ◦ =E (βαε)dom(τ◦), so τ

◦ =E (βα)dom(τ◦) · ε, hence τ◦ �E (βα)dom(τ◦)

and, by (�), E0 � ψ2αε.

Call ψ = (ψ2 ∧ φ◦u ∧ φ◦v)α, ground formula, and ν = (µηβα)V . As E0 � (φ◦u ∧ φ◦v)γ◦ and
γ◦ =B α · ε then E0 � (φ◦u ∧ φ◦v)α · ε, so also E0 � (φ◦u ∧ φ◦v)αε, hence, as E0 � ψ2αε,
E0 � ψε. Finally:

� as E0 � ψε then ψ is satis�able, so G2  [d1],α nil | ψ | V, ν, i.e., G0  + nil | ψ | V, ν,
� as E0 � ψε then ψε is satis�able, and

� as V σ =E V µηβγ =E0 V µηβγ
◦
dom(γ) =B V µηβ(α · ε)dom(γ) then:

σ = σV =E (µηβ(α · ε)dom(γ))V = (µηβαε)V = (µηβα)V · ε = ν·ε, i.e., σ =E ν·ε.

(i) Induction step: h > 1.

� First, we prove the induction step when P has several open goals and the �rst open goal
is one the base cases: P = u1 → v1/ST 1 ∧ Ω | φ | V, µ, Ω =

∧n
i=2 ui → vi/ST i and n > 1,

let ∆ =
∧n
i=2 ui → vi/ST i; idle.

We have proved for all of these cases that there exist a formula ψ1 and substitutions λ′,
ν ′, and ρ′ such that G = u1µ→ v1µ/STµ

1 ; idle | φµ | V, µ +
λ′ nil | ψ1 | V, ν ′, σ =E ν

′·ρ′,
and ψ1ρ

′ is satis�able. Then, also G0 = u1µ → v1µ/STµ
1 ; idle ∧ ∆µ | φµ | V, µ  +

λ′

∆(µλ′) | ψ1 | V, ν ′ = G1, where σ =E ν
′·ρ′ and ψ1ρ

′ is satis�able.

Now, we prove that G1  
+
λ′′ nil | ψ | V, ν, for proper ν, ψ, and λ′′, and that there exist

a substitution ρ such that σ =E ν · ρ and ψρ is satis�able, so the theorem holds. This
generic proof is valid for many of the other cases of the induction step, so we prove it only
once. We provide a speci�c proof for each case where this proof does not apply.

All the variables in dom(λ′) are either variables in V µ or fresh variables generated by
the calculus rules, so V∆µ ∩ dom(λ′) ⊆ V µ, hence ∆(µλ′) = ∆(µλ′)V = ∆ν ′ and G1 =
∆ν ′ | ψ1 | V, ν ′. As any narrowing step will preserve φ, instantiated with the substitution
used in that step, as part of a conjunction of formulas, and Vφ ⊆ V then ψ1 = φν ′ ∧ ψ2,
for proper ψ2.

As ψ1ρ
′ is satis�able and φσ is ground, so φν ′ρ′ is ground, then there exists a ground

substitution α such that dom(α) = Vψ2ρ′ , where all the variables are either fresh or belong
to ran(ν ′), so dom(α) ∩ ran(ν ′) = ∅, and E0 � (φν ′ ∧ ψ2)ρ′α, where φν ′ρ′α = φν ′ρ′. As
ν ′ · ρ′ is ground, so ρ′ is also ground, and dom(α) ∩ ran(ν ′) = ∅, then: (i) ν ′ · (ρ′ · α) =
(ν ′ · ρ′) · α = (ν ′ · ρ′)α and (ii) ρ′ · α = ρ′α, so E0 � ψ1(ρ′ · α). Call V ′ = V ν′ ∪ Vψ2 .

Consider the problem P ′ = Ων ′ | ψ1 | V ′,none in Rν′ and Callν
′
R, whose corresponding

goal is G′1 = ∆ν ′ | ψ1 | V ′,none. As σ =E ν ′ · ρ′, both ground substitutions, then
VΩσ = VΩ(ν′·ρ′) ⊆ VΩ, so VΩ(ν′·ρ′) ∩ dom(α) = ∅ and Ω(ν ′ · ρ′)α = Ω(ν ′ · ρ′) =E Ωσ. As
there is a c.p.t. for [viσ]E ∈ STσ

i [uiσ]E , for 2 ≤ i ≤ n, then, by Lemma 5, there are closed
proof trees for all the open goals in Ω(ν ′ · ρ′), i.e., Ω(ν ′ · ρ′) ·α, each c.p.t. having the same
depth and number of nodes as its correspondent c.p.t. for Ωσ. As E0 � ψ1(ρ′ · α) then
ρ′ · α is a solution of P ′ with less nodes that those in the solution σ for P0, since we have
excluded the nodes in the c.p.t. for the �rst open goal, so we can apply the I.H. to P ′,
and there exist a formula ψ and substitutions λ′′ and ρ′′, call λ = λ′λ′′ and ν = (µλ)V ,
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such that G′1 = ∆ν ′ | ψ1 | V ′,none  +
λ′′ nil | ψ | V ′, λ′′V ′ , ρ′ · α =E λ′′ · ρ′′, and ψρ′′ is

satis�able, call ρ = ρ′′V ∪ran(ν). Then, also G1 = ∆ν ′ | ψ1 | V, ν ′  +
λ′′ nil | ψ | V, ν, so

G0  
+
λ nil | ψ | V, ν, and ψρ is satis�able. Finally, ν·ρ = (ν·ρ′′)V = (µλ′λ′′ρ′′)V =E

(µλ′ρ′α)V = (ν ′ρ′α)V =E (σα)V = σ.

� In the rest of cases, the strategy in the �rst open goal of P may be a concatenation or
not, so P has the form u1 → v1/ST 1( ; ST ) ∧ Ω | φ | V, µ, let ST 0 = ST 1( ; ST ), with
Ω =

∧n
i=2 ui → vi/ST i and n ≥ 1, let ∆ =

∧n
i=2 ui → vi/ST i; idle, where ST is allowed

to be a concatenation of strategies but ST 1 is not (in case of several concatenations), σ is
a solution of the reachability problem P ′ = Ω | φ | V, µ, so [v1σ]E ∈ STσ

0 @[u1σ]E and, for
2 ≤ i ≤ n, [viσ]E ∈ STσ

i @[uiσ]E , hence there is a c.p.t. for [viσ]E ∈ STσ
i [uiσ]E where the

sum of the number of nodes in each c.p.t. for P ′ is lower than h.

1. ST 1 = S1 | S2.

Then, one c.p.t., T , for P and σ has the form

F1
u1σ→w/Sσi
u1σ→w/STσ1

(
F2

w→v1σ/STσ
)

u1σ→v1σ/ST
σ
0

, with respect

to DσR,CallR
, where w (= v1σ if ST 0 = ST 1) is a term in TΣ and i in {1, 2}, let

S = Si(; ST ). Consider the problem P ′ = u1 → v1/S | φ | V, µ which for the same

solution σ has a c.p.t. T ′ =
F1

u1σ→w/Sσi
(

F2
w→v1σ/STσ

)

u1σ→v1σ/Sσ
with one less node than T .

Then, by I.H., there exist a formula ψ1 and two substitutions, λ′ and ρ′, let ν ′ =
(µλ′)V , such that u → v/Sµ; idle | φµ | V, µ  +

λ′ nil | ψ1 | V, ν ′, σ =E ν ′ · ρ′, and
ψ1ρ

′ is satis�able.

But then, also:

� if n = 1 then G0 = u → v/STµ
0 ; idle | φµ | V, µ  [o1 or o2] u → v/Sµ; idle |

φµ | V, µ  +
λ′ nil | ψ1 | V, ν ′, σ =E ν ′ · ρ′, and ψ1ρ

′ is satis�able, so ψ = ψ1,
λ = λ′, ν = ν ′, and ρ = ρ′;

� else G0 = u → v/STµ
0 ; idle ∧∆µ | φµ | V, µ  [o1 or o2] u → v/Sµ; idle ∧∆µ |

φµ | V, µ  +
λ′ ∆(µλ′) | ψ1 | V, ν ′ = G1, σ =E ν ′ · ρ′, and ψ1ρ

′ is satis�able. The
rest of the proof is the one given at the end of the induction step for the base
cases.

2. ST 1 = S1+.

Then there is a c.p.t. T , with respect toDσR,CallR
, of the form

T1
u1σ→w/STσ1

( F
w→v1σ/STσ

)

u1σ→v1σ/ST
σ
0

,

where w (= v1σ if ST 0 = ST 1) is a term in TΣ and either head(T1) = u1σ → w/Sσ1
or head(T1) = u1σ → w/Sσ1 ; Sσ1 +, let S = S1 or S = S1 ; S1+, depending on the
case, and S0 = S(; ST ).

Consider the problem P ′ = u1 → v1/S0 | φ | V, µ which for the same solution σ has

a c.p.t. T ′ =
T1 ( F

w→v1σ/STσ
)

u1σ→v1σ/Sσ0
with one less node than T .

Then, by I.H., there exist a formula ψ1 and two substitutions, λ′ and ρ′, let ν ′ =
(µλ′)V , such that u → v/Sµ0 ; idle | φµ | V, µ  +

λ′ nil | ψ1 | V, ν ′, σ =E ν ′ · ρ′, and
ψ1ρ

′ is satis�able.

But then, also:

� if n = 1 then G0 = u→ v/STµ
0 ; idle | φµ | V, µ [p1 or p2]

u→ v/Sµ0 ; idle | φµ | V, µ +
λ′ nil | ψ1 | V, ν ′, σ =E ν

′ ·ρ′, and ψ1ρ
′ is satis�able,

so ψ = ψ1, λ = λ′, ν = ν ′, and ρ = ρ′;
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� else G0 = u → v/STµ
0 ; idle ∧∆µ | φµ | V, µ  [p1 or p2] u → v/Sµ0 ; idle ∧∆µ |

φµ | V, µ  +
λ′ ∆(µλ′) | ψ1 | V, ν ′ = G1, σ =E ν ′ · ρ′, and ψ1ρ

′ is satis�able. The
rest of the proof is the one given at the end of the induction step for the base
cases.

3. ST 1 = CS , where sd CS := S, let S0 = S(; ST ).

Then there is a c.p.t. T , with respect toDσR,CallR
, of the form

T1
u1σ→w/STσ1

( F
w→v1σ/STσ

)

u1σ→v1σ/ST
σ
0

,

where w (= v1σ if ST 0 = ST 1) is a term in TΣ and head(T1) = u1σ → w/Sσ.

Consider the problem P ′ = u1 → v1/S0 | φ | V, µ which for the same solution σ has

a c.p.t. T ′ =
T1 ( F

w→v1σ/STσ
)

u1σ→v1σ/Sσ0
with one less node than T .

Then, by I.H., there exist a formula ψ1 and two substitutions, λ′ and ρ′, let ν ′ =
(µλ′)V , such that u → v/Sµ0 ; idle | φµ | V, µ  +

λ′ nil | ψ1 | V, ν ′, σ =E ν ′ · ρ′, and
ψ1ρ

′ is satis�able.

But then, also:

� if n = 1 then G0 = u→ v/STµ
0 ; idle | φµ | V, µ [c1]

u→ v/Sµ0 ; idle | φµ | V, µ +
λ′ nil | ψ1 | V, ν ′, σ =E ν

′ ·ρ′, and ψ1ρ
′ is satis�able,

so ψ = ψ1, λ = λ′, ν = ν ′, and ρ = ρ′;

� else G0 = u → v/STµ
0 ; idle ∧∆µ | φµ | V, µ  [c1] u → v/Sµ0 ; idle ∧∆µ | φµ |

V, µ  +
λ′ ∆(µλ′) | ψ1 | V, ν ′ = G1, σ =E ν ′ · ρ′, and ψ1ρ

′ is satis�able. The rest
of the proof is the one given at the end of the induction step for the base cases.

4. ST 1 = CS (t̄), where sd CS (x̄) := S ∈ CallR, let γ = {x̄ 7→ t̄} and S0 = Sγ(; ST ).

Then there is a c.p.t. T , with respect toDσR,CallR
, of the form

T1
u1σ→w/STσ1

( F
w→v1σ/STσ

)

u1σ→v1σ/ST
σ
0

,

where w (= v1σ if ST 0 = ST 1) is a term in TΣ and head(T1) = u1σ → w/(Sγ)σ.

Consider the problem P ′ = u1 → v1/S0 | φ | V, µ which for the same solution σ has

a c.p.t. T ′ =
T1 ( F

w→v1σ/STσ
)

u1σ→v1σ/Sσ0
with one less node than T .

Then, by I.H., there exist a formula ψ1 and two substitutions, λ′ and ρ′, let ν ′ =
(µλ′)V , such that u → v/Sµ0 ; idle | φµ | V, µ  +

λ′ nil | ψ1 | V, ν ′, σ =E ν ′ · ρ′, and
ψ1ρ

′ is satis�able.

But then, also:

� if n = 1 then G0 = u→ v/STµ
0 ; idle | φµ | V, µ [c1]

u→ v/Sµ0 ; idle | φµ | V, µ +
λ′ nil | ψ1 | V, ν ′, σ =E ν

′ ·ρ′, and ψ1ρ
′ is satis�able,

so ψ = ψ1, λ = λ′, ν = ν ′, and ρ = ρ′;

� else G0 = u → v/STµ
0 ; idle ∧∆µ | φµ | V, µ  [c1] u → v/Sµ0 ; idle ∧∆µ | φµ |

V, µ  +
λ′ ∆(µλ′) | ψ1 | V, ν ′ = G1, σ =E ν ′ · ρ′, and ψ1ρ

′ is satis�able. The rest
of the proof is the one given at the end of the induction step for the base cases.

5. ST 1 = CS (t̄), where csd CS (x̄) := S if C ∈ CallR, with C of the form l̄ = r̄ ∧ χ,
with | l̄ |=| r̄ |= m, let θ = {x̄ 7→ t̄} and let ε, with dom(ε) = VCS \ (V ∪ x̂), be a
fresh renaming.

Then there is a c.p.t. T , with respect toDσR,CallR
, of the form

F1
u1σ→w/(Sεθδ)σ
u1σ→w/STσ1

(
F2

w→v1σ/STσ
)

u1σ→v1σ/ST
σ
0

,

where w (= v1σ if ST 0 = ST 1) is a term in TΣ, δ : vars(Cεθσ) → TΣ is a
substitution such that l̄εθσδ =E r̄εθσδ, E0 � χεθσδ, and σ and δ ground and
dom(σ) ∩ dom(δ) = ∅ implies (Sεθ)σδ = (Sεθδ)σ. Let S0 = Sεθ(; ST ), τ = σ1δ,
Θ = u1 → v1/S0; idle(∧∆), Θ′ = u1 → v1/S0(∧Ω), and ψ1 = (φ ∧ χεθ)µ.

Then G0 = u → v/STµ
0 ; idle(∧∆µ) | φµ | V, µ  [c2]

∧m
j=1(ljη → rjη/idle) ∧Θµ |
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ψ1 | V, µ = G1. As E0 � φµσ1, ground formula, because Vφ ⊆ V , then φµσ1 = φµτ
and E0 � ψ1τ .

By Lemma 7, as τ is a substitution such that E0 � ψ1τ and l̄ητ =E r̄ητ , then
there exist a ground substitution τ◦, substitutions β1, . . . , βm, let β = βm1 , and
abstractions abstractΣ1((ljηβ

j−1
1 , rjηβ

j−1
1 )) = 〈λ(w̄j , w̄

′
j).(l

◦
j , r
◦
j ); (θ◦lj , θ

◦
rj ); (φ◦lj , φ

◦
rj )〉,

for 1 ≤ j ≤ m, such that dom(τ◦) = dom(τ) ∪ V ˆ̂w, ˆ̂w′ , τ =E0 τ
◦
dom(τ), l̄

◦τ◦ =E r̄◦τ◦,

τ◦ �E βdom(τ◦), call ψ2 = ψ1β ∧
∧m
j=1(φ◦lj ∧ φ

◦
rj )β

m
j , G1  m

[d1],β Θµβ | ψ2 |
V, (µβ)V = G2, call ξ = µβ, and for every pair of substitutions ρ and γ such
that τ◦ �E (βρ)dom(τ◦) and τ◦ =E (βρ)dom(τ◦) · γ it holds that E0 � ψ2ργ and
Θµτ =E Θξργ (�).

Consider the problem P ′ = Θ′ξ | ψ2 | V ξ,none in RξV and Call ξVR , whose corre-
sponding goal is G′ = Θξ | ψ2 | V ξ,none, and take ρ = none. As τ◦ �E βdom(τ◦),
then there exists γ′ such that τ◦ =E βdom(τ◦) · γ′ and ran(τ◦) = ran(βdom(τ◦) · γ′),
so as τ◦ is ground then γ′ is ground. By (�), E0 � ψ2γ

′ and Θµτ =E Θξγ′, so also
Θ′µτ =E Θ′ξγ′, where all the terms and formulas are ground.

Now, Θ′ξγ′ =E Θ′µτ = (u1 → v1/S0(∧Ω))µτ = (u1 → v1/S0(∧Ω))µσ1δ = (u1 →
v1/S0(∧Ω))σδ = (u1σ → v1σ/S

σ
0 δ(∧Ωσ)) = Θ′′. For the �rst open goal of Θ′′

there is a c.p.t. T ′ =
F1

u1σ→w/(Sεθδ)σ
(

F2
w→v1σ/STσ

)

u1σ→v1σ/Sσ0 δ
with one less node than T , since

Sσ0 δ = (Sεθδ)σ(; STσ). As we have closed proof trees for all the other open goals
in Θ′′ then, by Lemma 5, there are closed proof trees for all the open goals in
Θ′ξγ′, each c.p.t. having the same depth and number of nodes as its correspon-
dent c.p.t. in Θ′′. As E0 � ψ2γ

′, then γ′ is a solution for P ′, so we can apply
the I.H. to Θ′′, and there exist a formula ψ and substitutions ν ′ and ρ′, such that
Θξ | ψ2 | V ξ,none  +

ν′ nil | ψ | V ξ, ν ′, γ′ =E ν ′·ρ′, and ψρ′ is satis�able, where
dom(ν ′) ⊆ V ξ ⊆ ran(ξ). But then, call λ = βν ′, ν = (ξν ′)V , and ρ = ρ′V ∪ran(ν), also

G0  
+
β Θξ | ψ2 | V, ξV  +

ν′ nil | ψ | V, ν, i.e., ρ = ρ′V ∪ran(ν), so G0  
+
λ nil | ψ | V, ν,

and ψρ is satis�able.
As dom(ν) ⊆ V , then ν·ρ = (νρ)\ran(ν) = (νρ′V ∪ran(ν))\ran(ν) = (ρ′V ∪νρ′ran(ν))\ran(ν) =

ρ′V \ran(ν)∪(νρ′ran(ν))\ran(ν) = ρ′V ∪(νρ′)V \dom(ρ′) = (νρ′)V = (ξν ′ρ′)V = (µβν ′ρ′)V =E

(µβγ′)V =E (µτ◦)V =E0 (µτ ′)V =B (µσ◦)V =E0 (µσ′δ)V = (σδ)V = σ, i.e.,
σ =E ν · ρ.
Finally, as ψρ′ is satis�able and ρ is more general than ρ′ then ψρ is also satis�able.

6. ST 1 = match t s.t. χ ? S1 : S2 and there exists a substitution δ : VSTσ
1
→ TΣ,

such that u1σ =E tσδ and E0 � (φ ∧ χ)σδ (the proof with S2 instead of S1, when
E0 � (φ ∧ ¬χ)σδ, is exactly the same).

Then there is a c.p.t. T , with respect toDσR,CallR
, of the form

F1
u1σ→w/(S1δ)

σ

u1σ→w/STσ1
(

F2
w→v1σ/STσ

)

u1σ→v1σ/ST
σ
0

,

where w (= v1σ if ST 0 = ST 1) is a term in TΣ, and σ and δ ground and dom(σ) ∩
dom(δ) = ∅ implies (S1)σδ = (S1δ)

σ. Let S0 = S1(; ST ), τ = σ1δ, Θ = u1 →
v1/S0; idle(∧∆), and Θ′ = u1 → v1/S0(∧Ω).
Let abstractΣ1((u, tµ)) = 〈λ(x̄, ȳ).(u◦, t◦); (θ◦u, θ

◦
t ); (φ◦u, φ

◦
t )〉. As u1σ is ground then

uσ′δ = u1µσ
′δ = u1σδ = u1σ =E tσδ = tµσ′δ so, by Lemma 4, there exists a ground

substitution σ◦ such that u◦σ◦ =B t◦σ◦, E0 � (φ◦u∧φ◦t )σ◦, dom(σ◦) = dom(σ′δ)∪x̂∪ŷ,
and σ′δ =E0 σ

◦
dom(σ′δ).

Call ψ1 = (φ ∧ χ)µ ∧ φ◦u ∧ φ◦t . As E0 � (φ ∧ χ)µσ′δ, V(φ∧χ)µσ′δ ∩ (x̂ ∪ ŷ) = ∅, and
σ′δ =E0 σ

◦
dom(σ′δ) = σ◦\(x̂∪ŷ), then E0 � (φ ∧ χ)µσ◦, so E0 � ψ1σ

◦.
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As u◦σ◦ =B t◦σ◦, then there exist substitutions ν and τ such that η ∈ CSUB (u◦ = t◦)
and σ◦ =B η·τ , so ψ1σ

◦ = ψ1ητ , hence E0 � ψ1ητ and ψ1η is satis�able. Call ξ = µη.
Now, G0 = (u1 → v1/ST 1; idle(∧∆))µ | φµ | V, µ [i1],η (u1 → v1/S0; idle(∧∆))ξ |
ψ1η | V, ξV = G1.

Consider the problem P ′ = Θ′ξ | ψ1η | V ξ,none in RξV and Call ξVR , whose corre-
sponding goal is G′ = Θξ | ψ1η | V ξ,none, and take ρ = none.
Now, Θ′ξτ = Θ′µητ =B Θ′µσ◦ = (u1 → v1/S0(∧Ω))µσ◦ = (u1 → v1/S0(∧Ω))µσ◦ =E0

(u1 → v1/S0(∧Ω))µσ1δ = (u1 → v1/S0(∧Ω))σδ = (u1σ → v1σ/S
σ
0 δ(∧Ωσ)) = Θ′′.

For the �rst open goal of Θ′′ there is a c.p.t. T ′ =
F1

u1σ→w/(S1δ)
σ (

F2
w→v1σ/STσ

)

u1σ→v1σ/Sσ0 δ
with

one less node than T , since Sσ0 δ = (S1δ)
σ(; STσ). As we have closed proof trees for

all the other open goals in Θ′′ then, by Lemma 5, there are closed proof trees for all
the open goals in Θ′ξτ , each c.p.t. having the same depth and number of nodes as
its correspondent c.p.t. in Θ′′. As E0 � ψ1ητ , then τ is a solution for P ′, so we can
apply the I.H. to Θ′′, and there exist a formula ψ2 and substitutions ν ′′ and ρ′′, such
that Θξ | ψ1η | V ξ,none  +

ν′′ nil | ψ2 | V ξ, ν ′′, τ =E ν ′′·ρ′′, and ψ2ρ
′′ is satis�able,

where dom(ν ′′) ⊆ V ξ ⊆ ran(ξ). Call λ′ = ην ′′, ν ′ = (ξν ′′)V , and ρ′ = ρ′′V ∪ran(ν′).
As ρ′ is more general than ρ′′ and ψ2ρ

′′ is satis�able then ψ2ρ
′ is satis�able. Also,

ν ′ · ρ′ = (ξν ′′)V · ρ′′V ∪ran(ν′) = (ξν ′′ρ′′)V = (µην ′′ρ′′)V =E (µητ)V =B (µσ◦)V =E0

(µσ′δ)V = (σδ)V = σV = σ, i.e., σ =E ν
′ · ρ′. Now:

� if n = 1 then G0  [i1],η (u1 → v1 /S0; idle)ξ | ψ1η | V, ξV  +
ν′′ nil | ψ2 | V, ν ′,

i.e., G0  
+
λ′ nil | ψ2 | V, ν ′, σ =E ν

′ ·ρ′, and ψ2ρ
′ is satis�able, so ψ = ψ2, λ = λ′,

ν = ν ′, and ρ = ρ′;
� else G0  [i1],η (u1 → v1 /S0; idle ∧∆)µη | ψ1η | V, ξV  +

ν′′ ∆(µλ′) | ψ2 | V, ν ′,
i.e., G0  

+
λ′ ∆(µλ′) | ψ2 | V, ν ′, σ =E ν ′ · ρ′, and ψ2ρ

′ is satis�able. The rest of
the proof is the one given at the end of the induction step for the base cases.

7. ST 1 = matchrew t s.t. l̄ = r̄ ∧ χ by z̄ using S̄, where |z̄| = k, |l̄| = |r̄| = m, and
t = t[z̄]p̄.
By de�nition, V ∩ ẑ = ∅ and ẑ ⊂ X1. As [v1σ]E ∈ STσ

0 @[u1σ]E then there is a c.p.t.,

with respect to DσR,CallR
, of the form

F1
z1δ→t1/Sσ1 δ

··· Fk
zkδ→tk/S

σ
k
δ

u1σ→tσδ[t̄]p̄/STσ1
( F
tσδ[t̄]p̄→v1σ/STσ

)

u1σ→v1σ/ST
σ
0

, where

ẑ ⊆ dom(δ), ground substitution, u1σ =E tσδ, l̄σδ =E r̄σδ, and E0 � χσδ, with all
these terms and the formula ground. Also, if ST 0 = ST 1 then tσδ[t̄]p̄ =E v1σ.
Let abstractΣ1((u, tµ)) = 〈λ(w̄, w̄′).(u◦, t◦); (θ◦u, θ

◦
t ); (φ◦u, φ

◦
t )〉. As u1σ is ground, then

uσ′δ = u1µσ
′δ = u1σδ = u1σ =E tσδ = tµσ′δ so, by Lemma 4, there exists a

ground substitution σ◦ such that u◦σ◦ =B t◦σ◦, E0 � (φ◦u ∧ φ◦t )σ◦, dom(σ◦) =
dom(σ′δ) ∪ ŵ ∪ ŵ′, and σ′δ =E0 σ

◦
dom(σ′δ).

Call ψ1 = (φ ∧ χ)µ ∧ φ◦u ∧ φ◦t . As E0 � (φ ∧ χ)µσ′δ, V(φ∧χ)µ ∩ (ŵ ∪ ŵ′) = ∅, and
σ′δ =E0 σ

◦
dom(σ′δ) = σ◦\(ŵ∪ŵ′), then E0 � (φ ∧ χ)µσ◦, so E0 � ψ1σ

◦.

As u◦σ◦ =B t◦σ◦, then there exist substitutions ν and τ such that η ∈ CSUB (u◦ = t◦)
and σ◦ =B η·τ , so ψ1σ

◦ = ψ1ητ , hence E0 � ψ1ητ , ground formula, and ψ1η is
satis�able. Call Θ =

∧k
j=1(xj → yj/Sj ; idle) ∧ t[ȳ]p̄ → v1/ST ; idle ∧ ∆, where x̄

and ȳ are fresh versions of z̄, and let λ be the renaming from x̄ to z̄, i.e., x̄λ = z̄, and
let Θ′ =

∧k
j=1(xj → yj/Sj) ∧ t[ȳ]p̄ → v1/ST ∧ Ω.

Now, G0 = (u1 → v1/ST 1; ST ; idle ∧∆)µ | φµ | V, µ [m],η (
∧m
j=1(lj → rj/idle) ∧

Θ)µη | ψ1η | V, (µη)V = G1, all ground terms.
As l̄σδ =E r̄σδ, σ′δ =E0 σ

◦
dom(σ′δ), σ

′δ =E0 σ
◦
\(ŵ∪ŵ′), σ

◦ =B η·τ , and Vl̂µ,r̂µ ∩ (ŵ ∪
ŵ′ ∪ ran(η)) = ∅, then (l̄, r̄)µητ = (l̄, r̄)µ(η · τ) =B (l̄, r̄)µσ◦ = (l̄, r̄)µσ◦\(ŵ∪ŵ′) =E0

(l̄, r̄)µσ′δ, i.e., (l̄, r̄)µητ =E (l̄, r̄)σδ, so l̄µητ =E r̄µητ , since l̄σδ =E r̄σδ.

92



In the same way, as u1σ =E tσδ, ground terms, and v1σ is also ground, then
Vθµητ = x̂ ∪ ŷ. Let τ ′ = τ ∪ λ · δẑ ∪ {ȳ 7→ t̄}, so VG1τ ′ = ∅. As dom(µ) ⊆ V then
Θµ = Θµ so, by Lemma 7, as τ ′ is a ground substitution such that VG1 ⊆ dom(τ ′),
E0 � ψ1ητ

′, and l̄µητ ′ =E r̄µητ ′, there exist a ground substitution τ◦, substi-
tutions β1, . . . , βm, let β = βm1 , and abstractions abstractΣ1((ljβ

j−1
1 , rjβ

j−1
1 )) =

〈λ(w̄j , w̄
′
j).(l

◦
j , r
◦
j ); (θ◦lj , θ

◦
rj ); (φ◦lj , φ

◦
rj )〉, for 1 ≤ j ≤ m, such that dom(τ◦) = dom(τ ′)∪

V ˆ̂w, ˆ̂w′ , τ
′ =E0 τ◦dom(τ ′), l̄

◦τ◦ =E r̄◦τ◦, τ◦ �E βdom(τ◦), call ξ = µηβ and ψ2 =

ψ1ηβ ∧
∧m
j=1(φ◦lj ∧ φ

◦
rj )β

m
j , also G1  m

[d1] Θξ | ψ2 | V, ξV = G2, and for every pair of
substitutions ρ and γ such that τ◦ �E (βρ)dom(τ◦) and τ

◦ =E (βρ)dom(τ◦) · γ it holds
that E0 � ψ2ργ and Θµητ ′ =E Θξργ (�).

Consider the problem P ′ = Θ′ξ | ψ2 | (ŷ ∪ x̂ ∪ V )ξ,none in RξV and Call ξVR , whose
corresponding goal is G′ = Θξ | ψ2 | (ŷ ∪ x̂ ∪ V )ξ,none, and take ρ = none. As
τ◦ �E βdom(τ◦), then there exists γ′ such that τ◦ =E βdom(τ◦) · γ′ and ran(τ◦) =
ran(βdom(τ◦) · γ′), so as τ◦ is ground then γ′ is ground. By (�), E0 � ψ2γ

′ and
Θµητ ′ =E Θξγ′, so also Θ′µητ ′ =E Θ′ξγ′, where all the terms and formulas are
ground. Now, Θ′ξγ′ =E Θ′µητ ′ = (

∧k
j=1(xj → yj/Sj) ∧ t[ȳ]p̄ → v1/ST ; idle ∧

∆)µητ ′ = (
∧k
j=1(zjδ → tj/Sj) ∧ t[t̄]p̄ → v1/ST ; idle ∧ ∆)µητ =B (

∧k
j=1(zjδ →

tj/Sj)∧t[t̄]p̄ → v1/ST ; idle∧∆)µσ◦ =E0 (
∧k
j=1(zjδ → tj/Sj)∧t[t̄]p̄ → v1/ST ; idle∧

∆)µσ′δ = (
∧k
j=1(zjδ → tj/Sj)∧t[t̄]p̄ → v1/ST ; idle∧∆)σδ =

∧k
j=1(zjδ → tj/S

σ
j δ)∧

t[t̄]p̄ → v1/STσ; idle∧∆σ = Θ′′. As we have closed proof trees for all the open goals
in Θ′′ then, by Lemma 5, there are closed proof trees for all the open goals in Θ′ξγ′,
each c.p.t. having the same depth and number of nodes as its correspondent c.p.t.
in Θ′′. As E0 � ψ2γ

′, then γ′ is a solution for P ′. The di�erence with respect to the
closed proof trees in the answer σ for the reachability problem P , is that we have
two less nodes, tσδ → tσδ[t̄]p̄/STσ

1 and tσδ → v1σ/STσ
1 ; STσ, so we can apply the

I.H. to Θ′ξγ′, and there exist a formula ψ and substitutions ν ′ and ρ′, such that
G′ = Θξ | ψ2 | (ŷ ∪ x̂ ∪ V )ξ,none  + nil | ψ | (ŷ ∪ x̂ ∪ V )ξ, ν ′, γ′ =E ν ′·ρ′, and ψρ′
is satis�able, where dom(ν ′) ⊆ (ŷ ∪ x̂ ∪ V )ξ ⊆ ran(ξ). But then, call ν = (ξν ′)V and
ρ = ρ′V ∪ran(ν), also G2 = Θξ | ψ2 | V, ξV  + nil | ψ | V, ν.
As dom(ν) ⊆ V , then ν·ρ = (νρ)\ran(ν) = (νρ′V ∪ran(ν))\ran(ν) = (ρ′V ∪νρ′ran(ν))\ran(ν) =

ρ′V \ran(ν)∪(νρ′ran(ν))\ran(ν) = ρ′V ∪(νρ′)V \dom(ρ′) = (νρ′)V = (ξν ′ρ′)V = (µηβν ′ρ′)V =E

(µηβγ′)V =E (µητ◦)V =E0 (µητ ′)V =B (µσ◦)V =E0 (µσ′δ)V = (σδ)V = σ, i.e.,
σ =E ν · ρ.
Finally, as ψρ′ is satis�able and ρ is more general than ρ′ then ψρ is also satis�able.

8. ST 1 = c[γ]{S̄}, with c : l → r if C a rule in R, C = l̄ → r̄ | χ, S̄ = S1, . . . , Sm, and
dom(γ) ∩ vars(S̄) = ∅.
As [v1σ]E ∈ STσ

0 @[u1σ]E then there is a c.p.t. T , with respect to DσR,CallR
, of the

form
T1···Tm

u1σ→w/STσ1
(T0)

u1σ→v1σ/ST
σ
0

, where Ti = Fi
liγσδ→riγσδ/Sσi δ

, for 1 ≤ i ≤ m, T0 = F
w→v1σ/ST

σ ,

[w]E ∈ cσ[(γσ)dom(γ)]@[u1σ]E , where δ : vars(cγσ) → TΣ, with E0 � χγσδ, there is
p ∈ pos(u1σ) s.t. u1σ =E u1σ[lγσδ]p, and w = u1σ[rγσδ]p if T0 exists or w = v1σ,
otherwise. By Lemma 5.13, l̄γσδ →Rσ/E r̄γσδ, so u1σ −−−−−−−−−→

cσ ,p,(γσ)dom(γ)δ

1

Rσ/E

w. Call

α = γσδ (= γδσ since dom(δ) ∩ dom(σ) = ∅ and both substitutions are ground),
α′ = γσ, and c′ = cσ(γσ)dom(γ) (= cα′ because σ is ground and, by de�nition,
dom(γ) ∩ dom(σ) = ∅). As u1σ −−→

c′δ,p

1

Rσ/E

w then, By Theorem 1, u1σ −−−→
c′1δ,p

′
1

Rσ ,B

w,

since R is closed under B-extensions, with c′1 ∈ c′B and proper p′, as seen in the proof
of Lemma 2, so also u1σ −−→

c′1δ,p
′
1

Rσ/E

w, hence we can assume that c′ = c′1, p = p′, and
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T is the c.p.t. for [w]E ∈ c′1@[u1σ]E using u1σ −−→
c′1,p
′,δ

1

Rσ/E

w. Since σ = µσ′, if we call

l1 = lγµ and r1 = rγµ then c′(= cα′) has also the form cα′ : l1σ
′ → r1σ

′ if Cα′.

Let c2 : l2 → r2 if C2 be a fresh version of cµ except for dom(γ) ∪ V µ (= dom(γ) ∪
dom(σ′)), and let τ be the renaming that veri�es c2 = cµτ , so (l2, r2, C2) = (l, r, C)(µ]
τ), where (dom(τ) ∪ ran(τ)) ∩ (dom(γ) ∪ V µ) = ∅. Then l2(γµ)dom(γ) = l(µ ]
τ)(γµ)dom(γ) = l((γµ)dom(γ) ] µ ] τ) = l((γµ)dom(γ) ] µ)τ = lγµτ = l1τ , so also
r2(γµ)dom(γ) = r1τ and C2(γµ)dom(γ) = Cγµτ . Call lc = l2(γµ)dom(γ) and σ′′ =
τ−1σ′. Then lcσ′′ = l1ττ

−1σ′ = l1σ
′. Now:

(a) abstractΣ1(lc) = 〈λȳ.l◦; θ◦l ;φ◦l 〉, where ȳ = y1, . . . , yiy , l
◦ = lc[ȳ]p̄, p̄ = p1, . . . , piy ,

p̂ = topΣ0
(lc), θ◦l =

⋃iy
i=1{yi 7→ lc|pi}, and φ◦l =

∧iy
i=1 yi = lc|pi ;

(b) since l1σ′ = lcσ
′′ and topΣ0

(lc) ⊆ topΣ0
(lcσ

′′), then we have that abstractΣ1(l1σ
′) =

abstractΣ1(lcσ
′′) = 〈λȳz̄.l◦cσ′′ ; θ◦cσ′′ ;φ◦cσ′′〉, where z̄ = z1, . . . , ziz , l

◦
cσ′′ = lcσ

′′[ȳ]p̄[z̄]q̄,

q̂ = topΣ0
(lcσ

′′)\ topΣ0
(lc), θ◦cσ′′ =

⋃iy
i=1{yi 7→ lc|piσ′′}∪

⋃iz
j=1{zj 7→ lcσ

′′|qj}, and
φ◦cσ′′ = (

∧iy
i=1 yi = lc|piσ′′ ∧

∧iz
j=1 zj = lcσ

′′|qj );
(c) as u1σ −−−→

c′,p,δ

1

Rσ ,B

w, then there is a substitution δ′ : ŷ ∪ ẑ ∪ Vc′ → TΣ, such that

δ′Vc′
= δ, rep(u1σ|p) =B l◦cσ′′δ

′, w =E u1σ[r1σ
′δ′]p = u1σ[r1σ

′δ]p = u1σ[rγµσ′δ]p =

u1σ[rγσδ]p = u1σ[rα]p, and E0 � (χα′ ∧ φ◦cσ′′)δ′, so E0 � χα (since χα′δ′ =
χα′δ = χα), i.e., E0 � χγδµσ′, ȳδ′ =E0 lc|p̄σ′′δ′ and z̄δ′ =E0 lcσ

′′|q̄δ′;
(d) as p ∈ posΣ1

(u1σ) and σ is R/E-normalized, hence R,E-normalized by The-
orem 1, then p ∈ posΣ1

(u1), so u1σ|p = u1|pσ = u1|pµσ′ = u1µ|pσ′ = u|pσ′;
and

(e) as τ is a fresh renaming then ∅ = Vu ∩ ran(τ) = Vu ∩ dom(τ−1), so u|pτ−1σ′ =
u|pσ′ = u1σ|p =E0 rep(u1σ|p) =B l◦cσ′′δ

′ = lcσ
′′[ȳ]p̄[z̄]q̄δ

′ =E0 lcσ
′′ = lcτ

−1σ′, i.e.,
u|pτ−1σ′ =E lcτ

−1σ′;

Let abstractΣ1(u|p) = 〈λx̄.u◦; θ◦u;φ◦u〉. As dom(τ−1σ′) = ran(τ) ∪ V µ then, by
Lemma 4, there exists a ground substitution σ◦ such that u◦σ◦ =B l◦σ◦, E0 �
(φ◦u ∧ φ◦l )σ◦, dom(σ◦) = dom(τ−1σ′) ∪ x̂ ∪ ŷ = ran(τ) ∪ V µ ∪ x̂ ∪ ŷ, and τ−1σ′ =E0

σ◦dom(τ−1σ′) = σ◦ran(τ)∪V µ , so (τ−1σ′)V µ =E0 σ
◦
V µ and τ

−1 = (τ−1σ′)\V µ =E0 σ
◦
\V µ . As

(dom(τ)∪ ran(τ))∩V µ = ∅ and dom(σ′) = V µ then σ′ = σ′V µ = (τ−1σ′)V µ =E0 σ
◦
V µ .

As u◦σ◦ =B l◦σ◦, then there exist substitutions ϑ and ζ ′ such that ϑ ∈ CSUB (u◦ = l◦)
and σ◦ =B ϑ · ζ ′, call ξ = µ · ϑ and ζ = ζ ′ran(ξV )∪(V \dom(ξV )). As dom(µ) ⊆ V and
σ′ =E0 σ

◦
V µ then σ = µ · σ′ =E0 µ · σ◦V µ =B µ · (ϑ · ζ ′)V µ = µ · (ϑζ ′)V µ = (µϑζ ′)V =

ξV · ζ ′ran(ξV )∪(V \dom((ξV )) = ξV · ζ ′ran(ξV )∪(V \dom(ξV )) = ξV · ζ, i.e., σ =E ξV · ζ, so also
σ =E (µϑζ ′)V .

As χ2(γµ)dom(γ) = χγµτ , dom(σ◦) = ran(τ)∪V µ ∪ x̂∪ ŷ, and τ−1σ′ =E0 σ
◦
ran(τ)∪V µ ,

then χ2(γµ)dom(γ)σ
◦δ′ = χγµτσ◦ran(τ)∪V µδ

′ =E0 χγµττ
−1σ′δ′ = χγµσ′δ′ = χγµσ′δ =

χγδµσ′ so, as E0 � χγδµσ′, also E0 � χ2(γµ)dom(γ)σ
◦δ′.

As E0 � φσ, Vφµ ⊆ V µ, and σ′ =E0 σ◦V µ then φµσ◦ =E0 φµσ′ = φσ, so E0 �
φµσ◦. Now, as E0 � (φ◦u ∧ φ◦l )σ◦, then E0 � (φµ ∧ φ◦u ∧ φ◦l )σ◦ ground formula,
so E0 � (φµ ∧ φ◦u ∧ φ◦l )σ◦δ′ and E0 � (φµ ∧ φ◦u ∧ φ◦l ∧ χ2(γµ)dom(γ))σ

◦δ′. Call
ϕ◦ = φµ∧φ◦u∧φ◦l ∧χ2(γµ)dom(γ), and let ϕ = ϕ◦ϑ. As σ◦ =B ϑ·ζ ′, so ϕ◦σ◦ = ϕ◦ϑζ ′ =
ϕζ ′, then E0 � ϕζ ′δ′, call δ′′ = ζ ′δ′, hence ϕ is also satis�able. Call Θ = l̄γτ →
r̄γτ/S̄τ ; idle(∧u1[rγτ ]p → v1/ST ; idle)∧∆ and Θ′ = l̄γτ → r̄γτ/S̄τ(∧u1[rγτ ]p →
v1/ST ) ∧ Ω.
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Now, G0 = (u1 → v1/ST 1; ST ; idle ∧∆)µ | φµ | V, µ [t]

u→1 x0, x0 → v/STµ
1 ; STµ; idle ∧∆µ | φµ | V, µ ∗[c]

u|p →1 x, u[x]p → v/cµ[(γµ)dom(γ)]{S̄µ}; STµ; idle ∧∆µ | φµ | V, µ = G1,

where u|p cannot be a variable, say xu, because as p ∈ posΣ(u1) then, by (c), also
xuσ

′ →1
R,B rα, so σ would not be R/E-normalized.

As ϑ ∈ CSUB (u◦ = l◦) and c2 : l2 → r2 if C2, where r2(γµ)dom(γ) = r1τ = rγµτ and
C2(γµ)dom(γ) = Cγµτ , call ϑ′ = ϑ∪{x 7→ r1τϑ}, then G1  [r],ϑ′ Θξ | ϕ | V, ξV = G2,
call V0 = (ŷ ∪ ẑ ∪ V ∪ Vcγτ )ξ.

Consider the problem P ′ = Θ′ξ | ϕ | V0,none in RξV and Call ξVR , whose correspond-
ing goal is G′ = Θξ | ϕ | V0,none. Now, Θ′ξδ′′ = Θ′µϑζ ′δ′ =E Θ′(σ∪(ϑζ ′δ′)\V µ) =B

Θ′(σ∪(σ◦δ′)\V µ) =E0 Θ′(σ∪τ−1δ′) = Θ′(σ∪(τ−1δ)Vc′ ∪δ
′
ŷ∪ẑ) = Θ′(σ∪(τ−1δ)Vc′ ) =

Θ′τ−1σδ = l̄γσδ → r̄γσδ/S̄σδ(∧u1σ[rγσδ]p → v1σ/STσ) ∧ Ωσ = Θ′′.

We have closed proof trees T1, . . . , Tm (and T0 if ST 0 is a concatenation) for the open
goals before Ωσ, whose sum of nodes is two less that number of nodes in T . As we
have closed proof trees for all the other open goals in Θ′′ then, by Lemma 5, there
are closed proof trees for all the open goals in Θ′ξδ′′, each c.p.t. having the same
depth and number of nodes as its correspondent c.p.t. in Θ′′. As E0 � ϕδ′′, then
δ′′ is a solution for P ′, so we can apply the I.H. to Θ′ξδ′′, and there exist a formula
ϕ2 and substitutions ν ′′ and ρ′′, such that Θξ | ϕ | V0,none  +

ν′′ nil | ϕ2 | V0, ν
′′
V0
,

δ′′ =E ν
′′
V0
·ρ′′, and ϕ2ρ

′′ is satis�able, where dom(ν ′′V0
) ⊆ V0 ⊆ ran(ξ). Call λ′ = ϑ′ν ′′,

ν ′ = (ξν ′′)V , and ρ′ = ρ′′V ∪ran(ν′). As ρ
′ is more general than ρ′′ and ϕ2ρ

′′ is satis�able
then ϕ2ρ

′ is satis�able. Also, as V ⊆ V0 and σ =E (µϑζ ′)V , ν ′ · ρ′ = (ξν ′′)V ·
ρ′′V ∪ran(ν′) = (ξν ′′ρ′′)V = (µϑν ′′ρ′′)V =E (µϑδ′′)V = (µϑζ ′δ′)V =E (σδ′)V = σ, i.e.,
σ =E ν

′ · ρ′. Now:
� if n = 1 then G0  

+
ϑ′ G2  

+
ν′′ nil | ϕ2 | V, ν ′, i.e., G0  

+
λ′ nil | ϕ′2 | V, ν ′,

σ =E ν
′ · ρ′, and ϕ′2ρ′ is satis�able, so ψ = ϕ′2, λ = λ′, ν = ν ′, and ρ = ρ′;

� else G0  
+
ϑ′ G2  

+
ν′′ ∆(µλ′) | ϕ′2 | V, ν ′, i.e., G0  

+
λ′ ∆(µλ′) | ϕ′2 | V, ν ′,

σ =E ν
′ · ρ′, and ϕ′2ρ′ is satis�able. The rest of the proof is the one given at the

end of the induction step for the base cases.

9. ST 1 = top(c[γ]{S̄}).
The proof is almost exactly the same as the previous one, particularized for the case
p = ε, so u|p = u, u1|p = u1, u1[rγτ ]p = rγτ , et cetera. The only di�erence is found
in the initial narrowing steps, where instead of G0  [t] 

∗
[c] G1  [r],ϑ′ G2 now we

have G0  [tp],ϑ′ G2.
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