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Hardware security studies, discovers, and classifies hardware attacks as well as defence strategies
such as prevention and protection methods along the entire hardware production chain. Hardware
Trojans represent a hardware attack model that emerged in the last decades in the hardware security
community. In this paper, we present a methodology for achieving a scalable approach to detect
hardware Trojans at the design stage using program transformation in a rewrite-based environment.
We evaluate the effectiveness of our methodology on an industrial hardware design, Advanced En-
cryption Standard cores, which is widely used and deployed for numerous devices and applications.
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1 Introduction

The focus in computer systems security was traditionally set on software while the underlying hardware
has been considered as trustworthy. However, we witness lately to changes in the practices of the hard-
ware industry such as increased reliance on outsourcing the hardware design. Consequently, the former
security trust anchor in hardware became obsolete, so the computer systems security had to split its
efforts and focus on hardware security as well.

Hardware security studies hardware attacks as well as defense strategies such as prevention and pro-
tection methods along the entire hardware production chain. Hardware Trojans (HT) represent a hard-
ware attack model that encompasses malicious modifications hidden in the hardware with the intention
to compromise the designated functionality. For example, an outsourced component may introduce a HT
that induces undesired behaviors. HTs may be physically inserted into the hardware during production
but could be also introduced in the design as showed in [6] where the cryptographic key is leaked over
an antenna or network connection, provided that the correct “easter egg” trigger is applied.

Hardware designs are situated at the beginning of the hardware production chain and were initially
handcrafted blueprints of the circuits. The development of the hardware industry introduced the need
of automatized ways of production, which determined the apparition of hardware description languages
such as Verilog. A Verilog program can be physically realized by synthesis software, which is similar
to a Verilog compiler. Namely, synthesis software algorithmically transforms the Verilog program into
a netlist–a logically equivalent description consisting only of certain elementary logic primitives–that
leads to a circuit fabrication blueprint.

In the last decade HTs became a proactive research domain within the hardware community where
the HT problem is studied along the entire hardware production chain [12] and HT benchmarks are
proposed [11]. However, up to the date there is no clear evidence of HTs discovered in the wild even
though several rumors appeared from time to time, e.g., [10]. Nevertheless, the industry starts to be aware
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of this security issue and tries to take measures against it. For example, the work presented in this paper
is part of an industrial project commissioned by the New Energy and Industrial Technology Development
Organization (NEDO) in Japan with the mission to coordinate and integrate the technological capabilities
and research abilities of industry and academia.

Our work proposes a methodology for detection of HTs that produce information leak in the hardware
design, i.e., Verilog programs. For this purpose we proceed as follows:

• We give the Verilog program as input to VerilogRLS [8]—a rewriting-based tool built in Maude [4]
environment—that specifies the Verilog semantics according to Verilog IEEE standard [2];

• We customize VerilogRLS by defining a program transformation that produces another Verilog
program which preserves the data dependencies in the input program;

• We execute symbolically the transformed Verilog program into the customized VerilogRLS to
obtain the transitive closure of the data dependency relation for the input program;

• We detect the information leak HTs by using model checking on the data dependency relation.

Our contribution consists in the sound integration of the information leak HT detection for Ver-
ilog hardware designs into the rewriting-based specification of the Verilog semantics. This integration
comprises a customization of VerilogRLS, which encompasses program transformation and symbolic
execution. We also prove here the soundness of the methodology w.r.t. the information leak HT detec-
tion, i.e., if the hardware design leaks information during some executions then this is represented into
the symbolic execution of the transformed program. Note that, due to the industrial context of the work,
the source code is of proprietary nature, which precludes us from making it available.

The structure of this work is as follows: we begin with a brief introduction of Verilog and VerilogRLS
in Section 2. Next, in Section 3 we present the program transformation customization of VerilogRLS in
two steps: first we define the data dependency relation under consideration and then we describe the
program transformation customization of VerilogRLS. In Section 4 we present the symbolic execution
we introduce in VerilogRLS, followed by the proof that the symbolic execution of the program transfor-
mation is in a simulation relation with the executions of the initial program. In Section 5 we show some
experiments of the methodology that we conduct on an industrial size hardware design. A brief related
work and conclusions are provided in Section 6.

2 Preliminaries

Verilog is a hardware description language used in the design and verification of digital circuits. A
Verilog program can be described by modules executed concurrently and a module consists of a num-
ber of program blocks, all executed concurrently. Certain program blocks, e.g., always or continuous
assignments, run continuously while other program blocks, e.g., initial, run only once. In Verilog the
concurrency is dealt with via a scheduler that separates the concurrent events in five priority ordered
categories within which the events are nondeterministically scheduled. VerilogRLS [8] proposes a for-
mal and executable semantics for Verilog language and it is built on top of the rewriting environment
provided by Maude1. We introduce next the main Verilog elements eventually accompanied by some of
their semantics representation specified in VerilogRLS2.

1We assume familiarity with the Maude syntax for rewriting logic. For more details on Maude syntax we refer to [4].
2For more details on VerilogRLS we refer to http://fsl.cs.illinois.edu/index.php/Verilog_Semantics.

http://fsl.cs.illinois.edu/index.php/Verilog_Semantics
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Concurrent processes: Hardware concurrency is modeled in Verilog via three types of syntactic el-
ements: continuous assignment, initial block, and procedural block. A continuous assignment is syn-
tactically designated by assign v = exp, where v is a variable and exp is an expression. The con-
tinuous assignment executes whenever some variable in exp changes. An initial block, designated by
initial begin Body end, is executed only once in the beginning of the module containing the block.
A procedural block is syntactically designated by always @(Slist) begin Body end. The procedu-
ral block Body is triggered by any update to some variable in the Slist, i.e., the sensitivity list. However,
we note that the statement in Body are executed sequentially while the order of triggers in the sensitivity
list does not matter. When multiple events are triggered at the same time, the order of their execution is
not specified by IEEE standards except for the order given by the scheduler described next.

Scheduling semantics: A scheduler is an infinite loop that, at each time unit, organizes the concurrent
events available for execution. The Verilog scheduler separates the concurrent events in five categories:
active, inactive, nonblocking assign updates, monitors, and future events. These categories correspond
to priorities (listed here in descending order) the scheduler assigns to each event available at a particular
time unit. The events from the same category are scheduled for execution in arbitrary order, which is the
main source of nondeterminism in Verilog. The completion of all events in a category at a particular time
is called simulation cycle. We note that VerilogRLS introduces a subcategory of active events, namely
the listening events, which are those events that are waiting for some updates to occur in order to get
executed. We recall that such an event is produced by the evaluation of an always process where the
trigger set is designated by the sensitivity list. Hence, a listening event is activated, i.e., added to the
active evens, as soon there is an update to any of its triggers. VerilogRLS specifies the scheduler in the
SCHEDULING-SEMANTICS module where each scheduling step is denoted by a rewrite rule.

Assignments: Besides the continuous assignment Verilog provides two other basic types of assign-
ments, blocking and non-blocking, which can only appear in procedural blocks. At their most basic
level, the assignments generate update events. The update events themselves are responsible for actually
updating the environment of the system and waking up any listening processes. Blocking assignments
are syntactically designated as V = expression ; with a blocking semantics, i.e., once scheduled for
execution, any concurrent process is halted until the update event generated by the current blocking
assignment completes. VerilogRLS specifies its behavior with equations where the assignment is con-
sumed from the active scheduling category and the change of V together with its new value is added to
the update category. Note that the update category is further used by the scheduler in a rule for triggering
listening events. Non-blocking assignments are designated by the syntax V <= expression ;. The
non-blocking assignment semantics stipulates that the expression is evaluated upon the activation of
the assignment but the update of the variable V is scheduled in the non-blocking assign update events
category. This is specified in VerilogRLS by means of a rule which allows postponing the value change
of V, and its inclusion in the update scheduling category.

Environment: In VerilogRLS the memory is defined in the module ENVIRONMENT as a mapping from
data names, of sort Name, to values, of sort Value. Below we list the VerilogRLS specification of the
environment update operator _[_<-_]:

op _[_<-_] : Env Name Value -> Env .

eq Env[Q <- BV] = insert(Q, [BVToInt(BV) # sizeof(Env[Q])], Env) .



4 Slicing Verilog in Rewriting Logic

where BV is a value of sort BitVector. The format of the BitVector is defined by the constructor
operator [_#_] that takes as first argument an integer of sort Int representing the integer value of a bit
vector and as second argument a term of sort Nat+, i.e., a natural numbers enriched with infinity,
representing the size of the bit vector.

Configuration: A configuration is the term representation for the state of a Verilog program. All
equations and rules in the VerilogRLS specification rewrite the configuration to advance the state of the
system. The initial configuration of a Verilog program is:

env(emptyEnv) time(0) activeProcesses(emptyProcesses) updateEvents(emptyEvents)

nonBlockingAssignUpdateEvents(nilEvents) listeningEvents(emptyEvents)

inactiveEvents(emptyEvents) monitorEvents(emptyEvents)

futureMonitorEvents(emptyEvents) futureEvents(nilEvents)

disables(emptyTrS) output(nilI/O) finish(false)

The subterm env represents the environment while time contains the current simulation time used by
the scheduler. The configuration subterms activeProcesses, listeningEvents, inactiveEvents,
nonBlockingAssignUpdateEvents, monitorEvents, futureEvents contain the event categories
used by the scheduler while finish supports the Verilog function $finish that ends an execution.

3 Program Transformation

The goal of the Verilog program transformation presented in this work is to obtain an abstract model
which preserves the data dependency of the initial program. We use this abstract model to evaluate the
program’s vulnerability degree w.r.t. information leakage HTs. In this section we present the program
transformation method and its the data dependency fundaments.

1 module flipflop_32(dout, din, clk, en, rst);

2 parameter zero = 32’h00000000;

3 input [31:0] din, en;

4 input clk, rst;

5 output [31:0] dout;

6 reg [31:0] dout;

7 always @(posedge clk)

8 begin

9 if (rst) dout <= zero;

10 else if (en) dout <= din;

11 end

12 endmodule

1 module timebomb(out, in, clock, encrypt, reset);

2 input [31:0] in, encrypt;

3 input clock, reset;

4 output [31:0] out;

5 reg [31:0] tbd;

6 flipflop_32 ff (out, in, clock, encrypt, reset);

7 always @(posedge clock)

8 begin

9 tbd <= tbd + 31’h00000001;

10 if (tbd > 32’hFFFFFFFF) out <= encrypt;

11 end

12 endmodule

Figure 1: Illustration of a Verilog program TBD implementing a simple time-bomb HT.

Figure 1 shows a Verilog program TBD (i.e., To Be Detonated) formed by two Verilog modules that
define a flip-flop encapsulated into a time-bomb. The flip-flop module in Figure 1 either resets the output
out to zero (provided the rst input is set to true) or transfers the input value din to the output (provided
the encryption en is not zero). The time-bomb module in Figure 1 employs the flip-flop in the presence
of a timer tbd that is used as a trigger for the leakage of the encryption to the output (in line 10 of
time-bomb). The time-bomb is a standardly difficult HT to detect via traditional testing methods due to
the fact that the timer is set to a very large value such that the tests fail to reach the triggering point. We
use TBD as a running example in order to provide the intuition for the program transformation, which
we employ for HT information leak detection.
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3.1 Data dependency base

The transformation we employ aims to flatten the structure of the program and to maintain only the direct
and indirect data dependencies. We define next the data dependency types and we present the program
transformation procedure that we employ for the flattening of the program structure.

Let p be a Verilog program. We denote by A(p) the set of the assignment statements appearing in
p. Hence, A(p) contains blocking and nonblocking assignments as well as the assign statements. Let
a ∈ A(p) be an assignment in p. We denote as O(a) the lefthand side elements of a, i.e., the data written
by the assignment, and as I(a) the righthand side elements of a, i.e., the data read by the assignment.
Note that by data we understand any segment of a mapping element in the environment operator env.
Namely, given x a mapping element in env, a segment of x is defined as x[i : j] with 0≤ i≤ j <size(x)
two integers. For example, in the non-blocking assignment out <= encrypt in line 10 of the timebomb
module of the TBD program in Figure 1, we have O(a) = {out} and I(a) = {encrypt}. Furthermore, we
denote by S(p) the sensitivity lists declared in p and by C(p) the conditions in the sequential statements
such as if, case, etc. These two sets form the control elements in the Verilog program p in the sense that
they determine the execution of other instructions in p. We can define also the I and O sets for the control
elements as the data read and respectively written. We note that ∀t ∈C(p)∪S(p) we have O(t) = /0 since
a control is only reading data for evaluation, e.g., in a sensitivity list l the evaluation is a comparison
between the current and previous value of each element in l. For instance, if we consider the sensitivity
list in lines 7 in Figure 1, i.e., @(posedge clk), then we have I(t) = {clk} and O(t) = /0.

Definition 1: We define the two basic types of data dependency that we use as follows:

• The direct data dependency of p is the relation Rd ⊆Ds×Ds where (x,y) ∈ Rd iff ∃a ∈ A(p) such
that x ∈ O(a) and y ∈ I(a);

• The indirect data dependency of p is the relation Ri ⊆ Ds×Ds where (x,y) ∈ Rd iff ∃c ∈ C(p)∪
S(p) and ∃a ∈ Body(c)∩A(p) such that x ∈ O(a) and y ∈ I(c), where Body(c) is the Body of the
statement containing c, e.g., if c Body;

• The basic data dependency of p is the relations R = Rd ∪Ri.

Note that the indirect data dependency is usually denoted in the literature as control dependency.
The design of the program transformation that we employ aims to produce a Verilog program, which

preserves the relation R. In Figure 2 we give the implementation of this program transformation.
The operator deconstructSet described in Figure 2 takes a Verilog program statement Stmt and,

in line 01, it transforms it into the abstract syntax tree (AST)-term representation via the Maude operator
upTerm. The equation in lines 02-20 produces recursively the relation R from the AST-term representa-
tion OP [ARG, TermL], where OP is the root of the AST representing a Verilog statement, ARG is the first
parameter of the statement while TermL is the list of the other statement parameters. For example, the
AST format of if (tbd > 32’hFFFFFFFF) out <= encrypt in line 10 of the timebomb module in
Figure 1 has ’if‘(_‘)_ as root OP, while ARG is the condition tbd > 32’hFFFFFFFF and TermL is the
list containing one element, i.e., the body out <= encrypt of the if instruction. Each if in the equation
02-20 covers a certain class of Verilog instructions. Namely, the if in the lines 03-05 produces the R

relation for assignments, the ifs in lines 06-09 handle the sensitive lists, the ifs in lines 10-14 are
designated for the branching and the loop instructions, the if in lines 15-16 describes the base case of
bitvector segments, the if in lines 17-18 bypasses the time delays instructions, while in line 19 we have
the default case for the rest of the Verilog instructions. The equation in line 21 is a stub for the Verilog
instructions not covered by the previous equation, while in the lines 22-25 we have the base case for



6 Slicing Verilog in Rewriting Logic

01: eq deconstructSet(Stmt) = deconstructSet(upTerm(Stmt)) .

02: eq deconstructSet(OP [ARG, TermL])

03: = if OP == ’_=_; or OP == ’_=#__; or OP == ’_=@‘(_‘)_; or OP == ’_=@‘(*‘)_; or OP == ’_=@*_;

04: or OP == ’_<=_; or OP == ’_<=#__; or OP == ’_<=@‘(_‘)_; or OP == ’_<=@‘(*‘)_; or OP == ’_<=@*_;

05: then R(downTerm(ARG,deconstructSetExpFailed), deconstructSet(TermL))

06: else if OP == ’@‘(*‘)_ or OP == ’@*_

07: then deconstructSet((ARG, TermL))

08: else if OP == ’@‘(_‘)_

09: then R(deconstructSet(TermL), deconstructSet(ARG))

10: else if OP == ’if‘(_‘)_else_ or OP == ’if‘(_‘)_ or OP == ’case‘(_‘)_endcase or OP == ’_:_

11: or OP == ’repeat‘(_‘)_ or OP == ’while‘(_‘)_

12: then R(deconstructSet(TermL), deconstructSet(ARG))

13: else if OP == ’default‘:_

14: then deconstructSet((ARG, TermL))

15: else if OP == ’_‘[_:_‘]

16: then downTerm( OP [ARG, TermL] , deconstructSetFailed)

17: else if OP == ’#__

18: then deconstructSet(TermL)

19: else deconstructSet((ARG, TermL))

20: fi fi fi fi fi fi fi .

21: eq deconstructSet((ARG, NeTermL)) = deconstructSet(ARG) yy deconstructSet(NeTermL) .

22: eq deconstructSet(C)

23: = if getType(C) == ’Name

24: then downTerm(C, deconstructSetFailed)

25: else emptyCtrS fi .

Figure 2: The Verilog program transformation operator deconstructSet.

the data, i.e., for registers and wires in lines 23-24 and for constants in line 25. For example, when we
apply deconstructSet on if (tbd > 32’hFFFFFFFF) out <= encrypt it will produce the result
R(R(out, encrypt), tbd yy emptyCtrS).

In order to obtain the basic data dependency relation, we have equations that flatten the structure of
the deconstructSet result such as the equation: eq R(R(C, EL1), EL2) = R(C, EL1 yy EL2) .

This equation together with the fact that the operator emptyCtrS is declared identity element for the
yy produce the result R(out, encrypt yy tbd) when we apply the deconstructSet operator on
if (tbd > 32’hFFFFFFFF) out <= encrypt. Note that, instead of producing pairs for the direct
and indirect data dependencies, for each direct dependency pair (x,y) ∈ Rd we accumulate the indirect
dependencies during the R flattening with the help of the yy operator. Hence, the relation R obtained by
flattening the result of the deconstructSet is defined as:

R := {(x,Y d yy Y i) | Y d = (yd
j ) j=1,n,Y i = (yi

j) j=1,m : ∀1≤ j ≤ n,(x,yd
j ) ∈ Rd ,∀1≤ j ≤ m,(x,yi

j) ∈ Ri}

where m,n are two positive integers. Namely, for each assignment a ∈ A(p) the relation R contains a pair
(x,Y d yy Y i) with x ∈ O(a) the output of a, Y d the list of inputs of a, and Y i the list of control variables
from the indirect dependency pairs Ri related to the assignment a. We observe that R is equivalent with
the basic data dependency relation R:

(x,Y d yy Y i) ∈ R then (x,y) ∈ R,∀y ∈ Y d yy Y i

(x,y) ∈ R then ∃(x,Y d yy Y i) ∈ R : y ∈ Y d yy Y i

3.2 Program transformation procedure

The relation R is the basis for the program transformation we employ for information leakage HT detec-
tion. Next we present the program transformation operator.
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01: eq codeProjection(TL1 assign Stmt TL2) = container(deconstructSet(Stmt)) codeProjection(TL1 TL2) .

02: eq codeProjection(TL1 always Stmt TL2) = container(deconstructSet(Stmt)) codeProjection(TL1 TL2) .

03: eq codeProjection(TL1 Q Q’ ( ArgL ) ; TL2) code(IPcode1 module Q (EL) ; TL endmodule IPcode2)

04: = codeProjection(TL1 replaceArgs(ArgL, EL, TL) TL2) code(IPcode1 module Q (EL) ; TL endmodule IPcode2) .

05: eq codeProjection(TL1 initial Stmt TL2) = initial Stmt codeProjection(TL1 TL2) .

06: eq codeProjection(TL1 parameter Stmt TL2) = parameter Stmt codeProjection(TL1 TL2) .

07: eq codeProjection(TL1 input Decl TL2) = input Decl codeProjection(TL1 TL2) .

08: eq codeProjection(TL1 output Decl TL2) = output Decl codeProjection(TL1 TL2) .

09: eq codeProjection(TL1 inout Decl TL2) = inout Decl codeProjection(TL1 TL2) .

10: eq codeProjection(TL1 reg Decl TL2) = reg Decl codeProjection(TL1 TL2) .

11: eq codeProjection(TL1 wire Decl TL2) = wire Decl codeProjection(TL1 TL2) .

12: eq codeProjection(nilIL) = nilIL .

13: eq container(RSet1) container(RSet2) = container(RSet1 RSet2) .

14: eq container(RSet1) = always @* begin R2Stmt(RSet1) end [owise] .

15: eq R2Stmt(R(X, Y) RSet1) = X x= Y ; R2Stmt(RSet1) .

16: eq R2Stmt(emptyRSet) = nilIL .

Figure 3: The Verilog program transformation operator codeProjection.

Figure 3 contains the equations for the program transformation operator codeProjection. The
equations 01-02 deposit in the container the basic data dependencies, i.e., relation R, produced by the
assign and always instructions. The equation 03 replaces a module instantiation with the module body,
after the parameters replacement. Finally, the equations 05-11 maintain the initial and the declaration
instructions as they were as these instructions are used to populate the environment env with data. The
equation in line 12 is the base case for the codeProjection operator while the equations 13-14 regroup
all the R relations inside the container, which is then transformed into an always @*_ instruction at the
end, and the equations 15-16 transform the pairs in the R relation into assignments. In order to exemplify
the program transformation, we give in Figure 4 the result TBD of the codeProjection transformation
applied to the TBD program from Figure 1.

1 input [31:0] in, encrypt;

2 input clock, reset;

3 output [31:0] out;

4 reg [31:0] tbd;

5 reg [31:0] out;

6 parameter zero = 0;

7 always @*

8 begin

9 tbd <= {tbd, clock};

10 out <= {encrypt, tbd, clock};

11 out <= {zero, reset, clock};

12 out <= {in, encrypt, reset, clock};

13 end

Figure 4: TBD–the program transformation of TBD.

The lines 8 and 9 in TBD are generated by the assignments in the lines 9 and respectively 10 in
the timebomb module in TBD. Also, the lines 10 and 11 in TBD are generated by the assignments in
the lines 9 and respectively 10 in the flipflop_32 module in TBD via its instantiation in line 6 of the
timebomb module.

Note that the program transformation via codeProjection involves a flattening of the Verilog mod-
ule structure. During the flattening process there can arise name clashes among the variables declared in
modules, either for two different modules or for two different instantiations of the same module. To avoid
the name clashes, we employ an indexing mechanism for the module instantiation. Namely, upon each
module instantiation a unique index is associated to this instantiation and this index is used to rename
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the variables in the instantiated module. Then we proceed to the replacement of the formal parameters
with the actual parameters. The codeProjection operator is employed on the body of the instantiated
module, after the variables renaming and parameters instantiation. For brevity, we do not include now the
presentation of the module instantiation operator. For this reason, the TBD program in Figure 4 does not
contain the variable renaming, which is available only for zero–the parameter in module flipflop_32.

4 Symbolic execution of program transformation

In this section we describe how we adjust VerilogRLS to symbolic execution of Verilog programs and
we outline the soundness of the methodology, i.e., the symbolic execution of the program transformation
is in a simulation relation with the executions of the initial program.

For a Verilog program p we denote by p the program transformation produced by the codeProjection
operator. We observe that p is still a Verilog program with the structure described in Figure 5:

IODeclarations : List{ Input | Output | Inout }

DataDeclarations : List{ Reg | Wire }

Initializations : List{ Initial }

always @* begin RAssigns : List{ BlockingAssign } end

Figure 5: p generic structure.

Namely, besides the input/output and data declarations, the transformed program consists of initial-
izations and an always block containing the basic data dependencies, i.e., the relation R, as blocking
assignments.

Since p is a Verilog program then p can be executed with the VerilogRLS semantics. However, the
execution of p is potentially unbounded due to the fact that always @* is triggered whenever any of the
variables in the sensitive list changes value. Note that the sensitivity list generated by @* in p contains
all the righthand side data in the assignment, i.e.,

⋃
a∈RAssignsO(a). Also, we recall that the aim of

producing p is to collect data dependency information for the data in p and we propose to achieve this
via symbolic execution of p in VerilogRLS. Next we present principles of our implementation of the
symbolic execution in VerilogRLS.

In order to transform VerilogRLS into the symbolic version VerilogRLS we first operate changes
at the level of the BitVector sort in order to incorporate the symbolic values. We construct the sort
BitVector by adding symbolic values to the first argument of the BitVector constructor [_#_].
Namely, we replace the Int sort of the [_#_] by the SymbolicInt sort. A symbolic integer, i.e., a term
of sort SymbolicInt, could be either a standard integer or a SymbolicValue, which is constructed as
an indexed set of symbolic tokens SymbolicTokenSet. Next, the logical and arithmetic operators over
BitVector need to be abstracted to accommodate the newly introduced symbolic values. For example,
the arithmetic operator for equality in BitVector is defined as follows:

00: var I1 I2 : Int . var ST ST1 ST2 : SymbolicTokenSet . var SIdx SIdx1 SIdx2 : Int .

01: op _==s_ : SymbolicInt SymbolicInt -> Bool [comm] .

02: eq I1 ==s I2 = I1 == I2 .

03: rl (ST $ SIdx) ==s I => false .

04: rl (ST $ SIdx) ==s I => true .

05: eq (ST1 $ SIdx1) ==s (ST2 $ SIdx2) = isEqST(ST1, ST2) .

We note first that comparing two integers is maintained in SymbolicInt, as the equation in line 02
shows. Then, comparing a symbolic value with an integer or another symbolic value can be true or
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false, as seen in the rules in lines 03-04 and, respectively, in the equation in line 05. The operator
isEqST compares two sets of symbolic tokens and it behaves as follows: if the two token sets contain
only one symbolic token, which is the same in the two set, then the value of isEqST is true; any other
case is handled by rules that render true or false, nondeterministically, as the rules in lines 03-04 do.
Due to this double possible valuation, the VerilogRLS over-approximates the executions of a program p
as it creates more paths when two data are compared.

For example, after executing the declarations in lines 1-5 in the TBD program in Figure 4 the sym-
bolic environment env is populated with symbolic values as follows:

in |-> [sy(in) # 32] encrypt |-> [sy(encrypt) # 32] clock |-> [sy(clock) # 1] reset |-> [sy(reset) # 1]

tbd |-> [sy(tbd) # 32] out |-> [sy(out) # 32]

Due to the fact that the parameter instruction is only giving a name to a constant and this name never
changes, the symbolic environment is going to contain zero mapped to the integer 0. When arriving
at the execution of line 6 in Figure 4, the clock data, which is in the trigger set of each assignment in
the always block, is evaluated as possibly different than its previous value. Hence, all the assignments
in the lines 8-11 in Figure 4 are executed. After a first iteration of the always block the operator env
contains the following symbolic valuation:

in |-> [sy(in) # 32] encrypt |-> [sy(encrypt) # 32] clock |-> [sy(clock) # 1] reset |-> [sy(reset) # 1]

zero |-> [0 # 32] tbd |-> [sy(tbd) xo sy(tbd) yy sy(clock) # 32]

out |-> [sy(out) xo sy(encrypt) yy sy(tbd) yy sy(clock) xo sy(reset) yy sy(clock)

xo sy(in) yy sy(encrypt) yy sy(reset) yy sy(clock) # 32]

We note that out contains the xo concatenation of all assignments a in the body of always with out in
O(a), i.e., lines 10-12. However, for the assignment in line 11 out <= {zero, reset, clock} only
the symbolic values for reset and clock are maintained int the env. This is due to the fact that constants
such as zero are absorbed in our design of symbolic environment. Our aim with this design is to obtain
via the symbolic execution of p in VerilogRLS the data dependency abstraction for the executions of the
entire program p. We note that in our running example TBD a second execution of the always block
renders the same env as only the value of tbd is replaced into the symbolic valuation of out as follows:

out |-> [sy(out) xo sy(encrypt) yy (sy(tbd) xo sy(tbd) yy sy(clock)) yy sy(clock) xo sy(reset) yy sy(clock)

xo sy(in) yy sy(encrypt) yy sy(reset) yy sy(clock) # 32]

However, the distributivity and the idempotency for the operators xo and yy render the same symbolic
value of out as for the previous iteration of always. Hence, with this second iteration, we reach the
fixpoint from the perspective of the data dependency relation.

4.1 Program transformation invariant preservation

In [5] the authors introduce a language-independent framework for program transformations, which gives
a systematic design of syntactic transformations and simpler arguments of their correctness in the abstract
interpretation framework. We inherit from [5] their framework but instead of the Galois connection
(standard for abstract interpretation) we use the equivalent notion of simulation for proving the soundness
of program transformation w.r.t. specific properties, e.g., information leakage.

We show now that for any program p the execution of p in VerilogRLS is an abstraction of the exe-
cutions of p in VerilogRLS, which preserves the data dependency relation. For this purpose we construct
a simulation relation between the transition systems T and T produced by p and p in VerilogRLS and
VerilogRLS, respectively. Note that we rely on the rewriting logic notions of (stuttering) simulations as
introduced in [7]. We recall that for two transition systems T1 and T2 a stuttering simulation is defined
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as the relation S such that for any two states t1 ∈ T1 and t2 ∈ T2 with (t1, t2) ∈ S and any two paths
in π1,π2 starting in t1 and t2, respectively, there exist two strictly increasing functions α1,α2 : N→ N
such that for all i, j,k ∈ N if α1(i)≤ j < α1(i+1) and α2(i)≤ k < α2(i+1) it holds (π1( j),π2(k)) ∈ S.
Intuitively, the stuttering simulation allows any of the two paths in the simulation relation to progress
between some states, which are given by its associated function α , while the other path may stutter, i.e.,
remains in the same state.

Definition 2: For any path π starting in the initial state in T we define the strictly increasing sequence
of indexes (si)i∈N such that π(si) is the state where the i-th iteration of the always block begins on the
path π , for any i∈N. Consequently, the function απ :N→N with απ(i) = si,∀i∈N is strictly increasing.

This definition sets the progress for the executions of p between two consecutive iterations of the
always block. This allows all the data dependencies in p to be once more collected. Then p executions
continue until no more data dependencies are discovered.

Proposition 1: For any path π starting in the initial state in T there exists a strictly increasing sequence
of indexes (si)i∈N such that any assignment a∈ A(p) is executed along the path prefix π(0)..π(si) at most
i times. Also, the function απ : N→ N with απ(i) = si,∀i ∈ N is strictly increasing.

First we remind that any Verilog program produces infinite traces. If there is no assignment in the
body of the always in p then all the assignments in p produce initializations. In this case we set the
progress function for p to identity. If there exist assignments that execute infinitely, we set the progress
function απ(i) to the state that executes some assignment the i-th time.

Theorem 1:
• There exists a stuttering simulation S between the transition systems T and T such that the pair

of initial states in T and T is in relation S and for any two paths π,π in T and T , respectively,
S is defined based on the functions απ and απ .

• For any i ∈ N we have that the i-th composition of the basic data dependency Ri in the pro-
gram p is included in the i-th composition of the operator Ri defined for p on the path segments
π[απ(i)..απ(i+ 1)− 1] and π[απ(i)..απ(i+ 1)− 1], where a path segment π[i1, i2], i1 ≤ i2 ∈ N is
the sequence of states π(i1)..π(i2).

The definition of the relation S follows the prerequisites of the stuttering simulation based on the
progress functions from Definition 2 and Proposition 1. Namely, for any two paths π,π in T and T ,
respectively, and for any i, j,k ∈ N such that απ(i) ≤ j < απ(i+1) and απ(i) ≤ k < απ(i+1) we have
(π( j),π(k)) ∈ S. In other words, two paths segments given by two consecutive progression points, i.e.,
values of the α functions for i and i+1, are in the stuttering simulation relation S. Furthermore, we prove
by induction that the simulation relation S is sound w.r.t. the data dependency relation R. This entitles
us to evaluate the information leakage on the executions of the program p and to report the results as
potential HT on p. Note that the construction of the simulation relation may provide bound information
in the context of a concrete evaluation of the information leakage HTs.

Proposition 2: There exists t ∈ N such that R∗ = Rt , i.e., the transitive closure of R is calculated after a
finite number t of iterations in env.

The proof of this proposition relies on the fact that there are finitely many data dependency pairs that
can be collected in R. Consequently, given that Rt is collected in env, the executions in T keep env

unchanged after a finite number of steps.
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Theorem 2: The executions of the program p in VerilogRLS contain in env an over-approximation of
the transitive closure of the data dependency relation in the original program p. Moreover, this approxi-
mation can be effectively evaluated.

The proof of this theorem is based on combining the results of Theorem 1 and Proposition 2. Namely,
the stuttering simulation provides the over-approximation result via the connection between the data
dependencies in p and the relation R while Proposition 2 gives the connection between the relation R and
the env obtained on the execution paths prefixes of p. Note that we skip several reasoning steps between
Theorem 1 and Theorem 2. These together with complete proofs are to be detailed at a later stage.

Observation 1: The detection of information leak HTs can be obtained from the transitive closure of
the data dependency relation via the existence of dependencies between the secret and the output data.

Observation 2: Note that a more precise detection of information leakage HTs, i.e., reduction of false
positives introduced by the over-approximation, could be obtained in several ways:

• Enriching the data dependency relation with additional information. Namely, the assignments in
p could collect constraints representing the arithmetic expressions given by the direct data depen-
dencies in p or the logical expressions given by the indirect data dependencies in p. In this case
the updates in env require the intervention of an SMT-solver.

• Enriching p with tracing information about the locations in p used to construct each assignment in
p and adding this information to the updates in env. Hence, we can reconstruct from env the slice
of the initial program involved in the reported information leakage. To verify the accuracy of the
report, the slice of p can be model checked in VerilorRLS, i.e., in the concrete semantics, to either
validate or refute the detection of information leakage.

• Enrich the information leakage detection with metrics on the degree of data leakage, which mea-
sure the quantity of bitvector segments being leaked. Based on these metrics, a warning may be
discarded if the amount of information leakage is considered insignificant.

5 Experiments

In this section we first introduce our industrial use-case, which we used to conduct experiments, then
we describe the HT patterns we employ and the experimental results we obtained on the use-case and its
variations with HT insertions.

The evaluation of our program transformation tool is made on the Advanced Encryption Standard
(AES) hardware design, a specification for the encryption of electronic data established by the U.S.
National Institute of Standards and Technology (NIST) in 2001 [1]. The AES Verilog code contains 37
modules of approximatively 4000 lines of code. The industrial usage of AES hardware design is wide,
aiming to achieve data privacy and authenticity in many applications. Next we give a non-exhaustive list
of existing applications:

• Electronic financial transactions: eCommerce, banking or point-of-sale.

• Secure corporate communications: for Storage Area Networks (SAN), Virtual Private Networks
(VPN), or video conferencing.

• Personal mobile communications: PDA, Wearables, Point-to-Point Wireless.

• Secure environments: satellite communication, network appliances or surveillance systems.
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The extensive usage of the AES, its inherent complexity, and the sensitivity of the computations
it involves, makes this industrial use-case relevant for the evaluation of our methodology towards the
detection of HTs. The evaluation of our methodology is made on the AES Verilog code, with and
without HT patterns. The HT patterns experimented with are the followings:

• Permanent key leakage: Every time plain text is ciphered, 10 clock cycles after the highest byte of
the plain text has been loaded, the key is leaked on the ciphered text output. The leak occurs during
4 consecutive clock cycles, corresponding to the four bytes of the key. After that, the computation
becomes normal again.

• Loadable key flag: During the encryption of message #n, the KSTAT3 output is asserted if and only
if the bit of index n[128] of the key is 1. Otherwise KSTAT is de-asserted.

The results of our evaluations are illustrated in Table 1. We used Maude v2.7 on a laptop running
Ubuntu 18.04 with 8 GB of RAM and a Intel Core i7-6820HQ vPro processor.

Module Data leak detection Time of execution
aescore-clean False 4m18,341s

aescore-permanent-key-leak True 2m47,054s
aescore-load-key-flag True 1m57,542s

Table 1: Evaluation results on our industrial use-case

Note that the information leak detection makes a search in the data dependency relation collected in
env to discover if there are connections between the secret data, e.g., the encryption key, and the output
data. It so happens that the permanent key leakage and loadable key flag produce a singleton dependence
between the key and the output, which we know that it comes from an assignment or a condition in the
original program. However, if we introduce a security metric, which says that only one bit leak is not
considered a security threat, then the loadable key flag is a false positive. In order to evaluate Trojans
models coverage, more experiments may be done on different use-cases and/or other HT models based
on the benchmarks provided at https://www.trust-hub.org/home.

6 Conclusions and Related Work

In this work we introduced the methodology for achieving a scalable approach to detect information leak
hardware Trojans at the design stage using a program transformation and symbolic execution applied over
the VerilogRLS tool, the rewriting based semantics specification of the Verilog language. We exemplified
the methodology on an industrial-scale hardware design used for encryption, which allows us to evaluate
the scalability of our methodology for industry.

Related work: The HT detection using information flow analysis is presented in [9]. The method
relies on an the adaptation of an automatic test pattern generator (ATPG) algorithm to propagate the
fault in order to identify the points through which the secret can be leaked, directly or indirectly. The
drawback of this approach is that ATPG does not provide a definite (hence exact) answer due to time-out
restrictions.

Moreover, the synthesis tools, which transform the hardware design into RTL design and then into
the gate-level representation, introduce various optimizations upon each transformation. For example,

3Key port status. When Asserted, loading of cipher keys is not allowed.

https://www.trust-hub.org/home
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the resource sharing optimization introduce imprecision into Information Flow Tracking (IFT), because
the tracking rules define only approximations of the real flow. Consequently, the authors in [3] propose to
gain precision in IFT by simply lifting the static analysis resolution at the RTL level where, presumably,
the IFT is more performant, i.e., faster and more precise.
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