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Abstract. This work studies the relationship between verifiable and
computable answers for reachability problems in rewrite theories with an
underlying membership equational logic. These problems have the form
(∃x̄)s(x̄) →∗ t(x̄), with x̄ some variables, or a conjunction of several of
these subgoals. A calculus that solves this kind of problems has been
developed and proved correct. Given a reachability problem in a rewrite
theory, this calculus can compute any normalized answer that can be
checked by rewriting, or a more general one. Special care has been taken
in the calculus to keep membership information attached to each term,
using this information whenever possible.
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1 Introduction

Rewriting logic is a computational logic that has been around for more than
twenty years [Mes90], whose semantics [BM06] has a precise mathematical mean-
ing allowing mathematical reasoning for property proving, providing a more flex-
ible framework for the specification of concurrent systems. It turned out that it
can express both concurrent computation and logical deduction, allowing its ap-
plication in many areas such as automated deduction, software and hardware
specification and verification, security, etc. One important property of rewrit-
ing logic is reflection [CM96]. Intuitively, reflection means representing a logic’s
metalevel at the object level, allowing the definition of strategies that guide rule
application in an object-level theory.

Reachability problems have the form (∃x̄)s(x̄) →∗ t(x̄), with x̄ some vari-
ables, or a conjunction of several of these subgoals. They can be solved by model
checking methods for finite state spaces. A technique known as narrowing [Fay78]
that was first proposed as a method for solving equational goals (unification), has
been extended to cover also reachability goals [MT07], leaving equational goals
as a special case of reachability goals. In recent years the idea of variants of a
term has been applied to narrowing. A strategy for order-sorted unconditional
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rewrite theories known as folding variant narrowing [ESM12], which computes
a complete set of variants of any term, has been developed by Escobar, Sasse
and Meseguer, allowing unification modulo a set of equations and axioms. The
strategy terminates on any input term on those systems enjoying the finite vari-
ant property, and it is optimally terminating. It is being used for cryptographic
protocol analysis [MT07], with tools like Maude-NPA [EMM05], termination al-
gorithms modulo axioms [DLM+08], and algorithms for checking confluence and
coherence of rewrite theories modulo axioms, such as the Church-Rosser (CRC)
and the Coherence (ChC) Checkers for Maude [DM12].

This work explores narrowing for membership conditional rewrite theories,
going beyond the scope of folding variant narrowing which works on order-sorted
unconditional rewrite theories. A calculus that computes answers to reachability
problems in membership conditional rewrite theories has been developed and
proved correct with respect to idempotent normalized answers.

The work is structured as follows: in Section 2 all needed definitions and prop-
erties for rewriting and narrowing are introduced. Section 3 introduces the first
part of the narrowing calculus, the one that deals with equational unification.
Section 4 introduces the part of the calculus dealing with reachability and its
proof of correctness. Section 5 shows the calculus at work. In Section 6, related
work, conclusions and current lines of investigation for this work are presented.
An extended version of this paper, with all the missing proofs, can be found at
http://maude.sip.ucm.es/cnarrowing/, together with a previous version of
this work with transformation rules and a prototype.

2 Preliminaries

We assume familiarity with rewriting logic [BM06]. There are several language
implementations of rewriting logic, including Maude [CDE+07]. Rewriting logic
is parameterized by an underlying equational logic. In Maude’s case this logic is
membership equational logic [Mes97].

2.1 Tower of Hanoi example

Throughout this paper the Tower of Hanoi puzzle will be used as a motivating
example to explain the definitions in a less abstract way. We have Rods a, b and
c, and Disks 1, 2, 3 and 4 which can slide onto any Rod. We call a Rod with zero
or more stacked Disks (written juxtaposed) a Tower. If smaller Disks are always
stacked on top of bigger Disks we have a ValidTower (abbreviated VT). A set
of valid towers (written separated by commas) is a State (abbreviated St). A
move between a Pair of towers (written separated by a − symbol) is defined by
the rules: 1) only one Disk may be moved at a time, 2) each move consists of
taking the upper Disk from one Tower and placing it on top of another Tower,
and 3) Disk X may be placed on top of Disk Y only if X is smaller than Y
(written X < Y = t, where t is the true Boolean value). The goal of the puzzle
is to reach a desired State from a given initial State.



2.2 Membership equational logic

A membership equational logic (Mel) signature [BM06] is a triple Σ = (K,Ω, S),
with K a set of kinds, Ω = {Σw;k}(w;k)∈K∗xK a many-kinded algebraic signature,
and S = {Sk}k∈K a K-kinded family of disjoint sets of sorts. For simplicity, we
only allow overloading of operators whenever the result belongs in the same kind.
The kind of a sort s is denoted by [s]. The sets TΣ,s, TΣ(X)s, TΣ,k and TΣ(X)k
denote, respectively, the set of ground Σ-terms with sort s, the set of Σ-terms
with sort s over the set X of sorted variables, the set of ground Σ-terms with
kind k and the set of Σ-terms with kind k over the set X of sorted variables.
We write TΣ , TΣ(X) for the corresponding term algebras. vars(t) ⊆ X denotes
the set of variables in t ∈ TΣ(X).

In the Tower of Hanoi puzzle, Σ = (K,Ω, S) is: K={TS, P, D, B},
Ω={·D TS;TS, ,TS TS;TS , −TS TS;P, moveP;P, <D D;B}, S={STS, SP, SD, SB}, SD={Disk},
STS={Rod, VT, Tower, St}, SP={Pair}, SD={Disk}, SB={Boolean}.
{a, b, c}, {1, 2, 3, 4}, and {t} are the atoms with sort Rod, Disk, and Boolean

respectively.
Positions in a term t: we represent the root of t as ε and the other positions

as strings of nonzero natural numbers in the usual way, considering t as a tree.
The set of positions of a term is written Pos(t). t|p is the subtree below position
p. t[u]p is the replacement in t of the subterm at position p with term u.

A substitution σ : Y → TΣ(X) is a function from a finite set of sorted vari-
ables Y ⊆ X to TΣ(X) such that σ(y) has the same or lower sort as that of
the variable y ∈ Y (s1 ≤ s2, formally defined in the next paragraph). Substi-
tutions are written as σ={x1 7→t1, . . ., xn 7→tn} where Dom(σ)={x1, . . ., xn} and
Ran(σ)=

⋃n
i=1 vars(ti). The identity substitution is id . The restriction of σ to

a set of variables V is σ|V . Composition of two substitutions is denoted by σσ′.
For substitutions σ and σ′ where Dom(σ)∩Dom(σ′)=∅, we denote their union
by σ ∪ σ′.

A Mel theory [BM06] is a pair (Σ, E), where Σ is a Mel signature and
E is a finite set of Mel sentences, either conditional equations or conditional
memberships of the forms:

(∀X) t=t′ if
∧
i

Ai, (∀X) t:s if
∧
i

Ai

for t, t′ ∈ TΣ(X)k and s ∈ Sk, the latter stating that t is a term of sort s,
provided the condition holds, and each Ai can be of the form t=t′, t:s or t:=t′ (a
matching equation). Matching equations are treated as ordinary equations, but
they impose a limitation in the syntax of admissible Mel theories, as we will
see. We also admit unconditional sentences in E . Order-sorted (sugared) notation
s1 ≤ s2 can be used instead of (∀x:[s1]) x:s2 if x:s1. An operator declaration
f : s1 × · · · × sn → s corresponds to declaring f at the kind level and giving
the membership axiom (∀x1:[s1], . . . , xn:[sn]) f(x1, . . . , xn):s if

∧
1≤i≤n xi:si.

Given a Mel sentence φ, we denote by E ` φ that φ can be deduced from E
using the rules in Figure 1, where = can be either = or := as explained before
[BM12]. The rules of Figure 1 specify a sound and complete calculus. A Mel



t ∈ TΣ(X)

(∀X)t = t
Reflexivity

(∀X)t = t′

(∀X)t′ = t
Symmetry

(∀X)t1 = t2(∀X)t2 = t3
(∀X)t1 = t3

Transitivity
(∀X)t′:s (∀X)t=t′

(∀X)t:s
Membership

f ∈ Σk1···kn,k (∀X)ti=t
′
i ti, t

′
i∈TΣ(X)ki , 1≤i≤n

(∀X)f(t1, . . . , tn) = f(t′1, . . . , t
′
n)

Congruence

((∀X)A0 if
∧
iAi)∈E θ:X→TΣ(Y ) (∀Y )Aiθ

(∀Y )A0θ
Replacement

Fig. 1. Deduction rules for membership equational logic.

theory (Σ, E) has an initial algebra, denoted by TΣ/E , whose elements are the
equivalence classes [t]E ⊆ TΣ of ground terms identified by the equations in E .

The Mel theory for the Tower of Hanoi puzzle consists of Σ = (K,Ω, S) and
the following set E of Mel sentences where we omit the universal quantifiers:

X : St if X : VT; X : Tower if X : VT; X : St if X : Rod; X : Tower if X : Rod;
X : St if X : Rod; X : VT if X : Rod; XY : Tower if X : Disk ∧ Y : Tower;
X,Y : St if X : St ∧ Y : St; X,Y = Y,X; (X,Y ), Z = X, (Y, Z);
X − Y : Pair if X : Tower ∧ Y : Tower; X − Y = Y −X;
X < Y : Boolean if X : Disk ∧ Y : Disk; XR : VT if X : Disk ∧R : Rod;
XY T : VT if X : Disk ∧ Y : Disk ∧ T : Tower ∧X<Y = t ∧ Y T : Vt;
1 < 2 = t; 1 < 3 = t; 1 < 4 = t; 2 < 3 = t; 2 < 4 = t; 3 < 4 = t;
move(XT −R) = T −XR if X : Disk ∧ T : Tower ∧R : Rod;
move(XT − Y T ′) = T −XY T ′ if X : Disk ∧ Y : Disk ∧ T : Tower ∧
∧ T ′ : Tower ∧ X < Y = t; move(X) : Pair if X : Pair.

A single Disk stacked on a Rod is always a ValidTower. For multiple Disks,
we compare them recursively. The operator move distinguishes between two
cases: if one Tower is empty, i.e. a Rod, then we can stack any Disk on it;
else the sizes of the top Disks on each Tower must be compared (<) and we can
stack the smaller one on top of the other.

2.3 Rewriting logic

A rewrite theory R = (Σ, E , R) consists of a Mel theory (Σ, E) together with a
finite set R of conditional rewrite rules each of which has the form

(∀X) l→ r if
∧
i

pi=qi ∧
∧
j

wj :sj ∧
∧
k

lk → rk,

where l, r are Σ-terms of the same kind and = can be either = or :=. Rewrite
rules can also be unconditional.

Such a rewrite rule specifies a one-step transition from a state t[lθ]p to the
state t[rθ]p, denoted by t[lθ]p →1

R t[rθ]p, provided the condition holds. The
subterm t|p is called a redex.



t ∈ TΣ(X)

(∀X)t→ t
Reflexivity

(∀X)t1 → t2, (∀X)t2 → t3
(∀X)t1 → t3

Transitivity

f ∈ Σk1···kn,k (∀X)ti → t′i ti, t
′
i∈TΣ(X)ki , 1≤i≤n

(∀X)f(t1, . . . , tn)→ f(t′1, . . . , t
′
n)

Congruence

((∀X) l→ r if
∧
i

pi=qi ∧
∧
j

wj :sj ∧
∧
k

lk → rk)∈R

θ:X→TΣ(Y )
∧
i E ` (∀Y )piθ=qiθ

∧
j E ` (∀Y )wjθ:sj

∧
k(∀Y )lkθ → rkθ

(∀Y )lθ→rθ Replace

Fig. 2. Deduction rules for rewrite theories.

In the example, R has as only element the conditional rewrite rule:
D,E → F,G if D : Tower∧E : Tower∧F −G := move(D−E)∧F : Tower∧G :
Tower.

F and G are new variables on the right side of the rule. They are instantiated
by matching on the conditional part of the rule.

The inference rules in Figure 2 for rewrite theories can infer all possible
computations in the system specified by R [BM12]. We can reach a state v from
a state u if we can prove R ` u→ v.

The relation →1
R/E on TΣ(X) is =E ◦ →1

R ◦ =E . →1
R/E on TΣ(X) induces a

relation→1
R/E on TΣ/E(X), the equivalence relation modulo E , by [t]E →1

R/E [t′]E

iff t →1
R/E t

′. The transitive (resp. transitive and reflexive) closure of →1
R/E is

denoted →+
R/E (resp. →∗R/E). We say that a term t is →R/E -irreducible (or just

R/E-irreducible) if there is no term t′ such that t→1
R/E t

′.

A rewrite rule l → r if cond , is sort-decreasing if for each substitution σ,
we have that for any sort s if lσ ∈ TΣ(X)s and (cond)σ is verified implies
rσ ∈ TΣ(X)s. A Σ-equation t = t′ is regular if Var(t) = Var(t′). It is sort-
preserving if for each substitution σ, we have tσ ∈ Tσ(X)s implies t′σ ∈ Tσ(X)s
and vice versa.

A substitution is called E-normalized (or normalized) if xσ is E-irreducible
for all x ∈ V .

The relation→1
R/E is terminating if there are no infinite rewriting sequences.

The relation →1
R/E is operationally terminating if there are no infinite well-

formed proof trees. The relation →1
R/E is confluent if whenever t→∗R/E t

′ and

t→∗R/E t
′′, there exists a term t′′′ such that t′→∗R/E t

′′′ and t′′→∗R/E t
′′′. In a con-

fluent, terminating, sort-decreasing, membership rewrite theory, for each term
t ∈ TΣ(X), there is a unique (up to E-equivalence) R/E-irreducible term t′ ob-
tained by rewriting to canonical form, denoted by t →!

R/E t
′, or t ↓R/E when t′

is not relevant, which we call canR/E(t).



2.4 Executable rewrite theories

For a rewrite theory R = (Σ, E , R), whether a one step rewrite t →1
R/E t′

holds is undecidable in general. We impose additional conditions, similar to
those required for functional and system modules in Maude, under which we can
decide if t→1

R/E t
′ holds. We decompose E into a disjoint union E ∪ A, with A

a set of equational axioms (such as associativity, and/or commutativity, and/or
identity). We define the relation→1

E,A on TΣ(X) as follows: t→1
E,A t

′ if there is
a position ω ∈ Pos(t), an equation l = r if cond ∈ E, and a substitution σ such
that t|ω =A lσ (A-matching), (cond)σ is satisfied, and t′ = t[rσ]ω. The relation
→1
R,A is similarly defined. We define→1

R∪E,A as→1
R,A ∪ →1

E,A. A rewrite theory
R = (Σ,E ∪ A,R) is executable if each kind k in Σ is nonempty, E, A, and R
are finite and the following conditions hold:

1. E and R are admissible [CDE+07]. Then we have a deterministic 3-CTRS
[Ohl02]. Any new variable in the conditions will be instantiated by matching.
New variables are distinguished in Maude by using a := symbol instead of =
in the condition. They appear on the left terms of these matching equations.
Conditions in deterministic 3-CTRS’s must be solved in left to right order.

2. Equality modulo A is decidable and there exists a finite matching algorithm
modulo A.

3. The equations in E are sort-decreasing, and terminating and confluent mod-
ulo A when we consider them as oriented rules, where →1

E/A is defined in

the same way as we did for →1
R/E .

4. →E,A is coherent with A, i.e., ∀t1, t2, t3 we have t1 →+
E,A t2 and t1 =A t3

implies ∃t4, t5 such that t2 →∗E,A t4, t3 →
+
E,A t5 and t4 =A t5 [MT07].

t1 →+
E,A t2 →∗E,A t4

A A

t3 −→+
E,A t5

5. →R,A is E-consistent with A, i.e., ∀t1, t2, t3 we have t1 →R,A t2 and t1 =A t3
implies ∃t4 such that t3 →R,A t4 and t2 =E t4. Also →R,A is E-consistent
with →E,A, i.e., ∀t1, t2, t3 we have t1 →R,A t2 and t1 →∗E,A t3 implies ∃t4, t5
such that t3 →∗E,A t4 and t4 →R,A t5 and t2 =E t5. In both cases the →R,A

rewriting steps from t3 and t4 must be performed with the same rule that
was applied to t1 [MT07].

t1 →R,A t2

A E

t3 →R,A t4

(a) E-consistency of→R,A with A

t1 −→R,A t2

↓∗E,A E

t3 →∗E,A t4 →R,A t5

(b) E-consistency of →R,A with →E,A

Technically, what coherence means is that the weaker relation→1
E,A becomes

semantically equivalent to the stronger relation →1
E/A, so we can decide t→1

R/E



t′ by finding t′′ such that canE,A(t)→1
R t
′′ and canE,A(t′) =A canE,A(t′′), which

is decidable, since the number of rules is finite and A-matching is decidable and
finite.

Under these conditions we can implement →R/E on terms using →R∪E,A
[MT07]. This lemma links →R/E with →E,A and →R,A. Patrick Viry gave a
proof for unsorted unconditional rewrite theories [Vir94], which can easily be
lifted to our membership conditional case.

Lemma 1. Let R = (Σ, E , R) be an executable rewrite theory, that is, it has
all the properties specified in Section 2.4. Then t1 →R/E t2 if and only if
t1 →∗E,A→R,A t3 for some t3 =E t2.

The rewrite theory for the Tower of Hanoi puzzle is executable if we decompose
E in the following way: the set A has as elements the associative equation and
the commutative equations in E ; the set E has as elements the rest of equations
and all memberships in E , and we add to R the following rule needed for E-
consistency:
D,E, S → F,G, S if D : Tower∧E : Tower∧S : State∧ F−G := move(D−E) ∧
∧F : Tower ∧G : Tower.

2.5 Unification

Given a rewrite theory R = (Σ, E , R), a Σ-equation is an expression of the form
t = t′ where t, t′ ∈ TΣ(X)s for an appropriate s. The E-subsumption preorder
�E on TΣ(X)s is defined by t �E t′ if there is a substitution σ such that
t =E t

′σ. For substitutions σ, ρ and a set of variables V we define σ|V �E ρ|V if
there is a substitution η such that σ|V =E (ρη)|V . Then we say that ρ is more
general than σ with respect to V . When V is not specified, we assume that
V = Dom(σ) = Dom(ρ) and we say that ρ is more general than σ.

A system of equations F is a conjunction of the form t1 = t′1 ∧ . . . ∧ tn = t′n
where for 1 ≤ i ≤ n, ti = t′i is a Σ-equation. We define Var(F ) =

⋃
i Var(ti) ∪

Var(t′i). An E-unifier for F is a substitution σ such that tiσ =E t
′
iσ for 1 ≤ i ≤ n.

For V = Var(F ) ⊆W , a set of substitutions CSUW
E (F ) is said to be a complete

set of unifiers modulo E of F away from W if

– each σ ∈ CSUW
E (F ) is an E-unifier of F ;

– for any E-unifier ρ of F there is a σ ∈ CSUW
E (F ) such that ρ|V �E σ|V ;

– for all σ ∈ CSUW
E (F ), Dom(σ) ⊆ V and Ran(σ) ∩W = ∅.

An E-unification algorithm is complete if for any given system of equations
it generates a complete set of E-unifiers, which may not be finite. A unification
algorithm is said to be finite and complete if it terminates after generating a
finite and complete set of solutions.

2.6 Reachability goals

Given a rewrite theory R = (Σ, E , R), a reachability goal G is a conjunction of
the form t1 →∗ t′1 ∧ . . . ∧ tn →∗ t′n where for 1 ≤ i ≤ n, ti, t

′
i ∈ TΣ(X)si for



appropriate si. We define Var(G) =
⋃
i Var(ti) ∪ Var(t′i). A substitution σ is a

solution of G if tiσ →∗R/E t
′
iσ for 1 ≤ i ≤ n. We define E(G) to be the system of

equations t1 = t′1 ∧ . . . ∧ tn = t′n. We say σ is a trivial solution of G if it is an
E-unifier for E(G). We say G is trivial if the identity substitution id is a trivial
solution of G.

For goals G : t1 →∗ t2 ∧ . . .∧ t2n−1 →∗ t2n and G′ : t′1 →∗ t′2 ∧ . . .∧ t′2n−1 →∗
t′2n we say G =E G

′ if ti =E t
′
i for 1 ≤ i ≤ 2n. We say G→R G

′ if there is an odd
i such that ti →R t′i and for all j 6= i we have tj = t′j . That is, G and G′ differ
only in one subgoal (ti → ti+1 vs t′i → ti+1), but ti → t′i, so when we rewrite ti
in G to t′i we get G′. The relation →R/E over goals is defined as =E ◦ →R ◦ =E .

2.7 Narrowing

Let t be a Σ-term and W be a set of variables such that Var(t) ⊆ W . The
R,A-narrowing relation on TΣ(X) is defined as follows: t  p,σ,R,A t′ if there
is a non-variable position p ∈ PosΣ(t), a rule l → r if cond in R, properly

renamed, such that Var(l) ∩ W = ∅, and a unifier σ ∈ CSUW ′

A (t|p = l) for
W ′ = W ∪ Var(l), such that t′ = (t[r]p)σ and (cond)σ holds. Similarly E,A-
narrowing and R ∪ E,A-narrowing relations are defined.

2.8 Associated rewrite theory

Any executable Mel theory (Σ,E∪A) has a corresponding rewrite theory RE =
(Σ′,A, RE) associated to it [DLM+08]: we add a fresh new kind Truth with a
constant tt to Σ, and for each kind k ∈ K an operator eq : k k → Truth. >
represents a conjunction of any number of tt ’s. There are rules eq(x:k, x:k)→ tt
for each kind k ∈ K. For each conditional equation or membership in E the set
RE has a conditional rule or membership of the form

t→ t′ if A•1 ∧ . . . ∧A•n t:s if A•1 ∧ . . . ∧A•n

where if Ai is a membership then A•i=Ai, if Ai ≡ ti:=t′i then A•i is t′i→ti, and if
Ai ≡ t=t′ then A•i is eq(t, t′)→tt .

Systems of equations in (Σ,E ∪ A) with form G ≡
∧m
i=1(si = ti) become

reachability goals in RE of the form
∧m
i=1 eq(si, ti) → tt . A substitution σ is a

solution of G if there are derivations for
∧m
i=1(siσ = tiσ), or

∧m
i=1 eq(siσ, tiσ)

rewrites to >.
The inference rules for membership rewriting in RE are the ones in Figure 3,

adapted from [DLM+08, Fig. 4, p. 12], where the rules are defined for context-
sensitive membership rewriting.

3 Conditional narrowing modulo unification

Narrowing allows us to assign values to variables in such a way that a reachability
goal holds. We implement narrowing using a calculus that has the following
properties:



t1 →1 t2, t2 → t3
t1 → t3

Transitivity
t→1 t′, t′ : s

t : s
Subject Reduction

t =A t
′

t→ t′
Reflexivity

ti →1 t′i
f(t1, . . . , ti, . . . , tn)→1 f(t1, . . . , t′i, . . . , tn)

Congruence

t→ t′ if A•1 . . . A
•
n ∈ RE and u =A tσ

A•1σ . . . A
•
nσ

u→1 t′σ
Replacement

t : s if A•1 . . . A
•
n ∈ RE and u =A tσ

A•1σ . . . A
•
nσ

u : s
Membership

Fig. 3. Inference rules for membership rewriting.

1. If σ is an R/E-normalized idempotent solution for a reachability goal G, the
calculus can compute a more general answer σ �E σ′ for G.

2. If the calculus computes an answer σ for G, then σ is a solution for G.

That is, we want to compute a complete set of answers for G, a set that includes
a generalization of any possible solution for G, with respect to R/E-normalized
substitutions.

We are going to split this task into two subtasks: first we will solve the part
of the calculus that deals with unification; second, we will solve the part that
deals with reachability.

3.1 Calculus rules for unification

We assume we are working with an executable rewrite theory named M . We
refer to the set of equations and memberships in M as E, to the set of rules as
R and to the set of axioms as A. We also assume that we have an A-unification
algorithm that returns a CSU for any pair of terms.

A unification equation is a term s:S = t:T , which is a shorthand for the
system of equations s = t ∧ s = XS ∧ t = YT (we will also write s = t, s:S,
t:T ). This means that we intend to unify s and t, with resulting sorts S and
T respectively. A unification goal is a sequence (understood as conjunction) of
unification equations.

Admissible goals, or simply goals, are any sequence of s:S=t:T , s:S:=t:T ,
s:S→t:T , s:S→1t:T and t:T . Any condition in an equation, of the form s=t or
s:=t is turned into an admissible goal by adding inferred sorts to it. If any term
s is a variable or a constant, we use the sort of s as inferred sort. If the term is
of the form f(s̄), we use the kind of any membership for f .

Our calculus is defined by the following set of inference rules derived from
those in Figure 3. The first two rules, [u] and [x], transform equational problems
into rewriting problems modulo axioms, rule [u] playing the part of the added
rules eq(x:k, x:k) → tt in the associated rewrite theory; rule [n] describes one
step of unification narrowing where the conditions on the applied rule are turned



into subgoals and the instantiated right side of the rule (rθ) is required to have
a sort which is a common subsort of S and T ; rule [t] allows us to apply several
unification narrowing steps; rule [i] decomposes a term allowing rule [n] to be
applied to any subterm of it; rule [r] allows instantiation of variables on unificable
terms; rule [m1] solves the membership problem for variables, and rules [s] and
[m2] for the rest of terms, using the membership conditions in E:

– [u] unification
s:S = t:T,G′

s:S′ → XS′ :S′, t:S′ → XS′ :S′, G′

where XS′ fresh variable, S′ ≤ S, S′ ≤ T .

– [x] matching
s:S := t:T,G′

t:S′ → s:S′, G′

where S′ ≤ S, S′ ≤ T .

– [n] narrowing
s:S →1 X:T,G′

((c, )X:S′, G′)ρθ

where s is not a variable, (c)eq l=r (if c) ∈ E has fresh variables,

S′ ≤ S, S′ ≤ T , θ ∈ CSUA(s = l), ρ={X 7→ r}.

– [t] transitivity
s:S → t:T,G′

s:S′ →1 XS′ :S′, XS′ :S′ → t:S′, G′

where XS′ fresh variable, S′ ≤ S, S′ ≤ T .

– [i] imitation
f(s̄:S̄):S →1 X:T,G′

G′θ, si:Si →1 X ′Si
:Si, Xθ:S′, G′′θ

with X/∈Var(s), θ = {X 7→ f((s1, . . ., si−1, X
′
Si

:Si, si+1, . . ., sn))},
X ′Si

fresh variable, S′ ≤ S, S′ ≤ T .

– [r] removal of equations
s:S → t:T,G′

(G′, s:S′, G′)θ

with θ ∈ CSUA(s = t), S′ ≤ S, S′ ≤ T

– [s] subject reduction
s:S,G′

s:[S]→1 XS :S,G′

XS fresh variable.



– [m1] membership
XS :T,G′

(G′)θ

where θ = {XS 7→ X ′S′} with X ′S′ fresh variable and S′ ≤ S, S′ ≤ T .

– [m2] membership
s:S,G′

((c, )G′)θ

where (c)mb t:T (if c) is a fresh variant, with T ≤ S, of a (conditional)

membership in E, and θ ∈ CSUA(s = t).

From a unification equation u a derivation is made applying rules of the calculus.
If the derivation ends in the empty goal, denoted by �, then the composition
of the substitutions used on each derivation step, restricted to those variables
appearing in u, is a computed answer for u.

Theorem 1. The calculus for unification is sound and weakly complete.

That is, given a unification goal G, if G ∗σ � then Gσ can be derived, so σ is a
solution for G in →E/A, and if ρ is an E/A-normalized idempotent answer of G
(Gρ→∗E/A >), then there is ρ′ idempotent, with ρ�A ρ

′, such that G ρ′ �.

4 Reachability by conditional narrowing

Conditional narrowing relies on conditional unification. As we have used the
symbol → in the calculus rules for unification, we will use a different symbol
⇒ in the calculus rules for reachability. Our goal, given a reachability problem∧
i si:Si ⇒ ti:Ti, is to find a solution σ (ground or not) such that

∧
i siσ:Si ⇒R/E

tiσ:Ti. For executable rewrite theories this is equivalent to
∧
i siσ:Si ⇒R∪E,A∧

i tiσ:Ti. These new calculus rules deal with the  R,A part. Narrowing, we
call it replacement here, takes place only at position ε of terms, thanks to new
transitivity and imitation calculus rules.

Reachability goals are any sequence (understood as conjunction) of subgoals
of the form s:S ⇒ t:T . Admissible goals, or simply goals, are now extended to be
any sequence of s:S⇒t:T , s:S⇒1t:T , s:S=t:T , s:S→t:T , s:S→1t:T , s:S→1t:T ,
s:S:=t:T and t:T . If the calculus derives the empty goal from a reachability goal
G with a substitution σ, then σ is a computed answer for G.

As for unification, any reachability subgoal in our calculus of the form of
s:S ⇒(1) t:T is equivalent to the admissible goal s⇒(1) t, s:S, t:T .

4.1 Calculus rules for reachability

Reachability by conditional narrowing is achieved using the calculus rules pre-
sented in Section 3, extended with the following calculus rules, based on the
deduction rules for rewrite theories in Figure 2. Rule [X] solves reachability
problems by unification; rule [R] applies one step of reachability narrowing; rule



[T ] enables reachability narrowing modulo and multiple steps of reachability nar-
rowing. It is a direct consequence a 1 ; rule [I] allows us to imitate narrowing
at non root term positions, replacing the rewriting rule for congruence, that can
now be achieved by transitivity and imitation. Recall that narrowing steps for
reachability (⇒1), which are generated by rule [T ], impose no sort within the
given kind on the right side of the step:

– [X] reflexivity
s:S ⇒ t:T,G′

s:S = t:T,G′

– [R] replacement
s:S ⇒1 X[S]:[S], G′

(s:S, (c, ), G′)ρθ

where s is not a variable, (c)rl l⇒ r (if c) is a fresh variant of a (conditional)

rule in R, ρ = {X[S] 7→ r}, θ ∈ CSUA(s = l).

– [T ] transitivity

s:S ⇒ t:T,G′

s:S → X ′S :S,X ′S :S ⇒1 X ′′[S]:[S], X ′′[S]:[S]⇒ t:T,G′

where X ′S and X ′′[S] are fresh variables.

– [I] imitation
f(s̄:S̄):S ⇒1 X[S]:[S], G′

si:Si ⇒1 X ′Si
:Si, f(s̄:S̄):S,G′θ

where X[S] /∈vars(s), θ = {X[S] 7→ f((s1, . . ., X
′
Si

:Si, . . ., sn))}, X ′Si
fresh variable.

From a reachability goal r a derivation is made applying rules of the calculus.
Each application of the reflexivity rule generates a unification equation. These
unification equations as well as any generated membership goals must be solved
using the calculus rules for unification. If the derivation ends with an empty goal,
written�, then the composition of the substitutions used on each derivation step,
restricted to those variables appearing in r, is a computed answer for r.

Theorem 2. The calculus for reachability is sound and weakly complete.

That is, given a reachability goal G, if G ∗σ � then Gσ can be derived, so σ is
a solution for G in →R/E , and if θ is an R/E-normalized idempotent answer for
a reachability problem G in →R/E , then there is σ idempotent, with θ �E σ,
such that G ∗σ �.

Proof. We prove correctness of the calculus for reachability with respect to R/E-
normalized (equivalently R ∪E,A) idempotent substitutions for the executable
rewrite theory R = (Σ, E , R) in →R/E .

1. Soundness: By structural induction on the calculus rule for reachability ap-
plied.



2. Completeness: We prove that for R/E-normalized idempotent answers ⇒1

solves →1
R,A reachability problems and ⇒ solves →∗R/E reachability prob-

lems, according to [MT07, Theorem 3] and Lemma 1. Then it follows that
if θ is an R/E-normalized idempotent answer for a reachability problem G
in →R/E , then there is σ idempotent, with θ �E σ, such that G  ∗σ �.
Inferred sorts are treated as in the proof of completeness of the calculus for
unification (see extended version). We don’t show the inferred sorts here.
(a) We prove that if sρ→1

R,A t then s⇒1 t′  ∗σ �, with ρ�Eσ and t�E t′.
By definition there is a position p in sρ, a rule l→r if c ∈ R and a
matching θ such that sρ|p=lθ, cθ can be derived and t ≡ (sρ)[rθ]p.
By the same reasoning we used for the completeness of the calculus for
unification, p must be a nonvariable position in s. Otherwise ρ would not
be R/E-normalized. From s⇒1 X, by imitation we can reach position p,
turning our reachability problem into s|p ⇒1 Xp with η={X 7→ s[Xp]p}.
Applying replacement, as sρ|p=lθ, there is σ(≡ ρ′∪θ′) ∈ CSUA(sρ|p=l),
with ρ�E ρ′, θ �E θ′ and t′ ≡ Xησ ≡ (sρ′)[rθ′]p.
It is important to remember, again, that ACU-coherence completion al-
lows A-unification of the left term of the ACU-coherence completed ver-
sion of the rule, l, with the whole sρ|p whenever the original left term l
can be A-unified with some subterm of a recombination of sρ|p.

(b) We prove that if sρ →∗R/E tρ, ρ is a solution, then s ⇒ t  ∗σ �, with
ρ�E σ. We distinguish two cases:
– Reflexive case: sρ =E tρ. Then s⇒t  [X] s=t  ∗σ �, with ρ �E σ

by correctness of the calculus for unification.
– Rest of the cases. According to [MT07, Lemmas 7 and 8] and the

Lemma in Section 2.4 it suffices to show that ( ∗E,A R,A)+ =E is
implemented by ⇒. This is done in the transitivity rule

s:S ⇒ t:T,G′

s:S → X ′S :S,X ′S :S ⇒1 X ′′[S]:[S], X ′′[S]:[S]⇒ t:T,G′

s:S → X ′S implements ∗E,A as proved in the calculus for unification.

X ′S :S ⇒1 X ′′[S]:[S] implements R,A as proved in the previous point.

X ′′[S]:[S] ⇒ t:T allows iteration (the + part) through several uses of
the transitivity rule ending with the =E part through the use of the
reflexivity rule, which is the only rule that enables us to exit the loop
generated by the transitivity rule.
Finally, correct typing is ensured because s:S and t:T are included
as conditions.

5 Example

As an example of our calculus we use the specification of the Tower of Hanoi puz-
zle in Section 2 and the reachability problem (3T 0

T , b, c):S ⇒ (a, b, T 1
T ):S, where

from a State composed of one Tower with Disk 3 on top of it and two Towers



with Rods b and c alone respectively we want to reach a State composed of two
Towers with Rods a and b alone respectively and another Tower. The subindex of
each variable means its type (sort or kind) and we write D,R, V, T, P, S instead
of Disk, Rod, ValidT, Tower, Pair, State for readability.:

1. (3T 0
T , b, c):S ⇒ (a, b, T 1

T ):S  [T ]

Transitivity decomposes reachability into several rewriting narrowing steps.

2. (3T 0
T , b, c):S → X1

S :S,X1
S :S ⇒1 X2

[S]:[S], X2
[S]:[S]⇒ (a, b, T 1

T ):S

 [r],{T 0
T 7→a,X1

S 7→(3a,b,c)} T
0
T is instantiated through rule [r].

3. (3a, b, c):S, (3a, b, c):S ⇒1 X2
[S]:[S], X2

[S]:[S]⇒ (a, b, T 1
T ):S

We focus on the first subgoal.

4. (3a, b, c):S  [m2],S1
[S]
,S2

[S]
:S if S1

[S]
:S

∧
S2
[S]

:S,{S1
[S]
7→(3a,b),S2

[S]
7→c}

5. c:S, (3a, b):S  . . .

6. 3a:S  [m2],X[D]R[R]:V if X[D]:D
∧
R[R]:R,{X[D] 7→3,R[R] 7→a}. OK because V ≤ S.

7. 3:D, a:R  . . . similar to previous steps. First subgoal finished.

8. (3a, b, c):S ⇒1 X2
[S]:[S], X2

[S]:[S]⇒ (a, b, T 1
T ):S. We focus on the first subgoal.

9. (3a, b, c):S ⇒1 X2
[S]:[S] [R],D[T ],E[T ],X[S]→F[T ],G[T ],X[S] if

D[T ]:T∧E[T ]:T∧X[S]:S∧F[T ]:T∧G[T ]:T∧F[T ]−G[T ]:=move(D[T ]−E[T ]),

θ={D[T ] 7→3a,E[T ] 7→c,X[S] 7→b},ρ={X2
[S]

:[S]7→F[T ],G[T ],X[S]} Narrowing step.

10. (3a, b, c):S, 3a:T, c:T, b:S, (F[T ] −G[T ]):[P ] := move(3a− c):[P ]  . . .

11. F[T ] −G[T ]:[P ] := move(3a− c):[P ] [x]

12. move(3a− c):[P ]→ F[T ] −G[T ]:[P ] [t]

Transitivity decomposes unification into several unification narrowing steps.

13. move(3a− c):[P ]→1 Y[P ]:[P ], Y[P ]:[P ]→ F[T ] −G[T ]:[P ] [n],

move(X[D]T[T ]−R[R])=T[T ]−X[D]R[R] if X[D]:D
∧
T[T ]:T

∧
R[R]:R,

θ={X[D] 7→3,T[T ] 7→a,R[R] 7→c},ρ={Y[P ] 7→T[T ]−X[D]R[R]}

Unification narrowing step. Y[P ] is instantiated to a ground term.

14. a− 3c:[P ], 3:[D], a:[T ], c:[R], a− 3c:[P ]→ F[T ] −G[T ]:[P ]  . . .

15. a− 3c:[P ]→ F[T ] −G[T ]:[P ]  [r],θ1={F[T ] 7→a,G[T ] 7→3c} Removal of equations.

16. a− 3c:[P ] . . . We omit this and go back to the second subgoal on step 8.

17. (a, 3c, b) : [S]⇒ (a, b, T 1
T ):S  [X] . . .

18. (a, 3c, b) : S → XS :S, (a, b, T 1
T ):S → XS :S  [r],{XS 7→(a,3c,b)}

19. (a, 3c, b) : S, (a, b, T 1
T ):S → (a, 3c, b):S  . . .

20. (a, b, T 1
T ):S → (a, 3c, b):S  [r],{T 1

T 7→3c} T
1
T is instantiated through rule [r].

21. (a, b, 3c) : S  . . .�

From the substitutions in steps 2 and 20 the answer {T 1
T 7→ 3c, T 0

T 7→ a} is
computed. The calculus has found the solution (3a, b, c):S ⇒ (a, b, 3c):S which
is an instance of the given reachability problem (3T 0

T , b, c):S ⇒ (a, b, T 1
T ):S.



6 Related work, conclusions and future work

A classic reference in equational conditional narrowing modulo is the work of
Bockmayr [Boc93]. The topic is addressed here for Church-Rosser equational
CTRS with empty axioms, but non terminating axioms (like ACU) are not al-
lowed. Non conditional narrowing modulo order-sorted equational logics is cov-
ered by Meseguer and Thati [MT07], the reference for recent development in this
area, which is actively being used for cryptographic protocol analysis. This work
is partially based on the work of Viry [Vir94] where R/E rewriting is defined in
terms of R,A and E,A for unsorted rewrite theories. Another topic addressed by
the present work, membership equational logic, is defined by Meseguer [Mes97].
An equivalent rewrite system for Mel theories is presented by Durán, Lucas et al.
[DLM+08], allowing unification by rewriting. Strategies, which also play a main
role in narrowing, have been studied by Antoy, Echahed and Hanus [AEH94].
Their needed narrowing strategy, for inductively sequential rewrite systems, gen-
erates only narrowing steps leading to a computed answer. Recently Escobar,
Sasse and Meseguer [ESM12] have developed the concepts of variant and folding
variant, a narrowing strategy for order-sorted unconditional rewrite theories that
terminates on those theories having the finite variant property. As an extension
to rewrite theories Bruni and Meseguer [BM06] have defined generalized rewrite
theories that support context-sensitive rewriting, thus allowing rewrites only on
certain positions of terms.

In this work we have developed a narrowing calculus for unification in mem-
bership equational logic and a narrowing calculus for reachability in rewrite
theories with an underlying membership equational logic. The main features in
these calculi are that they make use of membership information whenever pos-
sible, reducing the state space, and also that they only allow steps leading to
a different state, no mutual cancelling steps are allowed. The calculi have been
proved correct. This work is part of a bigger effort where we attempt to explore
the possibilities of performing conditional narrowing with constraint solvers. A
transformation for rules and goals that will make both calculi strongly complete
is under study. Strong completeness of reachability for topmost rewrite theories,
Russian dolls configurations and linear theories are also under study. Finally,
decidability of the calculus for unification in the case of operationally terminat-
ing [LM09] Mel theories with a finitary and complete A-unification algorithm,
using the required strategy for deterministic 3-CTRS’s of solving subgoals from
left to right, is being studied.

Our current line of investigation also intends to study the extension of the
calculi to handle constraints and their connection with external constraint solvers
for domains such as finite domains, integers, Boolean values, etc., that could
greatly improve the performance of any implementation. We also plan on the
extension of the calculi, adding support for generalized rewrite theories. Better
strategies that may help reducing the state space will also be studied. All the
improvements will have new sets of transformation rules that will allow their
implementation on Maude.
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P. Samarati, R. Küsters, and J. C. Mitchell, editors, FMSE, pages 1–12.
ACM, 2005.

[ESM12] S. Escobar, R. Sasse, and J. Meseguer. Folding variant narrowing and opti-
mal variant termination. The Journal of Logic and Algebraic Programming,
81(7-8):898–928, 2012.

[Fay78] M.J. Fay. First-order Unification in an Equational Theory. University of
California, 1978.

[LM09] S. Lucas and J. Meseguer. Operational termination of membership equa-
tional programs: the order-sorted way. Electr. Notes Theor. Comput. Sci.,
238(3):207–225, 2009.

[Mes90] J. Meseguer. Rewriting as a unified model of concurrency. In J.C.M. Baeten
and J.W. Klop, editors, CONCUR ’90 Theories of Concurrency: Unification
and Extension, volume 458 of Lecture Notes in Computer Science, pages
384–400. Springer, 1990.

[Mes97] J. Meseguer. Membership algebra as a logical framework for equational
specification. In Francesco Parisi-Presicce, editor, WADT, volume 1376 of
Lecture Notes in Computer Science, pages 18–61. Springer, 1997.

[MT07] J. Meseguer and P. Thati. Symbolic reachability analysis using narrowing
and its application to verification of cryptographic protocols. Higher-Order
and Symbolic Computation, 20(1-2):123–160, 2007.

[Ohl02] E. Ohlebusch. Advanced topics in term rewriting. Springer, 2002.
[Vir94] P. Viry. Rewriting: An effective model of concurrency. In C. Halatsis, D. G.

Maritsas, G. Philokyprou, and S. Theodoridis, editors, PARLE, volume 817
of Lecture Notes in Computer Science, pages 648–660. Springer, 1994.


