
WPTE 2020 informal proceedings

Narrowing-based Optimization of Rewrite Theories*

María Alpuente Santiago Escobar Julia Sapiña
VRAIN, Universitat Politècnica de València

Valencia, Spain
{alpuente,sescobar,jsapina}@upv.es

Demis Ballis
DMIF, University of Udine

Udine, Italy
demis.ballis@uniud.it

Partial evaluation has been never investigated in the context of rewrite theories that allow
concurrent systems to be specified by means of rules, with an underlying equational theory
being used to model system states as terms of an algebraic data type. In this paper, we
develop a symbolic, narrowing-driven partial evaluation framework for rewrite theories
that supports sorts, subsort overloading, rules, equations, and algebraic axioms. Our par-
tial evaluation scheme allows a rewrite theory to be optimized by specializing the plugged
equational theory with respect to the rewrite rules that define the system dynamics. This
can be particularly useful for automatically optimizing rewrite theories that contain overly
general equational theories which perform unnecessary computations involving matching
modulo axioms, because some of the axioms may be blown away after the specialization
transformation. The specialization is done by using appropriate unfolding and abstraction
algorithms that achieve significant specialization while ensuring the correctness and termi-
nation of the specialization. Our preliminary results demonstrate that our transformation
can speed up a number of benchmarks that are difficult to optimize otherwise.

1 Introduction

Rewriting Logic (RWL) is a logic of change that extends order-sorted equational logic by adding
rewrite rules that are used to describe non-deterministic transitions of concurrent systems.
Rewriting Logic is efficiently implemented in the high-performance system Maude [6]. Roughly
speaking, a rewrite theory seamlessly combines a term rewriting system (TRS), which specifies
the system dynamics, with an equational theory that defines the static structure of the system
states. The equational theory may contain equations and axioms (i.e., distinguished equations
that specify algebraic laws such as commutativity, associativity, and unity for some theory op-
erators) so that rewrite steps are performed modulo the equations and axioms.

Partial evaluation (PE) is a program optimization technique (also known as program spe-
cialization) that, given a program and some of its input data, produces a residual or specialized
program. Running the residual program on the remaining data is generally faster and yields
the same result as running the original program on all of its input data [12]. PE has been
widely applied to a variety of programs, including functional programs (FP) [12] and logic
programs (LP) [13], where it is usually called partial deduction (PD). The Equational Narrowing-
driven Partial Evaluation (EqNPE) scheme of [1] extends PD to the specialization of order-sorted
equational theories with respect to a set of input terms. The input equational theory (Σ,E ]B)
consists of a set E of convergent equations (that in the order-sorted setting means they are

*This work has been partially supported by the EU (FEDER) and the Spanish MCIU under grant RTI2018-
094403-B-C32, and by Generalitat Valenciana under grant PROMETEO/2019/098. Julia Sapiña has been supported
by the Generalitat Valenciana APOSTD/2019/127 grant.



2 Narrowing-based Optimization of Rewrite Theories

confluent and terminating, among other requirements) that are implicitly oriented from left to
right as rewrite rules (and operationally used as simplification rules), and a set B of commonly
occurring axioms such associativity, commutativity, and identity that are essentially used for
pattern matching modulo. Thanks to the use of (a form of) narrowing, the symbolic mechanism
that extends term rewriting by replacing pattern matching with unification [17], the achieved
transformation is strictly more powerful than the PE of both logic programs and functional
programs [4]. In EqNPE, the key ingredients of PD are generalized to an order-sorted typed
setting modulo axioms by providing: 1) a narrowing-based, tree unfolding operator for ensuring
correction of the transformation; 2) order-sorted equational homeomorphic embedding for local
termination (i.e., finiteness of unfolding); 3) order-sorted (recursive) equational closedness (that
ensures that all possible calls that may arise during the execution of the residual program are
covered by the specialization) for completeness; and 4) term abstraction (based on order-sorted
equational least general generalization) for global termination of the whole specialization pro-
cess.

In the following we consider a rewrite theoryR = (Σ,E]B,R) that extends the order-sorted
equational theory E = (Σ,E ] B) with a set R of rewrite rules that specify concurrent system
transitions. Rewrite theories can not only be executed by equational rewriting in Maude but
also symbolically executed by narrowing at two levels: (i) narrowing with the (typically non-
confluent and non-terminating) rules of R modulo (E ] B), and (ii) narrowing with oriented
equations ~E (the explicitly oriented version of the equations in E) modulo the axioms B. They
both have practical applications: (i) narrowing with R modulo (E ] B) is useful for solving
reachability goals [15] and logical model checking [9], and (ii) narrowing with ~E modulo B (or
(~E,B)-narrowing) is useful for equational unification and variant computation [10]. Both levels
of narrowing should meet some conditions: (i) narrowing with R modulo (E ]B) is performed
in a “topmost” way (i.e., the rules in R rewrite the global system state) and there must be a
finitary unification algorithm for (E ] B), and (ii) narrowing with ~E modulo B requires that
B is a theory with a finitary unification algorithm and that ~E is convergent. When (Σ,E ] B)
additionally has the property that a finite complete set of most general (~E,B)-variants1 exists for
each term, known as the finite variant property (FVP), E-unification is finitary [7], and topmost
narrowing with R modulo the equations and axioms can be effectively performed.

For (~E,B)-variant computation and (variant-based) E-unification, the folding variant narrow-
ing (FVN) strategy of [10] is used. The main idea of folding variant narrowing is to “fold”2 , by
subsumption modulo B, the (~E,B)-narrowing tree that can in practice result in a finite, directed
acyclic narrowing graph that symbolically and concisely summarizes the (generally infinite)
narrowing search space of the theory. Nevertheless, finiteness of folding variant narrowing
trees is only guaranteed for equational theories that satisfy the finite variant property.

Because both reachability goals and logical model checking generally require the whole
search space of rewrite theories to be analyzed (i.e. all system states and transitions), the oppor-
tunities for optimizing rewrite theories by partial evaluation may appear to be scarce. Actually,

1A variant of a term t consists of a pair (t′ ,σ ), where t′ is the (~E,B)-irreducible form of tσ for a substitution σ .
2The notion of folding in folding variant narrowing is essentially a subsumption notion applied to some leaves

of the narrowing tree so that less general leaves are subsumed (folded into) most general ones. Therefore, this
notion is quite different from the classical folding operation of Burstall and Darlington’s fold/unfold transformation
scheme [5], where unfolding is essentially the replacement of a call by its body, with appropriate substitutions, and
folding is the inverse transformation, i.e., the replacement of some piece of code by an equivalent function call.



M. Alpuente, D. Ballis, S. Escobar, J. Sapiña 3

partial evaluation typically removes some computation states by performing as much program
computation as possible hence contracting the search space because some transitions are re-
moved. The key idea in this paper for the specialization of a rewrite theory R is to partially
evaluate the underlying equational theory E with respect to the function calls in the rules ofR
in such a way that E gets rid of any unneeded overgenerality. By this means, only the functional
computations given by E are compressed by partial evaluation, while keeping the concurrent
computations with the rules of R. Depending on the properties of both, E and R, the right
unfolding and abstraction operators must be chosen to achieve the biggest optimization possi-
ble while ensuring termination and total correctness of the transformation. Moreover, in many
cases we transform a rewrite theory whose operators obey structural, algebraic axioms such as
associativity, commutativity, and unity, into a much simpler rewrite theory whose operators
obey no axioms. This makes it possible to run such theories into an independent rewriting
infrastructure that does not support rewriting modulo axioms. Furthermore, some costly anal-
yses that may require significant (or even unaffordable) resources, both in time and space, can
be now effectively performed after the transformation. This includes the analysis of crypto-
graphic communication protocols that are currently handled by some ad-hoc combination of
separate techniques and that can be recast as distinct instances of our generic partial evaluation
scheme. See [1] for extra references on narrowing-driven partial evaluation.

After some brief preliminaries in Section 2, we sketch the specialization algorithm for
rewrite theories in Section 3, which works in two phases: partial evaluation and compression
refactoring. In Section 4, we provide a suitable unfolding operator dealing with theories that
do not meet the finite variant property. Then, we discuss some preliminary experiments that
show the optimization capability of our technique and we conclude.

2 Preliminaries

Let Σ be a signature that includes typed operators (also called function symbols) of the form
f : s1 . . . sm→ s where si , and s are sorts in a poset (S,<) that models subsort relations (e.g. s < s′

means that sort s is a subsort of s′). Σ is assumed to be preregular, so each term t has a least
sort under <, denoted ls(t). Binary operators in Σ may have attached an axiom declaration
that specifies any combinations of algebraic laws such as associativity (assoc), commutativity
(comm), and identity (id). By ax(f ), we denote the set of algebraic axioms for the operator f .
By T (Σ,X ), we denote the usual non-ground term algebra built over Σ and the set of (typed)
variables X . By T (Σ), we denote the ground term algebra over Σ. By notation x : s we denote
a variable x with sort s. Any expression tn denotes a finite sequence t1 . . . tn, n ≥ 0, of terms. A
position w in a term t is represented by a sequence of natural numbers that addresses a subterm
of t (Λ denotes the empty sequence, i.e., the root position). Given a term t, we let P os(t) denote
the set of positions of t. We denote the usual prefix preorder over positions by ≤. By t|w, we
denote the subterm of t at position w. By root(t) we denote the operator of t at position Λ.

For an equational theory E = (Σ,E ]B) to be executable, its equations E must be convergent
(i.e., confluent, sort-decreasing, terminating, and coherent modulo the given axioms B) [8].
This ensures: 1) that every input expression t has one (and only one) canonical form t↓~E,B; and
2) rewriting modulo the equations and axioms can be easily implemented by using the oriented
equations of ~E as the only simplification rules, while the equations in B are just encapsulated
within a powerful algorithm of pattern matching modulo B that is used at each rewrite step



4 Narrowing-based Optimization of Rewrite Theories

with ~E. Throughout the paper, we assume that equational theories are always convergent. By
=B, we denote the equality relation given by the set of axioms B over T (Σ,X ).

A rewrite theory is a triple R = (Σ,E ] B,R), where (Σ,E ] B) is an equational theory and
R is a set of rules of the form l ⇒ r, with l, r ∈ T (Σ,X ), that may be non-confluent and non-
terminating. Rewrite theories provide a natural computation model for concurrent systems as
shown in the following example.
Example 1 Let us consider a rewrite theory R = (Σ,E ] B,R) that encodes a close variant of the
handshake network protocol of [14]. The theory models an environment where several clients and
servers coexist. The signature Σ includes several operators and sorts that model protocol entities.
Names of the sorts are self-explanatory: for example, servers are typed with sort Serv, clients with
sort Cli, and messages with sort Message.

Messages are encoded as a non-empty, associative sequence s1 . . .sn where, for the sake of simplic-
ity, each si is a term of sort Symbol in the alphabet {a,b,c}. We assume that Symbol < Message,
hence any symbol is also a (one-symbol) message. Clients are represented as 5-tuples of the form
[C,S,Q,K,V] of sort Cli, where C is the client’s name, S is the name of the server C wants to com-
municate with, Q is a message encoding a client handshake request, K is a natural number (specified
in Peano’s notation) that determines an encryption/decryption key for messages, and V is a constant
value that models the server handshake status. Initially, the status is set to the empty value mt, and
it changes to success whenever the handshaking process succeeded. Servers are simply modeled
by means of pairs of the form [S,K] of sort Serv, where S is a server name, and K is an encryp-
tion/decryption key. All network packets are represented as pairs of the form Host <- CNT of sort
Packet, where Host is a client or server recipient, and CNT specifies the packet content. Specifically,
CNT is a term {H,M}, with H being the sender’s name and M being a message that represents either a
client handshake request or a server response. System states are formalized as multisets t1 &. . .& tm of
clients, servers, and network packets via the ACU operator & whose unity element is the constant
null. The protocol dynamics is specified by the following three rules that implements a handshake
protocol where clients and servers agree on a shared key K.

rl [req] : [C,S,Q,K,mt] => (S <- {C,enc(Q,K)}) & [C,S,Q,K,mt] .

rl [reply] : (S <- {C,M}) & [S,K] => (C <- {S,dec(M,K)}) & [S,K] .

rl [rec] : (C <- {S,Q}) & [C,S,Q,K,mt] => [C,S,Q,K,success] .

More specifically, the rule req allows a client C to start a handshake request with a sever S by sending
an encrypted message enc(Q,K) to S so that the message Q is encrypted by using the client’s key
K. The rule reply lets the server S consume a client handshake request packet S <- {C,M} by first
decrypting the incoming message M with the server key and then sending a response packet back to
C that includes the decrypted request message. The rule rec successfully completes the handshake
between C and S whenever the server response packet C <- {S,Q} includes a message Q which is
equal to the initial client request message. In this case, the status of the client is changed from mt to
success. Note that the handshake succeeds when the client and server use the same key K.

Encryption and decryption capabilities are implemented by two functions (namely, enc(M,K) and
dec(M,K)) that are specified by the equational theory E in R. The equational theory E implements
a Caesar cipher with key K, which is a simple substitution cipher where each symbol in the plaintext
message is replaced by the symbol K positions forward in the alphabet. The cipher is circular, i.e., it
works modulo the cardinality of the alphabet. For instance, enc(a b,s(0)) would deliver (b c),
and dec(a b,s(0)) would be the message (c a). The equational theory E includes the equations3

3Due to the lack of space, we omitted the definition of the operators [_,_,_], _<_, _+_ that respectively imple-



M. Alpuente, D. Ballis, S. Escobar, J. Sapiña 5

in Figure 1. In the specification, the equational attribute variant is used to identify the equations to
be considered by the folding variant narrowing strategy.

var M : Message . var X K : Nat . var S : Symbol .

eq toNat(a) = 0 [variant] . eq toSym(0)= a [variant] .

eq toNat(b) = toNat(a) + s(0) [variant] . eq toSym(s(0)) = b [variant] .

eq toNat(c) = toNat(b) + s(0) [variant] . eq toSym(s(s(0))) = c [variant] .

eq len = s(s(s(0))) --- Alphabet cardinality

eq shift(X) = [ s(X) < len,s(X), 0 ] [variant] .

eq unshift(0) = s(s(0)) [variant] . eq unshift(s(X)) = X [variant] .

eq e(X,0) = X [variant] . eq e(X,s(Y)) = e(shift(X),Y) [variant] .

eq d(X,0) = X [variant] . eq d(X,s(Y)) = d(unshift(X),Y) [variant] .

eq enc(S,K) = toSym(e(toNat(S),K)) [variant] .

eq enc(S M,K) = toSym(e(toNat(S),K)) enc(M,K) [variant] .

eq dec(S,K) = toSym(d(toNat(S),K))[variant] .

eq dec(S M,K) = toSym(d(toNat(S),K)) dec(M,K) [variant] .

Figure 1: Equational theory E encoding the Caesar cipher.

3 Partial Evaluation of Rewrite Theories

In this section, we briefly present the specialization procedure NPER
U that allows a rewrite

theory R = (Σ,E ] B,R) to be optimized by specializing the underlying equational theory
E = (Σ,E ] B) with respect to the (calls in the) rewrite rules of R. The procedure NPER

U is
parametric w.r.t. an unfolding operator U that is used to construct finite narrowing derivations
for a given expression. NPER

U is based on a suitable extension of the equational, narrowing-
driven partial evaluation algorithm for equational theories EqNPE

U of [1] shown below.

3.1 Partial Evaluation of Equational Theories

Given E = (Σ,E ] B) and a set Q of calls (henceforth called specialized calls), the main goal of
EqNPE

U is to derive a new equational theory E ′ that computes the same answers (and values)
for any input term that is a recursive instance (modulo axioms) of a term in Q. The procedure
follows the style of Gallagher’s partial deduction method [11], with two distinct control levels:
the local level, which is controlled by an unfolding operator, and the global level, which is
managed by an abstraction operator.

Unfolding. To partially evaluate E with respect to Q4, the EqNPE
U algorithm starts by con-

structing in E a finite, possibly partial (folding variant) narrowing tree for each input term t of
Q. This is done by using the unfolding operator U that determines when and how to stop the
narrowing computations.

ments the usual if-then-else construct, the less-than relation and the (associative and commutative) addition over
natural numbers.

4For simplicity, we assume that Q is normalized w.r.t. the equational theory E. If this were not the case, for each
t ∈ Q that is not in canonical form such that t ↓~E,B= C(ti ), where C( ) is the (possibly empty) constructor context

of t ↓~E,B and ti are the maximal calls in t ↓~E,B, we would replace t in Q with the normalized terms ti , and add a

suitable “bridge” equation t = C(ti ) to the resulting specialization.



6 Narrowing-based Optimization of Rewrite Theories

Abstraction. In order to guarantee that all possible executions for t in the original theory
E are covered by the specialization, every (sub-)term in any leaf of the tree is required to be
equationally closed w.r.t. Q. The equational closedness extends the classical PD closedness by
recursing over the term structure (in order to handle nested function calls) and by considering
B-equivalence of terms.

Roughly speaking, consider a natural partition5 of the signature as Σ = D ] C, where the
values computed by simplification (i.e., reduction to canonical form) with ~E modulo B are
constructor terms in C, whereas the function symbols f ∈ D are viewed as defined functions
that are evaluated away by simplification with ~E modulo B. A term u is closed modulo B w.r.t.
Q (we also say that u is Q-closed modulo B) iff either: (i) it does not contain defined function
symbols of D, or (ii) there exists a substitution θ and a (possibly renamed) q ∈ Q such that
u =B qθ, and the terms in θ are recursively Q-closed. For instance, given a defined binary
symbol • that does not obey any structural axioms (in particular the commutativity), the term
t = a•(Z•a) is closed w.r.t. Q = {a•X,Y •a} or {X•Y }, but it is not withQ being {a•X}; however,
it would be closed if • were commutative.

Note that several iterations of i) and ii) may be needed because some of the leaves in
deployed narrowing trees might include calls, i.e., (sub-)terms, that are not Q-closed mod-
ulo B. At each iteration, an abstraction operator is applied to properly add the uncovered
(sub-)terms to the set of already partially evaluated calls, yielding a new set of terms which
may need further evaluation. The process is iteratively repeated as far as new terms are in-
troduced yet ensuring that the set cannot grow infinitely. The abstraction operator guarantees
that only finitely many expressions are evaluated, thus ensuring global termination of the spe-
cialization.

Theory generation. The EqNPE
U algorithm does not explicitly compute a partially evaluated

equational theory. It does so implicitly, by computing a (generally augmented) set Q′ of par-
tially evaluated terms that unambiguously determine the desired partially evaluated equations
E as the set of resultants tσ = t′ associated with the derivations in the narrowing tree from the
root t ∈ Q′ to the leaf t with computed answer substitution σ , such that the closedness condi-
tion modulo B w.r.t. Q′ is satisfied for all function calls that appear in the right-hand sides of
the equations in E′.

In the following, we assume the existence of the function GenTheory(Q′ , (Σ,E ] B)) that
delivers the partially evaluated equational theory E ′ = (Σ′ ,E′]B′) univocally determined byQ′

and the original equational theory E = (Σ,E ]B).

3.2 TheNPER
U scheme for the Specialization of Rewrite Theories

We first provide some auxiliary notions that are useful to describe the generic NPER
U scheme.

Roughly speaking, the specialization of the rewrite theory R = (Σ,E ]B,R) is achieved by par-
tially evaluating the hosted equational theory E = (Σ,E]B) w.r.t. the rules ofR, which is done by
using the partial evaluation procedure EqNPE

U of Section 3.1. By providing suitable unfolding
and abstraction operators, different instances of the specialization scheme can be defined. An

5This distinction between constructor and defined symbols is more sophisticated than the standard division in
the TRSs literature since Rewriting Logic supports overloaded symbols that can play both roles. Consider, e.g., the
sort poset Zero One < Nat and the equation s(s(X:Nat))=X:Nat; in this setting, s:Zero-> One is a constructor
symbol, whereas s:Nat -> Nat is a defined symbol.



M. Alpuente, D. Ballis, S. Escobar, J. Sapiña 7

unfolding operator that is able to deal with theories that do not meet the finite variant property
is introduced in Section 4.

Given Σ = D ] C, let DE be the set of the defined symbols of D that appear in the set of
equations E. Given a term t, a maximal function call in t is a subterm t|w of t, with w ∈ P os(t),
such that (i) root(t|w) ∈ DE , and (ii) there does not exist w′ ∈ P os(t), such that w′ ≤ w and
t|w′ ∈ DE . Given a rewrite rule s⇒ t of R, by mcalls(s⇒ t) we denote the set of all the maximal
function calls that occur in s and t. Also, mcalls(R) is the set of all maximal calls in the rules of
R. The NPER

U procedure is outlined in Algorithm 1.

Algorithm 1 Symbolic Specialization of Rewrite Theories NPER
U(R)

Require:
A rewrite theory R = (Σ,E ]B,R), an unfolding operator U

1: function NPER
U (R)

Phase 1. Partial Evaluation
2: R′← {(l ↓~E,B)⇒ (r ↓~E,B) | l⇒ r ∈ R}
3: Q←mcalls(R′)
4: Q′← EqNPE

U ((Σ,E ]B),Q)
5: E ′←GenTheory(Q′ , (Σ,E ]B))

Phase 2. Compression
6: R′′← Compress((Σ,E ]B,R′),E ′ ,Q′)
7: return R′′

Given the rewrite theory R = (Σ,E ]B,R), the procedure essentially consists of two phases.
Phase 1 applies the EqNPE

U algorithm to specialize the equational theory E = (Σ,E ]B) w.r.t.
a set Q of specialized calls that consists of all of the maximal functions calls that appear in the
(~E,B)-normalized version R′ of the rewrite rules of R.

This phase produces the new set of specialized calls Q′ from which the partial evaluation
E ′ = (Σ′ ,E′ ]B′) of E w.r.t. Q is univocally derived by executing GenTheory(Q′ , (Σ,E ]B)).

Phase 2 is performed by the Compress post-processing, shown in Algorithm 2, that takes
as input the normalized rewrite theory R′ = (Σ,E ] B,R′), the computed partial evaluation
E ′ = (Σ′ ,E′ ]B′), and the final set of specialized calls Q′ from which E ′ derives. The algorithm
computes a new, much more compact equational theory E ′′ = (Σ′′ ,E′′ ]B′′) where unused sym-
bols and unnecessary repetition of variables are removed, and equations of E′ are simplified by
renaming similar expressions w.r.t. an independent renaming function ρ that is derived from
set of specialized calls Q′.

Formally, for each t of sort s inQ′ with root(t) = f , ρ(t) = ft(xn : sn), where xn are the distinct
variables in t in the order of their first occurrence and ft : sn→ s is a new function symbol that
does not occur in Σ or Q′ and is different from the root symbol of any other ρ(t′), with t′ ∈ Q′
and t′ , t. By abuse, we let ρ(T ) denote the set T ′ = {ρ(t) | t ∈ T } for a given set of terms T .

Essentially, the Compress algorithm of Figure 2 can be seen as a refactoring transformation
that recursively computes, by means of the function RNρ, a new equation set E′′ by replacing
each call in E′ by a call to the corresponding renamed function according to ρ. Furthermore, a
new rewrite rule set R′′ is also produced by consistently applying RNρ to the (~E,B)-normalized
rewrite rules of R′. Formally, each rewrite rule l⇒ r in R′ is transformed into the rewrite rule
RNρ(l)⇒ RNρ(r), in which every maximal function call t in the rewrite rule is recursively re-



8 Narrowing-based Optimization of Rewrite Theories

Algorithm 2 Compression algorithm
Require:

A rewrite theory R′ = (Σ,E]B,R′), a partial evaluation E ′ = (Σ′ ,E′ ]B′) of (Σ,E]B) w.r.t. a
set of specialized calls Q.

1: function Compress(R,E ′ ,Q)
2: Let ρ be an independent renaming for Q in
3: E′′←

⋃
t∈Q{ρ(t)θ = RNρ(t′) | tθ = t′ ∈ E′}

4: R′′← {RNρ(l)⇒ RNρ(r) | l⇒ r ∈ R′}
5: Σ′′← (Σ′ \ {f | f occurs in ((E ]B) \ (E′ ]B′))})∪ {root(ρ(t)) | t ∈Q}
6: B′′ = {ax(f ) ∈ B′ | f ∈ Σ′ ∩Σ′′}
7: return (Σ′′ ,E′′ ]B′′ ,R′′)

where

RNρ(t) =


c(RNρ(tn)) if t = c(tn) with c : sn→ s ∈ Σ s.t. c ∈ C, ls(t) = s, n ≥ 0

ρ(u)θ′ if ∃θ,∃u ∈Q s.t. t =B uθ and θ′ = {x 7→ RNρ(xθ) | x ∈Dom(θ)}
t otherwise

named according to the independent renaming ρ. The algorithm also computes the specialized
signature Σ′′ and restricts the set B′ to those axioms obeyed by the function symbols in Σ′∩Σ′′.
Finally, the rewrite theory R′′ = (Σ′′ ,E′′ ]B′′ ,R′′) is delivered as the final outcome.

Note that, while the independent renaming suffices to rename the left-hand sides of the
equations in E′ (since they are mere instances of the specialized calls), the right-hand sides are
renamed by means of the auxiliary function RNρ, which recursively replaces each call in the
given expression by a call to the corresponding renamed function (according to ρ).

4 Instantiating the Specialization Scheme for Rewrite Theories

In this section, we formulate an instance of the generic specialization scheme of Section 3 by
providing a concrete implementation UE of the generic unfolding operator U that implements
the local control and is based on folding variant narrowing. Since termination of folding vari-
ant narrowing is not generally guaranteed, the unfolding operator UE must incorporate some
mechanism to stop the construction of the narrowing trees. For this purpose, a number of
standard techniques can be applied, including depth-bounds, loop-checks, well-founded or-
derings, well-quasi orderings, etc. Within the narrowing-driven approach, unfolding rules
have been traditionally defined by using a particular type of well-quasi ordering: homeomor-
phic embedding. This is why we formulate UE by relying on an equational, order-sorted exten-
sion E of the classical homeomorphic embedding relation defined in [2] that detects the risk of
non-termination when a term is reached that embeds a previous term of the same derivation.

Roughly speaking, a homeomorphic embedding relation is a structural preorder under
which a term t is greater than (i.e., it embeds) another term t′, written as t′ E t, if t′ can be
obtained by deleting some parts of t, e.g., s(s(X + Y ) ∗ (s(X) + Y )) embeds s(Y ∗ (X + Y ))). When
iteratively computing a sequence t1, t2, . . . , tn, finiteness of the sequence can be guaranteed by
using the embedding as a whistle: whenever a new expression tn+1 is to be added to the se-
quence, we first check whether tn+1 embeds any of the expressions already in the sequence. If
that is the case, we say that E whistles, i.e., it has detected (potential) non-termination and the



M. Alpuente, D. Ballis, S. Escobar, J. Sapiña 9

computation has to be stopped. Otherwise, tn+1 can be safely added to the sequence and the
computation can proceed.

As for the global level of control, it is enforced by means of an abstraction operator that is
based on an equational order sorted extension of the least general generalization algorithm of
[3], and it guarantees that the number of unfolded narrowing trees is kept finite. Computing a
least general generalization (lgg) for two expressions t1 and t2, also known as least general anti-
unifier, means finding the least general expression t such that both t1 and t2 are instances of
t under appropriate substitutions. Due to the algebraic axioms, in general there can be more
than one least general generalizer of two expressions. As a simple example, we record the travel
history of a person using a list (with associative list constructor symbol ‘.’) that is ordered by the
chronology in which the visits were made; e.g., paris.paris.bonn.nyc denotes that paris has
been visited twice before visiting bonn and then nyc. The travel histories paris.paris.bonn.
nyc and bonn.bonn.rome have two incomparable least general generalizers modulo axioms
(a) L1.bonn.L2 and (b) C.C.L, meaning that (a) the two travelers visited bonn, and (b) they
consecutively repeated a visit to their own first city. Note that the two generalizers are least
general and incomparable, since neither of them is an instance of the other modulo axioms.

Example 2 Consider a specific instance of the rewrite theory of Example 1 where servers and clients
reach consensus on a pre-shared fixed key; for simplicity assume K=s(s(0)). Let R = (Σ,E ] B,R)
be such a rewrite theory, where E = (Σ,E ] B) is the equational theory of R. In E, the FVN trees
associated to encryption and decryption capabilities may be infinite. For instance, the FVN tree for
the call enc(M,s(s(0)) is infinite since the message M may have an arbitrary size. In fact, terms of
the form (t1 . . . tn enc(M′ ,s(s(0)))) can be narrowed from enc(M,s(s(0)), where enc(M′ ,s(s(0))) can
be further narrowed to unravel an unlimited sequence of identical terms modulo renaming. Nonethe-
less homeomorphic embedding detects this non-terminating behaviour since enc(M′ ,s(s(0)) embeds
enc(M,s(s(0)).

By using the unfolding operator UE, the first phase of the NPER
U(R) Algorithm 1 computes the

initial set Q = {enc(M,s(s(0)),dec(M,s(s(0))} consisting of the maximal functional calls in R. Then,
the equational theory E is partially evaluated by EqNPE

UE w.r.t. Q. During the partial evaluation
process, UE only unravels finite fragments of the FVN narrowing trees that are rooted by the special-
ized calls, thereby yielding the partial evaluation E ′ of E in Figure 2.

The second phase of the algorithm produces the compressed equational theory E ′′ of Figure 3 by
computing the following renaming for the theory functions. This greatly simplifies E ′ since it gets rid
of long sequences of nested calls and non-variable function arguments.

dec(M : Message,s(s(0))) 7→ f0(M : Message)
enc(M : Message,s(s(0))) 7→ f1(M : Message)
toSym(unshift(unshift(toNat(X : Symbol)))) 7→ f3(X : Symbol)
toSym([[toNat(X : Symbol) < s(s(0)),s(toNat(X : Symbol)),0] < s(s(0)),

s([toNat(X : Symbol) < s(s(0)),s(toNat(X : Symbol)),0]),0]) 7→ f2(X : Symbol)

Finally, it is worth noting that the resulting specialization E ′′ provides a highly optimized ver-
sion of E for an arbitrarily fixed key K=s(s(0)), where both functional and structural compression
are achieved. Specifically, data structures in E for natural numbers and their associated operations
for message encryption and decryption are totally removed from E ′′. Note that the _+_, operator to-
gether with its associative and commutative axioms, disappears from E ′′, thereby avoiding expensive
matching operations modulo axioms. Encryption in E ′′ (resp., decryption) is now a direct mapping
f0 (resp., f1) that associates messages to their corresponding crypted (resp. decrypted) counter-



10 Narrowing-based Optimization of Rewrite Theories

eq dec(a,s(s(0))) = b [variant] . eq dec(b,s(s(0))) = c [variant] .

eq dec(c,s(s(0))) = a [variant] .

eq dec(S:Symbol M:Message, s(s(0))) = toSym(unshift(unshift(toNat(S:Symbol))))

dec(M:Message, s(s(0))) [variant] .

eq enc(a,s(s(0))) = c [variant] . eq enc(b,s(s(0))) = a [variant] .

eq enc(c,s(s(0))) = b [variant] .

eq enc(S:Symbol M:Message, s(s(0))) =

toSym([[toNat(S:Symbol) < s(s(0)),s(toNat(S:Symbol)),0] < s(s(0)),

s([toNat(S:Symbol) < s(s(0)),s(toNat(S:Symbol)),0]),0]) enc(M:Message, s(s(0))) [variant] .

eq toSym([[toNat(a) < s(s(0)),s(toNat(a)),0] <

s(s(0)),s([toNat(a) < s(s(0)),s(toNat(a)),0]),0]) = c [variant] .

eq toSym([[toNat(b) < s(s(0)),s(toNat(b)),0] <

s(s(0)),s([toNat(b) < s(s(0)),s(toNat(b)),0]),0]) = a [variant] .

eq toSym([[toNat(c) < s(s(0)),s(toNat(c)),0] <

s(s(0)),s([toNat(c) < s(s(0)),s(toNat(c)),0]),0]) = b [variant] .

eq toSym(unshift(unshift(toNat(a)))) = b [variant] .

eq toSym(unshift(unshift(toNat(b)))) = c [variant] .

eq toSym(unshift(unshift(toNat(c)))) = a [variant] .

Figure 2: NPER
UE Phase 1: Partial evaluation of E w.r.t. Q

eq f0(a) = b [variant] . eq f0(b) = c [variant] . eq f0(c) = a [variant] .

eq f2(a) = c [variant] . eq f2(b) = a [variant] . eq f2(c) = b [variant] .

eq f1(a) = c [variant] . eq f1(b) = a [variant] . eq f1(c) = b [variant] .

eq f3(a) = b [variant] . eq f3(b) = c [variant] . eq f3(c) = a [variant] .

eq f0(S:Symbol M:Message) = f3(S:Symbol) f0(M:Message) [variant] .

eq f1(S:Symbol M:Message) = f2(S:Symbol) f1(M:Message) [variant] .

Figure 3: NPER
UE Phase 2: Compression of E ′

parts, avoiding a huge amount of computation in the profuse domain of natural numbers. Finally,
the computed renaming is also applied to R by respectively replacing the maximal function calls
enc(M,s(s(0)) and dec(M,s(s(0)) with f0(M) and f1(M) into the rewrite rules of R. This al-
lows the (renamed) rewrite rules to be able to access the new specialized encryption and decryption
functionality provided by E ′′.

Note that our methodology may, in some cases, transform a rewrite theory whose equational
theory does not satisfy the FVP, into one that does. This allows narrowing-based reachability
problems to be solved in the specialized program, whereas it is not possible into the original
one. For instance, by restricting the handshake protocol to messages of a fixed size (e.g. 3
symbols), we could get a specialization that meets the FVP, in which the following reachabil-
ity goal [Cli-A,Srv-A,Q,K,mt] & [Srv-A,K] & (Srv-A <- {Cli-A,abc}) =>* [Srv-A,K]

& [Cli-A,Srv-A,Q,K,success] can be solved. The solution allows to infer the client key
K=s(s(0)) and the non-encrypted message Q=(bca) in the initial state whenever the crypted
message abc is sent to the server.

The NPER
UE specialization algorithm has been implemented in a prototype system that is

available at [16]. Table 1 contains the experiments that we have performed using an Intel Xeon
E5-1660 3.3GHz CPU with 64 GB RAM running Maude v3.0 and considering the average of
ten executions for each test. These experiments together with the source code of all examples
are also publicly available at [16]. We have considered two variants of the handshake protocol



M. Alpuente, D. Ballis, S. Escobar, J. Sapiña 11

Msize #RewsR #RewsR′ Reduction TR (ms) TR′ (ms) Speedup
Handshake Protocol 100K 2,600,115 400,002 84.62% 221 96 2.30

w/o Fibonacci 500K 13,000,205 2,000,002 84.62% 1,950 731 2.67
(success) 1M 26,000,100 4,000,002 84.62% 5,137 2,191 2.34

Handshake Protocol 100K 92,003,651 10,000,051 89.13% 10,200 1,716 5.94
with Fibonacci 500K 442,003,651 50,000,051 88.69% 53,424 12,185 4.38
(time bound) 1M 879,503,651 100,000,051 88.63% 129,112 40,857 3.16

Table 1: Experimental results for the specialization of the Handshake protocol

previously discussed in the paper for input messages of three different sizes: one hundred
thousand symbols, five hundred thousand symbols, and one million symbols (Column Msize).
The two variants differ in the introduction of an extra function (Fibonacci) in the underlying
equational theory to make the key generation heavier, and in this case, we introduce a generous
time bound to stop the execution after a substantial number of rewrites. We have benchmarked
the original rewrite theory R and the specialized rewrite theory R′ on these data. We do not
explicitly show the specialization times since they are negligible for all problems (< 100 ms).
For each benchmark, the number of rewrites for a common initial state in each rewrite theory
is shown in columns #RewsR and #RewsR′ , respectively. The percentage of reduction in terms
of number of rewrites is shown in the Reduction column.

The relative speedups that we achieved thanks to specialization are given in the Speedup
column and computed as the ratio TR/TR′ . Our figures show that the specialized theories
achieve a significant improvement in execution time when compared to the original rewrite
theory, with an average speedup for these benchmarks of 3.47.

We are currently working on improving our prototype and on more powerful instances of
our scheme for relevant classes of rewrite theories, such as those that satisfy FVP and theories
that protect a constructor sub-theory but are non-FVP so that they cannot be automatically
optimized by existing techniques.

References

[1] M. Alpuente, A. Cuenca-Ortega, S. Escobar & J. Meseguer (2020): A Partial Evaluation
Framework for Order-Sorted Equational Programs modulo Axioms. Journal of Logical and
Algebraic Methods in Programming 110.

[2] M. Alpuente, A. Cuenca-Ortega, S. Escobar & J. Meseguer (2020): Order-sorted Home-
omorphic Embedding modulo Combinations of Associativity and/or Commutativity Axioms.
Fundamenta Informaticae. To appear.

[3] M. Alpuente, S. Escobar, J. Espert & J. Meseguer (2014): A Modular Order-Sorted Equational
Generalization Algorithm. Information and Computation 235, pp. 98–136.

[4] M. Alpuente, M. Falaschi & G. Vidal (1998): Partial Evaluation of Functional Logic Pro-
grams. ACM Transactions on Programming Languages and Systems 20(4), pp. 768–844.

[5] R. M. Burstall & J. Darlington (1977): A Transformation System for Developing Recursive
Programs. Journal of the ACM 24(1), pp. 44–67.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer & C. Talcott (2007):
All About Maude: A High-Performance Logical Framework. Springer, doi:10.1007/978-3-
540-71999-1.

http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/978-3-540-71999-1


12 Narrowing-based Optimization of Rewrite Theories

[7] H. Comon-Lundh & S. Delaune (2005): The Finite Variant Property: How to Get Rid of Some
Algebraic Properties. In: Proc. of the 16th International Conference on Rewriting Tech-
niques and Applications (RTA 2005), Lecture Notes in Computer Science 3467, Springer,
pp. 294–307, doi:10.1007/978-3-540-32033-3_22.

[8] F. Durán & J. Meseguer (2012): On the Church-Rosser and Coherence Properties of Condi-
tional Order-sorted Rewrite Theories. The Journal of Logic and Algebraic Programming
81(7–8), pp. 816–850, doi:10.1016/j.jlap.2011.12.004.

[9] S. Escobar & J. Meseguer (2007): Symbolic Model Checking of Infinite-State Systems Using
Narrowing. In: Proc. of the 18th International Conference on Term Rewriting and Ap-
plications (RTA 2007), Lecture Notes in Computer Science 4533, Springer, pp. 153–168,
doi:10.1007/978-3-540-73449-9_13.

[10] S. Escobar, R. Sasse & J. Meseguer (2012): Folding Variant Narrowing and Optimal Variant
Termination. The Journal of Logic and Algebraic Programming 81(7–8), pp. 898–928,
doi:10.1016/j.jlap.2012.01.002.

[11] J. P. Gallagher (1993): Tutorial on Specialisation of Logic Programs. In: Proc. of the ACM
SIGPLAN Symposium on Partial Evaluation and Program Manipulation (PEPM 1993),
Association for Computing Machinery, pp. 88–98.

[12] N. D. Jones, C. K. Gomard & P. Sestoft (1993): Partial Evaluation and Automatic Program
Generation. Prentice-Hall.

[13] J. W. Lloyd & J. C. Shepherdson (1991): Partial Evaluation in Logic Programming. The
Journal of Logic Programming 11(3-4), pp. 217–242.

[14] J. Meseguer (2008): The Temporal Logic of Rewriting: A Gentle Introduction. In: Concur-
rency, Graphs and Models: Essays Dedicated to Ugo Montanari on the Occasion of his
65th Birthday, Lecture Notes in Computer Science 5065, Springer, pp. 354–382.

[15] J. Meseguer & P. Thati (2007): Symbolic Reachability Analysis Using Narrowing and its Appli-
cation to Verification of Cryptographic Protocols. Higher-Order and Symbolic Computation
20(1–2), pp. 123–160.

[16] (2020): The Presto Website. Available at: http://safe-tools.dsic.upv.es/presto.

[17] J. R Slagle (1974): Automated Theorem-Proving for Theories with Simplifiers, Commutativity,
and Associativity. Journal of the ACM 21(4), pp. 622–642.

http://dx.doi.org/10.1007/978-3-540-32033-3_22
http://dx.doi.org/10.1016/j.jlap.2011.12.004
http://dx.doi.org/10.1007/978-3-540-73449-9_13
http://dx.doi.org/10.1016/j.jlap.2012.01.002
http://safe-tools.dsic.upv.es/presto

	Introduction
	Preliminaries
	Partial Evaluation of Rewrite Theories
	Partial Evaluation of Equational Theories
	The NPERU scheme for the Specialization of Rewrite Theories 

	Instantiating the Specialization Scheme for Rewrite Theories

