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Program transformation is a common practice in computer science, and its many applications can
have a range of different objectives. For example, a program written in an original high level lan-
guage could be either translated into machine code for execution purposes, or towards a language
suitable for formal verification. Such compilations are split into several so-called passes which gen-
erally aim at eliminating certain constructions of the original language to get a program in some
intermediate languages and finally generate the target code. Rewriting is a widely established for-
malism to describe the mechanism and the logic behind such transformations. We propose here an
approach where the function symbols corresponding to the transformations performed in a pass are
annotated with the patterns they are supposed to eliminate and show how we can check that the
transformation is consistent with the annotations and thus, that it eliminates the respective patterns.

1 Introduction

Rewriting is a well established formalism widely used in both computer science and mathematics.
Rewriting has turned out to be particularly well adapted to describe program semantics [23] and pro-
gram transformations [20, 6]. In the context of compilation, the complete transformation is usually
performed in multiple phases, also called passes, in order to eventually obtain a program in a different
target language. Most of these passes concern transformations between some intermediate languages
and often aim at eliminating certain constructions of the original language. These transformations could
eliminate just some symbols, like in desugaring passes for example, or more elaborate constructions, like
in code optimization passes.

To guarantee the correctness of the transformations we could of course use runtime assertions but
static guarantees are certainly preferable. When using typed languages, the types can be used to guarantee
some of the constraints on the target language. In this case, the type of the function implicitly expresses
the expected result of the transformation. The differences between the source and the target language
concern generally only a small percentage of the symbols, and the definition of the target language is
often tedious and contains a lot of the symbols from the source type. For example, for a pass performing
desugaring we would have to define a target language using the same symbols as the source one but the
syntactic sugar symbols.

Formalisms such as the one proposed for NanoPass [16] have proposed a method to eliminate a lot
of the overhead induced by the definition of the intermediate languages by specifying only the symbols
eliminated from the source language and generating the corresponding intermediate language.

Let’s consider expressions which are build out of (wrapped) integers, (wrapped) strings and lists:
Expr = int(Int)

| str(String)
| lst(List)

List = nil()
| cons(Expr,List)

If, for some reason, we wand to define a pass encoding integers by strings then, the target language
in NanoPass would be Expr−int , i.e. expressions build out of strings and lists. Note that in this case the
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tool (automatically) removes the symbol int from Expr and replaces accordingly Expr with the new type
in the type of cons.

This kind of approaches reach their limitations when the transformation of the source language goes
beyond the removal of some symbols. For example, if we want to define a transformation which flattens
the list expressions and ensures thus that there is no nested list, the following target type should be con-
sidered:

Expr = lit(Literal)
| lst(List)

Literal = int(Int)
| str(String)

List = nil()
| cons(Literal,List)

Functional approaches to transformation [22] relying on the use of fine grained typing systems which
combine overloading, subtyping and polymorphism through the use of variants [11] can be used to define
the transformation and perform (implicitly) such verifications. While effective, this method requires to
design such adjusted types in a case by case basis.

We propose in this paper a formalism where function symbols are simply annotated with the patterns
that should be eliminated by the corresponding transformation and a mechanism to statically verify that
the underlying rewriting system is consistent with the annotations. The method is minimally intrusive:
for the above example, we should just annotate the flattening function symbol with the (anti-)pattern
cons(lst(l1), l2) as detailed in Section 4.3.

First, in the next section, we introduce the basic notions and notations used in the article. We intro-
duce then, in Section 3, the notion of pattern-free terms together with their ground semantics and we state
the pattern-free properties a rewriting system should satisfy to be consistent with the pattern annotations.
Section 4 describes a method for automatically checking pattern-free properties We finally present some
related work and conclude.

2 Preliminary notions

We define here the basic notions and notations used in this paper; more details can be found in [4, 25].
A many-sorted signature Σ = (S,F), consists of a set of sorts S and a set of symbols F . We

distinguish constructor symbols from function symbols by partitioning the alphabet F into D, the set of
defined symbols, and C the set of constructors. A symbol f with domainDom( f ) = s1× . . .×sn ∈S∗ and
co-domain CoDom( f ) = s ∈ S is written f :s1× . . .×sn 7→s; we may write fs to indicate explicitly the
co-domain. We denote by Cs, resp. Ds, the set of constructors, resp. defined symbols, with co-domain s.
Variables are also sorted and we write x:s or xs to indicate that variable x has sort s. The set Xs denotes a
set of variables of sort s and X =

⋃
s∈SXs is the set of sorted variables.

The set of terms of sort s ∈ S, denoted Ts(F ,X ) is the smallest set containing Xs and such that
f (t1, . . . , tn) is in Ts(F ,X ) whenever f :s1× . . .×sn 7→s and ti ∈ Tsi(F ,X ), i ∈ [1,n]. We write t:s to
indicate that the term t is of sort s, i.e. when t ∈ Ts(F ,X ). The set of sorted terms is defined as
T (F ,X ) =

⋃
s∈S Ts(F ,X ). Var (t) denotes the set of variables occurring in t ∈ T (F ,X ). If Var (t) is

empty, t is called a ground term. Ts(F) denotes the set of all ground terms of sort s and T (F) denotes
the set of all ground terms. Terms in T (C) are called values. A linear term is a term where every variable
occurs at most once. The linear terms in T (C,X ) are called constructor patterns or simply patterns.

A position of a term t is a sequence of positive integers describing the path from the root of t to the
root of the subterm at that position. The empty sequence representing the root position is denoted by ε .
t|ω , resp. t(ω), denotes the subterm of t, resp. the symbol of t, at position ω . t[s]ω denotes the term t
with the subterm at position ω replaced by s. Pos(t) denotes the set of positions of t.
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We call substitution any mapping from X to T (F ,X ) which is the identity except over a finite set of
variables called its domain. A substitution σ extends as expected to an endomorphism σ ′ of T (F ,X ).
To simplify the notations, we do not make the distinction between σ and σ ′. Sorted substitutions are
such that if x:s then σ(x) ∈ Ts(F ,X ). Note that for any such sorted substitution σ , t:s iff σ(t):s. In what
follows we will only consider such sorted substitutions.

Given a sort s, a value v : s and a constructor pattern p, we say that p matches v (denoted p≺≺ v) if
it exists a substitution σ such that v = σ(p). Since p is linear, we can give an inductive definition to the
pattern matching relation:

x ≺≺ v x ∈ X
c(p1, . . . , pn) ≺≺ c(v1, . . . ,vn) iff ∧n

i=1 pi≺≺ vi, for c ∈ C
Starting from the observation that a pattern can be interpreted as the set of its instances, the notion

of ground semantics was introduced in [8] as the set of all ground constructor instances of a pattern
p ∈ Ts(C,X ): JpK = {σ(p) | σ(p) ∈ Ts(C)}. It was shown [8] that, given a pattern p and a value v,
v ∈ JpK iff p≺≺ v. We denote by ⊥ the pattern whose semantics is empty, i.e. matching no term.

A constructor rewrite rule (over Σ) is a pair of terms ϕ(l1, . . . , ln) _ r ∈ Ts(F ,X )×Ts(F ,X ) with
s∈S , ϕ ∈D, l1, . . . , ln ∈T (C,X ) and such that ϕ(l1, . . . , ln) is linear and Var (r)⊆Var (l). A constructor
based term rewriting system (CBTRS) is a set of constructor rewrite rulesR inducing a rewriting relation
over T (F), denoted by −→R and such that t −→R t ′ iff there exist l _ r ∈ R, ω ∈ Pos(t), and a
substitution σ such that t|ω = σ(l) and t ′ = t[σ(r)]ω . The reflexive and transitive closure of −→R is
denoted by →−→R.

3 Pattern-free terms and corresponding semantics

We want to ensure that the normal form of a term, if it exists, does not contain a specific constructor
and more generally that no subterm of this normal form matches a given pattern. The sort of the term
provides some information on the shape of the normal forms since the precise language of the values of
a given sort is implicitly given by the signature. Sometimes the normal forms satisfy constraints stronger
than those induced from the sorts but these constraints cannot be always determined statically only from
the sorts but also depend on the underlying CBTRS.

To guarantee these constraints we annotate all defined symbols with the patterns that are supposed to
be absent when reducing a term headed by the respective symbol and we check that the CBTRS defining
the corresponding functions are consistent with these annotations.

We focus first on the notion of pattern-free term and on the corresponding ground semantics, and
explain in the next sections how one can check pattern-free properties and subsequently verify the con-
sistence of the symbol annotations with a given CBTRS.

3.1 Pattern-free terms

We consider that every defined symbol f−p ∈ D is now annotated with a pattern p ∈ T⊥(C,X ) =
T (C,X )∪ {⊥} and we use this notation to define pattern-free terms. Intuitively, a ground term of
the form f−p(t1, . . . , tn) should ultimately be reduced to a value containing no subterms matched by
p. Given the example given in the introduction, we can consider two function symbols, f lattenE−p :
Expr 7→ Expr and f lattenL−p : List 7→ List, with p = cons(lst(l1), l2), to indicate that the normal forms
of any term headed by one of these symbols contains no nested lists. The annotation of the function sym-
bol for the concatenation, concat−⊥ : List×List 7→ List, indicates that no particular shape is expected for
the reducts of the corresponding terms. For readability, we generally omit the ⊥ pattern annotation.
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Definition 3.1 (Pattern-free terms). Given p a constructor pattern or ⊥,

• a value v ∈ T (C) is p-free iff ∀ω ∈ Pos(v) , p≺6≺ v|ω ;

• a pattern t ∈ T (C,X ) is p-free iff ∀σ such that σ(t) ∈ T (C), σ(t) is p-free.

• a term t[ f−q
s (t1, . . . , tn)]ω ∈ T (F ,X ) is p-free iff t[v]ω is p-free ∀v ∈ Ts(C) q-free;

A value is p-free if and only if p matches no subterm of the value. For constructor patterns, verifying
a pattern-free property comes to verifying the property for all the ground instances of the term. Finally,
a general term is p-free if and only if replacing (all) the subterms headed by a defined symbol f−q

s by
any q-free value of the same sort s results in a p-free term. Intuitively, this corresponds to considering
an over-approximation of the set of normal forms of an annotated term. While pattern-free properties
can be checked for any value by exploring all its subterms, this is not possible for a general term since
the property has to be verified by a potentially infinite number of values. We present in Section 4.2 an
approach for solving this problem.

3.2 Generalized ground semantics

The notion of ground semantics presented in Section 2 and the approach proposed in [8] to compute dif-
ferences (and thus intersections) of such semantics can be used to compare the shape of two constructor
patterns p,q (at the root position). More precisely, when JpK∩ JqK = /0 we have that ∀σ ,σ(q) /∈ JpK and
therefore, we can establish that ∀σ , p≺6≺σ(q). We can thus compare the semantics of a given pattern p
with the semantics of each of the subterms of a constructor pattern t in order to check that t is p-free.

Example 3.1. Consider the signature Σ with S = {s1,s2,s3} and F = C = {c1 : s2×s1 7→ s1,c2 : s3 7→
s1,c3 : s1 7→ s2,c4 : s3 7→ s2,c5 : s3 7→ s3,c6 : 7→ s3}. We can compute Jc1(c4(c6),ys1

)K∩Jc1(xs2
,c2(c6))K=

Jc1(c4(c6),c2(c6))K and thus neither c1(c4(c6),ys1
) is c1(x,c2(c6))-free nor c1(xs2

,c2(c6)) is c1(c4(c6),y)-
free. Similarly, we can check that Jc3(c2(zs3

))K∩Jc4(zs3
)K= /0 and Jc2(zs3

)K∩Jc4(zs3
)K= /0 and, as a term

of sort s3 can only contain constructors c5 and c6, we can deduce that c3(c2(zs3
)) is c4(z)-free.

We want to establish a general method to verify pattern-free properties for any term and we propose
an approach which relies on the notion of ground semantics introduced in [8] extended to take into
account all terms in T (F ,X ):

Definition 3.2 (Generalized ground semantics). Given a sort s ∈ S , a pattern p ∈ T⊥(C,X ), a symbol
f−p
s :s1× . . .×sn 7→s ∈ Ds, a pattern u ∈ T (C,X ), and a term t[ f−p

s (t1, . . . , tn)]ω ∈ T (F ,X ) with ti ∈
Tsi(F ,X ), i ∈ [1,n],

• JuK = {σ(u) | σ(u) ∈ T (C)};

• Jt[ f−p
s (t1, . . . , tn)]ωK = {u ∈ Jt[v]ωK | ∀v ∈ Ts(C) p-free}.

Note that the ground semantics of a variable xs is the set of all possible ground patterns of the
corresponding sort: JxsK = Ts(C), and since patterns are linear we can use a recursive definition for the
non-variable patterns: Jc(p1, . . . , pn)K =

{
c(v1, . . . ,vn) | (v1, . . . ,vn) ∈ Jp1K× . . .× JpnK} for all c ∈ C.

Moreover, it is easy to check that J f−p
s (t1, . . . , tn)K = {v ∈ Ts(C) | v p-free}.

The generalized ground semantics of a term rooted by a defined symbol represents an over-approxi-
mation of all the possible values obtained by reducing the term with respect to a TRS preserving the
pattern-free properties. For convenience, we consider also annotated variables whose semantics is that
of any term headed by a defined symbol with the same co-domain as the sort of the variable:

Jx−p
s K = {v | v ∈ Ts(C)∧ v p-free}
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Thus, J f−p
s (t1, . . . , tn)K = Jx−p

s K,∀ f−p
s ∈ Ds. Note that x−⊥s has the same semantics as xs. We denote by

X a the set of annotated variables.
Moreover, given a term t ∈ T (F ,X ), we can systematically construct its symbolic equivalent t̃ ∈

T (C,X a) by replacing all the subterms of t headed by a defined symbol f−p
s by a fresh variable of the

corresponding sort and annotated by the same pattern: ∀t ∈ T (F ,X ),JtK = Jt̃K. We can thus restrict in
what follows to patterns using annotated variables and we consider extended patterns built out of this
kind of patterns:

p := X a | c(q1, . . . ,qn) | p1 + p2 | p1 \ p2 | p1× p2 | ⊥

with p, p1, p2 : s for some s ∈ S,c : s1× . . .×sn 7→ s ∈ C and ∀i ∈ [1,n],qi : si.
The pattern matching relation can be extended to take into account disjunctions, conjunctions and

complements of patterns:
p1 + p2 ≺≺ v iff p1≺≺ v ∨ p2≺≺ v
p1 \ p2 ≺≺ v iff p1≺≺ v ∧ p2≺6≺ v

p1× p2 ≺≺ v iff p1≺≺ v ∧ p2≺≺ v
⊥ ≺6≺ v

Intuitively, a pattern p1 + p2 matches any term matched by one of its components while a pattern
p1× p2 matches any term matched by both its components. The relative complement of p2 w.r.t. p1,
p1 \ p2, matches all terms matched by p1 but those matched by p2. ⊥ matches no term. × has a higher
priority than \ which has a higher priority than +.

The notion of ground semantics can be also adapted to handle such patterns:
Jp1 + p2K = Jp1K∪ Jp2K Jp1 \ p2K = Jp1K\ Jp2K
Jp1× p2K = Jp1K∩ Jp2K J⊥K = /0

In this context, if an extended pattern contains no ⊥ it is called pure, if it contains no × and no \ it
is called additive, and if it contains no +, no × and no \, i.e. a term of T (C,X a), it is called symbolic.
We call regular patterns that contain only variables of the form x−⊥. And finally, we call quasi-additive
patterns that contain no × and only contain \ with the pattern on the left being a variable and the pattern
on the right being a regular additive pattern.

Proposition 3.1. Let t ∈ T (F ,X ), p ∈ T⊥(C,X ), t is p-free iff ∀v ∈ JtK,v is p-free.

Pattern-freeness can thus be checked by exploring the semantics of the term. We will see later on
how this can be done and for now we focus on semantics preserving CBTRSs and on their properties.

3.3 Semantics preserving CBTRS

Generalized ground semantics rely on the symbol annotations and assume thus a specific shape for the
normal forms of reducible terms. This assumption should be checked by verifying that the CBTRSs
defining the annotated symbols are consistent with these annotations, i.e. check that the semantics is
preserved by reduction.

Definition 3.3 (Semantics preservation). A rewrite rule l _ r is semantics preserving iff JrK ⊆ JlK. A
CBTRS is semantics preserving iff all its rewrites rules are.

Semantics preservation carries over to the induced rewriting relation:

Proposition 3.2. Given a semantics preserving CBTRSR we have

∀t,v ∈ T (F), if t →−→R v, then JvK⊆ JtK.

As an immediate consequence we obtain the pattern-free preservation:
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Corollary 3.1. Given a semantics preserving CBTRSR we have

∀t,v ∈ T (F), p ∈ T (C,X ), if t p-free and t →−→R v, then v p-free.

Note that the rules of a CBTRS are of the form f−p(l1, . . . , ln) _ r and thus, as an immediate con-
sequence of Defintion 3.2, the semantics of the left-hand side of the rewrite rule is the set of all p-free
values. Therefore, according to Proposition 3.1, such a rule is semantics preserving if and only if its
right-hand side r is p-free. We will see in the next section how pattern-freeness can be statically checked.

Example 3.2. We consider the signature from Example 3.1 enriched with the defined symbols D =
{ f−p1 : s1 7→ s1,g−p2 : s2 7→ s2} with p1 = c1(c4(z),y) and p2 = c4(z), and the CBTRS:

f (c1(x,y)) _ c1(g(x), f (y))

f (c2(z)) _ c2(z)

g(c4(z)) _ c3(c2(z))

g(c3(y)) _ c3( f (y))

We have seen in Example 3.1 that c3(c2(x)) is p2-free and we can thus conclude that the rule g(c4(z))_
c3(c2(z)) is semantics preserving. We introduce in the next section a method to statically check the
corresponding pattern-freeness for the other right-hand sides and conclude that the CBTRS is semantics
preserving.

4 Deep semantics for pattern-free properties

The ground semantics was used in [8] as a means to represent a potentially infinite number of instances
of a term in a finite manner and to subsequently check, for example, that a pattern matches (or not) a term
by computing the intersection between their semantics. For pattern-freeness, we should check not only
that the term is not matched by the pattern but also that none of its subterms is matched by this pattern.
We would need thus a notion of ground semantics closed by the subterm relation.

We introduce next an extended notion of ground semantics satisfying the above requirements, show
how it can be expressed in terms of ground semantics, and provide a method for checking the emptiness
of the intersection of such semantics and thus, assert pattern-free properties.

4.1 Deep semantics

The notion of deep semantics is introduced to provide more comprehensive information on the shape of
the (sub)terms comparing to the ground semantics which describes essentially the shape of the term at
the root position.

Definition 4.1 (Deep semantics). Let t be an extended pattern, its deep semantics {[t]} is as:

{[t]} = {u|ω | u ∈ JtK,ω ∈ Pos(u)}

Note first that, similarly to the case of generalized ground semantics, it is obvious that we can always
exhibit a symbolic pattern equivalent in terms of deep semantics to a given term, i.e. ∀t ∈ T (F ,X ), {[t]} =
{[t̃]}; consequently, we can focus on the computation of the deep semantics of extended patterns. Follow-
ing this observation and as an immediate consequence of the definition we have a necessary and sufficient
condition with regards to pattern-free properties:

Proposition 4.1. Let p ∈ T (C,X ), t ∈ T (F ,X ), t is p-free iff {[t̃]}∩ JpK = /0.

To check the emptiness of the above intersection we express the deep semantics of a term as a
union of ground semantics and then check for each of them that the intersection with the semantics of the
considered pattern is empty. First, since the deep semantics is based on the generalized ground semantics,
we can easily establish a similar recursive definition for constructor patterns:
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Proposition 4.2. For any constructor symbol c ∈ C and extended patterns t1, . . . , tn, such that Dom(c) =
s1× . . .×sn and t1 : s1, . . . , tn : sn, we have:

• If ∀i ∈ [1,n],JtiK 6= /0, then {[c(t1, . . . , tn)]} = Jc(t1, . . . , tn)K∪
( n⋃

i=1
{[ti]}
)

;

• If ∃ i ∈ [1,n],JtiK = /0, then {[c(t1, . . . , tn)]} = /0.

If we apply the above equation for the non-empty case recursively we eventually have to compute
the deep semantics of annotated variables and for this we use the algorithm getReachable given in
Appendix A.

Proposition 4.3. Given s ∈ S, p ∈ T⊥(C,X ) and r : s a sum of constructor patterns, we have

{[x−p
s \ r]} =

⋃
(s′,p′)∈R

Jx−p
s′ \ p′K

with R = getReachable(s, p, /0,r). Moreover, we have {[x−p
s \ r]} = /0 iff R = /0.

Propositions 4.2 and 4.3 guarantee that the deep semantics of any symbolic pattern and thus, of
any term, can actually be expressed as the union of ground semantics of quasi-additive patterns. We
introduce in the next section a method to automatically verify that the corresponding intersections with
the semantics of a given pattern p are empty and check thus that a term is p-free.

4.2 Establishing pattern-free properties

As we have already mentioned, an approach was proposed in [8] to compute the intersection of ground
semantics for constructor patterns. In our case we just need to check pattern-freeness and thus, that the
intersection of the semantics of a symbolic pattern t with the semantics of the given constructor pattern
p is empty: to put it simply, we want a TRS that reduces a pattern of the form t× p to ⊥ if and only if its
ground semantics is empty.

To this end, we introduce the TRSRp presented in Figure 1. The rules generally correspond to their
counterparts from set theory where ⊥ corresponds to the empty set, a variable x−⊥s corresponds to all
terms of sort s, constructor patterns correspond to cartesian products and the other extended patterns to
the obvious corresponding set operations.

We have seen that the ground semantics of an annotated variable is obtained by considering, for
each constructor of the appropriate sort, the set of all terms having this symbol at the root position
complemented by the pattern in the annotation and taking the union of all these sets. Rp uses this
property in the rule P1 to expand annotated variables allowing thus for the triggering of the other rules
for conjunction. Note that zi are fresh variables generated automatically. The rules P2, P3 and P4 express
the respective behaviour of conjunction over complements (A∩ (B\C) = (A\C)∩B = (A∩B)\C).

Finally, we can observe that, thanks to the algorithm getReachable we can determine if {[x−p
s \ v]} =

/0. Moreover, by definition, {[t]} = /0 if and only if JtK = /0. Therefore, the TRS is finalized by the rule P6,
which eliminates (when possible) annotated variables. Note that, in order to apply P6 exhaustively, Rp

also needs a rule to perform some \-factorization around variables, resulting in the rule P5.

Proposition 4.4 (Semantics preservation). For any extended patterns p,q, if p →−→Rp q then JpK = JqK.

While we cannot provide a simple description of the normal forms obtained by reduction of a general
extended patterns,Rp can be used to establish the emptyness of a given intersection:

Proposition 4.5. The rewriting system Rp is confluent and terminating. Given a quasi-additive pattern
t and a constructor pattern p, we have t× p →−→Rp⊥ if and only if Jt× pK = /0.
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Remove empty sets:
(A1) ⊥+ v ⇒ v
(A2) v+⊥ ⇒ v
Distribute sets:
(E1) δ (v1, . . . ,⊥, . . . ,vn) ⇒ ⊥
(E2) ⊥× v ⇒ ⊥
(E3) v×⊥ ⇒ ⊥
(S1) δ (v1, . . . ,vi +wi, . . . ,vn) ⇒ δ (v1, . . . ,vi, . . . ,vn)+δ (v1, . . . ,wi, . . . ,vn)
(S2) (w1 +w2)× v ⇒ (w1× v)+(w2× v)
(S3) w× (v1 + v2) ⇒ (w× v1)+(w× v2)
Simplify complements:
(M1) v\ x−⊥s ⇒ ⊥
(M2) v\⊥ ⇒ v
(M3) (v1 + v2)\w ⇒ (v1 \w)+(v2 \w)
(M5) ⊥\ v ⇒ ⊥
(M6) α(v1, . . . ,vn)\ (v+w) ⇒ (α(v1, . . . ,vn)\ v)\w
(M7) α(v1, . . . ,vn)\α(t1, . . . , tn) ⇒ α(v1 \ t1, . . . ,vn)+ · · ·+α(v1, . . . ,vn \ tn)
(M8) α(v1, . . . ,vn)\β (w1, . . . ,wm) ⇒ α(v1, . . . ,vn) with α 6= β

Simplify conjunctions:
(T1) v× x−⊥s ⇒ v
(T2) x−⊥s × v ⇒ v
(T3) α(v1, . . . ,vn)×α(w1, . . . ,wn) ⇒ α(v1×w1, . . . ,vn×wn)
(T4) α(v1, . . . ,vn)×β (w1, . . . ,wm) ⇒ ⊥ with α 6= β

Simplify p-free:
(P1) x−p

s ×α(v1, . . . ,vn) ⇒ ∑
c∈Cs

c(z1
−p
s1 , . . . ,zm

−p
sm )× (α(v1, . . . ,vn)\ p) with m = arity(c)

(P2) α(v1, . . . ,vn)× (x−p
s \ t) ⇒ (α(v1, . . . ,vn)× x−p

s )\ t if {[x−p
s \ t]} 6= /0

(P3) x−q
s × (x−p

s \ t) ⇒ (x−q
s × x−p

s )\ t if {[x−p
s \ t]} 6= /0

(P4) (x−p
s \ t)× v ⇒ (x−p

s × v)\ t if {[x−p
s \ t]} 6= /0

(P5) (x−p
s \ t)\u ⇒ x−p

s \ (t +u) if {[x−p
s \ t]} 6= /0

(P6) x−p
s \ t ⇒ ⊥ if {[x−p

s \ t]} = /0

Figure 1: Rp : reduce pattern of the form t × p; v,v1, . . . ,vn, w,w1, . . . ,wn range over quasi-additive
patterns, u, t range over pure regular additive patterns, t1, . . . , tn range over pure symbolic patterns, p,q
range over constructor patterns, x ranges over pattern variables. α,β expand to all the symbols in C, δ

expands to all symbols in Cn>0.

4.3 Establishing semantics preserving properties

The approach proposed in the previous section allows the systematic verification of patern-free properties
for any term in T (F ,X ) and can thus be used to check that a CBTRS is semantics preserving.

Example 4.1. We apply the approach to check that the CBTRS in Example 3.2 is semantics preserving.
For this we need to prove that c1(g−p2(xs2

), f−p1(ys1
)) and c2(zs3

) are p1-free, and that c3(c2(zs3
)) and

c3( f−p1(ys1
)) are p2-free.
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In order to prove that r1 = c1(g−p2(xs2
), f−p1(ys1

)), it is p1-free, we first use getReachable to
compute the deep semantics of r̃1 = c1(x

−p2
s2 ,y−p1

s1 ) as the union of Jc1(x
−p2
s2 ,y−p1

s1 )K, Jy−p1
s1 K, Jz−p1

s3 K, Jx−p1
s2 \

p2K, Jx−p2
s2 K, Jy−p2

s1 K and Jz−p2
s3 K. For all the terms in the union we compute their conjunction with p1 using

Rp which reduces them all to ⊥. Hence, by Proposition 4.1, r1 is p1-free.
Similarly, we can check that c2(zs3

) is p1-free, and c3(c2(zs3
)) and c3( f (ys1

)) are p2-free. Thus,
the CBTRS is semantics preserving. It is easy to check that it is also terminating and consequently, the
normal form of any term f (t), t ∈ Ts1(F), is p1-free and the normal form of any term g(u), u ∈ Ts2(F),
is p2-free.

We can now come back to the initial flattening example presented in the introduction. We con-
sider a signature consisting of the sorts and constructors already presented in the introduction to which
we add the defined symbols D = { f lattenE−p : Expr 7→ Expr, f lattenL−p : List 7→ List,concat−⊥ :
List×List 7→ List}. with p = conc(lst(l1), l2), to indicate that the corresponding functions defined by
the following CBTRS aim at eliminating this pattern:

f lattenE(str(s)) _ str(s)
f lattenE(lst(l)) _ lst( f lattenL(l))
f lattenL(nil()) _ nil()
f lattenL(cons(str(s), l)) _ cons(str(s), f lattenL(l))
f lattenL(cons(lst(l1), l2)) _ f lattenL(concat(l1, l2))
concat(cons(e, l1), l2) _ cons(e,concat(l1, l2))
concat(nil(), l) _ l

Thanks to the method introduced in the previous section we can check that the right-hand sides of the
first 5 rules are p-free and hence, as explained in Section 3.3, that the CBTRS is semantics preserving.
This CBTRS is clearly terminating and complete and thus, we can guarantee that the normal form of
such terms are p-free values.

The implementation1 takes an input a file defining the signature and the CBTRS to be checked and
returns the (potentially empty) set of non pattern-free preserving rules (i.e. rules that do not satisfy the
pattern-free requirements implied by the signature). For each such rule we provide a set of terms whose
ground semantics is included in the deep semantics of the right-hand side of the rule and that do not
satisfy the pattern-free property required by the left-hand side.

5 Related work

While the work presented in this paper introduces an original approach to express and ensure a particular
category of syntactical guarantees associated to program transformation, other approaches presenting
methods to obtain some guarantees for similar classes of functions exist in the literature.
Tree automata completion Tree automata completion consists in techniques used to compute an ap-
proximation of the set of terms reachable by a rewriting relation [12]. The application of this approach
is nevertheless usually conditioned by the termination of both the TRS and the set of equational approx-
imations used [24, 13]. Thus, while providing a more precise characterization of the approximations of
the normal forms, these techniques are constrained by these termination conditions. Therefore we be-
lieve the formalism presented in this paper provides a viable and original alternative to such techniques,
particularly in the context of verification of pass transformations [16].

1code available at https://github.com/plermusiaux/pfree_check; online version available at http://

htmlpreview.github.io/?https://github.com/plermusiaux/pfree_check/blob/webnix/out/index.html

https://github.com/plermusiaux/pfree_check
http://htmlpreview.github.io/?https://github.com/plermusiaux/pfree_check/blob/webnix/out/index.html
http://htmlpreview.github.io/?https://github.com/plermusiaux/pfree_check/blob/webnix/out/index.html
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Recursion schemes Some formalism propose to deal with higher order functions through the use of
higher order recursion schemes, a form of higher order grammars that are used as generators of (possibly
infinite) trees [17]. Higher order recursion scheme have also been extended to include pattern match-
ing [21] and provide the basis for automatic abstraction refinement. These techniques address in a clever
way the control-flow analysis of functional programs while the formalism proposed in our work is more
focused on providing syntactic guarantees on the shape of the tree obtained through a pass-like transfor-
mation. The use of the annotation system also contributes to a more precise way to express and control
the considered over-approximation.
Tree transducers Besides terms rewriting systems, another popular approach for specifying transfor-
mations consists in the use of tree transducers [18]. Transducers have indeed been shown to have a
number of appealing properties when applied for strings, even infinite [2], and most notably can provide
an interesting approach for model checking certain classes of programs thanks to the decidability of gen-
eral verification problems [1]. Though the verification problems we tackle here are significantly more
strenuous for tree transducers, Kobayashi et al. introduced in [18] a class of higher order tree transduc-
ers which can be modeled by recursion schemes and thus, provided a sound and complete algorithm to
solve verification problems over that class. We claim that annotated CBTRSs are easier to grasp when
specifying pass-like transformations and are less intrusive for expressing the pattern-free properties.
Refinement types Formalisms such as refinement types [9] can be seen as an alternative approach for
verifying the absence, or presence, of specific patterns. Notions such as constructor subtypes [5] could
be used to construct complex type systems whose type checking would provide guarantees similar to the
ones provided by our formalism. This would however result in the construction of multiple type systems
in order to type check each transformation as was the case in the original inspiration of our work [16].

6 Conclusion and perspectives

We have proposed a method to statically analyse constructor term rewrite systems and verify the absence
of patterns from the corresponding normal forms. We can thus guarantee not only that some constructors
are not present in the normal forms but we can also be more specific and verify that more complex
constructs cannot be retrieved in the result of the reduction. Such an approach avoids the burden of
specifying an intermediate language for each of the so-called passes in a compilation process, the user
being just requested to indicate the patterns that should be eliminated by the respective transformation.

Different termination analysis techniques [3, 15, 14] and corresponding tools like AProVE [10] and
TTT2 [19] can be used for checking the termination of the rewriting systems before applying our method
for checking pattern-free properties. On the other hand, our approach applies also for CBTRS which
are not complete or not strongly normalising and still guarantees that all the intermediate terms in the
reduction are pattern-free; in particular, if the CBTRS is weakly normalising the existing normal forms
are pattern-free.

We believe this formalism opens a lot of opportunities for further developments. In the current
version, the verification relies on an over-approximation of the set of reducts and thus, can lead to false
negatives. For example, if in the CBTRS in Section 4.3 we replace the right-hand side of the third
rule for f lattenL by concat( f lattenL(l1), f lattenL(l2)) then the rule would be reported as non pattern-
preserving. Although we conjecture that such false negatives indicate some isues in the conception of
the CBTRS, we work on an alternative approach allowing for a finer-grain analysis. We also intend to
extended and use the approach in the context of automatic rewriting rule generation techniques, such as
the one introduced in [7], in order to implement transformation approaches of passes such as in [16].
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A Algorithm getReachable

The deep semantics of annotated variables can be computed using the algorithm getReachable intro-
duced in Figure 2.

Intuitively, the algorithm uses the definition of the deep semantics of a variable {[x−p
s ]} = {u|ω | u ∈

Jx−p
s K,ω ∈ Pos(u)} and the observation that the ground semantics of an annotated variable can be also

defined as:
Jx−p

s K =
⋃

c∈Cs

Jc(x−p
s1

, . . . ,x−p
si

)\ pK (1)

By distributing the complement pattern p on the subterms, the algorithm builds a set Qc(p) of tuples
q = (q1, . . . ,qn) of patterns, with each qi being either ⊥ or a subterm of p, such that

Jc(x−p
s1

, . . . ,x−p
sn

)\ pK =
⋃

q∈Qc(p)

Jc(x−p
s1
\q1, . . . ,x−p

sn
\qn)K (2)

We have thus

{[x−p
s ]} = {u|ω | u ∈ Jx−p

s K,ω ∈ Pos(u)}

=

{
u|ω | u ∈

⋃
c∈Cs

⋃
q∈Qc(p)

Jc(x−p
s1 \q1, . . . ,x

−p
sn \qn)K,ω ∈ Pos(u)

}
=

⋃
c∈Cs

⋃
q∈Qc(p)

{
u|ω | u ∈ Jc(x−p

s1 \q1, . . . ,x
−p
sn \qn)K,ω ∈ Pos(u)

}
=

⋃
c∈Cs

⋃
q∈Qc(p)

{[c(x−p
s1 \q1, . . . ,x

−p
sn \qn)]}(def. of deep semantics)

=
⋃

c∈Cs

⋃
q∈Q′c(p)

Jc(x−p
s1 \q1, . . . ,x

−p
sn \qn)K ∪

⋃
c∈Cs

⋃
q∈Q′c(p)

n⋃
i=1

{[x−p
si \qi]}

= Jx−p
s K ∪

⋃
c∈Cs

⋃
q∈Q′c(p)

n⋃
i=1

{[x−p
si \qi]}

(3)

with Q′c(p)⊆ Qc(p) s.t. ∀q = (q1, . . . ,qn) ∈ Q′c(p),Jx−p
si \qiK 6= /0, i ∈ [1,n].

Note that x−p
s is the same as x−p

s \⊥ and thus, in order to express the deep semantics of annotated
variables as a union of ground semantics the algorithm computes a fixpoint for the equation

{[x−p
s \ r]} = Jx−p

s \ rK∪
⋃

c∈Cs

⋃
q∈Q′c(r+p)

n⋃
i=1

{[x−p
si
\qi]}

Example A.1. We consider the symbolic patterns from Example 3.2 and express their deep semantics
as explained above. According to Proposition 4.2, we have {[r̃1]} = {[c1(x

−p2
s2 ,y−p1

s1 )]} = Jc1(x
−p2
s2 ,y−p1

s1 )K∪
{[x−p2

s2 ]}∪ {[y−p1
s1 ]} and we should expand {[x−p2

s2 ]} and {[y−p1
s1 ]}.

To expand {[y−p1
s1 ]} the sets Qc(p1) are computed for each c ∈ Cs1 = {c1,c2}. First, following equa-

tion (1), Jy−p1
s1 K = Jc1(x

−p1
s2 ,y−p1

s1 )\ c1(c4(z−⊥s3
),y−⊥s1

)K∪ Jc2(z
−p1
s3 )\ c1(c4(z−⊥s3

),y−⊥s1
)K and we can easily

see that the complement relation in term of ground semantics corresponds to set differences of cartesian
products: Jc1(x

−p1
s2 ,y−p1

s1 )\c1(c4(z−⊥s3
),y−⊥s1

)K= Jc1(x
−p1
s2 \c4(z−⊥s3

),y−p1
s1 )K ∪ Jc1(x

−p1
s2 ,y−p1

s1 \y−⊥s1
)K. We

get thus, Jy−p1
s1 K = Jc1(x

−p1
s2 \ c4(z−⊥s3

),y−p1
s1 )K∪ Jc1(x

−p1
s2 ,y−p1

s1 \ y−⊥s1
)K∪ Jc2(z

−p1
s3 )K. Hence, following

equation (2), Qc1(p1) = {(c4(z−⊥s3
),⊥),(⊥,ys1

)}= {(p2,⊥),(⊥,ys1
)} and Qc2(p1) = {(⊥)}. Moreover,

Jc1(x
−p1
s2 \ p2,y

−p1
s1 )K and Jc2(z

−p1
s3 )K are not empty (c1(c3(c2(c6)),c2(c6)) and c2(c6) belong respectively

to each of them) while Jc1(x
−p1
s2 ,y−p1

s1 \ y−⊥s1
)K is clearly empty. Thus, we have

{[y−p1
s1

]} = Jy−p1
s1

K∪ {[x−p1
s2
\ p2]}∪ {[y−p1

s1
]}∪ {[z−p1

s3
]}.
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Function getReachable(s, p,S,r)

Data:

s: current sort,
p: pattern of the pattern-free property,
S: set of couples (s′, p′) reached,
r: resulting pattern

Result: set of couples (s′, p′) reachable from x−p
s \ r

if p : s then r←− r+ p
if Jxs \ rK = /0 then return /0
if ∃(s,r′) ∈ S,Jr′K = JrK then return S
R←− S∪{(s,r)}
reachable←− False
for c ∈ Cs do

Qc←− {(
m︷ ︸︸ ︷

⊥, . . . ,⊥)} with m = arity(c)

for i = 1 to n with r =
n
∑

i=1
ri do

if ri(ω) = c then
tQc←− /0
for (q1, . . . ,qm) ∈ Qc,k ∈ [1,m] do tQc.add((q1, . . . ,qk + ri|k, . . . ,qm))
Qc←− tQc

for (q1, . . . ,qm) ∈ Qc do
subRset←− /0
for i = 1 to m do

subR←− getReachable(Dom(c) [i], p,R,qi)

if subR 6= /0 then subRset.add(subR)
if |subRset|= m then

reachable←− True
for subR ∈ subRset do R←− R∪ subR

if reachable then
return R

else
return /0

Figure 2: Compute deep semantics of quasi-additive terms as a union of ground semantics.

The getReachable algorithm continues the expansions until a fixpoint is reached. More precisely,
we get {[y−p1

s1 ]} = Jy−p1
s1 K∪ Jz−p1

s3 K∪ Jx−p1
s2 \ p2K and {[x−p2

s2 ]} = Jx−p2
s2 K∪ Jy−p2

s1 K∪ Jz−p2
s3 K, and therefore, the

deep semantics of r̃1 = c1(x
−p2
s2 ,y−p1

s1 ) is the union of Jc1(x
−p2
s2 ,y−p1

s1 )K, Jy−p1
s1 K, Jz−p1

s3 K, Jx−p1
s2 \ p2K, Jx−p2

s2 K,
Jy−p2

s1 K and Jz−p2
s3 K.
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B Proofs

Proposition 3.1. Let t ∈ T (F ,X ), p ∈ T⊥(C,X ), t is p-free iff ∀v ∈ JtK,v is p-free.

Proof. If t ∈ T (C), then JtK = {t}, hence the relation.
If t ∈ T (C,X ), t is p-free iff ∀σ such that σ(t) ∈ T (C), σ(t) is p-free. Thus, by definition of the

generalized ground semantics, t is p-free iff ∀v ∈ JtK,v is p-free.
Finally, for t ∈ T (F ,X ), we proceed by induction on the number n of defined symbols in t. If n = 0,

then t ∈ T (C,X ), thus t verify the property. We suppose that ∀u ∈ T (F ,X ) with k≤ n defined symbols,
u is p-free iff ∀v ∈ JuK,v is p-free. We now consider t = u[ f−q(t1, . . . , tm)]ω ∈ T (F ,X ) with n + 1
defined symbols and f ∈ Ds. By definition, t is p-free iff ∀v ∈ Ts(C) q-free, u[v]ω is p-free. Moreover,
∀v∈ Ts(C) q-free, the number of defined symbols in u[v]ω is less or equal to n, thus the inductive property
guarantees that u[v]ω is p-free iff ∀w ∈ Ju[v]ωK is p-free. Hence, t is p-free iff ∀w ∈ {w ∈ Ju[v]ωK |
∀v ∈ Ts(C) q-free},w is p-free, i.e. iff ∀w ∈ JtK,w is p-free. Hence, by induction t ∈ T (F ,X ), is p-free
iff ∀v ∈ JtK,v is p-free.

Proposition 3.2. Given a semantics preserving CBTRSR we have

∀t,v ∈ T (F), if t →−→R v, then JvK⊆ JtK.

Proof. For all constructor rewrite rules l _ r, l is of the form f (l1, . . . , ln), thus we have ∀σ ,Jσ(r)K ⊆
JrK⊆ JlK= Jσ( f (l1, . . . , ln))K. Moreover, ∀t ∈T (F),∀u,v∈T (C) JvK⊆ JuK implies ∀ω ∈Pos(t)Jt[v]ωK⊆
Jt[u]ωK. Therefore, by definition of the rewriting relation induced by such a semantics preserving rule,
we have ∀u,v ∈ T (F), u−→R v implies JvK⊆ JuK.

Proposition 4.1. Let p ∈ T (C,X ), t ∈ T (F ,X ), t is p-free iff {[t̃]}∩ JpK = /0.

Proof. By definition, {[t̃]} = {u|ω | u∈ Jt̃K,ω ∈Pos(u)}= {u|ω | u∈ JtK,ω ∈Pos(u)}, thus {[t̃]}∩JpK= /0
if and only if ∀u ∈ JtK,ω ∈ Pos(u) , p≺6≺ u|ω , i.e. ∀u ∈ JtK,u is p-free. Therefore, thanks to Proposi-
tion 3.1, t is p-free if and only if {[t̃]}∩ JpK = /0.

Proposition 4.2. For any constructor symbol c ∈ C and extended patterns t1, . . . , tn, such that Dom(c) =
s1× . . .×sn and t1 : s1, . . . , tn : sn, we have:

• If ∀i ∈ [1,n],JtiK 6= /0, then {[c(t1, . . . , tn)]} = Jc(t1, . . . , tn)K∪
( n⋃

i=1
{[ti]}
)

;

• If ∃ i ∈ [1,n],JtiK = /0, then {[c(t1, . . . , tn)]} = /0.

Proof. If ∃ i ∈ [1,n],JtiK = /0, then Jc(t1, . . . , tn)K = /0. Hence, {[c(t1, . . . , tn)]} = /0.
Otherwise, ∀i ∈ [1,n],JtiK 6= /0, and we consider the inclusions in the 2 directions separately. If

t ∈ {[c(t1, . . . , tn)]}, then ∃u∈ Jc(t1, . . . , tn)K,ω ∈Pos(u) such that t = u|ω . If ω = ε , then t ∈ Jc(t1, . . . , tn)K,
otherwise ω = i.ω ′ with i ∈ [1,n] and therefore ∃u′ ∈ JtiK such that t = u′|ω ′ , i.e. t ∈ {[ti]}. Hence the
direct inclusion. For the indirect inclusion, we can first remark that any v ∈ Jc(t1, . . . , tn)K is also in
{[c(t1, . . . , tn)]}. Let’s now consider v ∈ {[ti]} for some i, i.e. ∃ui ∈ JtiK,ω ∈ Pos(ui) such that v = ui|ω , then
for all u = c(u1, . . . ,un) such that ∀ j 6= i,u j ∈ Jt jK, v = u|i.ω , i.e. v ∈ {[c(t1, . . . , tn)]}. Hence the indirect
inclusion.
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In order to prove Proposition 4.3, we introduce some auxiliary notions and prove some intermediate
results.

First we analyse the deep semantics {[x−p
s \ r]}. We can observe that Jx−p

s \rK⊆ Jxs\(r+ p)K, therefore
if the latter is empty so is the first. Otherwise, we know that none of the patterns in (r + p) is xs.
Moreover, for any c,c′ ∈ Cs, we have Jc(p1, . . . , pn) \ c(q1, . . . ,qn)K = J∑

n
i=1 c(p1, . . . , pi \ qi, . . . , pn)K

and Jc(p1, . . . , pn)\ c′(q1, . . . ,qm)K = Jc(p1, . . . , pn)K. Therefore, given c,r and p we can construct a set
denoted Qc(r + p) of n-tuples q = (q1, . . . ,qn), with n the arity of c, by successively distributing the
patterns of r+ p that have the given constructor c as head (denoted r1, . . . ,rk), as follows:

Jc(x−p
s1

, . . . ,x−p
sn

)\ (r+ p)K = Jc(x−p
s1

, . . . ,x−p
sn

)\ (r1 + . . .+ rk)K

= J(c(x−p
s1
\⊥, . . . ,x−p

sn
\⊥)\ c(r1

1, . . . ,r
1
n))\ (r2 + . . .+ rk)K

= J

(
∑

i∈[1,n]
c(x−p

s1
\⊥, . . . ,x−p

si
\ r1

i , . . . ,x
−p
sn
\⊥)

)
\ (c(r2

1, . . . ,r
2
n)+ . . .+ rk)K

= J

(
∑

j∈[1,n]
∑

i∈[1,n]
c(x−p

s1
\⊥, . . . , ,x−p

s j
\ r2

j , . . . ,x
−p
si
\ r1

i , . . . ,x
−p
sn
\⊥)

)
\ (r3 + . . .+ rk)K

...

= J ∑
q∈Qc(r+p)

c(x−p
s1
\q1, . . . ,x−p

sn
\qn)K

Thus as shown in development (3), we get:

{[x−p
s \ r]} =

 /0 if Jxs \ (r+ p)K = /0∨∀c ∈ Cs,Q′c(r+ p) = /0
Jx−p

s \ rK ∪
⋃

c∈Cs

⋃
q∈Q′c(r+p)

⋃
i∈[1,n]

{[x−p
si \qi]} else

with Q′c(u) = {q | q ∈ Qc(u)∧∀i ∈ [1,n],Jx−p
si \qiK 6= /0}.

Given Qc(u) and Q′c(u) defined above, we can now introduce the following abstractions for the deep
semantics:

Definition B.1. Let p ∈ T⊥(C,X ), a couple (s,r), with s ∈ S and r a sum of constructor patterns such
that r =⊥∨ r : s, and S a finite set of such couples,

• bx−p
s \ rc=

 /0 if Jxs \ (r+ p)K = /0∨∀c ∈ Cs,Q′c(r+ p) = /0
{(s,r)} ∪

⋃
c∈Cs

⋃
q∈Q′c(r+p)

⋃
i∈[1,n]

bx−p
si \qic else

Such that, as shown above, we have {[x−p
s \ r]} =

⋃
(s′,p′)∈bx−p

s \rcJx−p
s′ \ p′K and bx−p

s \ rc = /0 iff

Jx−p
s \ rK = /0. Thus Q′c(u) = {q | q ∈ Qc(u)∧∀i ∈ [1,n],bx−p

si \qic 6= /0}.

• bx−p
s \ rcS =


/0 if Jxs \ (r+ p)K = /0
S else if ∃(s,r′) ∈ S,Jr′K = JrK
/0 else if ∀c ∈ Cs,Q

S∪{(s,r)}
c (r+ p) = /0

{(s,r)} ∪
⋃

c∈Cs

⋃
q∈QS∪{(s,r)}

c (r+p)

⋃
i∈[1,n]

bx−p
si \qicS∪{(s,r)} else

with QS
c(u) = {q | q ∈ Qc(u)∧∀i ∈ [1,n],bx−p

s \ rcS 6= /0}
Moreover, we note {[x−p

s \ r]}\S =
⋃

(s′,p′)∈(bx−p
s \rcS\S)

Jx−p
s′ \ p′K
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Lemma B.1. Let p ∈ T⊥(C,X ), a couple (s,r), with s ∈ S and r a sum of constructor pattern such that
r =⊥ or r : s, and S a finite set of such couples. We have bx−p

s \ rc 6= /0 if and only if bx−p
s \ rc /0 6= /0

Proof. We consider the following (possibly infinite) tree structure: N = 〈(s′, p′),c,q,L〉 such that c :
s1× . . .×sn 7→ s′ ∈ C,q ∈ Qc(p′+ p) and L = [N1, . . . ,Nn] with ∀i,Ni is of the form 〈(si,ri), [. . .]〉 with
JriK = JqiK. We remark that Qc(p′+ p) is correctly defined if and only Jxs′ \ (p′+ p)K 6= /0, then if such a
tree exists, we have, for all nodes 〈(s′, p′), [. . .]〉,Jxs′ \ (p′+ p)K 6= /0.

As JrK = Jr′K implies Jx−p
s \ rK = Jx−p

s \ r′K, by construction, if {[x−p
s \ r]} 6= /0, then there exists such

a tree. And conversely, if there exists such a tree, as for all nodes 〈(s′, p′), [. . .]〉,Jxs′ \ (p′+ p)K 6= /0,
then we can construct a term t by assigning to each node the value of the constructor label, such that, by
construction, t : s and t is p-free, hence t ∈ Jx−p

s \ rK, and thus {[x−p
s \ r]} 6= /0.

We prove now that bx−p
s \ rc /0 6= /0 if and only if there exists such a tree. If there exists such tree, we

can prove that for each node N = 〈(s′, p′), [. . .]〉 of this tree bx−p
s′ \ p′cS 6= /0 with S the set of pairs (ζ ,ρ) of

each node in the path from the root of the tree to N. If the tree is finite, this is obviously true for each leaf.
Otherwise, there is at least one infinite branch, and as each p′ is a sum of a subterm r and subterms of p,
there is only a finite number of such terms with a different ground semantics (as Ju+uK = JuK). Hence,
for each infinite branch, there is a node N = 〈(ζ ,ρ), [. . .]〉 such that the path from the root of the tree
to N contains a node 〈(ζ ,ρ ′), [. . .]〉 with JρK = Jρ ′K, hence bx−p

s′ \ p′cS. We can then prove by induction
that this holds for each node. Thus, we have, for the root node, bx−p

s \ rc /0 6= /0. If bx−p
s \ rc /0 6= /0, by

construction of bx−p
s \ rc /0, we can build a tree such that for each node N = 〈(s′, p′), [. . .]〉 of this tree

bx−p
s′ \ p′cS 6= /0 with S the set of pairs (ζ ,ρ) of each node in the path from the root of the tree to N, with

each branch of the tree terminating on a node 〈(ζ ,ρ),c, [. . .]〉 such that c is of arity 0 or there exists a
node 〈(ζ ,ρ ′), [. . .]〉 with JρK = Jρ ′K in which case we can repeat infinitely the path between the 2 nodes
to get the desired tree.

Thus we have bx−p
s \ rc 6= /0 if and only if bx−p

s \ rc /0 6= /0.

Lemma B.2. Let p ∈ T⊥(C,X ), a couple (s,r), with s ∈ S and r a sum of constructor patterns such that
r =⊥∨ r : s, and S a finite set of such couples. We have:

1. If bx−p
s \ rcS 6= /0 then ∀(s′, p′) with q : s or q =⊥, bx−p

s \ rcS∪{(s′,p′)} 6= /0;

2. ∀(s′, p′) with p : s′ or p=⊥, if bx−p
s \ rcS∪{(s′,p′)} 6= /0 then ∀S′ such that bx−p

s′ \ p′cS′ 6= /0, bx−p
s \ rcS∪S′ 6=

/0;

3. ∀(s′, p′), with p : s′ or p =⊥, if bx−p
s′ \ p′cS 6= /0, then {[x−p

s \ r]}\S∪{(s′,p′)} ⊆ {[x−p
s \ r]}\S;

4. ∀(s′, p′), with p : s′ or p=⊥, if bx−p
s′ \ p′cS 6= /0, then {[x−p

s \ r]}\S⊆ {[x−p
s \ r]}\S∪{(s′,p′)}∪{[x−p

s′ \ p′]}\S.

Proof. We consider P(u) the set of all patterns that we can construct by sum of subterms of u and p,
and P\S(u) = {t | t ∈ P(u)∧∀(s′, p′) ∈ S,JtK 6= Jp′K}. Thanks to this, we can prove the 4 properties by
induction on S and r, such that P\S(r) is strictly decreasing.

The base case is for S and r such that ∃(s,r′) ∈ S with JrK = Jr′K, in this case bx−p
s \ rcS = S, and

thus all 4 properties hold. Let now S be a set such that ∀(s′,r′) ∈ S,s 6= s′∨ JrK 6= Jr′K, we suppose that
∀c ∈ Cs,∀q ∈ Qc(r+ p), the properties hold for all si,qi and S∪{(s,r)}, and we want to prove that they
hold for S and r. Indeed, as qi is a sum of subterms of r and p, we have P(qi) ⊆ P(r), and we have
r ∈ P\S(r) but r /∈ P\S∪{(s,r)}(qi), hence P\S∪{(s,r)}(qi)⊂ P\S(r).

1. If bx−p
s \ rcS 6= /0 then ∀(s′, p′) with q : s or q =⊥, bx−p

s \ rcS∪{(s′,p′)} 6= /0;
If s′ = s and Jp′K= JrK, then the property is obviously true. Otherwise, as bx−p

s \ rcS 6= /0, we know
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that Jxs \(r+ p)K 6= /0 and that ∃c∈ Cs such that QS∪{(s,r)}
c (r+ p) 6= /0, i.e. ∃q∈Qc(r+ p) such that

∀i ∈ [1,n],bx−p
si \qicS∪{(s,r)} 6= /0. We can then apply the inductive property for S∪{(s,r)}, hence

∀i ∈ [1,n],bx−p
si \qicS∪{(s,r)∪{(s′,p′)} 6= /0, and thus bx−p

s \ rcS∪{(s′,p′)} 6= /0.

2. ∀(s′, p′) with p : s′ or p=⊥, if bx−p
s \ rcS∪{(s′,p′)} 6= /0 then ∀S′ such that bx−p

s′ \ p′cS′ 6= /0, bx−p
s \ rcS∪S′ 6=

/0;
We proceed the exact same way.

3. ∀(s′, p′), with p : s′ or p =⊥, if bx−p
s′ \ p′cS 6= /0, then {[x−p

s \ r]}\S∪{(s′,p′)} ⊆ {[x−p
s \ r]}\S;

If s′ = s and Jp′K = JrK, then the property is obviously true. Otherwise, as bx−p
s′ \ p′cS 6= /0,

we have, thanks to the previous 2 properties, ∀(s′′, p′′), bx−p
s′′ \ p′′cS∪{(s,r)} 6= /0 if and only if

bx−p
s′′ \ p′′cS∪{(s,r),(s′,p′)} 6= /0. Thus, for all c∈ Cs,Q

S∪{(s′,p′),(s,r)}
c (r+ p) =QS∪{(s′,p′)}

c (r+ p). There-
fore, if one is empty, so is the other, and both semantics then verify the property. Finally, if neither
Jxs \ (r+ p)K nor all QS

c(r+ p) are empty, we have:

{[x−p
s \ r]}\S∪{(s′,p′)} = Jx−p

s \ rK ∪
⋃

c∈Cs

⋃
q∈QS∪{(s,r),(s′,p′)}

c (r+p)

⋃
i∈[1,n]

{[x−p
si \qi]}\S∪{(s,r),(s′,p′)}

= Jx−p
s \ rK ∪

⋃
c∈Cs

⋃
q∈QS∪{(s,r)}

c (r+p)

⋃
i∈[1,n]

{[x−p
si \qi]}\S∪{(s,r),(s′,p′)}

⊆ Jx−p
s \ rK ∪

⋃
c∈Cs

⋃
q∈QS∪{(s,r)}

c (r+p)

⋃
i∈[1,n]

{[x−p
si \qi]}\S∪{(s,r)}by induction

And so {[x−p
s \ r]}\S∪{(s′,q)} ⊆ {[x−p

s \ r]}\S.

4. ∀(s′, p′), with p : s′ or p=⊥, if bx−p
s′ \ p′cS 6= /0, then {[x−p

s \ r]}\S⊆ {[x−p
s \ r]}\S∪{(s′,p′)}∪{[x−p

s′ \ p′]}\S;
We procede the exact same way.

Proposition 4.3. Given s ∈ S, p ∈ T⊥(C,X ) and r : s a sum of constructor patterns, we have

{[x−p
s \ r]} =

⋃
(s′,p′)∈R

Jx−p
s′ \ p′K

with R = getReachable(s, p, /0,r). Moreover, we have {[x−p
s \ r]} = /0 iff R = /0.

Proof. If bx−p
s \ rcS 6= /0, thanks to Lemma B.2, we have:

{[x−p
s \ r]}\S = Jx−p

s \ rK ∪
⋃

c∈Cs

⋃
q∈QS∪{(s,r)}

c (r+p)

⋃
i∈[1,n]

{[x−p
si \qi]}\S∪{(s,r)}

= Jx−p
s \ rK ∪

⋃
c∈Cs

⋃
q∈QS

c(r+p)

⋃
i∈[1,n]

{[x−p
si \qi]}\S∪{(s,r)}

⊆ Jx−p
s \ rK ∪

⋃
c∈Cs

⋃
q∈QS

c(r+p)

⋃
i∈[1,n]

{[x−p
si \qi]}\S

and:

{[x−p
s \ r]}\S = Jx−p

s \ rK ∪
⋃

c∈Cs

⋃
q∈QS∪{(s,r)}

c (r+p)

⋃
i∈[1,n]

{[x−p
si \qi]}\S∪{(s,r)}

= Jx−p
s \ rK ∪

⋃
c∈Cs

⋃
q∈QS

c(r+p)

⋃
i∈[1,n]

{[x−p
si \qi]}\S∪{(s,r)}

= Jx−p
s \ rK ∪

⋃
c∈Cs

⋃
q∈QS

c(r+p)

⋃
i∈[1,n]

({[x−p
si \qi]}\S∪{(s,r)}∪ {[x−p

s \ r]}\S)

⊇ Jx−p
s \ rK ∪

⋃
c∈Cs

⋃
q∈QS

c(r+p)

⋃
i∈[1,n]

{[x−p
si \qi]}\S
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Therefore, we then have:

{[x−p
s \ r]}\S = Jx−p

s \ rK∪
⋃

c∈Cs

⋃
q∈QS

c(r+p)

⋃
i∈[1,n]

{[x−p
si
\qi]}\S

And thus, for S = /0 and since bx−p
s \ rc /0 = /0 ⇐⇒ Jx−p

s \ rK = /0:

{[x−p
s \ r]}\ /0 =

 /0 if Jxs \ (r+ p)K = /0∨∀c ∈ Cs,Q′c(r+ p) = /0
Jx−p

s \ rK ∪
⋃

c∈Cs

⋃
q∈Q′c(r+p)

⋃
i∈[1,n]

{[x−p
si \qi]}\ /0 else

This relation is equivalent to the one for {[x−p
s \ r]}, hence: {[x−p

s \ r]}\ /0 = {[x−p
s \ r]}

Finally, by looking at the algorithm, we can observe that getReachable(s, p,S,r) = bx−p
s \ rcS. To do

so, we reference each return case of the algorithm by (R1),(R2),(R3) and (R4), in order of appearance.
The algorithm starts by conflating r with r+ p when p : s (otherwise, p has no effect), thanks to the

first if of the algorithm. Thanks to the second if we then have an empty return on (R1) when Jxs\rK= /0.
And the third if leads to returning S on (R2) when ∃(s,r′) ∈ S,Jr′K = JrK.

If the algorithm did not return on (R1) or (R2), we then have, with the conflated r, Jx−p
s \ rK =

J∑c∈Cs c(x−p
s1 , . . . ,x−p

sn ) \ rK. Thus the algorithm loops on c ∈ Cs. The first nested for loop computes
the set Qc(r) obtained, as mentioned, by successively distributing the patterns of r that have the given
constructor c as head. The second for loop then recursively calls getReachable on the couples (si,qi)
obtained this way, and updates R with the results obtained.

Moreover, by considering P\A(u) = {t | t ∈ P(u)∧∀(s′, p′) ∈ A,JtK 6= Jp′K}, with P(u) the (finite) set
of all patterns that we can construct by sum of subterms of u and p, we can remark that ∀c ∈ Cs,q ∈
Qc(r), i < arity(c) we have P\(S∪{(s,r)})(qi) ( P\S(r), thus guaranteeing the termination of all recursion
chains. Indeed, as qi is a sum of subterms of r and p, we have P(qi) ⊆ P(r), and, as the algorithm did
not return on (R2), we have r ∈ P\S(r) but r /∈ P\S∪{(s,r)}(qi), hence P\S∪{(s,r)}(qi)( P\S(r).

Finally, as the algorithm did not return on (R1) we have Jx−p
s \rK= /0 if and only if, ∀c∈ Cs,Q′c(r) =

/0, hence the boolean variable reachable that stays false when ∀c ∈ Cs,Q
S∪{(s,r)}
c (r) = /0, resulting in an

empty return (R4). Similarly, Jc(x−p
s1 \q1, . . . ,x

−p
sn \qn)K is empty if and only if ∃ i such that Jx−p

si \qiK =
/0, so R is updated with the result of the recursive calls for a given c ∈ Cs and q ∈ Qc(r) only if none of
these recursive calls returns an empty result. We thus have the concatenated result as described in the
definition of bx−p

s \ rcS on return (R3).

Proposition 4.4 (Semantics preservation). For any extended patterns p,q, if p →−→Rp q then JpK = JqK.

Proof. We prove that the ground semantics of the left-hand side and right-hand side of the rewrite rules
ofRp are the same.

In the case of the rule (E1), as we have Jδ (p1, . . . , pn)K = {δ (t1, . . . , tn) | (t1, . . . , tn) ∈ Jp1K× . . .×
JpnK} and the ground semantics of ⊥ is empty, so is the semantics of δ (v1, . . . ,⊥, . . . ,vn). Hence the
equality of ground semantics of the 2 sides of the rule. For the rule (S1), we have:

Jδ (v1, . . . ,vi +wi, . . . ,vn)K = {δ (t1, . . . , tn) | (t1, . . . , tn) ∈ Jv1K× . . .× Jvi +wiK× . . .× JvnK}
= {δ (t1, . . . , tn) | (t1, . . . , tn) ∈ Jv1K× . . .× JviK∪ JwiK× . . .× JvnK}
= {δ (t1, . . . , tn) | (t1, . . . , tn) ∈ Jv1K× . . .× JviK× . . .× JvnK}
∪{δ (t1, . . . , tn) | (t1, . . . , tn) ∈ Jv1K× . . .× JwiK× . . .× JvnK}

= Jδ (v1, . . . ,vi, . . . ,vn)K∪ Jδ (v1, . . . ,wi, . . . ,vn)K
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For rules (M7) and (T3), we consider both inclusions separately:

(M7): If v∈ Jα(v1, . . . ,vn)\α(t1, . . . , tn)K, then v∈ Jα(v1, . . . ,vn)K and v /∈ Jα(t1, . . . , tn)K. As Jα(p1, . . . , pn)K=
{α(w1, . . . ,wn) | (w1, . . . ,wn)∈ Jp1K× . . .×JpnK}, v = α(w1, . . . ,wn) such that ∀i∈ [1,n],wi ∈ JviK
and ∃ j ∈ [1,n],w j ∈ Jt jK. Therefore, w j ∈ Jv jK \ Jt jK and thus v ∈ Jα(v1, . . . ,v j \ t j, . . . ,vn)K,
and finally v ∈ J∑k∈[1,n] α(v1, . . . ,vk \ tk, . . . ,vn)K. Hence the first inclusion. We can show that
if v ∈ J∑k∈[1,n] α(v1, . . . ,vk \ tk, . . . ,vn)K, then v ∈ Jα(v1, . . . ,vn)\α(t1, . . . , tn)K similarly in order to
prove the second inclusion.

(T3): If v ∈ Jα(v1, . . . ,vn)× α(w1, . . . ,wn)K, then v ∈ Jα(v1, . . . ,vn)K and v ∈ Jα(w1, . . . ,wn)K. As
Jα(p1, . . . , pn)K = {α(t1, . . . , tn) | (t1, . . . , tn) ∈ Jp1K× . . .× JpnK}, v = α(t1, . . . , tn) such that ∀i ∈
[1,n], ti ∈ JviK and ti ∈ JwiK. Therefore, ∀i ∈ [1,n], ti ∈ JviK∩ JwiK and thus v ∈ Jα(v1×w1, . . . ,vn×
wn)K. Hence the first inclusion. Similarly, we can show that if v ∈ Jα(v1×w1, . . . ,vn×wn)K, then
v ∈ Jα(v1, . . . ,vn)×α(w1, . . . ,wn)K, to prove the second inclusion.

For the rest of the rules but (P1), the definition of ground semantics of extended patterns and proper-
ties of set operations give us the equality between the ground semantics of 2 side of each rule in a fairly
straightforward manner. In particular, in the case of rules (M1), (T1) and (T2), we can remark that, as
we only consider well-sorted extended patterns, in these 3 rules we have v : s and therefore JvK⊆ Jx−⊥s K.
Hence the equality of ground semantics of the 2 sides of these rules.

Finally, for (P1), we first prove that:

Jx−p
s K =

⋃
c∈Cs

Jc(x−p
s1 , . . . ,x−p

sn )\ pK (1)

Let’s consider both inclusion separately. Let t ∈
⋃

c∈Cs
Jc(x−p

s1 , . . . ,x−p
sn ) \ pK, i.e. ∃c ∈ Cs such that

t ∈ Jc(x−p
s1 , . . . ,x−p

sn )K and t /∈ JpK. Thus ∃(t1, . . . , tn) ∈ Jx−p
s1 K× . . .Jx−p

sn K such that p≺6≺ t = c(t1, . . . , tn).
Therefore, t : s and ∀ω ∈ Pos(t) , p≺6≺ t|ω , i.e. t is p-free. Hence t ∈ Jx−p

s K. Let t ∈ Jx−p
s K, then t : s and t

is p-free. Thus ∃c : s1× . . .×sn 7→ s,(t1, . . . , tn)∈ Ts1(C)× . . .×Tsn(C) such that t = c(t1, . . . , tn) with ∀i∈
[1,n], ti is p-free. Therefore, t ∈ Jc(x−p

s1 , . . . ,x−p
sn )K and, as p≺6≺ t, t /∈ JpK. Hence t ∈ Jc(x−p

s1 , . . . ,x−p
sn )\ pK,

and finally t ∈
⋃

c∈Cs
Jc(x−p

s1 , . . . ,x−p
sn )\ pK.

Therefore, we have Jx−p
s K = J∑c∈Cs c(x−p

s1 , . . . ,x−p
sn )\ pK hence

Jx−p
s ×α(v1, . . . ,vn)K = J

(
∑c∈Cs c(x−p

s1 , . . . ,x−p
sn )\ p

)
×α(v1, . . . ,vn)K

=

( ⋃
c∈Cs

Jc(x−p
s1 , . . . ,x−p

sn )\ pK

)
∩ Jα(v1, . . . ,vn)K

=

( ⋃
c∈Cs

Jc(x−p
s1 , . . . ,x−p

sn )K\ JpK

)
∩ Jα(v1, . . . ,vn)K

=
⋃

c∈Cs

Jc(x−p
s1 , . . . ,x−p

sn )K∩
(
Jα(v1, . . . ,vn)K\ JpK

)
= J ∑

c∈Cs

c(x−p
s1 , . . . ,x−p

sn )×
(
α(v1, . . . ,vn)\ p

)
K

Lemma B.3 (Convergence). The rewriting systemRp is confluent and terminating.

Proof. A meta-encoding of a complete approximation of the rule schemaRp is provided in Appendix C.
Automatic termination proof tools such as TTT2 and AProVE have been used to prove that this meta-
encoding is terminating and we can thus directly conclude to the termination ofRp
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We show the local confluence of the system by proving that all critical pairs induced by rewrite rules
of the system converge. We have the following critical pairs:
(A1)− (A2) (converge directly),
(A1)− (S1) and (A2)− (S1) (converge with E1 and A1/A2),
(A1)− (S2) and (A2)− (S2) (converge with E2 and A1/A2),
(A1)− (S3) and (A2)− (S3) (converge with E3 and A1/A2),
(A1)− (M3) and (A2)− (M3) (converge with M5 and A1/A2),
(A1)− (M6) and (A2)− (M3) (converge with M2),
(E1)− (M6) (converge with M5 and E1, twice M5),
(E1)− (M7) only left possible (converge with M5 and M2, n times E1, n times A1/A2),
(E1)− (M8) left (converge with M5 and E1),
(E1)− (M8) right (converge with M2),
(E2)− (E3) (converge directly),
(E2)− (S3) and (E3)− (S2) (converge with twice S2/S3, A1/A2),
(E2)− (T 1) and (E3)− (T 2) (converge directly),
(S1)− (M6) (converge with M3, twice M6 and S1, twice M3),
(S1)− (M7) only left possible (converge with M3, twice M7 and M3, n times S1),
(S1)− (M8) left (converge with M3, twice M8 and S1),
(S1)− (M8) right (converge with M6, twice M8),
(S1)− (T 3) left (converge with S2, twice T 3 and S2, S1),
(S1)− (T 3) right (converge with S3, twice T 3 and S3, S1),
(S1)− (T 4) left (converge with S2, twice T 4, A1/A2),
(S1)− (T 4) right (converge with S3, twice T 4, A1/A2),
(S1)− (P1) (converge with S3, twice P1 and S1, M3, S3),
(S2)− (S3) (converge with S3 and S2),
(S2)− (T 1) (converge with twice T 1),
(S3)− (P4) (converge with twice P4 and S3, twice M6),
(S3)− (T 2) (converge with twice T 1),
(M1)− (M3) (converge with twice M1, A1/A2),
(M1)− (M5) (converge directly),
(M1)− (P6) (converge directly),
(M2)− (M3) (converge with twice M1),
(M2)− (M5) (converge directly),
(T 1)− (T 2) (converge directly),
(T 1)− (P4) (converge with T 1),
(T 2)− (P3) (converge with T 2).

In order to prove Proposition 4.5, we first prove the conservation of the regular property with Lemma B.4
and we introduce the notion of depth of an extended pattern, in order to show Lemmas B.5, B.6 and B.7.

Lemma B.4. Let u and v extended patterns such that u−→Rp v, then

u regular =⇒ v regular

Proof. We can first remark that no rule in Rp modifies variable annotation, and the only rule that intro-
duce new annotated variables, i.e. (P1), annotates the new variables with a pattern annotation from the
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origin term, i.e. ⊥ for a regular term. Moreover, forall extended pattern t and u, ∀ω ∈ Pos(t) , t[u]ω reg-
ular implies u regular and forall regular extended v, t[v]ω is regular. Thus all rules preserve the regular
property.

Definition B.2 (Depth). We define the notion of depth of an extended pattern:

• depth(x−p
s ) = depth(x−p

s \w) = depth(⊥) = 1

• depth(c(t1, . . . , tn)) = 1+maxi∈[1,n](depth(ti))

• depth(t1 + t2) = max(depth(t1),depth(t2))

• depth(t1 \ t2) = depth(t1)

Lemma B.5. If t is a (quasi-)additive pattern, then t ↓Rp is a (quasi-)additive pattern s.t. depth(t ↓Rp)
≤ depth(t).

Moreover the normal form t ↓Rp= v is either ⊥ or a pure term such that ∀ω+ ∈ Pos(v) ,v(ω+) =
+ =⇒∀ω < ω+,v(ω) = + and JtK = /0 if and only if v =⊥.

Proof. We can first observe that the only rule that apply on an additive pattern are A1, A2, E1 and S1
(and the same rules plus M1 and P6 for quasi-additive patterns). Moreover, for each rule, it reduces a
(quasi-)additive pattern into a (quasi-)additive pattern. Therefore, the normal form of an (quasi-)additive
pattern, is indeed an (quasi-)additive pattern.

Moreover, the depth measure induces a monotonic ordering over quasi-additive patterns with regard
to the ≤ operators, i.e. depth(u)≤ depth(v) implies depth(t[u]ω)≤ depth(t[v]ω). Finally, as the depth
is decreasing on all applicable rules, we know that depth(t ↓Rp)≤ depth(t).

Let’s now suppose that v = t ↓Rp contains a sum below a constructor, i.e. contains a subterm of the
form c(v1, . . . ,vi + ui, . . . ,vn), which would be a redex for S1, and thus v would not be a normal form.
Therefore, v does not contain a sum below a constructor.

Finally, if t ↓Rp=⊥ then Proposition 4.4 ensures that JtK = J⊥K = /0. We note v = t ↓Rp , once again
we know that JtK = JvK, let’s prove that if JvK = /0 then v = ⊥. We suppose that v 6= ⊥ and we prove by
induction that v is not in normal form.

If v = x−p
s \ u and JvK = /0, then rule P6 applies, thus v is not in normal form. If v = v1 + v2, then

Jv1K = Jv2K = /0, thus by induction, either v1 = v2 =⊥ in which case both A1 and A2 applies, or at least
one of them is not in normal form. In both cases, v is not in normal form. Finally, if v = c(v1, . . . ,vn),
then ∃ i ∈ [1,n] such that JviK = /0, thus by induction, either vi = ⊥ and rule E1 applies or vi is not in
normal form. In both cases, v is not in normal form.

Therefore, if v 6=⊥ is a quasi-additive such that JvK= /0, then v is not in normal form. Thus, if JtK= /0,
then t ↓Rp=⊥.

Lemma B.6. If t a quasi-additive pattern and u a regular additive pattern, then v = (t \ u) ↓Rp is a
quasi-additive pattern such that depth(v)≤ depth(t \u).

Proof. We can remark that Rp preserves the regular property of a pattern, thus, thanks to Lemma B.5,
we can suppose, by confluence, that t and u are in normal form, we then prove this lemma by induction
on the form of t and u.

In the case when u = x−⊥s , rule M1 applies to t \u and reduces it to v =⊥ which cannot be reduced
furthermore. Moreover depth(⊥) = 1 ≤ depth(t \ u). In the case when u = ⊥, rule M2 applies to t \ u
and reduces it to t, and as we supposed t in normal form, it cannot be reduced anymore. Moreover
depth(t) = depth(t \u).

In other cases, we proceed by induction:
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• if u = u1 + u2, we have to consider the different form of t. If t = x−p
s , the only rule that can

apply is P6, which, if it does, reduces t \ u to ⊥, thus, either way, the term v obtained cannot be
reduced furthermore and is quasi-additive pattern with depth(v) = 1 = depth(t \u). If t = x−p

s \u′,
the only rules that can apply are P5 and P6. If P5 applies, it reduces t \ u to x−p

s \ (u′+ u) for
which only P6 can apply. If P6 applies, it reduces t \ u to ⊥\ u, which is then reduced to ⊥ by
M5, and x−p

s \ (u′+ u) to ⊥. In all cases, the term v obtained cannot be reduced furthermore and
is quasi-additive pattern with depth(v) = 1 = depth(t \ u). If t = c(t1, . . . , tn), rule M6 applies
to t \ u and reduces it to (t \ u1) \ u2. Moreover, by induction on u, v′ = (t \ u1) ↓Rp and v =
(v′\u2) ↓Rp are both quasi-additive patterns such that depth(v)≤ depth(v′)≤ depth(t \u). Hence,
by confluence, v = (t \ u) ↓Rp . Finally, if t = t1 + t2, then rule M3 applies to t \ u and reduces it
to (t1 \ u)+ (t2 \ u). Moreover, by induction on t, v1 = (t1 \ u) ↓Rp and v2 = (t2 \ u) ↓Rp are both
quasi-additive patterns such that depth(v1)≤ depth(t \u) and depth(v2)≤ depth(t \u). Therefore,
depth(v1 + v2)≤ depth(t\)u, and t \u →−→Rp v1 + v2. So as v1 + v2 is a quasi-additive pattern we
know, thanks to Lemma B.5, that v = (v1 +v2) ↓Rp= (t \u)Rp is a quasi-additive pattern such that
depth(v)≤ depth(v1 + v2)≤ depth(t \u).

• if u = c(u1, . . . ,un), with ∀i ∈ [1,n],ui a regular symbolic pattern (as u is in normal form), we
have to consider the different form of t. If t = x−p

s , the only rule that can apply is P6, which,
if it does, reduces t \ u to ⊥, thus, either way, the term v obtained cannot be reduced further-
more and is quasi-additive pattern with depth(v) = 1 = depth(t \ u). If t = x−p

s \ u′, the only
rules that can apply are P5 and P6. If P5 applies, it reduces t \ u to x−p

s \ (u′+ u) for which only
P6 can apply. If P6 applies, it reduces t \ u to ⊥\ u, which is then reduced to ⊥ by M5, and
x−p

s \ (u′+u) to ⊥. In all cases, the term v obtained cannot be reduced furthermore and is quasi-
additive pattern with depth(v) = 1 = depth(t \ u). For the case when t = c′(t1, . . . , tm), if c 6= c′,
rule M8 applies to t \ u and reduces it to t. Otherwise rule M7 applies to t \ u and reduces it to
∑i∈[1,n] c(t1, . . . , ti \ ui, . . . , tn), and by induction on t, ∀i,vi = (ti \ ui) ↓Rp a quasi-additive pattern
such that depth(vi)≤ depth(ti \ui). Therefore, t \u →−→Rp ∑i∈[1,n] c(t1, . . . ,vi, . . . , tn) and by mono-
tonicity, depth(∑i∈[1,n] c(t1, . . . ,vi, . . . , tn))≤ depth(t \u). Moreover, w=∑i∈[1,n] c(t1, . . . ,vi, . . . , tn)
is a quasi-additive pattern, so according to Lemma B.5, v = w ↓Rp is a quasi-additive pattern such
that depth(v) ≤ depth(w). Hence, by confluence, v = (t \ u) ↓Rp and depth(v) ≤ depth(t \ u).
Finally, if t = t1 + t2, we proceed identically as for u = u1 +u2.

Lemma B.7. If t a quasi-additive pattern and u a regular quasi-additive pattern, then (t× u) ↓Rp is a
quasi-additive pattern.

Proof. We can remark that Rp preserves the regular property of a pattern, thus, thanks to Lemma B.5,
we can suppose, by confluence, that t and u are in normal form, we then prove this lemma by induction
on the depth of u and the form of t and u.

The base case is for u such that depth(u) = 1. We proceed by induction on the form u such that
depth(u) = 1. If u = x−⊥s , the only rule that applies to t \u is T2, which reduces it to t.

If u = x−⊥s \ v with v a regular additive pattern, we proceed by induction on t. If t = c(t1, . . . , tn) or
t = x−p

s or t = x−p
s \w the only rules that applies to t \u are, respectively, P2 or P3 or P4, which with T1

reduces it to t \v. And thanks to Lemma B.6 we know that (t \v) ↓Rp is a quasi-additive pattern. Finally,
if t = t1 + t2, then rule S2 applies to t \ u and reduces it to (t1× u)+ (t2× u). Moreover, by induction
on t1 and t2, v1 = (t1×u) ↓Rp and v2 = (t2×u) ↓Rp are both quasi-additive patterns. So, as v1 + v2 is a
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quasi-additive pattern, we know, thanks to Lemma B.5, that (v1+v2) ↓Rp= (t \u) ↓Rp is a quasi-additive
pattern.

If u = c(), we proceed by induction on the form of t. If t = c(), then rule T3 applies to t× u and
reduces it to c(). If t = c′(t1, . . . , tn) with c′ 6= c, then rule T4 applies to t \ u and reduces it to ⊥. If
t = x−p

s , then rule P1 applies to t×u and reduces it to ∑d∈Cs d(x−p
s1 , . . . ,x−p

sn )× (c()\ p). If p = c(), then
rule M7 applies to c()\ p and reduces it to⊥, leading to rule E2 applying and ultimately reducing t \u to
⊥. If p = c′(p1, . . . , pn) with c′ 6= c, then rule M8 applies to c()\ p and reduces it to c(), and because we
only consider well sorted extended patterns, c ∈ Cs, thus repeatedly applying S3, T4, A1/ A2 and finally
T3 ultimately reduces t \u to c(). Finally, if t = t1 + t2, we proceed exactly the same way as in the case
when u = x−⊥s \ v to prove the induction step on the form of t.

Finally, if u = u1 + u2 with depth(u1) = depth(u2) = 1, then rule S3 applies to t \ u and reduces it
to (t×u1)+(t×u2). Moreover, by induction on u1 and u2, v1 = (t×u1) ↓Rp and v2 = (t×u2) ↓Rp are
both quasi-additive patterns. So as v1 + v2 is a quasi-additive pattern we know, thanks to Lemma B.5,
that (v1 + v2) ↓Rp= (t \u)Rp is a quasi-additive pattern.

We now suppose depth(u) = n > 1 and for all quasi-additive pattern υ such that depth(υ) < n, for
all quasi-additive pattern τ , (τ \υ) ↓Rp is quasi-additive pattern. Let’s prove by induction on the form of
t and u that, for all quasi-additive pattern t,(t \u) ↓Rp is a quasi-additive pattern.

If u = c(u1, . . . ,um) with ∀i ∈ [1,m],depth(ui) < n, we proceed by induction on the form of t. For
the case when t = c′(t1, . . . , tm′), if c 6= c, then rule T4 applies to t \ u and reduces it to ⊥. Otherwise,
rule T3 applies to t × u and reduces it to c(t1× u1, . . . , tn× um). Moreover, by induction on the depth
of u we know that ∀i ∈ [1,m],vi = (ti× ui) ↓Rp is a quasi-additive pattern, thus c(v1, . . . ,vm) is a quasi-
additive pattern and we know, thanks to Lemma B.5, that c(v1, . . . ,vm) ↓Rp=(t \u) ↓Rp is a quasi-additive
pattern. If t = x−p

s , then rule T4 applies to t \u and reduces it to ∑d∈Cs d(x−p
s1 , . . . ,x−p

sm′ )× (u\ p). Thanks
to Lemma B.6, we know that (u\ p) ↓Rp is a quasi-additive pattern which depth is less than or equal to
n, and we can easily show that its either ⊥ or a sum of quasi-additive patterns of the form c(w1, . . . ,wn),
with ∀i ∈ [1,m],depth(wi) < n. If (u \ p) ↓Rp= ⊥, then rule E3 applies and thus (t × u) ↓ Rp = ⊥.
Otherwise, by applying recursively S2/S3, T4/T3, and A1/A2 we get t×u →−→Rp ∑c(x−p

s1 ×w1, . . . ,x
−p
sm ×

wm). Moreover, by induction on the depth of u we know that ∀i ∈ [1,m],vi = (ti×wi) ↓Rp is a quasi-
additive pattern, thus ∑c(v1, . . . ,vm) is a quasi-additive pattern and we know, thanks to Lemma B.5, that
(∑c(v1, . . . ,vm)) ↓Rp= (t \ u) ↓Rp is a quasi-additive pattern. Finally, if t = t1 + t2, we proceed exactly
the same way as in the case when u = x−⊥s \ v to prove the induction step on the form of t.

Finally, if u = u1 + u2, we proceed exactly the same way as in the case depth(u) = 1 to prove the
induction step on the form u when depth(u)> 1.

Proposition 4.5. The rewriting system Rp is confluent and terminating. Given a quasi-additive pattern
t and a constructor pattern p, we have t× p →−→Rp⊥ if and only if Jt× pK = /0.

Proof. Confluence and termination are proved in Lemma B.3.
Based on Lemma B.7, we know that (t× p) ↓Rp is a quasi-additive pattern. Moreover, according to

Proposition 4.4, the semantics of t× p is empty if and only if the semantics of its normal form is empty,
hence, thanks to Lemma B.5, if and only if its normal form is ⊥.
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C Meta encoding of the rewriting systemRp

The meta encoding of the rule schemas in Figure 1 is given below in a syntax usable by AProVE/TTT2.
Both AProVE and TTT2 can be used to prove the termination of this rewriting system.
(VAR u u1 u2 v v1 v2 w f g lu lv l lacc n m i tail sig p q)

(RULES

plus(bot,v) -> v

plus(v,bot) -> v

appl(f,lv) -> split(f,lv,nil)

split(f,cons(u,lu),lv) -> split(f,lu,cons(u,lv))

split(f,cons(bot,lu),lv) -> bot

split(f,cons(plus(u1,u2),lu),lv) ->

plus(Appl(f,rest(lu,cons(u1,lv))),

Appl(f,rest(lu,cons(u2,lv))))

split(f,nil,lv) -> frozen(f,rest(nil,lv))

rest(lu,nil) -> lu

rest(lu,cons(u,lv)) -> rest(cons(u,lu),lv)

times(bot,v,sig) -> bot

times(v,bot,sig) -> bot

times(plus(u1,u2),v,sig) ->

plus(times(u1,v,sig),times(u2,v,sig))

times(v,plus(u1,u2),sig) ->

plus(times(v,u1,sig),times(v,u2,sig))

minus(v, var(n,bot)) -> bot

minus(v, bot) -> v

minus(plus(v1,v2), w) ->

plus(minus(v1, w), minus(v2, w))

minus(bot, appl(f,lv)) -> bot

minus(appl(f,lu), plus(v,w)) ->

minus(minus(appl(f,lu),v),w)

minus(appl(f,lu), appl(f,lv)) ->

genm7(f,lu,lv,len(lu))

genm7(f,lu,lv,z) -> bot

genm7(f,lu,lv,suc(i)) ->

plus(genm7(f,lu,lv,i),

appl(f,diff(lu,lv,suc(i))))

diff(nil,nil,i) -> nil
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diff(cons(u,lu),cons(v,lv),s(s(i))) ->

cons(u,diff(lu,lv,s(i)))

diff(cons(u,lu),cons(v,lv),s(z)) ->

cons(minus(u,v),lu)

len(nil) -> z

len(cons(u,lu)) -> s(len(lu))

minus(appl(f,lu), appl(g,lv)) -> appl(f,lu)

times(v, var(n,bot), sig) -> v

times(var(n,bot), v, sig) -> v

times(appl(f,lu), appl(f,lv), sig) -> dist(appl(f,nil), prod(lu,lv,nil,sig)))

prod(cons(u,lu),cons(v,lv),lacc,sig) -> prod(lu,lv,cons(times(u,v,sig),lacc),sig)

dist(appl(f,l), prod(nil,nil,nil,sig)) -> appl(f,l)

dist(appl(f,l), prod(nil,nil,cons(u,lu),sig)) -> dist(appl(f,cons(u,l)), prod(nil,nil,lu,sig))

times(appl(f,lu), appl(g,lv), sig) -> bot

times(var(n,p), appl(f,lv), sig) ->

times(gensum(sig,p),minus(appl(f,lv), p), sig)

gensum(nilsig,p) -> bot

gensum(conssig(f,n,tail),p) ->

plus(appl(f,genvar(n,p)), gensum(tail,p))

genvar(z,p) -> nil

genvar(s(n),p) -> cons(var(s(n),p),genvar(n,p))

times(appl(f,lu), minus(var(m,p), t), sig) -> minus(times(appl(f,lu), var(m,p), sig), t)

times(var(n,p), minus(var(m,q), t), sig) -> minus(times(var(n,p), var(m,q), sig), t)

times(minus(var(n,p),v), t, sig) -> minus(times(var(n,p),v,sig), t)

minus(minus(var(n,p),v), t) -> minus(var(n,p),plus(v,t))

minus(var(n,p),v) -> bot

)
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