
Conditional Narrowing Modulo in Rewriting
Logic and Maude

Luis Manuel Aguirre Garćıa

Máster en Investigación en Informática
Facultad de Informática

Universidad Complutense de Madrid

Trabajo de Fin de Máster en Programación y Tecnoloǵıa Software

9 de septiembre de 2013

Dirigido por:

Narciso Mart́ı Oliet
Miguel Palomino Tarjuelo

Isabel Pita Andreu

Autorización de difusión

Luis Manuel Aguirre Garćıa

9 de septiembre de 2013

El abajo firmante, matriculado en el Máster en Investigación en Informática
de la Facultad de Informática, autoriza a la Universidad Complutense de Madrid
(UCM) a difundir y utilizar con fines académicos, no comerciales y mencionando
expresamente a su autor el presente trabajo de fin de máster: “Conditional Narrow-
ing Modulo in Rewriting Logic and Maude”, realizado durante el curso académico
2012-2013 bajo la dirección de Narciso Mart́ı Oliet y Miguel Palomino Tarjuelo,
y con la colaboración externa de dirección de Isabel Pita Andreu, en el Depar-
tamento de Sistemas Informáticos y Computación, y a la Biblioteca de la UCM
a depositarlo en el Archivo Institucional E-Prints Complutense con el objeto de
incrementar la difusión, uso e impacto del trabajo en Internet y garantizar su
preservación y acceso a largo plazo.

Resumen en castellano

Este trabajo presenta un estudio sobre la resolución de problemas de alcanzabil-
idad en teoŕıas de reescritura con una lógica ecuacional de pertenencia subyacente,
usando la técnica de estrechamiento. Para ello se han desarrollado dos cálculos,
uno que resuelve el problema de unificación módulo la lógica ecuacional y otro que
resuelve el problema de alcanzabilidad basándose en el cálculo de unificación pre-
vio. Dichos cálculos hacen uso de algoritmos de pertenencia, de unificación módulo
axiomas y de encaje, todos ellos disponibles en el lenguaje de reescritura Maude.
En ambos cálculos se hace especial énfasis en el uso eficiente de la información
sobre los tipos de los términos. Se ha demostrado la corrección y completitud
de los cálculos. Posteriormente se han desarrollado sendos conjuntos de reglas de
transformación para estos cálculos que permiten la implementación de los mismos.
Finalmente, se han programado estas reglas en un prototipo, usando el lenguaje
de reescritura Maude.

Palabras clave

Maude, estrechamiento, alcanzabilidad, lógica de reescritura, unificación, lógica
ecuacional de pertenencia.

Abstract

This master’s thesis presents a study about reachability problem solving in
rewrite theories with an underlying membership equational logic, using the nar-
rowing technique. To achieve this two calculi have been developed , one that solves
the unification modulo equational logic problem and another one that solves the
reachability problem based on the former unification calculus. Both calculi make
use of membership, unification modulo axioms and matching algorithms, all of
them available in the rewriting language Maude. Special emphasis has been made
on both calculi in the efficient use of term typing information. Soundness and com-
pleteness of both calculi has been proved. Afterwards, two sets of transformation
rules have been developed to allow the implementation of both calculi. Finally,
those rules have been programmed on a prototype, using the rewriting language
Maude.

Keywords

Maude, narrowing, reachability, rewriting logic, unification, membership equa-
tional logic.

Contents

Index i

List of Figures iii

1 Introduction 1
1.1 Objective . 1
1.2 Motivation . 2
1.3 Structure of the work . 3

2 Preliminaries 5
2.1 Membership equational logic . 6
2.2 Rewriting logic . 8
2.3 Executable rewrite theories . 10
2.4 Unification . 12
2.5 Reachability goals . 14
2.6 Narrowing . 15
2.7 Unification by rewriting . 15

2.7.1 Associated rewrite theory 16
2.7.2 Computing E-unifiers . 16

3 Maude 18
3.1 Functional modules . 18
3.2 System modules . 20
3.3 The metalevel . 21

4 Conditional narrowing modulo unification 22
4.1 Calculus rules for unification . 22
4.2 Examples . 26

5 Correctness of the calculus for unification 32
5.1 Soundness . 32
5.2 Completeness . 36

6 Transformations for unification 39
6.1 Transformation rules for unification 40
6.2 Example . 44

i

ii CONTENTS

7 Reachability by conditional narrowing 47
7.1 Calculus rules for reachability . 48
7.2 Example . 49

8 Correctness of the calculus for reachability 52
8.1 Soundness . 52
8.2 Completeness . 55

9 Transformations for reachability 57
9.1 Transformation rules for reachability 58
9.2 Example . 59

10 Implementation 62
10.1 Prototype . 62

10.1.1 Structures . 62
10.1.2 Control operators . 64
10.1.3 Subgoal operators . 66
10.1.4 Reachability operators . 67
10.1.5 Unification operators . 67
10.1.6 Membership operators . 68
10.1.7 Examples . 68

10.2 Improvements . 72
10.2.1 Goal -nodes . 73
10.2.2 And -nodes . 73
10.2.3 Or -nodes . 74

11 Conclusions and future work 76

Bibliography 77

List of Figures

2.1 Deduction rules for membership equational logic. 8
2.2 Deduction rules for rewrite theories. 9
2.3 Inference rules for membership rewriting. 17

iii

Chapter 1

Introduction

1.1 Objective

The aim of this work is to study the relationship between verifiable and computable
answers to reachability problems in rewrite theories with an underlying membership
equational logic. A reachability problem is an existential formula

(∃x̄)s(x̄)→∗ t(x̄)

with x̄ some variables, or a conjunction of several of these subgoals.
In this work, a calculus that solves this kind of problems has been developed

for rewrite theories. Given a reachability problem in a rewrite theory, this calculus
can compute any answer that can be checked by rewriting, or a more general one,
one that subsumes the checked one. For instance, instead of X 7→ f(a, b, Z) where
Z is a variable, a and b are constants, the calculus may find X 7→ f(Y, b, Z) where
Y is also a variable. The calculus is first defined for equational unification modulo
axioms and its correctness is proven. Then it is extended for reachability goals
and also proven correct. The work is not concerned with proving termination
in conditional rewriting (see [LMM05] for information on this subject). Special
care has been taken in the calculus to keep membership information attached to
each term, to make use of it whenever possible (for instance, dropping unfeasible
goals or modifying the sort that a term must have depending on the sort of the
other term it has to unify with). The calculus does not apply to generalized
rewrite theories [BM06] having either frozen arguments [BM06] or context-sensitive
strategies [CDE+]. We use the rewriting language Maude [CDE+02] as a tool
for specifying rewrite theories and checking solutions for reachability problems.
Some of the functions available on Maude, such as unification modulo axioms or
matching modulo axioms, whose algorithms are very complex [HM12], are used in
the calculus.

1

2 1.2. Motivation

1.2 Motivation

Since the late 60’s there has been a concern in the programming community about
the semantics of programs. The increasing complexity of computer programs made
necessary the development of languages, tools and mathematical methods that
could improve the speed and safety when developing programs. One of the first
milestones was Tony Hoare’s axiomatic semantics [Hoa69]. In the following twenty
years there were several proposals of languages, such as OBJ3 [GKK+87], and
models for concurrent system specification, such as Petri nets [Pet73] or CCS
[Mil80].

Rewriting logic is a computational logic that has been around for more than
twenty years [Mes90], whose semantics [BM06] has a precise mathematical meaning
allowing mathematical reasoning for property proving, as an attempt to provide a
more flexible framework for the specification of concurrent systems. It turned out
that it can express both concurrent computation and logical deduction, allowing
its application in many areas such as automated deduction, software and hardware
specification and verification, security, etc.

On the computational side, rewriting logic is a semantic framework that al-
lows natural representation, execution and analysis as rewrite theories of different
concurrency models, distributed algorithms, etc. On the logic side, it is a logi-
cal framework that allows representation and reasoning about different logics and
automated decision procedures.

One important property of rewriting logic is that the distance between the
represented structure and its representation in rewriting logic is very small. Usually
they are isomorphic structures where differences are due to the notations used on
both sides, but the main features remain the same. This allows reducing errors
when coding.

Another important property of rewriting logic is reflection [CM96]. Intuitively,
reflection means representing a logic’s metalevel at the object level, allowing the
definition of strategies that guide rule application in an object-level theory. A
classic example of reflection can be found on Turing’s Universal Machine [Tur36].

The reachability problem can be solved by model checking methods [CGP99]
for finite state spaces. A technique known as narrowing [Fay78] that was first
proposed as a method for solving equational goals (unification), has been extended
to cover also reachability goals [DMT98], leaving equational goals as a special case
of reachability goals. This technique resembles symbolic model checking, where
we represent infinite sets of states using logical variables in terms. Variables get
instantiated through the narrowing process, when necessary. In recent years the
idea of variants of term [CLD05] has been applied to narrowing. The variants of a
term s are pairs (t, θ), meaning that term s rewrites to the irreducible (canonical)
term t using substitution θ. A strategy for order-sorted unconditional rewrite

1. Introduction 3

theories known as folding variant narrowing [ESM12], which computes a complete
set of variants of any term S, has been developed by Escobar, Sasse and Meseguer,
allowing unification modulo a set of equations and axioms. The strategy terminates
on any input term on those systems enjoying the finite variant property [CLD05],
a characterization that ensures that any term has a finite number of variants, and
it is optimally terminating, that is, if any complete narrowing strategy terminates
on an input term, the folding variant narrowing will terminate on this term. It
is being used for cryptographic protocol analysis [MT07], with tools like Maude-
NPA [EMM05], termination algorithms modulo axioms [DLM09], and algorithms
for checking confluence and coherence of rewrite theories modulo axioms, such as
the Church-Rosser (CRC) and the Coherence (ChC) Checkers for Maude [DM12].

This work explores narrowing for membership conditional rewrite theories, go-
ing beyond the scope of folding variant narrowing which works on order-sorted
unconditional rewrite theories. A calculus that computes answers to reachabil-
ity problems in membership conditional rewrite theories has been developed and
proved correct with respect to idempotent normalized answers, that is, given a
solution for a reachability problem the calculus can compute one answer that sub-
sumes (includes) this solution, and if the calculus computes one answer then the
answer is a solution for the reachability problem.

1.3 Structure of the work

• In chapter 2 all needed definitions and properties for rewriting and narrowing
are introduced.

• Chapter 3 is a brief introduction to the rewriting language Maude, empha-
sizing the needed parts of it.

• Chapter 4 introduces the first part of the narrowing calculus, the one that
deals with equational unification. In this calculus the rule to apply each time
is always correctly chosen (we have an oracle). All we show is that an answer
exists (if it does). We are not concerned on how to choose rules (this is a
strategy). There are several examples showing the calculus at work.

• In chapter 5 the proofs of soundness and completeness of the calculus for
unification presented in chapter 4 are shown.

• In chapter 6 a set of transformations for the previous calculus is presented.
An example shows the inner working of this set of transformations.

• Chapter 7 introduces the rest of the calculus, the part dealing with reacha-
bility. Again, we have an oracle that always guesses the right rule to apply.

4 1.3. Structure of the work

• Chapter 8 holds the proofs of soundness and completeness of the calculus for
reachability presented in chapter 7.

• In chapter 9 a set of transformations for the rest of the calculus is presented.
Another example shows the inner working of this set of transformations. It
is worth pointing that the whole set of transformations work at the met-
alevel, with the given rewrite theory as an object. This is where possible
enhancements can be made via strategies.

• Chapter 10 discusses the implementation of the set of transformations, struc-
ture and flow control, together with improvements that can be made at this
stage. Source code for the implementation, as well as several examples and in-
structions for its use can be found on http://maude.sip.ucm.es/cnarrowing/.

• In chapter 11, conclusions and further improvements and lines of investiga-
tion for this work are presented.

http://maude.sip.ucm.es/cnarrowing/

Chapter 2

Preliminaries

Rewriting logic, as it has been said, is a general logical framework in which many
deductive systems can be naturally represented [BM06]. There are several language
implementations of rewriting logic, including Maude [CDE+02]. Rewriting logic
is parameterized by an underlying equational logic. In Maude’s case this logic is
membership equational logic [Mes97].

In this section we introduce the equational part of the logic, then the rewrite
part of it. We follow by presenting sufficient conditions under which these logics
are computable. Then unification, the problem of assigning values to variables in
terms to make them equationally equal, is described. The equivalent problem for
rewriting (reachability) is presented, and a technique (narrowing) that suits both
problems is described. We end the section showing a transformation that turns
a unification problem into a reachability one, allowing us to solve both kinds of
problems using the same techniques.

Throughout this section a theoretical vending machine (what else!) will be
used as a motivating example to explain the definitions in an less abstract way.
This machine accepts a Coin (a quarter (q) or a dollar ($), as it is U.S. made) that
may be inserted at any time, and nondeterministically serves one Item if there is
enough credit: an apple (a) at a price of one dollar, or a coffee (c) at a price of
three quarters. The vending machine is rather odd: in order to serve a coffee there
must be a credit of at least a whole dollar; then the machine may serve the coffee
(or an apple). The vending machine knows that four quarters make a dollar. If
there is a credit of three quarters, the machine serves nothing (although it has
enough money to serve a coffee). As there must always be a credit of a whole
dollar before the vending machine serves anything, we never know if we are going
to get a coffee or an apple. The vending machine has a State which is a nonempty
multiset of Coins and Items (the initial State may not be empty). The State

tells us the credit, and the Items that have already been served. A single Coin or
Item is a State. States are written as a mere juxtaposition of Coins and Items,

5

6 2.1. Membership equational logic

that is, we use an empty operator. Parentheses may be used to enclose several
items of a State if desired.

2.1 Membership equational logic

We first describe the static (equational) part of our theories. This includes the
items we are going to work with (operators, terms, kinds, sorts, etc) as well as the
criteria to consider that two syntactically different terms belong in the same class
of terms (conditional equations and memberships), that is, we define equivalence
classes on terms. We also define essential concepts, like positions or substitutions,
which will be widely used.

A membership equational logic (Mel) signature [BM06] is a triple Σ = (K,Ω, S),
with K a set of kinds, Ω = {Σw,k}(w,k)∈K∗xK a many-kinded algebraic signature,
and S = {Sk}k∈K a K-kinded family of disjoint sets of sorts. The kind of a sort
s is denoted by [s]. The sets TΣ,s, TΣ(X)s, TΣ,k and TΣ(X)k denote, respectively,
the set of ground Σ-terms with sort s, the set of Σ-terms with sort s over the
set X of sorted variables, the set of ground Σ-terms with kind k and the set of
Σ-terms with kind k over the set X of sorted variables. We write TΣ, TΣ(X) for
the corresponding term algebras. Given a term t ∈ TΣ(X), the set vars(t) ⊆ X
denotes the set of variables in t.

The Mel signature (Σ) for our vending machine has only one kind, K =
{[State]}, with three sorts, S[State] = {State, Coin, Item}. S = {S[State]}. Ω =
{·[State] [State],[State]}, that is there is only one function (·, understood as juxtapo-
sition) that given a pair of elements with kind[State] returns another element
with kind [State]. TΣ,Coin = {q, $}, TΣ,Item = {a, c}. q, $, a and c are the atoms
(or atomic values) of our signature. Any ground term has to be either one of this
atoms or some term made up with this atoms and the only constructor function
(·).

When a term t is parsed as a tree, the empty string ε represents the root of
t. Positions in a term t are denoted as strings of nonzero natural numbers and
represent nodes or leaves of its parsed tree. The set of positions of a term is
written Pos(t), and the set of non-variable positions PosΣ(t). If we consider the
subtree of t below a certain position p, p being the root of the subtree, we get a
subterm of the term t denoted by t|p. For instance the subterm at position 2 of
t ≡ f(a, g(b, c)) is t|2 ≡ g(b, c). The replacement in t of a subterm at position p
by another term u is denoted by t[u]p.

A substitution σ : Y → TΣ(X) is a function from a finite set of sorted variables
Y ⊆ X to TΣ(X) such that σ(y) has the same or lower sort as that of the variable
y ∈ Y (s1 ≤ s2, formally defined in the next paragraph). The application of a
substitution σ to a term t is denoted by tσ. The substitution instance tσ of a term

2. Preliminaries 7

t is a term obtained from t by simultaneously replacing each occurrence of variable
y ∈ Dom(σ) in t with σ(y). Substitutions are written as σ = {X1 7→ t1, . . . , Xn 7→
tn} where the domain of σ is Dom(σ) = {X1, . . . , Xn} and the set of variables
introduced by terms t1, . . . , tn is written Ran(σ). The identity substitution is id .
Substitutions σ : Y → TΣ(X) are homomorphically extended to TΣ(X), written
with the same notation σ : TΣ(X) → TΣ(X). For simplicity, we assume that
every substitution is idempotent,that is, σ satisfies Dom(σ) ∩ Ran(σ) = ∅. The
restriction of σ to a set of variables V is σ|V ; sometimes we write σ|t1,...,tn to
denote σ|V where V = Var(t1), . . . ,Var(tn). Composition of two substitutions is
denoted by σσ′. Combination of two substitutions is denoted by σ ∪ σ′. We call
an idempotent substitution σ a variable renaming if there is another idempotent
substitution σ−1 such that (σσ−1)|Dom(σ) = id.

In our vending machine, if t = qXItem and σ = {XItem 7→ c} then tσ = qc,
which is a term with sort State, as we will now see.

A Mel theory [BM06] is a pair (Σ, E), where Σ is a Mel signature and E
is a finite set of Mel sentences, either a conditional equation or a conditional
membership of the forms:

(∀X) t=t′ if
∧
i

Ai, (∀X) t:s if
∧
i

Ai

for t, t′ ∈ TΣ(X)k and s ∈ Sk, the latter stating that t is a term of sort s, provided
the condition holds, and each Ai can be of the form t=t′, t:s or t:=t′ (a matching
equation). Matching equations are treated as ordinary equations, but they impose
a limitation in the syntax of admissible Mel theories, as we will see. Order-
sorted notation s1 ≤ s2 can be used instead of (∀x:[s1]) x:s2 if x:s1. An operator
declaration f : s1 × · · · × sn → s corresponds to declaring f at the kind level and
giving the membership axiom (∀x1:k1, . . . , xn:kn) f(x1, . . . , xn):s if

∧
1≤i≤n xi:si.

Given a Mel sentence φ, we denote by E ` φ that φ can be deduced from E using
the rules in Figure 2.1, where = can be either = or := as explained before [BM12].

The Mel theory for our vending machine consists of the Mel signature Σ
defined before, and the following set E of Mel sentences:

• ∀X:[State] X:State if X:Item (every Item is a State, or Item ≤ State)

• ∀X:[State] X:State if X:Coin (every Coin is a State, or Coin ≤ State)

• ∀X, Y :[State] XY :State if X:State ∧ Y :State
(the juxtaposition of States is a State)

• ∀X, Y :[State] XY = Y X (juxtaposition is commutative)

• ∀X, Y, Z:[State] (XY)Z = X(Y Z) (juxtaposition is associative)

8 2.2. Rewriting logic

t ∈ TΣ(X)

(∀X)t = t
Reflexivity

(∀X)t = t′

(∀X)t′ = t
Symmetry

(∀X)t1 = t2 (∀X)t2 = t3
(∀X)t1 = t3

Transitivity

(∀X)t′:s (∀X)t=t′

(∀X)t:s
Membership

f ∈ Σk1···kn,k (∀X)ti=t
′
i ti, t

′
i∈TΣ(X)ki , 1≤i≤n

(∀X)f(t1, . . . , tn) = f(t′1, . . . , t
′
n)

Congruence

((∀X)A0 if
∧

iAi)∈E θ:X→TΣ(Y) (∀Y)Aiθ

(∀Y)A0θ
Replacement

Figure 2.1: Deduction rules for membership equational logic.

• qqqq = $ (four quarters make a dollar)

A Σ-algebra A [Mes97] consists of a set Ak for each kind k, a function Af :
Ak1x · · · xAkn for each operator f ∈ Σk1···kn,k, and a subset inclusion As ⊆ Ak for
each sort s ∈ Sk. For a valuation a : X → A assigning a value in As to each variable
x ∈ X with sort s, if ā : TΣ(X)→ A is the homomorphic extension of a to terms, by
definition, A, a |= (∀X) t = t′ iff ā(t) = ā(t′), and A, a |= (∀X) t : s iff ā(t) ∈ As.
A Σ-algebra A is a model of a formula φ, written A |= φ, when φ is satisfied
for any valuation a. A Mel sentence ϕ is a logical consequence of (Σ, E), written
(Σ, E) |= ϕ, when all the models of (Σ, E) are also models of ϕ. The rules of Figure
2.1 specify a sound and complete calculus, that is, (Σ, E) ` ϕ ⇐⇒ (Σ, E) |= ϕ.
A Mel theory (Σ, E) has an initial algebra, denoted by TΣ/E , whose elements are
equivalence classes [t]E ⊆ TΣ of ground terms identified by the equations in E .

The initial algebra for the vending machine is the set of all non-empty multisets
that can be made up with the four atoms q, $, c, a. Recall that, for instance
{a, a, q} and {a, q, a} are the same multiset, but they are not the multiset {a, q}.

2.2 Rewriting logic

Now we describe the dynamic part of our theories. These are the conditional
rewrite rules that make our system evolve, be it a concurrent or a deductive system.

A rewrite theory R = (Σ, E , R) is a formal specification of concurrent or de-
ductive systems [Mes92], where

• (Σ, E) is a theory in membership equational logic

• R is a finite set of labeled conditional rewrite rules, each of which has the
form (= can be either = or :=):

λ : (∀X) l→ r if
∧
i

pi=qi ∧
∧
j

wj:sj ∧
∧
k

lk → rk,

where l, r are Σ-terms of the same kind.

2. Preliminaries 9

t ∈ TΣ(X)

(∀X)t→ t
Reflexivity

(∀X)t1 → t2, (∀X)t2 → t3
(∀X)t1 → t3

Transitivity

(∀X)u→ u′, E ` (∀X)t = u, E ` (∀X)u′ = t′

(∀X)t→ t′
Equality

f ∈ Σk1···kn,k (∀X)ti → t′i ti, t
′
i∈TΣ(X)ki

, 1≤i≤n
(∀X)f(t1, . . . , tn)→ f(t′1, . . . , t

′
n)

Congruence

(λ : (∀X) l→ r if
∧
i

pi=qi ∧
∧
j

wj :sj ∧
∧
k

lk → rk)∈R

θ : X → TΣ(Y)
∧

i E ` (∀Y)piθ=qiθ
∧

j E ` (∀Y)wjθ:sj
∧

k(∀Y)lkθ → rkθ

(∀Y)lθ → rθ
Replacement

Figure 2.2: Deduction rules for rewrite theories.

Such a rewrite rule specifies a one-step transition (often called a one-step rewrite)
from a state t[lθ]p containing a substitution instance lθ at a position p to the state
t[rθ]p in which lθ has been replaced by the corresponding instance rθ, denoted by
t[lθ]p →1

R t[rθ]p, provided the condition holds; that is, the substitution instance by
θ of each condition in the rule follows from R. The subterm t|p is called a redex.

In our vending machine, R is the following set of labeled conditional rewrite
rules:

• add-quarter: ∀X:[State] X → Xq if X:State (quarter inserted)

• add-dollar: ∀X:[State] X → X$ if X:State (dollar inserted)

• buy-coffee: $→ c (coffee served)

• buy-apple: $→ aq (apple served, credit updated)

The inference rules [BM12] in Figure 2.2 for rewrite theories can infer all pos-
sible deductive computations in the system specified by R. We can reach a state
v from a state u if we can prove R ` u→ v.

The relation →1
R/E on TΣ(X) is =E ◦ →1

R ◦ =E . →1
R/E on TΣ(X) induces a

relation →1
R/E on TΣ/E(X), the equivalence relation modulo E , by [t]E →1

R/E [t′]E
iff t →1

R/E t
′. The transitive (resp. transitive and reflexive) closure of →1

R/E is

denoted →+
R/E (resp. →∗R/E). We say that a term t is →R/E -irreducible (or just

R/E-irreducible) if there is no term t′ such that t→1
R/E t

′.
We define now several properties that rewrite rules, rewrite theories substitu-

tions or relations may have. It is not mandatory for all rewrite theories to have

10 2.3. Executable rewrite theories

all properties, but some of them will be required to make the rewrite theories
computable.

For a rewrite rule l → r if cond , we say that it is sort-decreasing if for
each substitution σ, we have that rσ ∈ TΣ(X)s and (cond)σ is verified implies
lσ ∈ TΣ(X)s, that is, if we apply this rule to a term t with sort s, we get another t′

whose sort s′ is lower than or equal to s. We say that a rewrite theoryR = (Σ, E , R)
is sort-decreasing if all rules in R are. For a Σ-equation t = t′, we say that it is
regular if Var(t) = Var(t′), that is, there are no extra variables, and it is sort-
preserving if for each substitution σ, we have tσ ∈ Tσ(X)s implies t′σ ∈ Tσ(X)s
and vice versa. We say a rewrite theory R = (Σ, E , R) is regular or sort-preserving
if all equations in E are.

For substitutions σ, ρ and a set of variables V we define σ|V →1
R/E ρ|V if there

is x ∈ V such that σ(x)→1
R/E ρ(x) and for all other y ∈ V we have σ(y) =E ρ(y).

A substitution is called E-normalized (or normalized) if xσ is E-irreducible for all
x ∈ V . This is the simplest version modulo E for that substitution.

We say that the relation →1
R/E is terminating if there is no infinite sequence

t1 →1
R/E t2 →1

R/E · · · tn →1
R/E tn+1 · · · . We say that the relation →1

R/E is confluent
if whenever t →∗R/E t′ and t →∗R/E t′′, there exists a term t′′′ such that t′ →∗R/E t′′′
and t′′ →∗R/E t′′′. A rewrite theory R = (Σ, E , R) is confluent (resp. terminating)

if the relation →1
R/E is confluent (resp. terminating). In a confluent, terminating,

sort-decreasing, membership rewrite theory, for each term t ∈ TΣ(X), there is
a unique (up to E-equivalence) R/E-irreducible term t′ obtained by rewriting to
canonical form, denoted by t →!

R/E t
′, or t ↓R/E when t′ is not relevant, which we

call canR/E(t). Then, we can apply any available rule each time, and obtain always
the same canonical form modulo E . We write t ↓ or can(t) when the underlying
rewriting logic is known.

Our vending machine is, as most reactive systems are [AILS07], non termi-
nating. From any initial State we can always apply rules add-quarter and
add-dollar. Rule buy-coffee is not sort-decreasing because it can turn a term
with sort Coin into a term with sort Item, and it is not true that Item ≤ Coin. Also
rule buy-apple is not sort-decreasing because it can turn a term with sort Coin

into a term with sort State, which is strictly bigger than sort Coin (Coin ≤ State

and State � Coin.)

2.3 Executable rewrite theories

For a rewrite theory R = (Σ, E , R), whether a one step rewrite t →1
R/E t

′ holds
is undecidable in general. We impose additional conditions under which we can
computationally decide if t→1

R/E t
′ holds. This conditions are not very restrictive

2. Preliminaries 11

and, in fact, they allow a great number of systems to be specified. We decompose
E = E ∪ A. A rewrite theory R = (Σ, E ∪ A,R) is executable if each kind k in Σ
is nonempty, E, A, and R are finite and the following conditions hold:

1. E and R are admissible, that is, the set E consists of conditional equations
(1) and conditional memberships (2), and the set R consists of conditional
rules (3), where in (1) the variables in t′ are among those in t or in some
Ai, and where, in (1), (2) and (3) each Ai can be either a membership ti:si,
equation ti=t

′
i or matching equation ti:=t

′
i such that any new variable not

in t or in some Aj with j < i must occur only in ti or in some Aj with
j > i; furthermore, if ti introduces any new variables, then ti must be a non
variable term. In (3), given a conditional rule of the form

l : t→ t′ if A1 ∧ . . . ∧ An,

Ai can also be a rewrite ti → t′i. Then it must satisfy the additional require-
ment

vars(ti) ⊆ vars(t) ∪
i−1⋃
j=1

vars(Aj),

and furthermore t′i is an E-pattern1. Logically we treat matching equations
as ordinary equations. The point with admissible theories is that they allow
us to assign values to new variables by matching. With the conditions for a
matching equation, its left side is an E-pattern, and can not be rewritten,
so we rewrite the right side of the matching equation to canonical form and
match it against the new variables in the left side.

2. Equality modulo A, i.e., t =A t′, is decidable and there exists a matching
algorithm modulo A, producing a finite number of A-matching substitutions
or failing otherwise, that can implement rewriting in A-equivalence classes.
Usually, A are axioms of commutativity, associativity and identity that may
be non terminating under standard rewriting. We put this axioms apart from
the terminating ones and use special algorithms for them, that are designed
to avoid non terminating behaviors.

3. The equations E are sort-decreasing, and terminating, coherent, and conflu-
ent modulo A when we consider them as oriented rules. Sort-decreasingness,

1We call a term t an E-pattern if for any well-formed substitution σ such that for each variable
x in its domain the term σ(x) is in canonical form with respect to the equations in E, then tσ is
also in canonical form. A sufficient condition for t to be an E-pattern is the absence of unifiers
(see 2.4) between its non variable subterms and left hand sides of equations in E. There is recent
work on this kind of unification where one term is always in normal form so no rewrite rules can
ever be applied to it, which has been called asymmetric unification [EEK+13]

12 2.4. Unification

confluence and termination allows us to represent E-equivalence classes as
A-equivalence classes in E/A-canonical form uniquely. The A-coherence as-
sumption makes it possible to compute the rewrite relation →1

E/A on A-
equivalence classes by means of an A-matching algorithm.

4. The rules R are coherent relative to the equations E modulo A. That is,
together with the above conditions, if t is rewritten to t′ by a rule (l →
r if cond), the E-canonical term canE/A(t) is also rewritten to t′′ by the
same rule such that canE/A(t′) =A canE/A(t′′). Technically, what coherence
means is that the weaker relation →1

E,A becomes semantically equivalent to
the stronger relation →1

E/A, so we can decide t →1
R/E t

′ by finding t′′ such

that canE,A(t) →1
R t′′ and canE,A(t′) =A canE,A(t′′), which is a decidable,

since the number of rules is finite and A-matching is decidable.

The rewrite theory for our vending machine is executable if we decompose E
in the following way: the set A has as elements the equations for the commutative
and the associative properties for function · (juxtaposition), the set E has the other
equation and all memberships. E and R are admissible because they are regular
and don’t introduce new variables. A has a matching algorithm (when we use
Maude it is called match). The equations E are sort-decreasing, and terminating,
coherent, and confluent modulo A when we consider them as oriented rules and
the rules R are coherent relative to the equations E modulo A. We will not go
further into these properties, that must be checked by the user, but Maude provides
tools like the Church-Rosser (CRC) and the Coherence (ChC) Checkers for Maude
[DM12] that help the user verify them.

For executable rewrite theories R = (Σ, E , R) with E = E ∪ A we define the
relation →1

E,A on TΣ(X) as follows: t→1
E,A t

′ if there is an ω ∈ Pos(t), l = r ∈ E,
and a substitution σ such that t|w =A lσ (A-matching) and t′ = t[rσ]ω. Since A
is sort-preserving and E is sort-decreasing, t′ is well-sorted, that is t ∈ TΣ(X)s
implies t′ ∈ TΣ(X)s. The relation →1

R,A is similarly defined, and because of our
assumption about the signature Σ, it is the case that t →1

R,A t
′ implies t′ is well-

sorted, and t ∈ TΣ(X)[s] implies t′ ∈ TΣ(X)[s]. We define→1
R∪E,A as→1

R,A ∪ →1
E,A.

Note that, since A-matching is decidable,→1
E,A,→1

R,A, and→1
R∪E,A are decidable.

These three relations are lifted to substitutions as expected. R ∪E,A-normalized
(and similarly R,A or E,A-normalized) substitutions are defined as expected.

2.4 Unification

Unification tries to assign values to variables in two terms t and t′ through a sub-
stitution σ in a way such that they are semantically equal (tσ =E t

′σ) [Baa90]. In

2. Preliminaries 13

membership equational logic we answer the question ∀(x̄)t(x̄)=t′(x̄)? In unification
we answer the question ∃(x̄)t(x̄)=t′(x̄)?

For instance, the membership equational logic for the vending machine tells us
that if X is a variable with sort State then Xqqqq = X$ whatever X is, but with
unification we know that Xqqq = $ only if we use the substitution {X 7→ q}.

Given an executable rewrite theoryR = (Σ, E , R), a Σ-equation is an expression
of the form t = t′ where t, t′ ∈ TΣ(X)s for an appropriate s. The E-subsumption
preorder�E on TΣ(X)s is defined by t�E t′ (meaning that t′ is more general than
t) if there is a substitution σ such that t =E t

′σ; such a substitution σ is said to be
an E-match from t to t′. For substitutions σ, ρ and a set of variables V we define
σ|V =E ρ|V if σ(x) =E ρ(x) for all x ∈ V , and σ|V �E ρ|V if there is a substitution
η such that σ|V =E (ρη)|V (we say that ρ is more general than σ).

A system of equations F is a conjunction of the form t1 = t′1∧. . .∧tn = t′n where
for 1 ≤ i ≤ n, ti = t′i is a Σ-equation. We define Var(F) =

⋃
i Var(ti) ∪ Var(t′i).

An E-unifier for F is a substitution σ such that tiσ =E t
′
iσ for 1 ≤ i ≤ n. When

E = ∅ (no associativity, no commutativity, etc) there is at much one unifier. In
the general case, the set of unifiers for a system of equations may not be finite.
For V = Var(F) ⊆ W , a set of substitutions CSU E(F,W) is said to be a complete
set of unifiers of F away from W [GS89] if

• each σ ∈ CSU E(F,W) is an E-unifier of F ;

• for any E-unifier ρ of F there is a σ ∈ CSU E(F,W) such that ρ|V �E σ|V ;

• for all σ ∈ CSU E(F,W), Dom(σ) ⊆ V and Ran(σ) ∩W = ∅.

That is, a complete set of unifiers CSU E(F,W) is composed of idempotent
E-unifiers of F such that they only instantiate variables on F , no new variable on
the unifiers belongs to the set W , and for any other E-unifier of F there is a more
general one in CSU E(F,W) with respect to the variables in F .

An E-unification algorithm is complete if for any given system of equations
it generates a complete set of E-unifiers, which may not be finite. A unification
algorithm is said to be finite and complete if it terminates after generating a finite
and complete set of solutions.

Checking if ρ is an E-unifier of F is achieved by E,A-rewriting. Using the
equations in E as oriented rules and the matching algorithm for A we rewrite the
terms in F to canonical form and check if each left side canonical term canE/A(tiρ)
is equal modulo A (we use the matching algorithm) to the corresponding right side
canonical term canE/A(t′iρ).

14 2.5. Reachability goals

2.5 Reachability goals

Reachability goals and their solving are the main subjects of this work. We first
define reachability goals, then we define solutions and trivial solutions of them. We
follow by characterizing the needed properties in our rewrite theories that makes
us able to compute solutions of reachability problems.

Given a rewrite theory R = (Σ, E , R), a reachability goal G is a conjunction
of the form t1 →∗ t′1 ∧ . . . ∧ tn →∗ t′n where for 1 ≤ i ≤ n, ti, t

′
i ∈ TΣ(X)si for

appropriate si. We say that ti are the sources of the goal G, while t′i are the
targets. We define Var(G) =

⋃
i Var(ti) ∪ Var(t′i). A substitution σ is a solution

of G if tiσ →∗R/E t′iσ for 1 ≤ i ≤ n. We define E(G) to be the system of equations
t1 = t′1 ∧ . . . ∧ tn = t′n. We say σ is a trivial solution of G if it is an E-unifier for
E(G). We say G is trivial if the identity substitution id is a trivial solution of G.

For instance, in the rewrite theory for the vending machine if X is a variable
with sort State, then {X 7→ q} is a trivial solution of the reachability goal G ≡
Xqqq → $, but it is a non-trivial solution of the reachability goal G ≡ Xqq → $
(qqq →add−quarter qqqq →equality $).

For goals G : t1 →∗ t2 ∧ . . .∧ t2n−1 →∗ t2n and G′ : t′1 →∗ t′2 ∧ . . .∧ t′2n−1 →∗ t′2n
we say G =E G

′ if ti =E t
′
i for 1 ≤ i ≤ 2n. We say G →R G′ if there is an odd

i such that ti →R t′i and for all j 6= i we have tj = t′j. That is, G and G′ differ
only in one subgoal (ti → ti+1 vs t′i → ti+1), but ti → t′i, so when we rewrite ti in
G to t′i we get G′. We write G →r,R G′ meaning that rule r ∈ R has been used
in the rewriting step from G to G′. The relation →R/E over goals is defined as
=E ◦ →R ◦ =E .

We implement →R/E (on terms and goals) using →R∪E,A [MT07]. This lemma
links →R/E with →E,A and →R,A. Patrick Viry gave a proof for unsorted uncon-
ditional rewrite theories [Vir94], which can easily be applied to our membership
conditional case [MT07].

Lemma Let R = (Σ, E , R) be an executable rewrite theory, that is, it has all the
properties specified in section 2.3. Then t1 →R/E t2 if and only if t1 →∗E,A→R,A t3
for some t3 =E t2.

Then t1 →R/E t2 if and only if t1 →∗E,A→R,A t3 for some t3 =E t2. Thus t1 →∗R/E t2
if and only if t1 →∗R∪E,A t3 for some t3 =E t2, which can be decided by check-
ing t3↓E,A =A t2↓E,A with the A-matching algorithm. This is the way rewriting
is decided: from term t1 we compute its derivation tree in a breadth-first way
and check each resulting term against t2 with the A-matching algorithm. If some
term matches then the rewriting is possible and we have found a proof for it.
This result is lifted to goals as G1 →∗R/E G2 if and only if G1 →∗R∪E,A G3 for
some G3 =E G2. Also, σ is a trivial solution of t1=t′1 ∧ . . . ∧ tn=t′n if and only if

2. Preliminaries 15

t1σ↓E,A =A t
′
1σ↓E,A ∧ . . . ∧ tnσ↓E,A =A t

′
nσ↓E,A.

2.6 Narrowing

Narrowing is like rewriting, but replacing matching modulo an equational theory
with unification modulo that theory. It tries to assign values to variables in two
terms t and t′ through a substitution σ in a way such that tσ →R/E t′σ (see
[KKK+96, Ch. 14, p. 181-190] for a full description). In rewriting logic we answer
the question ∀(x̄)t(x̄) → t′(x̄)? In narrowing we answer the question ∃(x̄)t(x̄) →
t′(x̄)?. Unification is the only allowed way to assigns values, ground or not, to
variables in narrowing. We don’t guess values, we unify two terms modulo the
given equational theory and use the resulting substitution as a partial or total
answer.

In the vending machine example we can prove by rewriting that for a variable
X with sort State X$ → Xc whatever value X is given. Finding out that the
substitution {X 7→ q} is a solution of the reachability goal Xqqq → c requires
narrowing.

Let t be a Σ-term and W be a set of variables such that Var(t) ⊆ W . The
R,A-narrowing relation on TΣ(X) is defined as follows: t p,σ,R,A t

′ if there is a
non-variable position p ∈ PosΣ(t), a rule l → r if cond in R, properly renamed,
such that Var(l)∩W = ∅, and a unifier σ ∈ CSUW ′

A (t|p = l) for W ′ = W ∪Var(l),
such that t′ = (t[r]p)σ and (cond)σ holds. This is lifted to reachability goals as
follows. Let G : t1 →∗ t2 ∧ . . .∧ t2n−1 →∗ t2n and G′ : t′1 →∗ t′2 ∧ . . .∧ t′2n−1 →∗ t′2n,
and suppose that Var(G) ⊆ V . We define G σ,R,A G′ if there is an odd i such
that ti p,σ,R,A t

′
i for some σ that is away from Var(G), and for all j 6= i we have

t′j = tjσ. We write G ∗σ,R,A G
′ if either G = G′ and σ = id , or there is a sequence

of derivations G σ1,R,A . . . σn,R,A G′ such that σ = σ1 . . . σn. Similarly E,A-
narrowing and R ∪ E,A-narrowing relations are defined on terms and goals, as
expected.

Back to our vending machine and the reachability goal Xqqq → c, we have
that (Xqqq)σ ≡ qqqq ε,σ,R∪E,A $ ≡ ($)σ using the oriented equation qqqq = $

as a rule and unifier σ={X 7→ q} ∈ CSUW ′

A (Xqqq|ε = qqqq), and $ ε,id,R∪E,A c
using rule buy-coffee: $→ c, so it takes two narrowing steps, one with an oriented
equation and another one with a rule, to find the answer.

2.7 Unification by rewriting

We have defined unification, but we have not given a method to compute unifiers.
In this section we show an equivalent definition for executable Mel theories that

16 2.7. Unification by rewriting

makes this computation possible. Furthermore, our calculus will make use of this
equivalence to intermix both rewritings, for unification and reachability, instead
of carrying an independent computation with each one.

2.7.1 Associated rewrite theory

Any executable Mel theory (Σ, E ∪A) has a corresponding rewrite theory RE =
(Σ′,A∪ME, RE) associated to it, defined in [DLM+08, Ch. 3, p. 10-13], that allows
us to check if a substitution σ is a solution for a goal G through rewriting instead
of equational unification. We will use either of this approaches when proving
properties of the calculus. It is defined in [DLM+08] as follows: we add a fresh
new kind Truth with a constant tt to Σ, and for each kind k ∈ K an operator
eq : k k → Truth. We write > to represent a conjunction of any number of tt ’s.
The equational axioms are the ones in A. There are rules eq(x:k, x:k) → tt for
each kind k ∈ K. Furthermore, for each admissible conditional equation in E the
set RE has a conditional rule of the form

t→ t′ if A•1 ∧ . . . ∧ A•n

where if Ai is a membership then A•i=Ai, if Ai is a matching equation ti:=t
′
i then

A•i is the rewrite condition t′i→ti, and if Ai is an ordinary equation t=t′ then A•i is
the rewrite condition eq(t, t′)→tt . Similarly, for each conditional membership in
E we add to ME a conditional membership, with A•i as before, of the form,

t:s if A•1 ∧ . . . ∧ A•n

Systems of equations in (Σ, E ∪ A) with form G ≡
∧m
i=1(si = ti) become reacha-

bility goals in RE with form
∧m
i=1 eq(si, ti)→ tt . A substitution σ is a solution of

G if there are derivations for
∧m
i=1(siσ = tiσ), or

∧m
i=1 eq(siσ, tiσ) rewrites to >.

The inference rules for membership rewriting in RE are the ones in Figure 2.3,
adapted from [DLM+08, Fig. 4, p. 12], where the rules are defined for context-
sensitive membership rewriting.

2.7.2 Computing E-unifiers

Replacing in the inference rules for replacement and membership the matching con-
dition u =A tσ with the unification condition uσ =A tσ will allow the forthcoming
calculus for unification to compute the answer to unification problems modulo E
using a unification algorithm modulo A and rewriting.

2. Preliminaries 17

• (Reflexivity)

t→ t′

if t =A t′

• (Transitivity)
t1 → t2, t2 → t3

t1 → t3

• (Congruence)

ti → t′i
f(t1, . . . , ti, . . . , tn)→ f(t1, . . . , t′i, . . . , tn)

• (Replacement)
A•1σ . . . A

•
nσ

u→ t′σ

if t→ t′ if A•1 . . . A
•
n in RE and u =A tσ

• (Subject Reduction)
t→ t′, t′ : s

t : s

• (Membership)
A•1σ . . . A

•
nσ

u : s

if t : s if A•1 . . . A
•
n in RE and u =A tσ

Figure 2.3: Inference rules for membership rewriting.

Chapter 3

Maude

Maude is a high-level language and high-performance system supporting both
equational and rewriting computation [CDE+02]. Maude’s underlying equational
logic is membership equational logic, which is an improvement over order-sorted
algebra, allowing the faithful specification of types (like sorted lists or search trees)
whose data are defined not only by means of constructors, but also by the satis-
faction of additional properties [BM06]. Maude has two kinds of modules that are
of interest for our purpose:

• Functional modules provide support for functional programming in member-
ship equational logic.

• System modules allow the specification of concurrent systems, when used as a
semantic framework, or deductive systems, when used as a logical framework,
using rewriting logic.

Moreover, Maude makes a systematic and efficient use of reflection, where
programs are represented as data, allowing metaprogramming and metalanguage
applications, as well as extensions to the language itself. In fact, standard Maude
is known as Core Maude and there is an extension known as Full Maude [Dur99]
programmed in Maude, where all new characteristics of the system are developed
and tested prior to their inclusion in Core Maude. Among other characteristics,
Full Maude offers support for object oriented modules and parameterized modules.

3.1 Functional modules

Maude’s functional modules allow the specification and execution of Mel theories
(Σ, E ∪ A), where A is a set of equational axioms (usually commutativity, asso-
ciativity and/or identity) for some of the operators in the signature, and E is a

18

3. Maude 19

set of equations that are valid modulo A, as long as they are executable in the
sense defined in section 2.3, that is we can always rewrite a term t to its canonical
form canE/A(t) just applying equations in E as oriented rules, modulo A with the
existing matching algorithm, until no more equations can be applied, being this
always a finite process.

We show the syntax of functional modules through an example where we define
natural numbers with an operation (sum), and sets of natural numbers:

fmod NAT-SET is

sorts Nat Set .

subsort Nat < Set .

op 0 : -> Nat .

op s : Nat -> Nat .

op _+_ : Nat Nat -> Nat .

op empty-set : -> Set .

op __ : Set Set -> Set [assoc comm id: empty-set] .

vars N M : Nat .

eq 0 + N = N .

eq s(N) + M = s(N + M) .

eq N N = N .

endfm

We can use Maude’s command reduce to compute the canonical form of any term.
For instance:

Maude> reduce 0 s(0) s(0) .

result Set: 0 s(0)

We declare sorts using the reserved word sort. Kinds are not defined in an
explicit way. We refer to the kind of a sort s as [s]. Sort ordering, which as we
saw in section 2.1 is a shortcut for certain membership axioms, is defined using
the reserved word subsort.

Functions are declared using the reserved word op followed by the name of the
function (which can be empty), the sort of the arguments and the sort of the result.
The position of the arguments is determined by the ” ” symbol that appears in the
definition. The symbol -> separates the input arguments from the result. If no sort
is found to the left of ->, the function is a constant. If no ” ” symbol appears, the
standard syntax for functions, with the arguments surrounded by brackets, is used.
Axioms from A and other properties of the function are declared writing them
between square brackets. In our example, the set constructor definition, which
has empty name, has associative (assoc) and commutative (comm) properties, as
expected for a set, and the identity element (id) is the empty set (empty-set).

20 3.2. System modules

Uniqueness of the elements in the set is guaranteed by the equation eq N N = N

which deletes possible duplicated elements.

Variables are declared using the reserved word var. They can also be used with-
out previous declaration by writing their name, a colon and its sort (for instance
N:Nat).

Equational axioms are declared using the reserved words eq, or ceq when
declaring conditional equational axioms. Similarly, membership axioms are de-
clared using the reserved words mb and cmb.

Maude does not check confluence and termination properties for functional
modules: the user is responsible for providing them. However, in some cases
it is possible to check these properties with Maude’s Church-Rosser checker and
termination tools [DM10] [DLM+08].

3.2 System modules

System modules are an extension of functional modules that allow the specifica-
tion of rewrite rules. The equational part must have the same properties as for
functional modules. Rules are only required to be admissible in the sense defined
in section 2.3.

The same syntax is used with the exception that the module begins with the
reserved word mod, it ends with the reserved word endm, and rewriting rules are
declared using the reserved words rl, or crl for conditional rewriting rules. Our
module could be extended, for instance, with one rule that computes the sum of
the terms in a set, becoming:

mod NAT-SET is

sorts Nat Set .

subsort Nat < Set .

op 0 : -> Nat .

op s : Nat -> Nat .

op _+_ : Nat Nat -> Nat .

op empty-set : -> Set .

op __ : Set Set -> Set [assoc comm id: empty-set] .

vars N M : Nat .

var S : Set

eq 0 + N = N .

eq s(N) + M = s(N + M) .

eq N N = N .

rl N M S => (N + M) S .

endm

3. Maude 21

Now we can use Maude’s command rewrite to rewrite any term with the
existing rules:

Maude> rewrite s(0) s(s(0)) s(0) .

result Nat: s(s(s(0)))

Prior to rewriting, Maude always reduces terms to canonical form. That’s why
the answer is s(s(s(0))) instead of s(s(s(s(0)))). We have given Maude a
multiset, and applying rule eq N N = N, Maude deletes the spare s(0). Then it
applies the rule (matching S to empty-set) and returns the answer (also reduced,
because with the previous matching we get s(s(s(0))) empty-set as answer, but
since empty-set is declared as the identity element in op , Maude applies this
axiom and returns us s(s(s(0)))). In this case the answer is unique but there
can be multiple answers, in which case Maude returns us only one, or none if the
system is non terminating.

3.3 The metalevel

Maude reflective capacities are supported through the functional module META-
LEVEL where each element we have defined previously has a correspondent sort
(Fmodule, Module, Term, ...). This module is included in the file prelude.maude
which is always loaded at the beginning of a session in Maude providing several
often needed modules. One important sort in META-LEVEL is Qid (for quoted
identifier), which allows us to meta-represent constants and variables by their own
names preceded by an apostrophe (’) and followed by a colon and a sort in the
case of variables, or by a period and a sort in the case of constants (for instance
’N:Nat ’0.Nat in our previous example).

The META-LEVEL module provides several functions (metaUnify, glbSorts,

leastSort, ...) that will be used in the calculus. These functions are only avail-
able at the metalevel because they must take the given theory as a parameter. For
instance, the unification algorithm is theory-dependent, since a different order-
sorted unification algorithm is derived for each different signature Σ and combina-
tion of axioms A, so the metaUnify command needs both as parameters (it really
takes as only parameter the metarepresentation of the full module provided by the
metalevel operation upModule).

A full coverage of Maude and its metalevel can be found on Maude manual
[CDE+].

Chapter 4

Conditional narrowing modulo
unification

Narrowing allows us to find possible values for variables in a way such that a
reachability goal holds. Our intention is to partially emulate narrowing using a
calculus that has the following properties:

1. If σ is a normalized idempotent solution for a reachability goalG, the calculus
can compute a more general answer σ �E σ′ for G.

2. If the calculus computes an answer σ for G, then σ is a solution for G.

That is, we want to compute a complete set of answers for G, a set that includes
a generalization of any possible solution for G.

We are going to split this task into two subtasks: first we will see the part of
the calculus that deals with unification; second, we will see the part that deals
with reachability.

4.1 Calculus rules for unification

We assume we are working with a Maude module named M . This module has all
the declarations for sorts, kinds, operators, memberships, equations, axioms and
rules.The calculus will make use of several functions at the metalevel, provided by
Maude. Their syntax is simplified for clarity:

• acuCohComplete(M), returns an ACU-coherence completed version of M1.

1ACU-coherence completion [JKK83] guarantees that an equation or rule can be applied
anywhere in associative-commutative functions, by adding extra equations. For instance, if we
have the term a + (b + c), where + is associative-commutative, and the equation a + c = d,
ACU-coherence completion adds an equation a + c + X = d + X, whose left part unifies with
a+ (b+ c), using substitution {X 7→ b}, so we can rewrite a+ (b+ c) to d+ b.

22

4. Conditional narrowing modulo unification 23

• glbSorts(M,S, T) returns a set of sorts that are the greatest lower bound of
sort S and sort T according to M . That is, if R ∈ glbSorts(M,S, T), then
R ≤ S, R ≤ T and there is no R′ such that R ≤ R′ ≤ S and R ≤ R′ ≤ T
with the memberships in M .

• unify(M, s, t, n) returns the n-th A-unifier for s and t, that is, a substitution
σ such that sσ =A tσ, if it exists. (Actually, we will use its metalevel
counterpart metaUnify .)

• reduce(M, s) returns a pair whose first element is term s reduced, and the
second element is the sort for this reduced term. (Again, we will use its
metalevel counterpart metaReduce.)

• leastSort(M, t) returns the least sort that term t can have without rewriting
it, that is, only looking at the sort of its subterms, the definition of its
operators and the memberships in M .

• getType(X) returns the sort of the variable X.

Maude’s function unify is guaranteed to return a complete set of order-sorted
unifiers, but it doesn’t work with memberships. To overcome this problem we will
use an approach similar to [Rie12]. We use the functions at the kind level, that
is, all variables in terms are replaced by variables with the same name whose sort
is the kind of the replaced variable, checking the memberships for these variables
separately. In this way, axiom information is taken into account for A-unification,
but membership information is not, so we will usually get a larger number of
unifiers. The spurious ones will be later deleted by membership checking. For
example, if we have to unify f(X:S, a) and g(b, Y :T) we unify the terms f(X:[S], a)
and g(b, Y :[T]), take each returned A-unifier and check that X:[S] has sort S or
Y :[T] has sort T if any of them have been assigned a value in the A-unifier. The
A-unifiers that don’t pass this check are discarded. If any of the terms to unify
is a variable X:S we don’t have to include any additional checking for its sort S,
because it already has to be checked by the calculus for unification.

We complete the module M in the following way:

• For each operator f : S1 . . . Sn → S, n≥0, we add the membership
mb f(X1:S1, ..., Xn:Sn) : S to M , translating implicit sort and operator mem-
bership information into explicit memberships.

• We call acuCohComplete(M) to obtain an ACU-coherence completed version
of M .

We will refer to the completed set of equations and memberships as E, to the
completed set of rules as R and to the set of axioms as A.

24 4.1. Calculus rules for unification

A unification equation is a term s:S = t:T . This means that we intend to
unify s and t, with resulting sorts S and T respectively, that is, we want to find a
substitution σ such that sσ has sort S, tσ has sort T and σ is an E-unifier for s
and t. A unification goal is a sequence (understood as conjunction) of unification
equations.

Admissible goals, or simply goals, are any sequence of s:S=t:T , s:S≈t:T ,
s:S:=t:T and t:T . From a unification goal the calculus tries to derive the empty
goal. This part of the calculus is based on the inference rules for membership
rewriting. In rewriting we work at the kind level, but any goal in our calculus of
the form s:S op t:T is equivalent to the system of equations s op t, s=XS, t=YT ,
that is s and t can unify at the kind level, but each one must unify with a variable
of the required sorts, and then by membership they must also have that sorts (we
will extend the syntax for systems of equations and allow the use of the equivalent
requirements s:S, t:T .)

We use in our calculus a symbol ≈, not present in Σ, that only appears in root
positions of terms. This symbol means rewriting using oriented equations as rules.
We use it to distinguish between rewriting with oriented equations and rewriting
with rules, where we will use the symbol →.

Conditions in equations and memberships may have the form s or t == t′,
where s is a term with sort boolean, which is a predefined sort in Maude. The
predicate == is a built-in boolean predicate of Maude that checks for syntactic
equality. Given two terms, it reduces both to canonical form and checks if both
are exactly the same. If this is the case, it rewrites the predicate to the boolean
value true. Otherwise, it rewrites the predicate to the boolean value false. we will
translate this conditions to s ≈ true or t == t′ ≈ true respectively.

Our calculus is defined by the following set of inference rules, based on the con-
cepts of equational conditional rewriting without evaluation of the premise [Boc93]
and lazy conditional narrowing calculus [MSH02], where we assume that we have a
numerable set of fresh variables (variables not present in any of the goals) for each
sort. If we have to unify two terms s and t, we will call s′, t′ the kinded variable
terms and c′ the check for memberships generated by the transformation of s and
t. Notice also that the first two rules, [u] and [x], transform equational problems
into rewriting problems modulo axioms:

[u] unification

G′, s:S=t:T,G′′

G′, s:S ′≈X:S ′, t:S ′≈X:S ′, G′′

where X fresh variable, S′ ∈ glbSorts(M,S, T).

4. Conditional narrowing modulo unification 25

[x] matching
G′, s:S := t:T,G′′

G′, t:S ′≈s:S ′, G′′

where S′ ∈ glbSorts(M,S, T).

[n] narrowing
G′, s:S ≈ t:T,G′′

(G′, (c′,)s:S ′, (c,)r:S ′≈t:S ′, G′′)θ

(c)eq l = r (if c) ∈ E has fresh variables, S′ ∈ glbSorts(M,S, T),

θ A-unifier of s′ and l′ kinded variable terms, c′ membership checks.

[t] transitivity
G′, s:S ≈ t:T,G′′

G′, s:S ′ ≈ X:S ′, X:S ′ ≈ t:S ′, G′′

where X fresh variable, S′ ∈ glbSorts(M,S, T).

[i] imitation
G′, f(s̄:S̄):S ≈ X:T,G′′

G′θ, si:Si ≈ Xi:Si, f(s̄:S̄):S ′, f(X̄:S̄):S ′, G′′θ

where X/∈Var(s), θ = {X 7→ f(X̄:S̄)},
Xi fresh variables, S′ ∈ glbSorts(M,S, T).

[d] decomposition

G′, f(s̄:S̄):S ≈ f(t̄:T̄):T,G′′

G′, s1:S1≈t1:T1, ..., sn:Sn≈tn:Tn, f(s̄:S̄):S ′, f(t̄:T̄):S ′, G′′

where S′ ∈ glbSorts(M,S, T).

[r] removal of equations
G′, s:S ≈ t:T,G′′

(G′, (c′,)s:S ′, t:S ′, G′′)θ

where θ A-unifier of s′ and t′ kinded variable terms,

c′ membership checks, S′ ∈ glbSorts(M,S, T).

[s] subject reduction
G′, s:S,G′′

G′, s:[S] ≈ X:S,G′′

X fresh variable.

26 4.2. Examples

[m1] membership
G′, X:S,G′′

(G′, G′′)θ

(i) θ = id if X variable, getType(X) = S or
(ii) θ = id if X term, leastSort(M,X) ≤ S or

(iii) θ = {X 7→ Z:S′} if Z fresh variable and S′ ∈ glbSorts(M,S, getType(X)).

[m2] membership
G′, f(s̄):S,G′′

(G′, (c′,)(c,)G′′)θ

where (c)mb g(t̄):T (if c) is a fresh variant, with T ≤ S, of a (conditional) membership in E,

and θ A-unifier of f ′(s̄) and g′(t̄) kinded variable terms, c′ membership checks. i may be 0.

glbSorts is used in many rules, because when we try to unify one term with sort
S and another term with sort T , the sort of the resulting unified term must be a
common subsort of S and T , and glbSorts(M,S, T) is the set of the supremes for
this subsorts. This is a nondeterministic step, we can even find different answers
depending on the sort that we choose, so we have to consider all possible sorts in
glbSorts(M,S, T). This issue has already been discussed by Hendrix and Meseguer
in [HM12].

4.2 Examples

In the following examples we use the symbol [r]i when we apply a calculus rule
[r]. i is optional and may include the equation or membership applied as well as
the A-unifier applied. We keep old variables in substitutions, when possible, to
ease the reading of derivations. In real use, each substitution creates new variables
on its right side to ensure idempotency. If no substitution is shown in a rule that
needs it, id is assumed. We underline the subgoals where rules get applied.

Example 1

This example shows the necessity of membership checking in inference rules. We
define natural numbers and multiples of number three:

fmod 3*NAT is

sort Zero Nat .

subsort Zero < Nat .

op zero : -> Zero .

op s_ : Nat -> Nat .

4. Conditional narrowing modulo unification 27

sort 3*Nat .

subsorts Zero < 3*Nat < Nat .

var M3 : 3*Nat .

mb (s s s M3) : 3*Nat .

endfm

If we try to solve the unification goal s(Y :Nat):Nat = M3 :3∗Nat , we get the
following derivation:

1. s(Y :Nat):Nat=M3 :3∗Nat [u]

2. s(Y :Nat):3∗Nat≈Z:3∗Nat ,M3 :3∗Nat≈Z:3∗Nat [r] θ={M3 7→Z:3∗Nat}

3. s(Y :Nat):3∗Nat≈Z:3∗Nat , Z:3∗Nat):3∗Nat , (Z:3∗Nat):3∗Nat [m1]

4. s(Y :Nat):3∗Nat≈Z:3∗Nat , (Z:3∗Nat):3∗Nat [m1]

5. s(Y :Nat):3∗Nat≈Z:3∗Nat [r] θ={Z 7→s(Y :Nat)}

6. s(Y :Nat):3∗Nat , s(Y :Nat):3∗Nat [m2] mb sss(Z ′:3∗Nat):3∗Nat ,θ={Y 7→ssZ′:3∗Nat}

7. ss(Z ′:3∗Nat):Nat [m1], leastSort(M,ss(Z′:3∗Nat))=Nat

8. �

In step number five, we get the A-unifier θ because we ask for it at the kind level,
dropping sorts of variables Y and Z. If we use the original sorts, unify returns no
unify as answer, and we are not able to solve the unification problem. Also, if the
membership condition had not been included in rule [r], the derivation would have
ended after step number five with answer M3 7→ s(Y :Nat). With the membership
condition we get the rest of the answer, Y :Nat 7→ ss(Z ′:3∗Nat).

Example 2

Let’s see how conditional equations work. Consider the functional module:

fmod NAT-FIB is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

op _<=_ : Nat Nat -> Bool .

op f : Nat -> Nat .

vars M N : Nat .

28 4.2. Examples

eq [a1] : 0 + N = N .

eq [a2] : s(M) + N = s(M + N) .

eq [e1] : 0 <= N = true .

eq [e2] : s(M) <= 0 = false .

eq [e3] : s(M) <= s(N) = M <= N .

ceq [f1] : f(N) = s(0) if (N <= s(0)) .

eq [f2] : f(s(s(N))) = f(N) + f(s(N)) .

endfm

This is a version of Fibonacci’s sequence, not the original one. Now we try to
answer the goal f(Y):Nat = s(s(0)):Nat . Sorts and checks for memberships are
omitted, since there is only one. The derivation is as follows:

1. f(Y) = s(s(0)) [u]

2. f(Y) ≈ X, s(s(0)) ≈ X [t]

3. f(Y) ≈ Z,Z ≈ X, s(s(0)) ≈ X [r],θ={X 7→s(s(0))}

4. f(Y) ≈ Z,Z ≈ s(s(0)) [n],[f2],θ={Y 7→s(s(Y1))}

5. f(Y1) + f(s(Y1)) ≈ Z,Z ≈ s(s(0)) [i],θ={Z 7→Z1+Z2}

6. f(Y1) ≈ Z1, f(s(Y1)) ≈ Z2, Z1 +Z2 ≈ s(s(0)) [n],[f1],θ={N 7→Y1} conditional!

7. Y1 ≤ s(0) ≈ true, s(0) ≈ Z1, f(s(Y1)) ≈ Z2, Z1+Z2 ≈ s(s(0)) [n],[e1],θ={N 7→0,Y1 7→0}

8. true ≈ true, s(0) ≈ Z1, f(s(0)) ≈ Z2, Z1 + Z2 ≈ s(s(0)) [r]

9. s(0) ≈ Z1, f(s(0)) ≈ Z2, Z1 + Z2 ≈ s(s(0)) [r],θ={Z1 7→s(0)}

10. f(s(0)) ≈ Z2, s(0) + Z2 ≈ s(s(0)) [n],[f1],θ={N 7→s(0)}

11. s(0) ≤ s(0) ≈ true, s(0) ≈ Z2, s(0) + Z2 ≈ s(s(0)) [n],[e3],θ={M 7→0,N 7→0}

12. 0 ≤ 0 ≈ true, s(0) ≈ Z2, s(0) + Z2 ≈ s(s(0)) [n],[e1],θ={N 7→0}

13. true ≈ true, s(0) ≈ Z2, s(0) + Z2 ≈ s(s(0)) [r]

14. s(0) ≈ Z2, s(0) + Z2 ≈ s(s(0)) [r],θ={Z2 7→s(0)}

15. s(0) + s(0) ≈ s(s(0)) [n],[a2],θ={M 7→0,N 7→s(0)}

16. s(0 + s(0)) ≈ s(s(0)) [d]

17. 0 + s(0) ≈ s(0) [n],[a1],θ={N 7→s(0)}

4. Conditional narrowing modulo unification 29

18. s(0) ≈ s(0) [r]

19. �

From the underlined substitutions we get the desired answer σ = {Y 7→ s(s(0))}.

Example 3

We consider now a specification of integer numbers with sum, difference, unary
minus and a boolean comparison operation between integers <=. This is the func-
tional module:

fmod INTEGERS is

sort Int .

op 0 : -> Int [ctor] .

op s : Int -> Int [ctor] .

op p : Int -> Int [ctor] .

op _+_ : Int Int -> Int .

op _-_ : Int Int -> Int .

op -_ : Int -> Int .

op _<=_ : Int Int -> Bool .

vars N M : Int .

eq [sp] : s(p(N)) = N .

eq [ps] : p(s(N)) = N .

eq [s1] : 0 + N = N .

eq [s2] : s(M) + N = s(M + N) .

eq [s3] : p(M) + N = p(M + N) .

eq [d1] : N - 0 = N .

eq [d2] : M - s(N) = p(M - N) .

eq [d3] : M - p(N) = s(M - N) .

eq [d4] : - N = 0 - N .

eq [i1] : s(M) <= N = M <= p(N) .

eq [i2] : p(M) <= N = M <= s(N) .

eq [i3] : N <= N = true .

eq [i4] : N <= p(N) = false .

ceq [i5] : N <= s(M) = true if N <= M .

ceq [i6] : N <= p(M) = false if N <= M == false .

endfm

Our goal now is s(0) − X ≤ s(0):Bool = true:Bool . We will consider several
derivations. We omit checking sorts again, since there is only one sort per kind:

1. s(0)−X ≤ s(0) = true [u]

30 4.2. Examples

2. s(0)−X ≤ s(0) ≈ V , true ≈ V [t]

3. s(0)−X ≤ s(0) ≈ W,W ≈ V, true ≈ V [r] θ={V 7→true}

4. s(0)−X ≤ s(0) ≈ W,W ≈ true [i] θ={W 7→Y≤Z}

5. s(0)−X ≈ Y , s(0) ≈ Z, Y ≤ Z ≈ true [n],[d1], θ={N 7→s(0),X 7→0}

6. s(0) ≈ Y , s(0) ≈ Z, Y ≤ Z ≈ true [r] θ={Y 7→s(0)}

7. s(0) ≈ Z, s(0) ≤ Z ≈ true [r] θ={Z 7→s(0)}

8. s(0) ≤ s(0) ≈ true [n],[i3], θ={N 7→s(0)}

9. true ≈ true [r]

10. �

The answer computed here is σ = {X 7→ 0}.

Another derivation:

1. s(0)−X ≤ s(0) = true [u]

2. s(0)−X ≤ s(0) ≈ V , true ≈ V [n],[i5], θ={N 7→s(0),M 7→X}conditional!

3. s(0)−X ≤ 0 ≈ true, true ≈ V, true ≈ V [r], θ={V 7→true,M 7→X}

4. s(0)−X ≤ 0 ≈ true, true ≈ true [r]

5. s(0)−X ≤ 0 ≈ true [t]

6. s(0)−X ≤ 0 ≈ W,W ≈ true [i], θ={W 7→W1≤W2}

7. s(0)−X ≈ W1, 0 ≈ W2,W1 ≤ W2 ≈ true [r], θ={W2 7→0}

8. s(0)−X ≈ W1,W1 ≤ 0 ≈ true [n],[d2], θ={M 7→s(0),N 7→X′,X 7→s(X′)}

9. p(s(0)−X ′) ≈ W1,W1 ≤ 0 ≈ true [i] θ={W1 7→p(W ′1)}

10. s(0)−X ′ ≈ W ′
1, p(W

′
1) ≤ 0 ≈ true [n],[i5], θ={N 7→s(0),X′ 7→0}

11. s(0) ≈ W ′
1, p(W

′
1) ≤ 0 ≈ true [r], θ={W ′1 7→s(0)}

12. p(s(0)) ≤ 0 ≈ true [n],[ps], θ={N 7→0}

13. 0 ≤ 0 ≈ true [n],[i3], θ={N 7→s(0)}

4. Conditional narrowing modulo unification 31

14. true ≈ true [r]

15. �

The answer computed here is σ = {X 7→ s(0)}.

One incomplete derivation:

1. s(0)−X ≤ s(0) = true [u]

2. s(0)−X ≤ s(0) ≈ V , true ≈ V [t]

3. s(0)−X ≤ s(0) ≈ W,W ≈ V, true ≈ V [r], θ={V 7→true}

4. s(0)−X ≤ s(0) ≈ W,W ≈ true [i], θ={W 7→Y≤Z}

5. s(0)−X ≈ Y, s(0) ≈ Z, Y ≤ Z ≈ true [r], θ={Z 7→s(0)}

6. s(0)−X ≈ Y , Y ≤ s(0) ≈ true [n],[d3], θ={M 7→s(0),N 7→N ′,X 7→p(N ′)}

7. s(s(0)− p(N ′)) ≈ Y , Y ≤ s(0) ≈ true [i], θ={Y 7→s(Y ′)}

8. s(0)− p(N ′) ≈ Y ′, s(Y ′) ≤ s(0) ≈ true [n],[d3], θ={M 7→s(0),N 7→N ′}

9. s(s(0)−N ′) ≈ Y ′, s(Y ′) ≤ s(0) ≈ true [i], θ={Y ′ 7→s(Y ′′)}

10. s(0)−N ′ ≈ Y ′′, s(s(Y ′)) ≤ s(0) ≈ true [n],[d1], θ={N 7→s(0),N ′ 7→0}

11. s(0) ≈ Y ′′, s(s(Y ′′)) ≤ s(0) ≈ true [r] θ={Y ′′ 7→0}

12. s(s(0)) ≤ s(0) ≈ true [n],[i1], θ={M 7→s(0),N 7→s(0)}

13. s(0) ≤ p(s(0)) ≈ true [n],[i4], θ={N 7→s(0)}

14. false ≈ true

No further derivation is possible. We couldn’t prove that σ = {X 7→ p(0)} is
an answer, this way (most of all because it is not an answer). In this example
narrowing will never stop, it can try every negative integer without proving that
it is an answer, because narrowing cannot perform inductive proving.

Chapter 5

Correctness of the calculus for
unification

We prove correctness of the calculus with respect to normalized idempotent sub-
stitutions for the executable Mel theory (Σ, E∪A) and the corresponding rewrite
theory RE = (Σ′,A, RE) associated to it (both are equivalent).

5.1 Soundness

We prove that given a unification goal G, if G ∗σ � then Gσ can be derived,
so σ is a solution for G. Soundness of the calculus is proved by induction on the
length of the derivation. Recall that all calculus rules always check the correct
typing. We transform any goal (s:S op t:T) into (s op t, s:S, t:T), as explained
in chapter 4.

Base step: proofs with length one. We have a goal with one element. The
only inference rules that delete goals without creating new ones are [m1], and [m2]
in the case of constants (i = 0) and non conditional memberships:

[m1] membership
X:S

�

(i) θ = id if X variable, getType(X) = S or
(ii) θ = id if X term, leastSort(M,X) ≤ S or

(iii) θ = {X 7→ Z:S′} if Z fresh variable and S′ ∈ glbSorts(M,S, getType(X)).

If X is a term and leastSort(M,X) ≤ S we can derive X:S. If X is a variable then
if S ′=S, X:S ∈ Σ. Otherwise if X has sort T , θ is a valid substitution because

32

5. Correctness of the calculus for unification 33

S ′ ≤ T . If S ′ is a subsort of S, Z:S ′ ∈ Σ, (∀y:[S])y:S if y:S ′) ∈ E , so we can
derive Z:S. If S ′=S then Z:S ∈ Σ.

�

[m2] membership, i = 0 no conditions

c:S

�

where mb c:T is a membership (explicit or implicit) in E, with T ≤ S.

As T ≤ S we have added the membership cmb X:S if X:T . As c:T , by membership
we derive c:S.

�

Induction step: We assume that if a derivation of � from a goal G, with length
n or less, provides a substitution σ, then Gσ is derivable and the associated reach-
ability goal rewrites to >, that is, σ is an answer of G. We have to prove that this
property holds for derivations with length n + 1. We assume G ≡ g,G′ (G′ may
be empty), and check all possible calculus rules applied to g:

[u] unification
s:S=t:T,G′

s:S ′≈X:S ′, t:S ′≈X:S ′, G′

where X fresh variable, S′ ∈ glbSorts(M,S, T).

By induction hypothesis if there is a normalized idempotent substitution σ, com-
puted answer for s:S ′ ≈ X:S ′, t:T ≈ X:S ′ and G′ we can derive sσ→Xσ, tσ→Xσ,
sσ:S ′ tσ:S ′ and G′σ. Since S ′ ≤ S and S ′ ≤ T , we can derive sσ:S and tσ:T .
gσ ≡ sσ:S=tσ:T . We are going to show that we can solve the equivalent prob-
lem in RE: eq(sσ:S, tσ:T) → >. As sσ:S and tσ:T are derivable all that is
left to do is proving that eq(sσ, tσ) → >. From eq(X,X) → tt by replacement
with X 7→ Xσ we get eq(Xσ,Xσ) → tt . Applying congruence twice we get:
eq(sσ, tσ)→ eq(Xσ,Xσ). Then, by transitivity, eq(sσ, tσ)→ >.
σ is a solution of g and also of G′, so σ is a solution of G.

�

[x] matching
s:S := t:T,G′

t:S ′≈s:S ′, G′

where S′ ∈ glbSorts(M,S, T).

34 5.1. Soundness

By I.H. if σ is a computed answer of t:S ′≈s:S ′ and G′, we derive sσ:S and tσ:T ,
as before, and tσ→sσ. Recall that in a Mel theory we treat matching logically
as equality, the difference between them is computational, so gσ ≡ sσ:S=tσ:T .
Again, we show that we can solve the equivalent problem in RE: eq(sσ:S, tσ:T)→
>. As we can derive sσ:S and tσ:T , we have to prove eq(sσ, tσ) → >. From
eq(X,X)→ tt by replacement with X 7→ sσ we have eq(sσ, sσ)→ >. By congru-
ence, eq(sσ, tσ)→ eq(sσ, sσ). Then, by transitivity, eq(sσ, tσ)→ >.
σ is a solution of s:S:=t:T and also of G′, so σ is a solution of G.

�

[n] narrowing
s:S ≈ t:T,G′

((c′,)s:S ′, (c,), r:S ′≈t:S ′, G′)θ
(c)eq l = r (if c) ∈ E has fresh variables, S′ ∈ glbSorts(M,S, T),

θ A-unifier of s′ and l′ kinded variable terms, c′ membership checks.

σ ≡ θσ′ is a computed answer for c′, s:S ′, c, r:S ′≈t:S ′ and G′. By I.H. we can
derive c′σ, meaning that for every instantiated variable in θ we can derive that
the value it has been assigned to in σ is of the right sort. As before, we derive
sσ:S, rσ:R and tσ:T . sθ=Alθ implies sσ=Alσ, with every instantiated variable
in θ of the right sort. By reflexivity, sσ→Alσ. cσ is derivable so we can derive
lσ → rσ, by replacement. By transitivity we derive sσ → rσ. By I.H. rσ → tσ is
also derivable. Then, again by transitivity, sσ → tσ. Is is important to remember
that M is ACU-coherence completed, so even if the original left term l cannot be
A-unified with s, the ACU-coherence completed version of l may A-unify with s,
because it allows checking any possible reordering of the subterms of s.

�

[t] transitivity
s:S ≈ t:T,G′

s:S ′ ≈ X:S ′, X:S ′ ≈ t:S ′, G′

where X fresh variable, S′ ∈ glbSorts(M,S, T).

If σ is the computed answer, by I.H. we can derive s→ X and X → t with correct
typing as before. Then, by transitivity, we can derive s→ t.

�

[i] imitation
f(s̄:S̄):S ≈ X:T,G′

si:Si ≈ Xi:Si, f(s̄:S̄):S ′, f(X̄:S̄):S ′, G′θ

5. Correctness of the calculus for unification 35

where X/∈Var(s), θ = {X 7→ f(X̄:S̄)},
Xi fresh variables, S′ ∈ glbSorts(M,S, T).

σ ≡ θσ′, σ′ computed answer for si:Si≈Xi:Si, f(s̄:S̄):S, f(X̄:S̄):T and G′θ as be-
fore. By I.H. we can derive Xiσ

′:Si and siσ
′:Si.

As f(sσ) ≡ f(sθσ′) ≡ f(sσ′) (X/∈Var(s)), by I.H. we can derive f(s̄σ:S̄):S.
Xσ ≡ Xθσ′ ≡ f(X̄σ′) so, by I.H., we can derive Xσ:T .
By I.H. siσ

′ → Xiσ
′. Then, by congruence, f(s̄σ′)→∗ f(X̄σ′) ≡ Xσ.

So we can derive gσ, and σ′ answer of G′θ implies can derive G′θσ′, that is, we
can also derive G′σ.

�

[d] decomposition

f(s̄:S̄):S ≈ f(t̄:T̄):T,G′

s1:S1≈t1:T1, ..., sn:Sn≈tn:Tn, f(s̄:S̄):S ′, f(t̄:T̄):S ′, G′

where S′ ∈ glbSorts(M,S, T).

If σ is a computed solution, then by I.H. we derive f(s̄σ:S̄):S, f(t̄σ:T̄):T , siσ→tiσ,
s′iσ:S ′i, t

′
iσ:T ′i , as before. By congruence we derive f(s̄σ)→f(t̄σ).

�

[r] removal of equations
s:S ≈ t:T,G′

((c′,)s:S ′, t:S ′, G′)θ

where θ A-unifier of s′ and t′ kinded variable terms,

c′ membership checks, S′ ∈ glbSorts(M,S, T).

θσ′ ≡ σ is a computed answer for G′, c′, s:S ′ and t:S ′. By I.H. σ is a solution
for G′, c′, s:S ′ and t:S ′.

sσ=Atσ and c′σ is derivable, so variable assignments have correct checking. By
reflexivity we derive sσ → tσ. Then σ is a solution of s:S → t:T , so σ is a solution
for G.

�

[s] subject reduction
t:S,G′

t:[S] ≈ X:S,G′

X fresh variable.

36 5.2. Completeness

If σ is a computed answer then, by I.H., we can derive tσ → Xσ and Xσ:S.
Applying subject reduction we get tσ:S.

�

[m1] membership
X:S,G′

G′θ

(i) θ = id if X variable, getType(X) = S or
(ii) θ = id if X term, leastSort(M,X) ≤ S or

(iii) θ = {X 7→ Z:S′} if Z fresh variable and S′ ∈ glbSorts(M,S, getType(X)).

By induction hypothesis if θσ′ ≡ σ is a computed answer for G′, σ is a solution
for G′.
As seen in the base case, Xθ:S is derivable, so any instantiation of X in σ′ with
sort lower or equal than S or S ′, depending on the case, is also derivable.

�

[m2] membership
f(s̄):S,G′

((c′,)(c,)G′)θ

where (c)mb g(t̄):T (if c) is a fresh variant, with T ≤ S, of a (conditional) membership in E,

and θ A-unifier of f ′(s̄) and g′(t̄) kinded variable terms, c′ membership checks. i may be 0.

θσ′ ≡ σ is a computed answer of c′, c and G′. By I.H. σ is a solution for c′, c and
G′.
f ′(sθ) =A g

′(tθ) and c′σ derivable implies f(sσ) =A g(tσ). Then by membership,
as cσ is derivable, we derive f(s̄σ):S.

�

5.2 Completeness

As previously stated, we assume that we have an A-unification algorithm that
returns order sorted unifiers, in Maude it is called unify and gives a CSU , so
our substitutions may be more general than the ones we are imitating, therefore
improving the answer. We also have the kind function, that returns the kind of a
term.

We prove that if ρ is a normalized idempotent answer of G (Gρ →∗ >), then
there is ρ′ normalized idempotent, with ρ �E ρ′, such that G ρ′ �. Com-
pleteness of the calculus is proved by induction on the length of inferences in

5. Correctness of the calculus for unification 37

R = (Σ′,A, RE), looking at the last inference rule used:
Base step:

(Reflexivity)

s→ t

if s =A t

sρ =A tρ allows the inference sρ → tρ. Any instantiated variable xi in ρ must
have correct type Si, that is, we have derived the correct type for it. By I.H we
can compute some σ, with ρ�E σ, answer of s′ =A t

′,
∧
xi:Si, that is, if we drop

sorts on inner variables of s and t we get a more general answer for s′ and t′. σ
being more general that ρ means that the instantiated variables in σ are a sub-
set of those in ρ. Then all the instantiated variables in σ have correct type and
sσ:kind(M, s) =A tσ:kind(M, t).
s:kind(M, s) ≈ t:kind(M, t) [r],σ sσ:kind(M, s), tσ:kind(M, t) ∗ �.

On the rest of rules when no membership gets involved we omit the part on kinds.

�

Induction step:

(Transitivity)
t1 → t2, t2 → t3

t1 → t3
t1ρ → t2 and t2 → t3ρ allows the inference t1ρ → t3ρ, with ρ idempotent. Then
id is a solution for the reachability problems t1ρ → t2 and t2 → t3ρ. As the
derivation of both terms is smaller than that of t1ρ→ t3ρ, by I.H. we can compute
an idempotent answer lower or equal than id (so it must be id) for t1ρ ≈ t2 and
t2 ≈ t3ρ, that is, we can compute t1ρ ≈ t2 and t2 ≈ t3ρ.
Then, by rule [t], we can compute t1ρ ≈ t3ρ, and ρ is a computed solution for
t1 → t3.

�

(Congruence)
ti → t′i

f(t1, . . . , ti, . . . , tn)→ f(t1, . . . , t′i, . . . , tn)

From tiρ → t′iρ we derive f(t1, . . . , tiρ, . . . , tn) → f(t1, . . . , t
′
iρ, . . . , tn). By I.H.

there is σ, with ρ�E σ, such that σ is a computed solution for tiσ≈t′iσ. Without
loss of generality we assume i=1.

f(t1, . . . , tn)≈f(t′1, . . . , tn) [d]t1≈t′1, . . . , tn≈tn ∗[r] t1≈t′1
I.H.
 σ �.

38 5.2. Completeness

�

(Replacement)
A•1σ . . . A

•
nσ

u→ t′σ

if t→ t′ if A1 . . . An in RE and u =A tσ

If ρ is a solution then uρ =A tσ and A•1σ . . . A
•
nσ. By I.H., there is σ′, with σ �E σ′

such that σ′ is a computed solution for A1∧. . .∧An. Then we derive tσ′ ≈ t′σ′. σ is
an instantiation of variables from σ′, so we can also derive tσ ≈ t′σ. As uρ =A tσ,
there is ρ′, with ρ �E ρ′, A-match for u and tσ. By removal of equations, we
derive uρ′ ≈ tσ and, by transitivity, we derive uρ′ ≈ t′σ.

�

(Subject Reduction)
t→ t′, t′ : s

t : s

If ρ is a solution, by I.H. there is σ, with ρ�E σ, such that σ is a computed answer
for t ≈ t′ and t′ : s. Then, by subject reduction, σ is a computed answer for t:s.

�

(Membership)
A•1σ . . . A

•
nσ

u : s

if t : s if A1 . . . An in RE and u =A tσ

If ρ is a solution then uρ =A tσ and A•1σ . . . A
•
nσ. By I.H., there is σ′, with

σ �E σ′, such that σ′ is a computed solution for A1 ∧ . . . ∧ An. By membership
σ′ is a computed solution for t:s, that is tσ′:s. tσ is an instantiation of variables
from tσ′, so tσ:s too. uρ =A tσ implies we get ρ′, with ρ �E ρ′, A-match for u
and tσ. By subject reduction we get uρ′:s, so ρ′ is a computed solution for u:s.

�

Chapter 6

Transformations for unification

The calculus described in chapter 4 assumes that we have an oracle that always
chooses the right rule, the right equation and also, if needed, the right A-unifier
to apply at each step of the calculus, so we can get an answer for our unification
problem. What we are going to see now is a set of transformations that can
find the same answer computationally. While the calculus is concerned with how
problems evolve, the transformations are concerned with how to make problems
evolve, that is, the logic for a future implementation. The transformations show
us what structures do we need, how they relate one to another, where do we keep
intermediate results, etc. They are pretty much like algorithms: the details of the
implementation are omitted, so we can clearly see the more important parts of the
computation.

An E-unification problem from our calculus will be here a list of goals, each
one a possible computation of the answer, separated by symbol ‖, and a last
element A, the list of found answers, separated by symbol 4. Each goal contains
a list of subgoals, where each subgoal is surrounded by square brackets, and a
partial solution σ computed so far. σ is placed after the list of subgoals, separated
by a symbol ∇. Each subgoal holds inference rules and may hold equations or
memberships that apply to it. Rules for problem transformation take one subgoal
of a goal and may modify it, delete it, or add a new goal to the problem, based
on this one. The new goal will have additional braces when applying conditional
equations or memberships, or when applying some rules, delaying the development
of some subgoals until others are solved. We turn the original problem into a
reachability problem: is it possible to reach a configuration in which one of the
goals has an empty list of subgoals? This goal would hold a substitution σ that
would be one solution to our E-unification problem.

39

40 6.1. Transformation rules for unification

6.1 Transformation rules for unification

We keep the whole computation in one structure. Each subgoal on it has the form
G�R� E or G�R�M , where:

• G is the actual subgoal. It can be unification, matching, equation or mem-
bership.

• R is a queue/set of inference rules. Each element holds a rule of the calculus
and a number for the A-unifier to request for that rule, if needed. If the list
gets empty, the subgoal is exhausted, and we delete the goal.

• E is a queue/set of pairs. Each element holds an equation and the number
of the A-unifier to request for that equation. This list is used by rule NA.

• M is a queue/set of memberships, conditional or unconditional. Each ele-
ment holds a membership and the number of A-unifier to ask for. The list
is used by rule ME.

As an example, the following structure:

[+(a, c):S � s,m0,m1,m2� (a, 0), (e, 0)]

[+(d,+(b, e)):S ≈ +(+(a, c), b):S � d, n, t, (r, 0)� (e1, 0)]

∇ {X 7→ a} 4 empty

has one goal with two subgoals, +(a, c):S and +(d,+(b, e)):S ≈ +(+(a, c), b):S,
each one with the calculus rules, equations and memberships that may apply to
them. There is one partial computed answer {X 7→ a}, but the set of computed
answers remains empty .

One or several subgoal may have ♦ instead of � as separator, with braces
surrounding them. This means that the subgoals are delayed, and depend on other
subgoals, inside other braces too but with � as separator, to resume computation.
That is, there are at least two pairs of braces, and delayed subgoals are always
inside a nested pair of braces. This example:

{[+(a, c):S � s,m0,m1,m2� (a, 0), (e, 0)]

{[+(d,+(b, e)):S ≈ +(+(a, c), b):S ♦ d, n, t, (r, 0) ♦ (e1, 0)]}}

∇ {X 7→ a} 4 empty

6. Transformations for unification 41

is similar to the previous example, but now we cannot apply any transforma-
tion to the subgoal +(d,+(b, e)):S ≈ +(+(a, c), b):S until we solve the subgoal
+(a, c):S.

The initial goal contains several subgoals si:Si=ti:Ti, pairs of terms we want to
unify. For each subgoal R holds u, E is empty, and σ holds the id substitution.
The list A of found answers is empty.

These are the rules for problem transformation in this approach, where E, M
stand for fresh variants of the queues/sets of equation pairs, and membership pairs,
and R is the initial queue/set of inference rules, but each list restricted each time to
the applicable inference rules, equations, or membership rules for the subgoal. We
have omitted sorts on terms, when not strictly necessary, to improve readability.
Rules can be applied inside any number of nested levels of braces, except AF that
applies to the whole computation. ḡ stands for the rest of subgoals of the goal
we are considering, ḡ′ stands for some nested delayed subgoals, Ḡ are the rest of
concurrent computations. All of them may be empty:

AF Answer Found

∇ σ ‖ Ḡ4 A
AF Ḡ4 σ,A
G may be empty.

RC Resume Computation

{{[gi ♦Ri ♦ . . .]ni=1{ḡ′}}} ḡ ∇ σ ‖ Ḡ4 A
RC

{[gi �Ri � . . .]ni=1{ḡ′}} ḡ ∇ σ ‖ Ḡ4 A

UN UNification

[s:S=t:T � u�] ḡ ∇ σ ‖ Ḡ4 A
UN

Ḡ (‖ [s:S ′j≈Xj:S
′
j �R1 � E1] [t:S ′j≈Xj:S

′
j �R2 � E2] ḡ ∇ σ)mj=14 A

Xj fresh variables, {S′j}mj=1=glbSorts(M ,S ,T).

MA MAtching

[s:S := t:T � x�] ḡ ∇ σ ‖ Ḡ4 A
MA

Ḡ (‖ [t:S ′j ≈ s:S ′j �R� E] ḡ ∇ σ)mj=14 A

where {S′j}mj=1 = glbSorts(M,S, T).

NA NArrowing

42 6.1. Transformation rules for unification

[s:S ≈ t:T � n, r̄ � (e1, n), ē] ḡ ∇ σ ‖ Ḡ4 A
NA

Ḡ ‖ [s:S ≈ t:T � r̄, n� ē, (e1, n+1)] ḡ ∇ σ
(‖ {[c1θ � . . .]({[ciθ ♦ . . .])pi=2{[rθ:S ′j ≈ tθ:S ′j ♦R ♦ E]} . . .} ḡθ∇ σθ)mj=14 A

where e1 ≡ (c)eq l = r (if c) is a fresh variant of a (conditional) equation in E,
θ nth A-unifier of s′ and l′, c′ ∪ c={ci}pi=1, {S′j}mj=1 = glbSorts(M,S, T).

[s ≈ t� n, r̄ � (e1, n), ē] ḡ ∇ σ ‖ Ḡ4 A
NA [s ≈ t� n, r̄ � ē] ḡ ∇ σ ‖ Ḡ4 A

if e1 ≡ (c)eq l = r (if c), and no nth A-unifier of s′ and l′ exists.

[s ≈ t� n, r̄ �] ḡ ∇ σ ‖ Ḡ4 A
NA [s ≈ t� r̄ �] ḡ ∇ σ ‖ Ḡ4 A

TR TRansitivity

[s:S ≈ t:T � t, r̄ � ē] ḡ ∇ σ ‖ Ḡ4 A
TR

Ḡ ‖ [s:S ≈ t:T � r̄ � ē] ḡ ∇ σ
(‖ {[s:S ′j ≈ Xj:S

′
j �R� E]{[Xj:S

′
j ≈ t:S ′j ♦R ♦ E]}} ḡ ∇ σ)mj=14 A

where {S′j}mj=1 = glbSorts(M,S, T), Xj fresh variables.

IM IMitation

[f(s̄:S̄):S ≈ X:T � i, r̄ � ē] ḡ ∇ σ ‖ Ḡ4 A
IM

Ḡ ‖ [f(s̄:S̄):S ≈ X:T � r̄ � ē] ḡ ∇ σ
(‖ {[sk:Sk ≈ Xk:Sk �R� E]lk=1{[f(s̄:S̄):S ′j ♦R ♦M]}} ḡθ∇ σθ)mj=14 A

where X/∈Var(s), {S′j}mj=1 = glbSorts(M,S, T, getType(X)),

θ = {X 7→ f(X̄)}, Xk fresh variables (k = 1 . . . l).

EL ELimination

[s:S ≈ t:T � (r, n), r̄ � ē] ḡ ∇ σ ‖ Ḡ4 A
EL

Ḡ ‖ [s:S ≈ t:T � r̄, (r, n+1)� ē] ḡ ∇ σ
(‖ [Xiθ:Si �R�M]ni=1 [sθ:S ′j �R�M] [tθ:S ′j �R�M] ḡθ∇ σθ)mj=14 A

where {S′j}mj=1 = glbSorts(M,S, T), and θ = nthA-unifier of s′ and t′, c′={Xi:Si}ni=1.

[s ' t� (r, n), r̄ � ē] ḡ ∇ σ ‖ Ḡ4 A
EL [s ' t� r̄ � ē] ḡ ∇ σ ‖ Ḡ4 A

if no θ = nthA-unifier of s′ and t′ exists.

[s ' t� �] ḡ ∇ σ ‖ Ḡ4 A
EL Ḡ4 A

{} ḡ ∇ σ ‖ Ḡ4 A
EL ḡ ∇ σ ‖ Ḡ4 A

6. Transformations for unification 43

DC DeComposition

[f(s̄:S̄):S ≈ f(t̄:T̄):T � d, r̄ � ē] ḡ ∇ σ ‖ Ḡ4 A
DC

Ḡ ‖ [f(s̄):S ≈ f(t̄):T � r̄ � ē] ḡ ∇ σ
(‖ {[si:Si ≈ ti:Ti �Ri � Ei]ni=1{[f(s̄):S ′j ♦R ♦M]} ḡ} ∇ σ)mj=14 A

where {S′j}mj=1 = glbSorts(M,S, T).

SR Subject Reduction

[s:S � s, r̄ � m̄] ḡ ∇ σ ‖ Ḡ4 A
SR

Ḡ ‖ [s:S � r̄ � m̄] ḡ ∇ σ ‖ [s:[S] ≈ X:S �R� E] ḡ ∇ σ4 A

X fresh variable.

ME MEmbership

[s:S �m0, r̄ � m̄] ḡ ∇ σ ‖ Ḡ4 A
ME Ḡ4 A

If s ground term with sort S′ when reduced, and S′ � S.

[s:S �m0, r̄ � m̄] ḡ ∇ σ ‖ Ḡ4 A
ME Ḡ ‖ ḡ ∇ σ4 A

If s ground term with sort S′ when reduced, and S′ ≤ S.

[X:S �m1, r̄ � m̄] ḡ ∇ σ ‖ Ḡ4 A
ME Ḡ (‖ ḡθj ∇ σθj)
m
j=14 A

(i) θ1 = id if X variable, getType(X) ≤ S, or
(ii) θ1 = id if X term, leastSort(M,X) ≤ S, or

(iii) θj = {X 7→ Zj :S
′
j}, Zj fresh variables and {S′j}mj=1=glbSorts(M,S, getType(X)).

[X:S �m1, r̄ � m̄] ḡ ∇ σ ‖ Ḡ4 A
ME [X:S � r̄ � m̄] ḡ ∇ σ ‖Ḡ4 A

If conditions above do not hold.

[f(s̄):S �m2, r̄ � (m2, n), m̄] ḡ ∇ σ ‖ Ḡ4 A
ME

Ḡ ‖ [f(s̄):S � r̄, m2� m̄, (m2, n+1)] ḡ ∇ σ ‖
‖ {[c1θ � . . .]({[ciθ ♦ . . .])ni=2}. . .} ḡθ∇ σθ4 A

where m2 ≡ (c)mb g(t̄):T (if c) is a fresh variant, with T ≤ S, of a (conditional) membership
in E, and θ n-th A-unifier of f ′(s̄) and g′(t̄), c′ ∪ c={ci}ni=1. i may be 0.

[f(s̄:S̄):S �m2, r̄ � (m2, n), m̄] ḡ ∇ σ ‖ Ḡ4 A
ME

[f(s̄:S̄):S � r̄, m2� m̄] ḡ ∇ σ ‖ Ḡ4 A

if no n-th A-unifier of f ′(s̄) and g′(t̄) exists.

44 6.2. Example

[f(s̄:S̄):S �m2, r̄ �] ḡ ∇ σ ‖ Ḡ4 A
ME

[f(s̄:S̄):S � r̄ �] ḡ ∇ σ ‖ Ḡ4 A

[f(s̄:S̄):S ��] ḡ ∇ σ ‖ Ḡ4 A
ME Ḡ4 A

We explain in detail some of the rules:

• Rule UN turns one goal with a subgoal s:S=t:T into several goals each one
having this subgoal substituted by a different pair of subgoals s:S ′j≈Xj:S

′
j,

t:S ′j≈Xj:S
′
j. Each sort S ′j is an element of glbSorts(M,S, T), a different

greatest lower bound of S and T with respect to M .

• Rule NA takes one goal with a subgoal s:S ≈ t:T , increases index n of the
applied equation l = r if c, if there exists th n-th A-unification θ of s and l,
and creates several goals each one having different sort as in the rule above.
On each goal the subgoal is replaced by checks for sorts of instantiated inner
variables, checks for conditions of the applied equation, a check for right
typing of the whole term sθ:S ′ and a new unification problem rθ:S ′ ≈ tθ:S ′.
If there is no n-th A-unification, the equation is erased from the subgoal,
and if there are no equations left to apply, the calculus rule n is erased from
the subgoal.

• The first case of rule ME (m0) is special: it is not present in the original
calculus rules. This is because this is a deletion rule and the calculus rules
are meant to develop the calculus, we always have an oracle, not to drop
some part of it, but the transformation rules try to reflect the kwnowledge
that we have about the problem at any moment, and this rule reflects the
case when we know that we have reached a dead end. It represents one case
in which we can be sure that the corresponding goal can not be achieved.
The subgoal is a term s that must have sort S, but it is ground, so there
are no variables that we can instantiate, and when reduced its sort is some
S ′ which is not a subsort of S (S included). Then this subgoal is a failure,
and we drop the whole goal. The rest of the cases where we drop goals is
by exhaustion of rules to apply, but this rule, being not strictly necessary,
helps cutting down the size of the computations by early identification of
fail subgoals. The second case of rule ME (m0) is also covered by rule ME
(m1), but we write it down here because in this way the implementation will
only need rule ME (m0) in the case of ground terms.

6.2 Example

In this ACU-coherence completed functional module:

6. Transformations for unification 45

fmod AC is

sort S .

ops a b c d e : -> S .

var Y : S .

op + : S S -> S [comm assoc] .

eq +(a, c) = +(d, e) [label e1] .

eq +(a, c, Y) = +(d, e, Y) [label e1C] .

endfm

we try to solve he E-unification problem +(X:S,+(b, c)):S = +(d,+(b, e)):S.
We have implicit memberships mb a:S, . . . ,mb e:S, and mb +(X:S, Y :S):S. We

call them a, . . . , e,+. This is part of the computation, where each Gi is the list of
goals not shown from previous steps (sorts are again omitted when not necessary).
Chosen rules, equations and memberships are underlined. If no substitution is
shown in a rule that needs it, id is assumed:

1. [+(X,+(b, c)):S = +(d,+(b, e)):S � u�]∇ id 4 empty
UN

2. [+(X,+(b, c)):S ≈ Z:S � (i, 0), n, t, (r, 0)� (e1, 0)]
[+(d,+(b, e)):S ≈ Z:S � (i, 0), n, t, (r, 0)� (e1, 0)]
∇ id ‖G14 empty
NA, e1C , θ={X 7→a:S,Y 7→b:S}

3. [a:S �m0�][b:S �m0�]
[+(d,+(e, b)):S ≈ Z:S � (i, 0), n, t, (r, 0)� (e1, 0)]
[+(d,+(b, e)):S ≈ Z:S � (i, 0), n, t, (r, 0)� (e1, 0)]
∇ {X 7→ a:S} ‖G24 empty
ME

4. [b:S �m0�]
[+(d,+(e, b)):S ≈ Z:S � (i, 0), n, t, (r, 0)� (e1, 0)]
[+(d,+(b, e)):S ≈ Z:S � (i, 0), n, t, (r, 0)� (e1, 0)]
∇ {X 7→ a:S} ‖G34 empty
ME

5. [+(d,+(e, b)):S ≈ Z:S � (i, 0), n, t, (r, 0)� (e1, 0)]
[+(d,+(b, e)):S ≈ Z:S � (i, 0), n, t, (r, 0)� (e1, 0)]
∇ {X 7→ a:S} ‖G44 empty
EL θ={Z 7→+(d,+(e,b))}

6. [+(d,+(e, b)):S �m0�]
[+(d,+(b, e)):S ≈ +(d,+(e, b)):S � (i, 0), n, t, (r, 0)� (e1, 0)]
∇ {X 7→ a:S} ‖G54 empty
ME

7. [+(d,+(b, e)):S ≈ +(d,+(e, b)):S � (i, 0), n, t, (r, 0)� (e1, 0)]
∇ {X 7→ a:S} ‖G64 empty
EL

46 6.2. Example

8. [+(d,+(b, e)):S �m0�]
∇ {X 7→ a:S} ‖G74 empty
ME

9. ∇ {X 7→ a:S} ‖G84 empty
AF

10. G94 {X 7→ a:S}

We have computed one answer, using the ACU-completed equation e1C , whose
restriction to the input variables ({X 7→ a}) is a solution to our problem. The
assignment of an inner variable by A-unification in step 2 generates membership
checkings (a:S, b:S) in step 3. If more answers are requested, computation resumes
from this point. Previous calculus are kept within the structure (G9).

It must be noticed that a large number of computations may be kept in G9.
This happens because between each step i that we show there have been other
steps, not shown, that have modified each Gi−1, turning it into Gi. These are
partial computations that are still developing and may yield different computed
answers.

As previously said transformation rules are like an algorithm that tells us how
to apply the calculus rules in chapter 4. We give them a structure to work with,
the unification problem, and they use this structure to hold partial results, in-
termediate variables, evolving the computation. Still there is a long way to the
implementation. A lot of details are still not solved, but the base for the imple-
mentation is the set of transformation rules.

Chapter 7

Reachability by conditional
narrowing

Now we focus on the second part of the calculus, the one that deals with reacha-
bility. We have previously defined unification equations and admissible goals. We
will now modify our definition for admissible goals to include reachability goals on
it, and extend the calculus rules so they can deal with this new type of goals. As
previously, we assume that we are working with a Maude module named M . This
module has all the declarations for sorts, kinds, operators, memberships, equa-
tions, axioms and rules. The new calculus rules will focus on the rules in M , the
ones that allow us to rewrite terms.

Conditional narrowing relies on conditional unification, that is, in order to make
a narrowing step we previously need to solve a unification problem. Our goal, given
a reachability problem

∧
i si:Si → ti:Ti, is to find a solution σ (ground or not) such

that
∧
i siσ:Si → tiσ:Ti, with the rules R (conditional or unconditional) defined in

our module M , modulo axioms and equations in M . Narrowing steps are made
with the rules R as we unify the left side of a rule with a subterm at a certain
nonvariable position of the left side of some subgoal until we get the solution σ.
As for unification, we will imitate narrowing with the following calculus that only
applies narrowing, we call it replacement here, at position ε of terms. First we
make some definitions.

Reachability goals are any sequence (understood as conjunction) of subgoals
of the form s:S → t:T , each one meaning that we want to rewrite the term s with
sort S to the term t with sort T .

Admissible goals, or simply goals, are now extended to be any sequence of
s:S→t:T , s:S=t:T , s:S≈t:T , s:S:=t:T and t:T . From a reachability goal the cal-
culus tries to derive the empty goal. If the calculus succeeds, the substitution used
to derive this empty goal, restricted to the input variables, is a computed answer
for the reachability goal.

47

48 7.1. Calculus rules for reachability

As for unification, any reachability subgoal in our calculus of the form of s:S →
t:T is equivalent to the admissible goal s → t, s=XS, t=YT (we will use the
equivalent writing s→ t, s:S, t:T .)

7.1 Calculus rules for reachability

Reachability by Conditional Narrowing is achieved using the calculus rules pre-
sented in chapter 4, extended with the following calculus rules, under the same
conditions for a numerable set of variables, s′ and t′ kinded variable terms, and c′

check for memberships generated by the transformation of s and t:

[X] reflexivity
G′, s:S → t:T,G′′

(G′, (c′,)s:S ′, t:S ′, G′′)θ

where θ A-unifier of s′ and l′ kinded variable terms, c′ membership checks,

S′ ∈ glbSorts(M,S, T).

[R] replacement
G′, s:S → t:T,G′′

G′, s:S = l:S, (c,)s:S, r:[S]→ t:T,G′′

where (c)rl l→ r (if c) is a fresh variant of a (conditional) rule in R.

[T] transitivity
G′, s:S → t:T,G′′

G′, s:S → X:[S], X:[S]→ t:T,G′′

[C] congruence

G′, f(s̄:S̄):S → f(t̄:T̄):T,G′′

G′, s1:S1→t1:T1, ..., sn:Sn→tn:Tn, f(s̄:S̄):S, f(t̄:T̄):T,G′′

where the f ’s are not flattened if f is a binary function.

If they are flattened, we unflatten them using [E].

[I] imitation

G′, f(s̄:S̄):S → X:T,G′′

G′θ, si:Si → Xi:Si, f(s̄:S̄):S, f(X̄:S̄):T,G′′θ

where X/∈Var(s), θ = {X 7→ f(X̄:S̄)}, Xi fresh variables.

7. Reachability by conditional narrowing 49

[E] equality
G′, s:S → t:T,G′′

G′, s:S=X:S,X:S → Y :T, Y :T=t:T,G′′

These rules are a translation of the deduction rules for rewrite theories, using
the concepts of equational conditional rewriting without evaluation of the premise
[Boc93] and lazy conditional narrowing [MSH02] for conditional rules. We have
only added the imitation rule, [I], that allow us to imitate narrowing at non root
term positions. All other rules match the corresponding deduction rule.

One important difference with respect to the calculus rules for unification is
that only in rule [X], that solves reachability by A-unification, we compute the set
glbSorts(M,S, T) and use it. The other rules are not sort-decreasing, so there is
no need to do this. In fact, in rule [T] the intermediate variable X gets kind [S]
because s can be rewritten to any term within the kind of s, and if this term is
rewritten to t, s and t with right sorts, then we may apply the transitivity rule for
reachability.

Flattening means representing a term whose root function is associative in a
special form, allowed by Maude. For instance, a binary term like f(a, f(b, c)),
where f is associative, can be represented in Maude as a flattened term f(a, b, c).
We use rule [C] only if we have a term written in binary form. In the other case,
rule [E] will generate a unification subgoal f(a, b, c) = X, which by rule [u] will
become f(a, b, c) ≈ X, and then rule [i] will return us all the unflattened (binary)
decompositions for the term, allowing us then to use rule [C].

7.2 Example

In this ACU-coherence completed module:

mod R is

sort S .

ops a, b, c, d, e : -> S .

var Z : S .

op f(_,_) : S S -> S [comm assoc] .

op g(_,_) : S S -> S .

rl g(a, b) => c [label r1] .

eq f(c, d) = e [label e1] .

eq f(c, d, Z) = f(e, Z) [label e1C] .

endm

we consider the reachability goal f(d, g(X, b):)S → e:S. The derivation, where
the substitution id is assumed when none is shown and some sorts are omitted to
make reading the derivation easier, is:

50 7.2. Example

1. f(d, g(X, b))→ e [E]

2. f(d, g(X, b)) = V , V → W,W = e [u]

3. f(d, g(X, b)):S ≈ Y :S, V ≈ Y, V → W,W = e [r], θ={Y 7→f(d,g(X,b)):S}

4. f(d, g(X, b)):S, f(d, g(X, b)):S, V ≈ f(d, g(X, b)), V → W,W = e [m1]

5. f(d, g(X, b)):S, V ≈ f(d, g(X, b)), V → W,W = e [m1]

6. V :S ≈ f(d, g(X, b)):S, V → W,W = e [r], θ={V 7→f(d,g(X,b)):S}

7. f(d, g(X, b)):S, f(d, g(X, b)):S, f(d, g(X, b))→ W,W = e [m1]

8. f(d, g(X, b)):S, f(d, g(X, b))→ W,W = e [m1]

9. f(d, g(X, b)):S → W :S,W = e [I], θ={W 7→f(W1:S,W2:S)}

10. d:S → W1:S, g(X, b)→ W2, f(W1,W2) = e [X], θ={W1 7→d:S}

11. d:S, d:S, g(X, b)→ W2, f(d,W2) = e [m1]

12. d:S, g(X, b)→ W2, f(d,W2) = e [m1]

13. g(X, b):S → W2:S, f(d,W2) = e [R],r1

14. g(X, b)=g(a, b), g(X:S, b):S, c:[S]→ W2:S, f(d,W2)=e [m1],leastSort(g(X:S,b))=S

15. g(X, b) = g(a, b), c:[S]→ W2:S, f(d,W2) = e [u]

16. g(a, b):S ≈ Z:S, g(X, b) ≈ Z, c:[S]→ W2:S, f(d,W2) = e [r], θ={Z 7→g(a,b)):S}

17. g(a, b):S, g(a, b):S, g(X, b) ≈ g(a, b), c:[S]→ W2:S, f(d,W2) = e

 [m1], leastSort(g(a,b))=S

18. g(a, b):S, g(X, b) ≈ g(a, b), c:[S]→ W2:S, f(d,W2) = e [m1], leastSort(g(a,b))=S

19. g(X:S, b):S ≈ g(a, b):S, c:[S]→ W2:S, f(d,W2) = e [r], θ={X 7→a:S}

20. a:S, g(a, b):S, g(a, b):S, c:[S]→ W2:S, f(d,W2) = e [m1]

21. g(a, b):S, g(a, b):S, c:[S]→ W2:S, f(d,W2) = e [m1], leastSort(g(a,b))=S

22. g(a, b):S, c:[S]→ W2:S, f(d,W2) = e [m1], leastSort(g(a,b))=S

23. c:[S]→ W2:S, f(d,W2) = e [r], θ={W2 7→c:S}

24. c:[S], c:S, f(d, c) = e [m1], leastSort(c)=S

7. Reachability by conditional narrowing 51

25. c:S, f(d, c) = e [m1], leastSort(c)=S

26. f(d, c):S = e:S [u]

27. f(d, c) ≈ U, e:S ≈ U :S [r], θ={U 7→e:S}

28. f(d, c) ≈ e, e:S, e:S [m1]

29. f(d, c) ≈ e, e:S [m1]

30. f(d, c):S ≈ e:S [n],[e1]

31. e:S, e:S, e:S ≈ e:S [m1]

32. e:S, e:S ≈ e:S [m1]

33. e:S ≈ e:S [r]

34. e:S, e:S [m1]

35. e:S [m1]

36. �

We have computed the answer θ={X 7→ a:S}, which is a solution to our
reachability problem. In step 20 the check for a being of type S is caused by the
assignment by A-unification of the value a to the inner variable X:S in g(X:S, b).

Chapter 8

Correctness of the calculus for
reachability

We prove correctness of the calculus for reachability with respect to normalized
idempotent substitutions for the executable rewrite theory R = (Σ, E , R).

8.1 Soundness

We prove that given a reachability goal G, if G →∗σ � then Gσ can be derived,
so σ is a solution for G. Soundness of the reachability calculus is proved by
induction on the length of the derivation. Recall that all calculus rules always
check correct typings on the premises. We transform any goal (s:S → t:T) into
(s → t, s:S, t:T), but we may use both writings for simplicity. By our previ-
ous proof of soundness, we know that if we compute a solution σ for s:S=t:T we
can derive sσ=tσ, sσ:S, tσ:T using the deduction rules for Mel. We assume that
G ≡ g,G′ and the last calculus rule has been applied on g.

Base step: proofs with length one. We have a goal with one element. The
only inference rule that deletes rewritings without creating new ones is [X]:

[X] reflexivity
s:S → t:T

((c′), s:S ′, t:S ′)θ

where θ A-unifier of s′ and l′ kinded variable terms, c′ membership checks,

S′ ∈ glbSorts(M,S, T).

If σ is an answer computed by our unification calculus for c′θ, sθ:S ′ and tθ:S ′, then
sθσ, tθσ are correct terms, with correct typing in the instantiated variables, and

52

8. Correctness of the calculus for reachability 53

sθσ:S ′, tθσ:S ′. sθσ:S ′, tθσ:S ′, S ′ ≤ S and S ′ ≤ T implies sθσ:S, tθσ:T . sθ =A tθ
implies sθσ =A tθσ. By reflexivity, sθσ → sθσ. Then, by equality , θσ is a solution
for s:S → t:T .

�

Induction step: We assume that if a derivation of � from a goal G, with length
n or less, provides a substitution σ, then Gσ is derivable, that is, σ is an answer
of G. We have to prove that this property holds for derivations with length n+ 1:.
We assume G ≡ g,G′ (G′ may be empty), and check all possible calculus rules
applied to g:

[X] reflexivity
s:S → t:T,G′

((c′,)s:S ′, t:S ′, G′)θ

where θ A-unifier of s′ and l′ kinded variable terms, c′ membership checks,

S′ ∈ glbSorts(M,S, T).

As before, if σ is the computed answer, then θσ is a solution for s:S → t:T . By
I.H., θσ is also a solution for G′, so θσ is a solution for G.

�

[R] replacement
s:S → t:T,G′

s:S = l:S, (c,)s:S, r:[S]→ t:T,G′

where (c)rl l→ r (if c) is a fresh variant of a (conditional) rule in R.

If σ is a computed answer for s:S = l:S, s:S, c, r:[S]→t:T and G′, cσ is derivable,
by I.H. so we derive lσ → rσ, by replacement. By I.H. rσ → tσ is also derivable.
Then, by transitivity, sσ → tσ.
rσ→t, rσ:[S] and tσ:T are derivable by I.H, and also sσ:S and G′σ are.

Putting all together, we derive sσ → tσ, sσ:S, tσ:T and G′σ.
It is important to remember, again, that ACU-coherence completion allows A-

unification of the ACU-coherence completed version of the left term of the equa-
tion, l, with the whole term s whenever the left term l can be A-unified with some
subterm of a recombination of s.

�

[T] transitivity
s:S → t:T,G′

s:S → X:[S], X:[S]→ t:T,G′

If σ is the computed answer, by I.H. we can derive s→ X and X → t with correct
typing, s:S and t:T , as before. Then, by transitivity, we can derive s→ t.

54 8.1. Soundness

�

[I] imitation

f(s̄:S̄):S → X:T,G′

si:Si → Xi:Si, f(s̄:S̄):S, f(X̄:S̄):T,G′θ

where X/∈Var(s), θ = {X 7→ f(X̄:S̄)}, Xi fresh variables.

σ ≡ θσ′, σ′ computed answer for si:Si → Xi:Si, f(s̄:S̄):S, f(X̄:S̄):T and G′θ.
As f(s̄σ) ≡ f(s̄θσ′) ≡ f(s̄σ′) (X/∈Var(s)), by I.H. we can derive f(s̄σ:S̄):S.
Xσ ≡ Xθσ′ ≡ f(X̄σ′) so, by I.H., we can derive Xσ:T .
By I.H. we derive siσ:Si → Xiσ:Si. Then, by congruence, f(s̄σ:S̄):S →∗ f(X̄σ′) ≡
Xσ.
So we can derive gσ, and σ′ answer of G′θ implies can derive G′θσ′, that is, we
can also derive G′σ.

�

[C] congruence

f(s̄:S̄):S → f(t̄:T̄):T,G′

s1:S1→t1:T1, ..., sn:Sn→tn:Tn, f(s̄:S̄):S, f(t̄:T̄):T,G′

where the f ’s are not flattened if f is a binary function.

If σ is a computed solution, then by I.H. we derive f(s̄σ:S̄):S, f(t̄σ:T̄):T , siσ→tiσ,
siσ:Si, tiσ:Ti, as before. By congruence we derive f(s̄σ)→f(t̄σ).

�

[E] equality

s:S → t:T,G′

s:S=X:S,X:S → Y :T, Y :T=t:T,G′

If σ is a computed solution then sσ =E∪A Xσ, sσ:S,Xσ:S, Y σ =E∪A tσ, Y σ:T, tσ:T ,
and we can derive Xσ → Y σ. Then, by equality, we derive sσ→tσ and, by I.H.
we derive G′σ.

�

8. Correctness of the calculus for reachability 55

8.2 Completeness

We prove that if θ is a normalized idempotent answer of G, then there is σ normal-
ized idempotent, with θ �E σ, such that G ∗σ �. Completeness of the calculus
with respect to a normalized, idempotent answer θ is proved by induction on the
length of deductions in R = (Σ, E ∪ A, R), looking at the last deduction rule
used. We prove that we can compute a normalized, idempotent answer σ such
that θ �E σ. We omit memberships when working at the kind level:

Base step:

(Reflexivity)
t ∈ TΣ(X)k
(∀X)t→ t

We have derived sθ → tθ because sθ ≡ tθ and tθ ∈ TΣ(X). Then sθ=Atθ.
sθ =A tθ allows the inference sθ → tθ. Any instantiated variable xi in θ must
have correct type Si, that is, we have derived the correct type for it. By I.H
we can compute some σ, with θ �E σ, answer of s′ =A t′,

∧
xi:Si, that is, if we

drop sorts on inner variables of s and t we get a more general answer for s′ and
t′. σ being more general that ρ means that the instantiated variables in σ are a
subset of those in θ. Then all the instantiated variables in σ have correct type and
sσ:kind(M, s) =A tσ:kind(M, t).
s:kind(M, s) ≈ t:kind(M, t) [r],σ sσ:kind(M, s), tσ:kind(M, t) ∗ �.

�

Induction step:

(Equality)
(∀X)u→ u′, E ` (∀X)t = u, E ` (∀X)u′ = t′

(∀X)t→ t′

We have found a solution Θ={θ,X 7→u, Y 7→u′} for the problem X→Y, t=X, Y=t′.
Then we have kept θ only. If θ is a normalized idempotent answer for t → t′, as
X and Y are fresh variables Θ is also idempotent.
u↓=u, u′↓=u′, u→u′ ⇒ u↓→u′↓. tθ=u=u↓, t′θ=u′=u′↓, u↓→u′↓ ⇒ tθ→t′θ.
So Θ={θ,X 7→u↓, Y 7→u′↓} is a normalized idempotent solution forX→Y, t=X, Y=t′.
By I.H. there is a normalized substitution Σ={σ,X 7→u1, Y 7→u′1} with Θ �E Σ
such that we can compute X→Y, t=X, Y=t′ ∗Σ �.
Now, applying rule [E], σ is a computed answer for t→ t′.

�

56 8.2. Completeness

(Transitivity)
(∀X)t1 → t2, (∀X)t2 → t3

(∀X)t1 → t3

We have found a solution Θ={θ,X 7→t2} for the problem t1→X,X→t3. Then we
have kept θ only. If θ is a normalized idempotent answer for t→ t′, as X is a fresh
variable Θ is also idempotent.
t2↓=t2, t1→t2 ⇒ t1→t2↓. t2↓=t2, t2→t3 ⇒ t2↓→t3.
So Θ={θ,X 7→t2↓} is a normalized idempotent solution for t1→X,X→t3. By I.H.
there is a normalized substitution Σ={σ,X 7→t′2} with Θ �E Σ such that we can
compute t1→X,X→t3 ∗Σ �.
Now, applying rule [T], σ is a computed answer for t1 → t3.

�

(Congruence)

f ∈ Σk1···kn,k (∀X)ti → t′i ti, t
′
i∈TΣ(X)ki , 1≤i≤n

(∀X)f(t1, . . . , tn)→ f(t′1, . . . , t
′
n)

From tiθ → t′iθ we derive f(t′1, . . . , t
′
n)θ → f(t1, . . . , tn)θ. By I.H. there is σ, with

θ�Eσ, such that σ is a computed solution for ti→t′i. σ is the desired answer:

f(t1, . . . , tn)→f(t′1, . . . , t
′
n) [d]t1→t′1, . . . , tn→t′n

I.H.
 σ �.

�

(Replacement)

(λ : (∀X) l→ r if
∧
i

pi=qi ∧
∧
j

wj:sj ∧
∧
k

lk → rk)∈R

θ : X → TΣ(Y)
∧
i E ` (∀Y)piθ=qiθ

∧
j E ` (∀Y)wjθ:sj

∧
k(∀Y)lkθ → rkθ

(∀Y)lθ → rθ

θ is a solution for the goal l → r. By I.H. there is σ such that θ �E σ and σ is a
computed answer for all conditions (we call them c). then:

l→r [R],l→r c, r→r
I.H.
 σ rσ→rσ [X] �.

�

Chapter 9

Transformations for reachability

Again we must turn the previous calculus into a structure and a set of transfor-
mations where we can put all the knowledge we acquire, as the computation takes
place. The important point is that the structure and the transformations are ex-
tensions of the previous ones. Both calculus, for unification and for reachability,
will be intertwined, developing at the same time.

Taking as reference the structure and transformations rules for unification
shown in chapter 7, we enhance them, allowing also subgoals with structure
G� T �R, where:

• G is the actual subgoal. Now it can be rewriting (→), unification, matching,
equation or membership.

• R is a queue/set of inference rules for rewriting. Each element holds a rule
from the calculus for reachability and a number for the A-unifier to request
for that rule, if needed.

• T is a queue/set of rules in M . This list is used by calculus rule R.

As an example, the following structure:

[V ≈ f(d, g(X, b))� (r, 0)�][V → W � (X, 0)�][W = e� u�]∇ id 4 empty

has one goal with three subgoals. The first one is a rewriting problem for unification
V ≈ f(d, g(X, b)), the second one is a reachability problem V → W , where we
can only apply rule X with A-unifier 0, and the third one is a unification problem
W = e. The substitution found so far is the initial one id , and the set of found
answers is empty .

57

58 9.1. Transformation rules for reachability

9.1 Transformation rules for reachability

We add the following rules for problem transformation to the previous ones:

RX RefleXivity

[s:S → t:T � (X,n), r̄ � t̄] ḡ ∇ σ ‖ Ḡ4 A
RX

Ḡ ‖ [s:S → t:T � r̄, (X,n+1)� t̄] ḡ ∇ σ
(‖ [Xiθ:Si �R�M]ni=1 [sθ:S ′j �R�M] ḡθ∇ σθ)mj=14 A

where {S′j}mj=1 = glbSorts(M,S, T), and θ = nthA-unifier of s′ and t′, c′={Xi:Si}ni=1.

[s:S → t:T � (X,n), r̄ � t̄] ḡ ∇ σ ‖ Ḡ4 A
RX

Ḡ ‖ [s:S → t:T � r̄ � t̄] ḡ ∇ σ

if no θ = nthA-unifier of s′ and t′ exists.

RE Replacement

[s:S → t:T �R, r̄ � r1, t̄] ḡ ∇ σ ‖ Ḡ4 A
RE

Ḡ ‖ [s:S → t:T � r̄, R� t̄] ḡ ∇ σ ‖
{[s:S=l:S�R�E]({[ci ♦ . . .])ni=1{[(s:S)♦R♦M]{[r:[S]→ t:T ♦R♦T]}n+3. . .} ḡ
∇ σ4 A

where (c)rl l→ r (if c) fresh rule from R.

[s:S → t:T �R, r̄ �] ḡ ∇ σ ‖ Ḡ4 A
RE [s:S → t:T � r̄ �] ḡ ∇ σ ‖ Ḡ4 A

TR TRansitivity

[s:S → t:T � T, r̄ � t̄] ḡ ∇ σ ‖ Ḡ4 A
TR

Ḡ‖[s:S → t:T�r̄�t̄]ḡ∇σ‖{[s:S → Z:[S]�R�T]{[Z:[S]→ t:T♦R♦T]}}ḡ∇σ4A
Z:[S] fresh variable.

IM IMitation

[f(s̄:S̄):S → X:T � I, r̄ � t̄] ḡ ∇ σ ‖ Ḡ4 A
IM

Ḡ ‖ [f(s̄:S̄):S → X:T � r̄ � t̄] ḡ ∇ σ
‖{[si:Si → Xi:Si�R�T])ni=1{[f(s̄):S♦R♦M][f(X̄):T ♦R♦M]}} ḡθ∇σθ4A

where X/∈Var(s), θ = {X 7→ f(X̄:S̄)}, Xi fresh variables.

CO COngruence

[f(s̄:S̄):S → f(t̄:T̄):T � C, r̄ � t̄] ḡ ∇ σ ‖ Ḡ4 A
CO

Ḡ ‖ [f(s̄:S̄):S → f(t̄:T̄):T � r̄ � t̄] ḡ ∇ σ
‖{[si:Si → ti:Ti�R�T]ni=1{[f(s̄:S̄):S ♦R♦M][f(t̄:T̄):T ♦R♦M]}} ḡ∇σ4A

9. Transformations for reachability 59

where the f ’s are not flattened if f is a binary function.

EQ EQuality

[s:S → t:T � eq, r̄ � t̄] ḡ ∇ σ ‖ Ḡ4 A
EQ

Ḡ ‖ [s:S → t:T � r̄ � t̄] ḡ ∇ σ
‖ {[s:S=X:S �R�E]{X:S → Y :T ♦R ♦ T]{Y :T=t:T ♦R ♦E]}}} ḡ∇ σ4A

EL ELimination

[s→ t� �] ḡ ∇ σ ‖ Ḡ4 A
EL Ḡ4 A

9.2 Example

We consider the same ACU-coherence completed module we used as an example
for the calculus rules for reachability:

mod R is

sort S .

ops a, b, c, d, e : -> S .

var Z : S .

op f(_,_) : S S -> S [comm assoc] .

op g(_,_) : S S -> S .

rl g(a, b) => c [label r1] .

eq f(c, d) = e [label e1] .

eq f(c, d, Z) = f(e, Z) [label e1C] .

endm

We also consider the same reachability goal f(d, g(X, b):S) → e:S. We show the
relevant steps of the transformation, omitting memberships since there is only one
sort, and also omitting variable assignments in the output substitution if they
don’t affect input variables:

1. [f(d, g(X, b))→ e� E, t̄� r1]∇ id 4 empty
EQ

2. [f(d, g(X, b)) = V � u�]{[V → W ♦X ♦]{[W = e ♦ u ♦]}} ∇ id ‖
G24 empty
UN

3. [f(d, (g(X, b)) ≈ Y � (r, 0), r̄ � (e1, 0)][V ≈ Y � (r, 0)�]{[V → W ♦X ♦]
{[W = e ♦ u ♦]}} ∇ id ‖G34 empty
EL, θ={Y 7→f(d,g(X,b))}

60 9.2. Example

4. [V ≈ f(d, g(X, b))� (r, 0)�]{[V → W ♦X ♦]{[W = e ♦ u ♦]}} ∇ id ‖
G44 empty
EL, θ={V 7→f(d,g(X,b))}

5. {[f(d, g(X, b))→ W ♦ I, t̄ ♦]{[W = e ♦ u ♦]}} ∇ id ‖
G54 empty
RC

6. [f(d, g(X, b))→ W � I, t̄�]{[W = e ♦ u ♦]} ∇ id ‖
G64 empty
IM , θ={W 7→f(W1,W2)}

7. [d→ W1 �X, t̄�][g(X, b)→ W2 �R, t̄� r1]{[f(W1,W2) = e ♦ u ♦]} ∇ id ‖
G74 empty
RX , θ={W1 7→d)}

8. [g(X, b)→ W2 �R, t̄� r1]{[f(d,W2) = e ♦ u ♦]} ∇ id ‖
G84 empty
RE ,[r1]

9. [g(X, b) = g(a, b)� u�][c→ W2 �X, t̄� r1]{[f(d,W2) = e ♦ u ♦]} ∇ id ‖
G94 empty
UN

10. [g(X, b) ≈ Z � (r, 0), r̄ � e1][g(a, b) ≈ Z � (r, 0), r̄ � e1][c→ W2 �X, t̄� r1]
{[f(d,W2) = e ♦ u ♦]} ∇ id ‖G104 empty
EL, θ={Z 7→g(a,b)}

11. [g(X:S, b) ≈ g(a, b)�(r, 0), r̄�e1][c→ W2�X, t̄�r1]{[f(d,W2) = e♦u♦]}∇id‖
G114 empty
EL, θ={X 7→a}

12. [c→ W2 �X, t̄� r1]{[f(d,W2) = e ♦ u ♦]} ∇ {X 7→ a} ‖
G124 empty
EL, θ={W2 7→c}

13. {[f(d, c) = e ♦ u ♦]} ∇ {X 7→ a} ‖
G134 empty
RC

14. [f(d, c) = e� u�]∇ {X 7→ a} ‖
G144 empty
UN

15. [f(d, c) ≈ U � n, r̄ � (e1, 0)][e ≈ U � (r, 0), t̄� (e1, 0)]∇ {X 7→ a} ‖
G154 empty
EL, θ={U 7→e}

16. [f(d, c) ≈ e� n, r̄ � (e1, 0)]∇ {X 7→ a} ‖
G164 empty
NA,[e1]

17. [e ≈ e� (r, 0), r̄ � (e1, 0)]∇ {X 7→ a} ‖
G174 empty
EL

18. ∇ {X 7→ a} ‖G184 empty
AF

19. G194 {X 7→ a}

9. Transformations for reachability 61

We have found the same answer σ = {X 7→ a} to our reachability problem. The
A-unification in step 10 generates a membership check a:S which has been omitted
as previously stated.

Again, G17 keeps a large number of computations as we have only shown the
interesting steps, omitting many of them.

Chapter 10

Implementation

10.1 Prototype

When translating the previous rules for problem transformation into a Maude’s
program an almost direct translation of them has been made. The program works
in the metalevel, because it needs to take the module we are working with as a
parameter. It is a functional module, that is, a functional program where the
equations tell us how an initial goal gets transformed. The main loop works as
follows: from a set of goals, each one describing a possible partial computation
of an answer, we choose one goal. This goal is processed and a set of new goals
and/or answers is generated. New goals are enqueued with the previous ones, and
new answers are added to the set of found answers.

Maude’s module full-maude.maude is loaded previously because it provides
several useful metalevel functions, specially acuCohComplete for ACU coherence
completion of modules.

10.1.1 Structures

ControlStructure

The main structure that holds the whole computation is called ControlStructure.
Initially it holds one goal, that may have several subgoals:

op _,_,_,_,_,_,_,_ : GoalList GoalList GoalList Module Int AnswerSet TermList

ControlFlag -> ControlStructure [ctor] .

op _,_ : Goal GoalList -> GoalList [ctor] .

The first goal list is used to choose a new goal to perform one step of processing. If
the goal may have further processing, we put it on the second goal list. New goals,
or new answers, generated during this processing are returned in the third goal list
and later moved into the second one. When the first list is empty, we switch places

62

10. Implementation 63

with the second one. In this way we avoid recursive calls for insertion of goals at
the end of a queue of goals. Module is the Maude module used for the unification or
reachability problem. Int holds a number that serves for creating fresh variables,
variables not present anywhere in a goal. The same fresh variable may appear
in different goals. AnswerSet holds the answers found so far. TermList holds
the set of variables that are present in the original goal. It is used to discard
assignments to intermediate variables when inserting a new answer in AnswerSet.
ControlFlag is used as a signal for operator developGoals when there are new
goals generated that must be added to the second goal list. If all problem lists get
empty, there can be no further processing. Found answers, if there is any, will be
stored in AnswerSet.

Goals

Each goal is made up of several subgoals:

op _,_,_,_ : SubgoalList SubgoalList Substitution Int -> Goal [ctor] .

op _,_ : Subgoal SubgoalList -> SubgoalList [ctor] .

Again, we keep two subgoal lists. We choose a subgoal from the first list for process-
ing, and we put it back on the second list if it can have further processing. When
the first list gets empty, it switches places with the second one. Substitution

holds the partial answer computed so far for this goal. If both subgoal lists get
empty, then Substitution holds an answer to the original goal. Each subgoal of a
goal is uniquely identified by an integer called NID. Int holds the number to use as
NID if we generate a new subgoal for this goal. Different goals may have subgoals
with same NID, but each subgoal in a goal has different NID .

Subgoals

A subgoal may have different form depending on whether it is a membership
subgoal or any other kind of subgoal:

op _;_,_,_,_,_ : MbSubgoal TermType CalcRules ControlPairs Int Ndeps

-> Subgoal [ctor] .

op _;_,_,_,_,_,_,_ : UnEqMaRe TermType TermType TypeSet CalcRules

ControlPairs Int Ndeps -> Subgoal [ctor] .

op m : -> MbSubgoal . *** Membership

ops u n x : -> UnEqMa . *** Unification, Unif. by rewriting, Matching

op r : -> ReSubgoal . *** Reachability

op _-_ : Term Type -> TermType [ctor] .

subsort UnEqMa ReSubgoal < UnEqMaRe < UnEqMbMaRe .

subsort MbSubgoal < UnEqMbMaRe .

The first field identifies the type of the subgoal. A membership subgoal has one
TermType field, meaning that the term must be of this type. The other subgoals

64 10.1. Prototype

have all the same form, we only distinguish reachability subgoals from the others
for processing purposes. They have two TermType fields, that are the terms that
we want to process, together with the type that each term must have. They also
have a TypeSet field, where we we keep glbSorts(M , S ,T) as part of the subgoal,
saving us computing time because it is constant for each subgoal. The other fields
are common to all subgoals. The syntax for Type, Term and TypeSet can be
found in the metalevel section of the file prelude.maude (we are working at the
metalevel). CalcRules holds the calculus rules that can be applied to the subgoal.
ControlPairs holds the rules, equations or memberships that can be applied to
the subgoal. Int is the NID of the subgoal. The structure of nested braces in
transformation rules is implemented with the set of dependencies Ndeps, a set of
positive integers (NIDs), plus the number zero. The only subgoals that can be
chosen for development are those whose set of dependencies Ndeps has only one
element, the number zero, meaning that this subgoal doesn’t depend on any other
one. This is the equivalent to the � symbol on transformation rules. The other
subgoals are considered to contain ♦ symbols. In each goal we have an item NNID

that holds the next NID number to be used when creating a new subgoal. If a
subgoal depends on other subgoals, the NIDs of all the subgoals it depends on are
included in the subgoal’s Ndeps field, together with the number zero. This is the
equivalent to braces in transformation rules. Each time a subgoal is solved we
remove its NID from the Ndeps field of all other subgoals in the goal. In this way a
subgoal that depends on several subgoals, a ♦ subgoal, can develop when the NIDs
it holds for that subgoals are removed from its Ndeps field, and this NDEP field
holds only the number zero, that is, when the subgoal has become a � subgoal,
which is the equivalent to the resume computation (RC) transformation rule.

10.1.2 Control operators

Now we explain the operators that manage the main loop of the prototype. There
are four operators that turn a user’s request into a control structure and another
four that manage this control structure.

process

op process : UnEqMaRe Qid Term Type Term Type Int -> ControlStructure .

This operator is the user’s interface to the program and may be called, for instance,
in the following way:

reduce process(u, ’M, ’N:Nat, ’Nat, ’0.Nat, ’Nat, 1) .

where reduce is Maude’s reserved word for finding the canonical form of a term,
that is, apply equations from our program until there are no equations left to

10. Implementation 65

apply. The first field can be u if we want to unify two terms or r if we are asking
for reachability. Qid is a quoted identifier, in this case ’M, that corresponds to a
previously loaded functional or system module in Maude, in this case it should be
called M. The following couple of Term and Type are the two terms and types that
we want to unify or check reachability. In the example, the initial goal is to unify,
using the previously loaded module M, the variable N:Nat with the constant 0.Nat
and both must have sort Nat. The syntax N:Nat, 0.Nat from Maude means that
N is a variable with sort Nat and 0 is a constant with sort Nat. Finally Int, in
this case 1, means the number of times that the main loop developGoals must be
called.

The operator process allows us to specify initial goals with only one subgoal,
but it can be easily modified to manage term lists and type lists so that initial
goals with multiple subgoals can be specified.

generate

op generate : UnEqMaRe Qid Term Type Term Type -> ControlStructure .

This operator takes the user input and generates the corresponding control struc-
ture for the initial goal. Before generating this structure it calls preprocess, which
performs two important transformations.

preprocess

op preprocess : Qid -> Module .

This operator takes the quoted name of a module, which must have been previously
loaded into the system, and returns the ACU-coherence completed metalevel ver-
sion of the module, using the metalevel operators upModule and acuCohComplete.
It also adds a membership for each operator, as stated in chapter 4.

iterate

op iterate : ControlStructure Int -> ControlStructure .

Once that process has generated the initial control structure, it invokes iterate,
that merely calls the main loop, developGoals, Int times.

developGoals

op developGoals : ControlStructure -> ControlStructure .

66 10.1. Prototype

This is the main loop of the program. It takes a control structure, and if there are
there are new goals generated it checks whether each one is a new answer, then it
appends it to the list of found answers, or not, then it enqueues the goal in the
list of goals to process. If there are not new goals, it chooses one goal and calls
developGoal.

developGoal

op developGoal : Goal ControlStructure -> ControlStructure .

This operator processes one goal. If it is a new answer, it appends it to the list
of found answers. If it is not, it calls developSubgoal and processResult to
generate new goals.

processResult

op processResult : GLMI GoalList GoalList AnswerSet TermList -> ControlStructure .

op _,_,_ : GoalList Module Int -> GLMI [ctor] .

This operator generates a new control structure by relocating the new goal list,
module and number for fresh variables returned by developSubgoal and the rest
of parameters coming from the previous control structure. controlFlag is set to
addP and developGoals is called to check if there are new goals or answer.

developSubgoal

op developSubgoal : GMI -> GLMI .

op _,_,_ : Goal Module Int -> GMI [ctor] .

Given a goal, a module and an integer, the number used for generating the last
fresh variable, this module selects an active subgoal, that is with field Ndeps equal
to 0, and calls the corresponding processing operator, depending on the value of
the first field of the subgoal, the one that tells us what type of subgoal it is. It
returns a list of new goals, that might be empty, the module and an integer, which
is an update for the number used for generating fresh variables.

10.1.3 Subgoal operators

For each type of subgoal we have have a corresponding operator:

op processM : TermType CalcRules ControlPairs Int Goal Module Int -> GLMI .

op processR : GMI -> GLMI .

op processN : GMI -> GLMI .

op processU : TermType TermType TypeSet Int Goal Module Int -> GLMI .

op processX : TermType TermType TypeSet Int Goal Module Int -> GLMI .

10. Implementation 67

These operators select which calculus rule to apply to the chosen subgoal. Opera-
tors processU (unification) and processX (matching) can only apply one calculus
rule, so they apply it. The other three operators check what calculus rule they
have to apply and call the operator that implements the application of that rule.

10.1.4 Reachability operators

op processRX : TermType TermType TypeSet EqCSp Int CalcRules ControlPairs

Int Goal Module Int -> GLMI .

op processRP : TermType TermType TypeSet CalcRules ControlPairs

Int Goal Module Int -> GLMI .

op processCO : SLI TermType TermType TypeSet CalcRules ControlPairs

Int Goal Module Int -> GLMI .

op processEQ : TermType TermType Variable Variable TypeSet CalcRules ControlPairs

Int Goal Module Int -> GLMI .

op processTY : TermType TermType Variable TypeSet CalcRules ControlPairs

Int Goal Module Int -> GLMI .

op processIT : TlSlII TermType TermType TypeSet CalcRules ControlPairs

Int Goal Module -> GLMI .

Each one of these operators implement one of the following reachability rules:

op rx : -> CalcRuleIndex . *** reflexivity

op rp : -> CalcRuleSingle . *** replacement

op co : -> CalcRuleSingle . *** congruence

op eq : -> CalcRuleSingle . *** equality

op ty : -> CalcRuleSingle . *** transitivity for reachability

op it : -> CalcRuleSingle . *** imitation for reachability

where CalcRuleIndex is applied to rules that need a number showing which unifier
must be asked for.

10.1.5 Unification operators

op processIM : TermType TermType TypeSet TlSuSuIM CalcRules

ControlPairs Int Goal -> GLMI .

op processNA : TermType TermType TypeSet EqCSp CalcRules

ControlPairs Int Goal Module Int -> GLMI .

op processRE : TermType TermType TypeSet EqCSp Int CalcRules

ControlPairs Int Goal Module Int -> GLMI .

op processTR : TermType TermType TypeSet Int Goal Module Int GoalList -> GLMI .

op processDC : Term TermList TypeSet Int Goal Module -> GoalList .

Each one of these operators implement one of the following rules for unification
by rewriting:

68 10.1. Prototype

op im : -> CalcRuleSingle . *** imitation for unification

op na : -> CalcRuleSingle . *** narrowing

op re : -> CalcRuleIndex . *** removal of equations

op tr : -> CalcRuleSingle . *** transitivity for unification

op de : -> CalcRuleSingle . *** decomposition

10.1.6 Membership operators

op processM1 : TermType CalcRules ControlPairs Int Goal Module Int -> GLMI .

op processM2 : TermType EqCondition Substitution CalcRules ControlPairs

Int Goal Module Int -> GLMI .

Each one of these operators implement one of the following rules for membership
checking:

ops m1 : -> CalcRuleSingle . *** direct membership

ops m2 : -> CalcRuleSingle . *** membership parsing

Subject reduction rule (sr) and ground term memberships checking rule (m0) are
directly implemented in operator processM.

10.1.7 Examples

Example 1: Unification

Recall the transformation rule for unification:

UN UNification

[s:S=t:T � u�] ḡ ∇ σ ‖ Ḡ4 A
UN

Ḡ (‖ [s:S ′j≈Xj:S
′
j �R1 � E1] [t:S ′j≈Xj:S

′
j �R2 � E2] ḡ ∇ σ)mj=14 A

Xj fresh variables, {S′j}mj=1=glbSorts(M ,S ,T).

This rule is implemented by operator processU which updates the dependencies for
old subgoals (the ones that depended on the unification subgoal will now depend on
the newly created subgoals) and calls processU*, which in turn calls processU**
once per each type in glbSorts(M , S ,T). processU** is declared as:

op processU** : TermType TermType Type Int SubgoalList SubgoalList

Substitution Module Int GoalList -> GoalList .

Where GoalList is the list of new goals (one per type), and the rest of the goal
that we are processing (ḡ in the rule) can be found on both subgoalList fields.
The code for processU* is:

10. Implementation 69

eq processU**((TE1 - TY1), (TE2 - TY2), TY, NID, SL, SL2, SU, MO, NV, GL)

= SL, (putRules((n ; (TE1 - TY), (newVar(NV, TY) - TY), TY, nilCR, nilCP, NID,

0), MO),

putRules((n ; (TE2 - TY), (newVar(NV, TY) - TY), TY, nilCR, nilCP, s(NID),

0), MO),

SL2), SU, (NID + 2), GL .

From the original goal TE1 : TY1 = TE2 : TY2 , ḡ we create a new goal for
each type TY . We keep SL as first subgoal list, SU as substitution, and make
NNID, the number to use as NID when creating a new node, equal to NID plus two
because we are creating two subgoals that we append to the second subgoal list
SL2. The first subgoal TE1 : TY = #NV :TY : TY matches the first new subgoal
in the transformation rule. The second subgoal TE2 : TY = #NV :TY : TY
matches the second new subgoal in the transformation rule. As previously said
ḡ is the union of subgoal lists SL and SL2. putRules is an auxiliar operator
that replaces nilCR and nilCP with the control rules and control pairs, equation
pairs in this case, that may apply on each subgoal. This selection is made based
on the form of both terms of the given subgoal. There is a distinction between
variables, constants, functions and, as a special case, subgoals with the same root
function on both terms. When putting rules for memberships there is also a
distinction between ground and non ground terms. When needed, putRules may
call putEqPairs or putMbPairs, the real operators that replace nilCP with the
corresponding memberships or equations. In the case of reachability subgoals,
nilCP is replaced, when needed, with getRls(MO) the whole set of rules, because
the replacement rule for reachability tell us to try to unify the left term of the
subgoal with the left term of any available rule.

Example 2: Narrowing

This is a more complex example. Recall the main part of the transformation rule
for narrowing:

NA NArrowing

[s:S ≈ t:T � n, r̄ � (e1, n), ē] ḡ ∇ σ ‖ Ḡ4 A
NA

Ḡ ‖ [s:S ≈ t:T � r̄, n� ē, (e1, n+1)] ḡ ∇ σ
(‖ {[c1θ � . . .]({[ciθ ♦ . . .])pi=2{[rθ:S ′j ≈ tθ:S ′j ♦R ♦ E]} . . .} ḡθ∇ σθ)mj=14 A

where e1 ≡ (c)eq l = r (if c) is a fresh variant of a (conditional) equation in E,
θ nth A-unifier of s′ and l′, c′ ∪ c={ci}pi=1, {S′j}mj=1 = glbSorts(M,S, T).

The last line of the rule tells us that we must first check the memberships for
variables in the A-unifier (s′ and l′ are kinded versions of s and l) and then the
rest of conditions in the equation before applying the body of the rule.

The operator that implements this rule is called processNA. It is called by
operator processN in the following way:

70 10.1. Prototype

eq processN((((n ; (TE1 - TY1), TT2, TS, (na, CRS), EPS, NID, 0), SL), SL2, SU,

NNID), MO, NV

= processNA((TE1 - TY1), TT2, TS, makeEqCSp((te2MAS(TE1)), MO),

CRS, EPS, NID, SL, SL2, SU, NNID, MO, NV) .

That is, before calling processNA, two other operators are called. te2MAS(TE1)
takes as input the term TE1, and returns a membership axiom set, where for each
variable V in TE1 there is one membership of the form mb V : S, where S is the sort
of V. This uniqueness is guaranteed because membership axiom sets are defined
idempotent in prelude.maude, so any variable appearing several times in the term
will generate only one membership axiom. The call to makeEqCSp takes as input
the membership axiom set and the module and returns two elements. The first one,
EC1 is the part of the conditions (part of the ci’s) corresponding to the variables
in TE1, that is is a join of the given memberships; the second one is a pair of
substitutions named KS and UKS. Substitution KS (for kind substitution) replaces
every variable V:S appearing in TE1 with V:[S], that is it gives us the kinded
version of TE1. Substitution UKS (for unkind substitution) does the opposite. Now
processNA is called, which in turn calls processNA*:

eq processNA((TE1 - TY1), TT2, TS, (EC1, (KS, UKS)), CRS, EPS, NID, SL, SL2, SU,

NNID, MO, NV)

= processNA*((TE1 << KS - TY1), TT2, TS, EC1, UKS, CRS, EPS, NID, SL, SL2, SU,

NNID, MO, NV) .

We just make TE1 a kinded term by the application (<<) of substitution KS and
call processNA*, which makes a distinction based on the chosen equation rule. We
see the more general case, which is the one for conditional rules:

eq processNA*(TTK, TT2, TS, EC1, UKS, CRS, (((ceq T1 = T2 if EC [AtS] .), NA),

EPS), NID, SL, SL2, SU, NNID, MO, NV)

= processNA**(TTK, TT2, TS, EC1, UKS, CRS, (((ceq T1 = T2 if EC [AtS] .), NA),

EPS),T1, T2, EC, makeEqCSp((te2MAS(T1)), MO), NID, SL, SL2, SU,

NNID, MO, NV) .

The equation is ceq T1 = T2 if EC [AtS] ., and the required unifier is number
NA. processNA* just generates the conditions for variables in T1, named EC2, and
the kind-unkind substitutions for T1, named KS2 and UKS2, and calls processNA**.
The previous steps can be made in parallel, but we have chosen to separate each
step to make the program easier to read and maintain.

eq processNA**((TK1 - TY1), TT2, TS, EC1, UKS, CRS, ((EQ, NA), EPS), T1, T2,

EC, (EC2, (KS2, UKS2)), NID, SL, SL2, SU, NNID, MO, NV)

= processNA2(metaDisjointUnify(MO, TK1 =? (T1 << KS2), NV, NA), (TK1 - TY1),

TT2, TS, T2, EC1, EC2, EC, UKS, UKS2, CRS, ((EQ, NA), EPS), NID,

SL, SL2, SU, NNID, MO, NV) .

Now processNA** calls processNA2 with the result of the metalevel function
metaDisjointUnify for the already kinded term TK1 and the kinded left part
of the equation (T1 << KS2), which returns the pair of A-unifiers number NA
for the kinded terms, if possible. The first A-unifier must be applied to TK1
and the other A-unifier to T1 << KS2 to unify this terms. This happens because

10. Implementation 71

metaDisjointUnify assumes that the variables in the first term are different to
the variables in the second term, even if some of them have the same name on both
terms, so two substitutions must be provided. We see the equation that handles
the case when the unifier exists:

eq processNA2({SU1, SU2, NV’}, (TK1 - TY1), (TE2 - TY2), TS, T2, EC1, EC2, EC,

UKS, UKS2, CRS, ((EQ, NA), EPS), NID, SL, SL2, SU, NNID, MO, NV)

= (SL, ((n ; (TK1 << UKS - TY1), (TE2 - TY2), TS, (na ++ CRS),

((EQ, s(NA)) ++ EPS) , NID, 0), SL2), SU, NNID),

processNA3(condNarrGoal(undoKS(UKS, SU1), undoKS(UKS2, SU2), EC1, EC2, EC,

NID, (SL, SL2, SU, NNID), MO), (TE2 << undoKS(UKS, SU1)), TS,

(T2 << undoKS(UKS2, SU2)), MO, nilG), MO, NV’ .

We have found substitutions SU1 and SU2, and the highest number used for fresh
variables on them is NV’. The first two lines on the right part of this equation
implement the second line of the narrowing rule: one of the new goals is the same
as the original one, except that the number of unifier is increased (s(NA)) and put
at the end (++) of the queue of equation pairs (EPS). Notice that this modified
subgoal is appended to the processed subgoal list SL2 to allow us to select a new
subgoal from SL the next time that this goal gets selected for development.

processNA2 returns an object with sort GLMI, that is, a goal list, a module
and an integer. The module and the integer (the update of the number for fresh
variables) go at the end of the rule. We have seen how the first goal of the goal
list is generated. Now processNA3 constructs the rest of the goal list, that is, it
implements the last line of the transformation rule for narrowing, one goal per type
in TS (glbSorts(M,S, T)). One of its parameters is the output of condNarrGoal,
which takes as input the unkinded versions of substitutions SU1 and SU2, the whole
set of conditions EC1, EC2 and EC, the NID of the previous subgoal, the rest of the
goal SL, SL2, SU, NNID and the module MO, and returns the common conditional
part for all new goals (the ci’s), the old part of the goal with the new unifier
applied and the dependencies updated, and a number which is used for creating
dependencies on the subgoals of the new goals that have not been generated yet.
The other parameters of processNA3 are the right terms of the subgoal (TE2) and
the equation (T2) with the corresponding unkinded substitutions (undoKS(UKS,
SU1) and undoKS(UKS2, SU2)) applied, the module (MO), and the empty goal list
(nilG). Now we see the case of processNA3 when there is only one type left to
process in TS:

eq processNA3(((SL, SL2, SU, NNID), DEP1), TE2, TY, T2, MO, GL)

= (SL, putRules((n ; (T2 - TY), (TE2 - TY), TY, nilCR, nilCP, NNID,

iniNDEP(DEP1, DEP1)), MO), SL2, SU, s(NNID)), GL .

SL, SL2, SU, NNID is the conditional part of the new goals (the ci’s) (SL), the
rest of the subgoals of the old goal (SL2), with unification applied and dependencies
updated, together with the current partial answer updated (SU) and the number
to use for new subgoals (NNID). DEP1 is the number to use for new dependencies,
TE2 is tθ, TY is the only sort left in glbSorts(M , S ,T), T2 is rθ, MO is the module
and GL is the list of goals created so far.

72 10.2. Improvements

Now this last goal is created and appended to the goal list GL. The first subgoal
list is that of the ci’s. In the old subgoal list we append the only subgoal left
to create (rθ:S ′j ≈ tθ:S ′j) which is (n ; (T2 - TY), (TE2 - TY), TY, nilCR,

nilCP, NNID, iniNDEP(DEP1, DEP1)). The NID for this subgoal is NNID and it
depends on DEP1, the last created ci. SU remains unchanged and NNID is updated.
It is worth noting, finally, that condNarrGoal has previously made the old subgoals
in SL2 that depended on the processed original subgoal depend exactly on this new
subgoal with identifier NNID, as the transformation rules do.

10.2 Improvements

It is also possible to design a more sophisticated structure in order to avoid some
of the redundancy of the implemented program, which may generate and process
the same goal many times, achieving better performance through several improve-
ments. We sketch some of them here:

• We identify disjoint parts of the goals, that is, with no common variables,
solve them independently and join the results.

• Treat these parts as trees. If any of the parts fails to solve, the whole goal is
discarded. Inside each tree we can keep track of the variables and subgoals
that have been created by each node. If we instantiate any of the variables
in one node, we add new goals to this node applying the substitution to any
child of the node that contains the variable. Subgoals that are not modified
in the new goals are marked and not developed, as they are developing else-
where. Applied substitutions are kept on the parent node, avoiding repeated
substitutions to be tried. If a substitution is successful and the variable in-
stantiated was not created by the parent node, it is sent to the grandparent
node for testing.

• If a subgoal is exhausted, then no further development is possible; we keep
it as a fail, if it has no answers, or we keep a list of found answers. If it is
a fail, any subgoal that is an instantiation of this subgoal is also a fail. If
it’s not, we can try these answers on any subgoal that is more general than
this one, regardless of searching for other answers. Newly created nodes are
checked for matching against this set of ended subgoals, trying to obtain
either failure or an initial set of answers.

This whole structure allows us to resume at any time, since new answers don’t
interfere with found ones.

The structure can be represented in Maude as a control tree. This tree grows
or shrinks as the calculus develops. There are three types or nodes alternating

10. Implementation 73

in the tree: goal -nodes, and -nodes and or -nodes. The root of the tree is an or -
node with no rules on it, and it has one child: a goal -node that holds the original
A-unification problem split into independent and -nodes. Instantiation is the only
way to create new children for this or -node, and this must be done inside the and -
nodes or below them when they develop. All nodes have an index that identifies
them. The index is a unique list of numbers, one per level. Root node has index
nil . We append at the end of a node’s index a different natural number each time
it creates a child, and this list of numbers is the child’s index.

Now, we examine in more detail the structure and operation of the nodes in
this control tree .

10.2.1 Goal-nodes

Goal -nodes are intermediate nodes between a grandparent or -node and a grand-
child and -node. Their purpose is to hold the independent and -nodes of a goal. If
one of the and -nodes finds a substitution, it is sent to the grandparent or -node to
be tried on other goals. If one of the independent and -nodes fails, the whole goal -
node fails and this information is sent to the parent or -node. All child and -nodes
must be solved to consider that the goal -node is solved.

10.2.2 And-nodes

An and -node is a multiple goal control node. It verifies that all goals get unified,
developing each goal, which are or -nodes, and giving control back to its parent.
The and -node sends to its parent node, which is always a goal -node, the substi-
tution found for any variable or a fail status if there is no such substitution. All
child or -nodes must be solved to consider that the and -node is solved.

When the and -node is first created we build a connection graph, where each
goal is a node and there is one arc between each pair of nodes for every common
variable they share, labeled with the name of the variable. Every unconnected
subgraph of the graph is independent. Of course, every ground term is indepen-
dent, as it has no variables. They are all reduced and if any of them fails, the
whole and -node fails.

When a new and -node is created due to a partial substitution found, the goals
that are present in the and -node that generates the substitution but are not af-
fected by it, are marked in the new and -node. Indeed, they hold a reference to
the original goal. These marked goals don’t develop, because they are already
developing in another and -node. They just wait for substitutions or failure. In-
dependent parts of the goal are of course marked. If the new and node is created
due to a new rule applied, the new goals can be checked against the other sibling
and -nodes, also trying to avoid duplicate computations.

74 10.2. Improvements

If one of the subgoals of an and -node finds a partial substitution, it increases a
counter of possible answers and the grandparent or -node tries this substitution, as
explained before. If the substitution fails, the grandparent or -node sends a message
to the and -node, and the counter is decreased. If the subgoal gets exhausted, and
all the substitutions it has found fail, the subgoal is a failure and the whole and -
node is also a failure. A goal all whose variables have been created by its parent
node stops developing as soon as one instantiation of all these variables succeeds,
because we only need to know that the goal is achievable. It is of no interest
how we achieve it. All goals created by partial instantiation of these variables are
erased, for the same reason.

10.2.3 Or-nodes

An or -node is a single subgoal control node. It tries different ways for solving
one subgoal. It is in charge of all the subtree that lies below itself, each one
a different computation to solve this subgoal, creating new goals, deleting others,
and allowing the development of them. The or -node keeps a queue of calculus rules
and a queue of equations, rules or memberships that can be applied to generate new
subgoals, along with the A-unifiers already applied in the computations. It also
keeps another queue of subgoals (goal -nodes), which is the actual node subtree.

Each or -node holds a list of computed A-unifiers. If an or -node ends its com-
putation with a set of computed A-unifiers, it is stored in a list that holds these
possible A-unifiers, so that this computation is not repeated. If it ends without
answer it is stored in a list of failing goals. These lists can be managed to avoid
excessive size. The most obvious way is keeping only a fixed number of elements,
which are the most frequently requested ones. When inserting a new goal, if the
list is full, we delete one of the least frequently requested ones.

When it gets control from its parent the node develops its children or creates
new ones. The node develops its children one at a time until it ends the developing
turn or a new substitution is found. Previous substitutions are kept in the or -node.
The node tries to create a new child by choosing a calculus rule (remember that
we have added a special rule [m0]) and attempting to apply the rule according to
the transformation rules. Some rules can be used only once, so once used they
disappear from the list, but other may be used with different A-unifiers. If the
rule is narrowing ([n]) or membership ([m2]), then an equation or membership is
chosen and asked for a new A-unifier. If the rule is replacement ([R]), a rewrite
rule is chosen and the corresponding transformation rule is applied. Equations and
memberships that fail to get a new A-unifier are deleted from the queue as they
are no longer needed. If the A-unification succeeds, the new goal -node, consisting
of one or several and -nodes depending on the connection analysis of it, is created.
On every and -node, each new goal gets a list of calculus rules, and a list of rules,

10. Implementation 75

equations or memberships that may apply to it. Goals that are already developing
or are in the list of finished goals, having a list of A-unifiers are marked as they have
a different treatment. If any goal is in the list of failing goals, the new goal -node
is discarded. If a goal is a renaming of a parent’s goal, the and -node is discarded.
We have arrived here by circular reasoning. Ground goals are reduced, and if any
of them fails the goal -node is discarded. Goals are ordered, we prefer those that
already have A-unifiers, trying to generate substitutions as soon as possible.

Development of children is as follows: a goal is chosen. Control is given to it,
to perform development. If it fails, it is deleted, and control is given back to the
parent node. If the or -node has no children left, and it cannot create any goal,
then a fail status is sent back to the parent, the goal can not be unified. The parent
and -node is a fail, and all marked nodes that were waiting for this computation
also fail. The subnode is added to the list of fail computations. If the chosen goal
returns a substitution, control is returned to the parent node, together with the
substitution found. If the subgoal returns a working status, meaning that the tree
it controls has new nodes, but no substitution has been found yet, control is given
back to the parent node returning also a working status, allowing the development
of other branches of the control tree.

The control tree must be fair to nodes, calculus rules, rewrite rules, equations
and memberships. This can by ensured if we develop the control tree in a breadth
first way, as the set of A-unifiers for two terms returned by Maude is always finite,
as well as the sets of calculus rules, rewrite rules, equations and memberships.

It is important to notice that the prototype that has been developed can be
used as a basis for this improvements, because its main function is to take an
existing goal as input and return a list of new goals as output, about 90 percent
of the code does this processing, and the basic structure of subgoals is the same
as the basic structure of or -nodes.

Chapter 11

Conclusions and future work

In this work we have developed a narrowing calculus for unification in membership
equational logic and a narrowing calculus for reachability in rewrite theories with
an underlying membership equational logic, both of them making use of term
typing information whenever possible. The calculi have been proved correct, and
two sets of transformation rules reflecting the calculi have been developed and
later implemented on a prototype.

The purpose of this work was to study the general case of conditional narrowing
in membership equational logic, which has proved to be highly nondeterministic.
Several calculus rules, like subject reduction, transitivity or equality, make the
state space very large.

The improvements sketched in section 10.2 are an effort to keep this state space
as small as possible. Implementation of this scheme was attempted at first. It was
stopped recently because of lack of time for finishing it, due to its complexity, and
the prototype, which is about 1.500 lines long and is still in debugging process,
was written. It will be resumed in future work because, as previously said, about
90 percent of the developed code is reusable. Another improvement would be
the identification of subgoals that are a renaming of another subgoal to avoid
repeated computations, because fresh variables are different on each subgoal but
the subgoals may represent the same unification problem.

Strategies for rule selection are a starting point for making the state space
smaller, but deeper results would come from the development of membership uni-
fication algorithms or needed narrowing strategies for ACU theories.

Finally, it is worth pointing that one of the main subjects of interest for order-
sorted unconditional narrowing nowadays are homomorphisms [BBBA81], espe-
cially for encryption protocol analysis [EKL+11], since current existing algorithms
[AL+12] do not support neither AC properties nor order sorted theories, and it
is also unknown whether there could exist a variant narrowing [ESM12] modulo
homomorphism algorithm.

76

Bibliography

[AILS07] Luca Aceto, Anna Ing’olfsd’ottir, Kim G. Larsen, and Jiri Srba. Re-
active Systems: Modelling, Specification and Verification. Cambridge
University Press, August 2007.

[AL+12] Siva Anantharaman, Hai Lin 0005, Christopher Lynch, Paliath Naren-
dran, and Michaël Rusinowitch. Unification modulo homomorphic en-
cryption. J. Autom. Reasoning, 48(2):135–158, 2012.

[Baa90] Franz Baader. Unification theory. In Klaus U. Schulz, editor, IWW-
ERT, volume 572 of Lecture Notes in Computer Science, pages 151–170.
Springer, 1990.

[BBBA81] S.S. Burris, S. Burris, K.P. Burris, and A.T.A. Adamson. A course in
universal algebra. 1981.

[BM06] Roberto Bruni and José Meseguer. Semantic foundations for general-
ized rewrite theories. Theor. Comput. Sci., 360(1-3):386–414, 2006.

[BM12] Kyungmin Bae and José Meseguer. Model checking ltlr formulas under
localized fairness. In Franciso Durán, editor, WRLA, volume 7571 of
Lecture Notes in Computer Science, pages 99–117. Springer, 2012.

[Boc93] Alexander Bockmayr. Conditional narrowing modulo a set of equa-
tions. Appl. Algebra Eng. Commun. Comput., 4:147–168, 1993.

[CDE+] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Nar-
ciso Mart́ı-oliet, José Meseguer, and Carolyn Talcott. Maude manual
(version 2.6).

[CDE+02] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Mart́ı-Oliet, José Meseguer, and José F Quesada. Maude: Specification
and programming in rewriting logic. Theoretical Computer Science,
285(2):187–243, 2002.

[CGP99] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model
checking. MIT Press, Cambridge, MA, USA, 1999.

77

78 BIBLIOGRAPHY

[CLD05] Hubert Comon-Lundh and Stéphanie Delaune. The finite variant prop-
erty: How to get rid of some algebraic properties. In Jürgen Giesl, ed-
itor, RTA, volume 3467 of Lecture Notes in Computer Science, pages
294–307. Springer, 2005.

[CM96] Manuel Clavel and José Meseguer. Reflection and strategies in rewrit-
ing logic. Electr. Notes Theor. Comput. Sci., 4:126–148, 1996.

[DLM+08] Francisco Durán, Salvador Lucas, Claude Marché, José Meseguer, and
Xavier Urbain. Proving operational termination of membership equa-
tional programs. Higher-Order and Symbolic Computation, 21(1-2):59–
88, 2008.

[DLM09] Francisco Durán, Salvador Lucas, and José Meseguer. Termination
modulo combinations of equational theories. In Silvio Ghilardi and
Roberto Sebastiani, editors, FroCoS, volume 5749 of Lecture Notes in
Computer Science, pages 246–262. Springer, 2009.

[DM10] Francisco Durán and José Meseguer. A church-rosser checker tool
for conditional order-sorted equational maude specifications. In Pe-
ter Csaba Ölveczky, editor, WRLA, volume 6381 of Lecture Notes in
Computer Science, pages 69–85. Springer, 2010.

[DM12] Francisco Durán and José Meseguer. On the church-rosser and coher-
ence properties of conditional order-sorted rewrite theories. J. Log.
Algebr. Program., 81(7-8):816–850, 2012.

[DMT98] G. Denker, J. Meseguer, and C. Talcott. Protocol specification and
analysis in Maude. In In Proc. of Workshop on Formal Methods and
Security Protocols, 1998.

[Dur99] Francisco Durán. Reflective Module Algebra with Applications to the
Maude Language. PhD thesis, University of Málaga, 1999.

[EEK+13] Serdar Erbatur, Santiago Escobar, Deepak Kapur, Zhiqiang Liu,
Christopher Lynch, Catherine Meadows, José Meseguer, Paliath
Narendran, Sonia Santiago, and Ralf Sasse. Asymmetric unification:
A new unification paradigm for cryptographic protocol analysis. In
Maria Paola Bonacina, editor, CADE, volume 7898 of Lecture Notes in
Computer Science, pages 231–248. Springer, 2013.

[EKL+11] Santiago Escobar, Deepak Kapur, Christopher Lynch, Catherine Mead-
ows, José Meseguer, Paliath Narendran, and Ralf Sasse. Protocol anal-
ysis in maude-npa using unification modulo homomorphic encryption.

BIBLIOGRAPHY 79

In Peter Schneider-Kamp and Michael Hanus, editors, PPDP, pages
65–76. ACM, 2011.

[EMM05] Santiago Escobar, Catherine Meadows, and José Meseguer. A
rewriting-based inference system for the nrl protocol analyzer: gram-
mar generation. In Vijay Atluri, Pierangela Samarati, Ralf Küsters,
and John C. Mitchell, editors, FMSE, pages 1–12. ACM, 2005.

[ESM12] Santiago Escobar, Ralf Sasse, and José Meseguer. Folding variant nar-
rowing and optimal variant termination. J. Log. Algebr. Program.,
81(7-8):898–928, 2012.

[Fay78] M.J. Fay. First-order Unification in an Equational Theory. University
of California, 1978.

[GKK+87] Joseph A. Goguen, Claude Kirchner, Hélène Kirchner, Aristide
Mégrelis, José Meseguer, and Timothy C. Winkler. An introduction
to obj 3. In Stéphane Kaplan and Jean-Pierre Jouannaud, editors,
CTRS, volume 308 of Lecture Notes in Computer Science, pages 258–
263. Springer, 1987.

[GS89] Jean H. Gallier and Wayne Snyder. Complete sets of transformations
for general e-unification. Theor. Comput. Sci., 67(2-3):203–260, 1989.

[HM12] Joe Hendrix and José Meseguer. Order-sorted equational unification
revisited. Electr. Notes Theor. Comput. Sci., 290:37–50, 2012.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12(10):576–580, 1969.

[JKK83] Jean-Pierre Jouannaud, Claude Kirchner, and Hélène Kirchner. Incre-
mental construction of unification algorithms in equational theories. In
Josep Dı́az, editor, ICALP, volume 154 of Lecture Notes in Computer
Science, pages 361–373. Springer, 1983.

[KKK+96] Claude Kirchner, Hélène Kirchner, Claude Kirchner, Hélène Kirchner,
Copyright C, Claude Kirchner, and Hélène Kirchner. Rewriting solving
proving. Technical report, 1996.

[LMM05] Salvador Lucas, Claude Marché, and José Meseguer. Operational ter-
mination of conditional term rewriting systems. Inf. Process. Lett.,
95(4):446–453, 2005.

80 BIBLIOGRAPHY

[Mes90] José Meseguer. Rewriting as a unified model of concurrency. In J.C.M.
Baeten and J.W. Klop, editors, CONCUR ’90 Theories of Concur-
rency: Unification and Extension, volume 458 of Lecture Notes in Com-
puter Science, pages 384–400. Springer Berlin Heidelberg, 1990.

[Mes92] José Meseguer. Conditional rewriting logic as a unified model of con-
currency. Theor. Comput. Sci., 96(1):73–155, April 1992.

[Mes97] José Meseguer. Membership algebra as a logical framework for equa-
tional specification. In Francesco Parisi-Presicce, editor, WADT, vol-
ume 1376 of Lecture Notes in Computer Science, pages 18–61. Springer,
1997.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 1980.

[MSH02] Aart Middeldorp, Taro Suzuki, and Mohamed Hamada. Complete se-
lection functions for a lazy conditional narrowing calculus. Journal of
Functional and Logic Programming, 2002, 2002.

[MT07] José Meseguer and Prasanna Thati. Symbolic reachability analysis
using narrowing and its application to verification of cryptographic
protocols. Higher-Order and Symbolic Computation, 20(1-2):123–160,
2007.

[Pet73] C. A. Petri. Concepts of net theory. In MFCS, pages 137–146. Math-
ematical Institute of the Slovak Academy of Sciences, 1973.

[Rie12] Adrián Riesco. Using narrowing to test maude specifications. In Fran-
ciso DurÃ¡n, editor, Rewriting Logic and Its Applications, volume 7571
of Lecture Notes in Computer Science, pages 201–220. Springer Berlin
Heidelberg, 2012.

[Tur36] Alan M. Turing. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical Soci-
ety, 42:230–265, 1936.

[Vir94] Patrick Viry. Rewriting: An effective model of concurrency. In Con-
stantine Halatsis, Dimitris G. Maritsas, George Philokyprou, and Ser-
gios Theodoridis, editors, PARLE, volume 817 of Lecture Notes in
Computer Science, pages 648–660. Springer, 1994.

	Portada
	Autorización
	Resumen
	Abstract
	Index
	List of Figures
	Introduction
	Objective
	Motivation
	Structure of the work

	Preliminaries
	Membership equational logic
	Rewriting logic
	Executable rewrite theories
	Unification
	Reachability goals
	Narrowing
	Unification by rewriting
	Associated rewrite theory
	Computing E-unifiers

	Maude
	Functional modules
	System modules
	The metalevel

	Conditional narrowing modulo unification
	Calculus rules for unification
	Examples

	Correctness of the calculus for unification
	Soundness
	Completeness

	Transformations for unification
	Transformation rules for unification
	Example

	Reachability by conditional narrowing
	Calculus rules for reachability
	Example

	Correctness of the calculus for reachability
	Soundness
	Completeness

	Transformations for reachability
	Transformation rules for reachability
	Example

	Implementation
	Prototype
	Structures
	Control operators
	Subgoal operators
	Reachability operators
	Unification operators
	Membership operators
	Examples

	Improvements
	Goal-nodes
	And-nodes
	Or-nodes

	Conclusions and future work
	Bibliography

