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In this paper, we show a transformation of concurrent programs with exclusive control operated by
means of semaphores into logically constrained term rewrite systems (LCTRSs, for short), aiming
at modeling concurrent programs by LCTRSs. To this end, we first expand arguments of a function
symbol that has been introduced to represent configurations of sequential execution so as to store all
executed processes. Next, we show how to represent operations for semaphores by rewrite rules, and
show a transformation of concurrent programs with semaphores into LCTRSs. We manage waiting
queues for semaphores by means of a so-called turn waiting system with number tickets, avoiding
recursive data structures such as lists.

1 Introduction

Recently, approaches to program verification by means of logically constrained term rewrite systems
(LCTRSs, for short) [6] are well investigated [3, 12, 2, 8, 4, 5]. LCTRSs are known to be useful as com-
putation models of not only functional but also imperative programs. Especially, equivalence checking
via LCTRSs is useful to ensure correctness of functions (cf. [3]). Here, equivalence of two functions
means that for every input, the functions return the same output or end with the same configuration. On
the other hand, previous work [3, 4, 5] targets only sequential programs.

Regarding practical use of computers, we would like to verify that a sequential program is equivalent
to its concurrent version or a re-implemented program executing some functions in parallel. When a
sequential program has been verified to be correct thanks to test, formal methods, and/or operational
experience, it may be possible to use the correctness to verify correctness of its concurrent version by
means of equivalence between the sequential and concurrent versions, instead of verifying the concurrent
version from scratch. Therefore, the application of an equivalence verification method in previous work
to concurrent programs would be useful for program verification. However, to apply the method for
sequential programs to concurrent ones, we need to transform constructs for concurrency, which are not
in sequential programs, into LCTRSs.

This research aims at transforming concurrent programs into LCTRSs in order to apply verification
methods for LCTRSs to equivalence verification of sequential and concurrent automotive embedded
systems written in C. In this paper, as a first step, we show how to represent exclusive control, which is
not handled in sequential programs, by LCTRSs. In particular, we transform concurrent programs with
exclusive control operated by means of semaphores into LCTRSs. Here, we assume that the number of
processes is fixed. An advantage of this approach is that to verify automotive embedded systems, we can
use rewriting techniques for verification of, e.g., termination, reachability, and equivalence.
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JP18K11160.
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2 Transforming Concurrent Programs with Semaphores into LCTRSs

We target automotive embedded systems, and thus, there may be many layers—from software to
hardware—in verifying programs. For example, one may think that smaller primitives should be taken
into account or there are more primitives to be taken into account. Though, our present goal is to verify
application programs from algorithmic point of view. For this reason, we do not take hardware features
into account, and we assume that atomic operations are executed as we expect.

Our transformation follows the following four policies:

• Each atomic operation is represented by a single rewrite rule. Reduction steps by LCTRS corre-
spond to the application of single rewrite rules. Each atomic operation should be represented in
order that any other operations (processes) cannot interrupt the atomic operation until the execu-
tion of the atomic operation finishes. Therefore, atomic operations are modeled by single rewrite
rules.

• Each rewrite rule represents an action of at most one process.1 It is usual that the more rules we
have, the longer it takes to verify LCTRSs. If a rewrite rule refers to states of several processes and
represents the action of one or more processes simultaneously, then the number of rewrite rules
would increase exponentially according to combinations of processes. However, most of such
rules represent the same actions. For efficiency of verification, we would like to keep down the
increase of rules. For this reason, each rewrite rule is expected to refer to the state of (at most) a
single process and represents an action of the process.

• Recursive data structures such as lists are not adopted for exclusive control. Rewriting induc-
tion [10, 3] used as a method for equivalence verification, makes a case analysis w.r.t. a reduction-
complete position which ensures the exhaustiveness of the case analysis. Decidability of reduction-
complete positions is not known yet. Even for decidable constraints, it is not so easy to decide
whether a position is reduction-complete along with recursive data structures such as lists; it may
be undecidable or not known yet. For this reason, we must facilitate a verification process of
rewriting induction by avoiding the use of recursive data structure as much as possible. Therefore,
we do not adopt lists for waiting queues of semaphores. Note that we do not prohibit to use any
recursive data structure at all. For example, we use stacks for function calls because such stacks
do not prevent us from checking reduction-completeness of LCTRSs obtained from imperative
programs.

• All basic data in programs are represented as bit vectors. Previous work [5] represents all built-in
data in programs as bit vectors in order to model programs more precisely. For example, 32-
bit integers are represented as bit vectors with length 32. This paper follows the representation,
modeling metadata for managing semaphores as bit vectors.

To represent configurations of sequential programs, previous work [3, 4, 5] introduces a function
symbol env for the environment of execution. The function symbol takes as arguments both a state of
executing a function and values stored in global variables. To model concurrent programs by LCTRSs,
we also use the function symbol env to represent configurations (Section 3). However, we increase its ar-
guments in order for the symbol to include states of several processes which are executed simultaneously,
along with values stored in global variables.

We represent operations for semaphores by rewrite rules as well as assignment statements. For the
sake of simplicity, this paper assumes that processes requiring a semaphore stand by in the order of
request. To represent and handle a waiting queue without using any lists, we adopt a so-called turn

1A rewrite rule may represent a built-in or user-defined computation, that is, the rule does not represent any action of
processes.
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waiting system with number tickets; we make each process have a value corresponding to a number
ticket for the queue by wrapping a state st of the process and the ticket tckt in a common constructor p:
p(st, tckt); we also make the environment have both a “display board” to permit processes to acquire the
semaphore and a “ticket machine” to issue number tickets, where the display board and ticket machine
are implemented as counters. A process is given a number ticket when it needs to wait and waits until
the number in the ticket gets called (i.e., matches the value of the display board). In this approach, it is
not necessary to refer to the states of any other processes, and thus a rewrite rule represents an action of
a single process. We illustrate how to transform a concurrent program with a binary semaphore into an
LCTRS (Section 4). Note that the turn waiting system used in LCTRSs is not a physical implementation.

2 Preliminaries

In this section, we recall bit vectors [7, Chapter 6] and LCTRSs [6, 3]. Familiarity with basic notions on
term rewriting [1, 9] is assumed.

2.1 Bit Vector Logic

We introduce the bit vector logic to use it as built-ins for LCTRSs.
A bit vector with length n is defined as a mapping from {0, . . . ,n−1} to {0,1}. The set of bit vectors

with length n is denoted by BVn. For a bit vector a ∈ BVn, ai denotes the i-th bit, i.e., ai = a(i). We
represent bit vectors as binary numerals (sequences of 0,1) such as an−1an−2 . . .a0 for a ∈ BVn, and
furthermore we follow the notation adopted by SMT-LIB2 in order to distinguish decimal numbers: a
constant bit vector c ∈ BVn is denoted by #bc, where c is written as a binary numeral. For example,
binary numeral 101 is denoted by #b101 as a bit vector, being distinguished from decimal number 101.
Note that a0 and an−1 are the least and most significant bits of a, respectively.

Bit vector operators are defined for fixed-size vectors. For example, the bitwise-and operator over
BVn is denoted by &n. Though, we abbreviate &n to &, abusing it for the bitwise-and operators for
bit vectors with different lengths. We follow the usual semantics of arithmetic and bitwise operators
(+S,+U ,�,&,∼, . . .) for bit vectors. Note that for arithmetic operators, we specify the encoding S or U ,
where S (signed) and U (unsigned) indicates two’s complement and binary encodings, respectively.

2.2 Logically Constrained Rewriting

Let S be a set of basic sorts and V a (countably infinite) set of variables, each of which is equipped with
a basic sort. A signature Σ disjoint from V is a set of function symbols f , each of which is equipped with
a sort declaration ι1×·· ·× ιn⇒ ι , written as f : ι1×·· ·× ιn⇒ ι , where ι1, . . . , ιn, ι ∈ S . In the rest of
this section, we fix S, Σ, and V .

We denote the set of well-sorted terms over Σ and V by T (Σ,V). We may write s : ι if s has basic sort
ι . The set of variables occurring in s1, . . . ,sn is denoted by Var(s1, . . . ,sn). Given a term s and a position
p (a sequence of positive integers) of s, s|p denotes the subterm of s at position p, and s[t]p denotes s
with the subterm at position p replaced by t.

A substitution γ is a sort-preserving total mapping from V to T (Σ,V), and naturally extended for
a mapping from T (Σ,V) to T (Σ,V). The restriction of γ w.r.t. a set X of variables is denoted by γ|X :
γ|X(x) = γ(x) if x ∈ X , and otherwise γ|X(x) = x. The application of γ to term s is denoted by sγ .

2http://smtlib.cs.uiowa.edu

http://smtlib.cs.uiowa.edu
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To define LCTRSs, we consider different kinds of symbols and terms:

• two signatures Σterm and Σtheory such that Σ = Σterm∪Σtheory,

• a mapping I that assigns to each basic sort ι occurring in Σtheory a set Valι , i.e., I(ι) = Valι ,

• a mapping J that assigns to each f : ι1×·· ·× ιn⇒ ι ∈ Σtheory a function in I(ι1)×·· ·×I(ιn)⇒
I(ι), and

• a set Σval,ι ⊆ Σtheory of value-constants for each basic sort ι occurring in Σtheory—Σval,ι is a set of
constant symbols a : ι such that J gives a bijective mapping from Σval,ι to I(ι).

Note that for each sort, I specifies the universe, and for each symbol, J specifies the interpretation. We
define Val and Σval as

⋃
ι∈S Valι and

⋃
ι∈S Σval,ι , respectively. We require that Σterm∩Σtheory ⊆ Σval. The

basic sorts occurring in Σtheory are called theory sorts, and the symbols theory symbols. The set of theory
sorts is denoted by Stheory. Symbols in Σtheory \Σval are calculation symbols. A term in T (Σtheory,V)
is called a theory term. For ground theory terms, we define the interpretation [[ · ]] as [[ f (s1, . . . ,sn) ]] =
J ( f )([[s1 ]], . . . , [[sn ]]). Note that for every ground theory term s, there is a unique value-constant c such
that [[s ]] = [[c ]]. We may use infix notation for calculation symbols.

We typically choose a theory signature with Σtheory ⊇ Σcore, where Stheory includes bool, a basic sort
of Booleans, with Σval,bool = {true, false} and I(bool) = B = {>,⊥}, Σcore = Σval,bool ∪ {∧,∨, =⇒ :
bool× bool⇒ bool, ¬ : bool⇒ bool} ∪ {=ι , 6=ι : ι × ι ⇒ bool | ι ∈ Stheory}, and J interprets these
symbols as expected: J (true) => and J (false) =⊥. We omit the sort subscripts from = and 6= when
they are clear from context.

A constraint is a theory term ϕ : bool. A constraint ϕ is said to be valid if [[ϕγ ]] = > for all
substitutions γ with γ|Var(ϕ)⊆ Σval and satisfiable if [[ϕγ ]] => for some such substitution. A substitution
γ is said to respect ϕ if γ|Var(ϕ) ⊆ Σval and [[ϕγ ]] =>.

Example 2.1 We define basic sorts, signatures, interpretations for bit vectors as follows:

• Stheory be {bool}∪{bitvecn | n≥ 1}, where bitvecn is a basic sort for bit vectors with length n,

• Σval = Σval,bool∪
⋃

n≥1 Σval,bitvecn , where Σval,bitvecn = {a | a ∈ BVn} for n≥ 1,

• Σtheory be Σcore ∪ Σval ∪ (
⋃

n≥1{+n,S,+n,U ,−n,S,−n,U ,×n,S,×n,U ,/n,S,/n,U ,%n,S,%n,U ,&n, |n,�n,
�n: bitvecn×bitvecn⇒ bitvecn})∪{◦m,n | m,n≥ 1}∪{∼n| n≥ 1}∪{=n,>n,S,>n,U ,≥n,S,≥n,U |
n≥ 1},

• Valbitvecn = BVn for n≥ 1, and

• the interpretations I and J follow the usual semantics.

Note that we use a (in sans-serif font) as the function symbol for a ∈ BVn (in math font). We omit sizes
from operator symbols, abbreviating, e.g., +32,S to +S.

Let Σ = Σterm∪Σtheory, where Σterm = { pow : bitvec4× bitvec4⇒ bitvec4 }. Then both bitvec4 and
bool are theory sorts. Examples of theory terms are #b0000 = #b0000+ #b0001 and x+U #b0011 ≥U

y+U #b0101 which are constraints. Term #b0101+S #b1000 is also a (ground) theory term, but not a
constraint. Term pow(#b0010,y) is not a theory term.

A constrained rewrite rule is a triple `→ r [ϕ ] such that ` and r are terms of the same basic sort,
ϕ is a constraint, and ` has the form f (`1, . . . , `n) and contains at least one symbol in Σterm \ Σtheory
(i.e., ` is not a theory term). If ϕ = true, then we may write `→ r. We define LVar(`→ r [ϕ ]) as
Var(ϕ)∪ (Var(r)\Var(`)). We say that a substitution γ respects `→ r [ϕ ] if γ|LVar(`→r [ϕ ]) ⊆ Σval and
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[[ϕγ ]] = >. Note that it is allowed to have Var(r) 6⊆ Var(`), but fresh variables in the right-hand side
may only be instantiated with value-constants. Given a set R of constrained rewrite rules, we let Rcalc

be the set { f (x1, . . . ,xn)→ y [y = f (x1, . . . ,xn) ] | f : ι1×·· ·× ιn⇒ ι ∈ Σtheory \Σval}. We usually call the
elements of Rcalc constrained rewrite rules (or calculation rules) even though their left-hand side is a
theory term. The rewrite relation→R is a binary relation on terms, defined as follows: s[`γ]p→R s[rγ]p
if `→ r [ϕ ] ∈R∪Rcalc and γ respects `→ r [ϕ ].

Now we define a logically constrained term rewrite system (LCTRS, for short) as the abstract re-
duction system (T (Σ,V),→R) where R is a set of constrained rewrite rules. LCTRS (T (Σ,V),→R) is
simply denoted by R. An LCTRS is usually given by supplying Σ, R, and an informal description of I
and J if these are not clear from context.

Example 2.2 Consider the signature in Example 2.1. We reduce #b0011−U #b0001 to #b0010 in one
step with the calculation rule x−U y→ z [z = x−U y ], and #b0011×U(#b0010×U(#b0001×U #b0001))
to #b0110 in three steps. To implement an LCTRS calculating the power function over BV4 with the
binary-encoding interpretation, we use the signature Σ in Example 2.1 and the following LCTRSR1:

R1 = { pow(x,y)→ #b0001 [#b0000= y ] pow(x,y)→ x×U pow(x,y−U #b0001) [y≥U #b0001 ] }

where pow : bitvec4× bitvec4 ⇒ bitvec4. Using the rules in R1, pow(#b0010,#b0011) reduces in ten
steps to #b1000:

pow(#b0010,#b0011)→R1 #b0010×U pow(#b0010,#b0011−U #b0010)
→R1 #b0010×U pow(#b0010, #b0010 )→R1 · · · →R1 #b1000

Hereafter, for readability, bit vectors are written as (signed) decimal numbers; the number of digits
of a bit vector with decimal notation can be inferred from its basic sort. For example, 4-digit bit vector
#b0011 is simply denoted by 3, and from the sort of pow in Example 2.2, we can know that 2 and 3 in
pow(2,3) stand for #b0010 and #b0011, respectively.

3 Modeling Concurrent Programs by LCTRSs

In this section, we show how to model concurrent programs by LCTRSs. Note that programs in this
paper follow the usual syntax and semantics of C, and the size of int is assumed to be 32 bits.

As described in Section 1, to represent configurations of sequential programs, previous work intro-
duces a function symbol env for the environment of execution [4]; the function symbol takes both a state
of an executed function and values stored in global variables as its arguments. To model concurrent
programs by LCTRSs, we also use this function symbol to represent configurations. Since this paper
assumes that the number of processes is fixed,we increase arguments of env in order for env to include
the states of the processes that are executed simultaneously, along with values stored in global variables.3

Let us consider the following program such that func1 and func2 assign 1 and 2, respectively, to
global variable x:

3In the case where the number of processes is not fixed (e.g., changed dynamically), we may introduce constructors to
represent (multi-)sets (e.g., a binary associative and commutative (AC) symbol | and a constant empty for the empty process)
and replace the argument for a state by that for a set of states.
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1 int x = 0;
2
3 void func1() {
4 x = 1;
5 return;
6 }

7
8 void func2() {
9 x = 2;

10 return;
11 }

We first consider the case where func1 and func2 are sequentially executed by a process, i.e., a
main function defined as

12 int main(){
13 func1();
14 func2();
15 return 0;
16 }

In previous work, the environment of the sequential execution is represented as env(vx,st) where env
has sort bitvec32× result→ env. The first argument vx of env is a value stored in global variable x, and
the second argument st of env is a term representing a state of an executed function. We transform the
program with sequential execution of func1 and func2 into the following rewrite rules:

R2 =



env(x,main14( func1 ))→ env(1,main14( func15 ))
env(x,main14( func15 ))→ env( x,main14( return ))

env(x,main15( func2 ))→ env(2,main15(func210))
env(x,main15(func210))→ env( x,main15( return ))

env(x, main )→ env( x,main14( func1 ))
env(x,main14( return ))→ env( x,main15( func2 ))
env(x,main15( return ))→ env( x, return )


where main, func1, func15, return, func2, and func210 are constants with basic sort result, and main14
and main15 are function symbols with sort result⇒ result. Note that func1i (func2 j) correspond to the
state that the program counter lies between lines i−1 and i (lines j−1 and j). The initial configuration
is represented as env(0, func1), and the sequential execution of func1 and func2 corresponds to the
rewrite sequence starting from env(0, func1).

We now illustrate how to adapt the idea above to concurrent programs by means of the program
above. Note that this approach can be adapted to parallel computation. We assume that there are two
processes: the first one executes func1 and the other executes func2 concurrently. For the sake of
simplicity, we consider such an informal concurrent semantics because the concrete one is not so relevant
to the adaptation of the approach in previous work to concurrent programs. In addition, for any process,
we do not consider its main function. The environment is represented as follows:

env(vx,st1,st2)

where env has sort bitvec32× result× result→ env. The first argument vx of env is a value stored in
global variable x as in the sequential case. The second and third arguments st1,st2 of env are terms
representing states of functions that the first and second process execute, respectively. We transform the
program with concurrent execution into the following rewrite rules:

R3 =

{
env(x, func1, st2)→ env(1, func15,st2) env(x,st1, func2 )→ env(2,st1, func210)
env(x, func15,st2)→ env(x, return, st2) env(x,st1, func210)→ env(x, st1, return )

}
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The initial configuration is represented as env(0, func1, func2), and concurrent executions of func1 and
func2 correspond to rewrite sequences starting from env(0, func1, func2). Unlike the sequential case,
we have four normalizing reductions starting from env(0, func1, func2), e.g.,

env(0, func1, func2)→R3 env(1, func15, func2 )→R3 env(1, return, func2 )
→R3 env(2, return, func210)→R3 env(2, return, return)

env(0, func1, func2)→R3 env(2, func1, func210)→R3 env(2, func1, return)
→R3 env(1, func15, return )→R3 env(1, return, return)

The initial term env(0, func1, func2) has two different normal forms, and R3 is not confluent, while R3
is trivially terminating.

To focus on the main idea, we used simple functions that do not call any function, and thus, we do
not introduce any stack for function calls as in [4]. When considering function calls, we combine the
approaches in this section and [4] by replacing the second and third arguments of env by a stack.

4 Modeling Operations of Semaphores by LCTRSs

In this section, we illustrate how to model by LCTRSs concurrent programs with exclusive control op-
erated by means of semaphores. A semaphore is a variable to specify the availability of a corresponding
shared resource. Note that the range of semaphores are non-negative integers from 0 to some u—u = 1
for binary semaphores, and u > 1 for counting ones. This paper deals with the operations down and up

of a semaphore s for a shared resource src, which are defined as follows [11]:

• Operation down is executed as down(&s) before accessing src: If the value of s is not 0, then it is
decreased by 1; otherwise, the process executing down goes into the wait state, queuing up for s.

• Operation up is executed as up(&s) in releasing the access to src: If at least one process waits for
s, then the value of s is kept as it is and the process that is at the top of the waiting queue goes into
the executable state;4 otherwise, the value of s is increased by 1.

• down and up are atomic operations—when an atomic operation a is executed, any other operations
(processes) cannot interrupt until the execution of a finishes.

Note that the above specification can perform for both binary and counting semaphores by switching
binary and counting semaphores by means of the initial value of s.

In the case where there are exactly two processes, the waiting queue of a semaphore contains at
most one process. Therefore, we do not have to take into account any queue for semaphores—if a
process executes operation up and the queue is not empty, then the waiting process is the other one only.
However, when there are three or more processes, we need to handle a queue.

To represent the waiting queue of a semaphore, we adopt a so-called turn waiting system with number
tickets, which is usually seen at banks, post office, etc. We consider a turn waiting system with the
following usual mechanism:

• Numbers written in tickets are positive integers—0 is used to indicate that a process is not waiting.

• There is a display board to call a number written in a ticket, the owner of which can get service.

• There is a ticket machine for turn waiting—when the machine issues a ticket, it prepares the next
number ticket for an upcoming process.

4The process going into the executable state acquires the semaphore s and starts to access the shared resource.
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• If a process has to wait for the semaphore, it gets a number ticket from the ticket machine.

• A process having a number ticket waits until the number in the ticket is called by the display board.

Let us consider a program with a shared int resource src, a semaphore s for src, and m processes.
Then, the environment can be represented as follows:

env(sem(vs,vd ,vt),vsrc,p(st1,n1), . . . ,p(stm,nm))

where

• env has sort semaphore×bitvec32×
m︷ ︸︸ ︷

process×·· ·×process→ env,

• p has sort result×bitveck→ process,

• sem has sort bitvec32×bitveck×bitveck⇒ semaphore, and

• k = blog(m−1)c+2.

The first argument (sem(vs,vd ,vt) above) of env is a term for semaphore s. Term sem(vs,vd ,vt) is
rooted by a function symbol sem for semaphores, which takes three arguments: The first argument (vs
above) stores a value of s, taking a non-negative integer; the second and third arguments perform as a
display board and a ticket machine, respectively, for s; stored values (vd ,vt above) are currently-called
and next-issued numbers, respectively. The sort of the first argument of sem is bitvec32 because the sort
of s in the program is int.5

The second argument (vsrc above) of env stores a value of src. The state of the i-th process is stored in
the “i+2”-th argument (p(sti,ni) above) of env: sti is the state of an executed function of the i-th process,
and ni is a number ticket that the i-th process owns; ni is 0 if and only if the process is not waiting for s.

In the case where there are several semaphores, for each semaphore, we prepare a display board and
a ticket machine, increasing arguments of env and p in order for env and p to have turn ticket systems
and number tickets, respectively, for all semaphores.

Since the number of processes is assumed to be fixed (e.g., m above), the number of waiting processes
for each semaphore is not over the total number of processes, i.e., at most m− 1. For this reason, we
prepare minimum necessary tickets: We reuse them if the next number prepared by the ticket machine is
over the number of processes.6 If number tickets are scaled in k bits (i.e., 2k−1 tickets are prepared7) and
the counter for the ticket machine is increased by 1 in issuing tickets, then the number following 2k−1
is 0. However, since 0 is used to indicate that a process does not have a ticket (i.e., the process does not
wait for the semaphore), we cannot use 0 for any number ticket. Therefore, we use only odd numbers
for tickets, initializing a display board and a ticket machine with odd numbers 1 and 3, respectively, and
increasing values of the display board and the ticket machine by 2. Viewed in this light, we define k as
blog(m−1)c+2.

The initial configuration is represented as env(sem(v′s,1,3),v
′
src,p(st′1,0), . . . ,p(st′m,0)) where v′s and

v′src are the initial values of s and src, respectively, and st′i is the initial state of the i-th process. Note
that if s is a binary semaphore, then v′s = 1, and otherwise, vs is a positive integer greater than 1, which
follows the specification of s.

In the following, for the page limitation, we restrict s to a binary semaphore. The approach below
can be adapted to counting semaphores by modifying some rules.

5When s is a binary semaphore, we may give sort bitvec1 to the first argument of sem.
6The semantics of +U can reset counters because +n,U is defined as follows: for a,b,c ∈ BVn, a+n,U b = c iff 〈c〉U =

〈a〉U + 〈b〉U mod 2n, where given a bit vector d, 〈d〉U is the corresponding decimal number of d w.r.t. binary encoding.
7Recall that 0 is not used for tickets.
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Taking the above turn waiting system for semaphores into account, we represent operations down
and up by the following rewrite rules:

(R1) env(sem(s,d, t),src, . . . ,p(st1,0), . . .)→ env(sem(s−U 1, d, t ),src, . . . ,p(st2,0), . . .) [s 6= 0 ]

(R2) env(sem(s,d, t),src, . . . ,p(st1,n), . . .)→ env(sem( s, d, t +U 2),src, . . . ,p(st1,t ), . . .) [s = 0∧n = 0 ]

(R3) env(sem(s,d, t),src, . . . ,p(st1,n), . . .)→ env(sem( s, d, t ),src, . . . ,p(st2,0), . . .) [n = d∧n 6= 0 ]

(R4) env(sem(s,d, t),src, . . . ,p(st3,0), . . .)→ env(sem( s, d +U 2, t ),src, . . . ,p(st4,0), . . .) [ t 6= d +U 2 ]

(R5) env(sem(s,d, t),src, . . . ,p(st3,0), . . .)→ env(sem(s+U 1, d, t ),src, . . . ,p(st4,0), . . .) [ t = d +U 2 ]

where src,d, t, are variables for a resource, a display board, a ticket machine, and a number ticket, respec-
tively, but st1,st2,st3,st4 are not: st1,st3 are terms representing the state of the executed function, which
calls down and up, respectively, and st3,st4 are terms representing the next state of st1,st3, respectively. In
a concrete example, st1, . . . ,st4 are terms rooted by function symbols that represent intermediate states of
execution (see Example 4.1). Notation “. . . ,p(st, j), . . .” stands for “p1, . . . , pi−1,p(st, j), pi+1, . . . , pm”,
where p1, . . . , pm are distinct variables with basic sort process. That is to say, each of rules (R1)–(R5)
may consist of (at most) m rules.

For states st1,st3 of the i-th process operating down or up, respectively, rules (R1) and (R2) represent
operations of down, and (R3)–(R5) represent operations of up. The operation that each rule represents is
as follows:

(R1) If the process requires semaphore s and the value of s is not 0 (i.e., the first argument of env is not
1), then it is decreased by 1 (i.e., the process acquires the semaphore) and the state of the function
executed in the process moves to the next state st2.

(R2) If the process requires semaphore s but the value of s is 0 (i.e., the first argument of env is 0), then
the process acquires a number ticket t, the ticket machine—the third argument of sem—prepares
the next number ticket “t +U 2” for an upcoming process, and thus the process goes into the wait
state represented as p(st1, t) with t 6= 0.

(R3) If the number n that the process has matches the calling number d on the display board, then the
process goes into the executable state, i.e., the state st1 moves to the next state st3 representing a
state that acquires semaphore s.

(R4) If there is a process waiting for semaphore s (i.e., the constraint d = t +U 2 does not hold), then
the value of s is kept as it is and the next waiting process is called (i.e., the value of d is increased
by 2) and the state st3 moves to the next state st4.

(R5) If there is no process waiting for semaphore s (i.e., the constraint d = t +U 2 holds), then the value
of s is increased by 1 and the state st3 moves to the next state st4.

For (R1), (R4), and (R5), we do not have to restrict the second argument of p to 0 such as p(sti,0)
(i ∈ {1,3}) and p(sti+1,0), i.e., p(sti,n) and p(sti+1,n) with n a variable is enough. However, when
applying (R1), (R4), and (R5) to terms that are reached from the term for the initial configuration, the
value of the second argument of p is always 0. To exclude any improbable case, we restrict n to 0.
Since down and up are atomic operations, each of their actions is not represented by several rules that
are sequentially applied, but by a single rule.

If constraint d 6= t +U 2 of (R4) holds, then there is a process waiting for semaphore s; otherwise
(i.e., d = t +U 2 of (R5) holds), no process is waiting for acquiring s. This is because the ticket t is not
issued yet and the number ticket lastly issued is being called by the display board d. For example, if
the display board shows 11 and the ticket for an upcoming process is 13, then all waiting processes are
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called, acquiring the semaphore. By checking whether t = d +U 2 holds, we can decide whether there is
a waiting process or not. In this approach, it is not necessary to refer to the states any other processes,
and thus a rewrite rule represents an action of a single process. Moreover, since each process has the
value corresponding to a non-duplicated number ticket, we can represent the order of the waiting queue
without using lists.

One may think that an action of up is not represented by a single rule, because the action with a
waiting process corresponds to (R3) and (R4). Though, after the application of (R4), the waiting process
gets ready for being the executable state. Thus, rule (R4) performs the action of up.

Example 4.1 Consider the following reader/writer program with a binary semaphore:

1 int s = 1; /* semaphore for x */
2 int x = 0;
3
4 void rdr(void) {
5 int y = 0;
6 down(&s);
7 y = x;
8 up(&s);
9 return;

10 }
11
12 void wrtr(void) {
13 down(&s);
14 x = 1;
15 up(&s);
16 return;
17 }

For the sake of simplicity, we assume that there are three processes, the first and second ones exe-
cute reader and the third executes writer. Following both a simplified version of the transformation
in [4] and the idea illustrated in this section, the program is transformed into an LCTRS Rsmphr shown
in Figure 1, where env : semaphore× bitvec32× process× process× process⇒ env, sem : bitvec32×
bitvec3×bitvec3⇒ semaphore, p : result×bitvec3⇒ process, rdr, return,wrtr,wrtr13,wrtr15 : process,
and rdr6, rdr7, rdr8 : bitvec32 ⇒ process. The initial configuration is represented as env(sem(1,1,3),0,
p(rdr,0),p(rdr,0),p(wrtr,0)). The reduction illustrated in Figure 2 corresponds to an execution that the
first process acquires s and the third and second wait in order.

5 Conclusion

In this paper, assuming that the number of processes is fixed, we showed how to represent exclusive con-
trol, which is not handled in sequential programs, by LCTRSs, and transformed a concurrent programs
with a binary semaphore into an LCTRS. Our approach for semaphores does not depend on the setting of
LCTRSs, and thus, the approach would work for other computation models that have built-in bit vectors
or integers. For the page limitation, we did not show the case of counting semaphores. We have to show
how to adapt the approach to binary semaphores to counting ones.

We have to evaluate our approach by means of experiments on e.g., equivalence verification. Since
our approach does not depend on the setting of LCTRSs, we will show the usefulness of the approach
with LCTRSs by means of such an empirical evaluation.

The approach in this paper can be adapted to mutex. We will formalize the adaptations to mutex as
future work. Another future work is to prove correctness of the transformation. We are also interested
in the adaptation to the interrupt operation for waiting queues. Furthermore, we would like to evaluate
the usefulness of the transformed LCTRSs by e.g., verifying that the exclusive control in programs is
implemented correctly.
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env(sem(s,d, t),x,p( rdr, 0), p2, p3)→ env(sem( s, d, t ),x,p(rdr6(0),0), p2, p3)
env(sem(s,d, t),x,p(rdr6(y),0), p2, p3)→ env(sem(s−U 1, d, t ),x,p(rdr7(y),0), p2, p3) [s 6= 0 ]
env(sem(s,d, t),x,p(rdr6(y),n), p2, p3)→ env(sem( s, d, t +U 2),x,p(rdr6(y), t), p2, p3) [s = 0∧n = 0 ]
env(sem(s,d, t),x,p(rdr6(y),n), p2, p3)→ env(sem( s, d, t ),x,p(rdr7(y),0), p2, p3) [n = d∧n 6= 0 ]
env(sem(s,d, t),x,p(rdr7(y),0), p2, p3)→ env(sem( s, d, t ),x,p(rdr8(x),0), p2, p3)
env(sem(s,d, t),x,p(rdr8(y),0), p2, p3)→ env(sem( s, d +U 2, t ),x,p( return, 0), p2, p3) [ t 6= d +U 2 ]
env(sem(s,d, t),x,p(rdr8(y),0), p2, p3)→ env(sem(s+U 1, d, t ),x,p( return, 0), p2, p3) [ t = d +U 2 ]


∪

{
env(sem(s,d, t),x, p1,p( rdr, 0), p2)→ env(sem( s, d, t),x, p1,p(rdr6(0),0), p2)

. . .
env(sem(s,d, t),x, p1,p(rdr8(y),0), p2)→ env(sem(s+U 1,d, t),x, p1,p( return, 0), p2) [ t = d +U 2 ]

}

∪



env(sem(s,d, t),x, p1, p2,p( wrtr, 0))→ env(sem(s−U 1, d, t ),x, p1, p2,p(wrtr13,0)) [s 6= 0 ]
env(sem(s,d, t),x, p1, p2,p( wrtr, n))→ env(sem( s, d, t +U 2),x, p1, p2,p( wrtr, t)) [s = 0∧n = 0 ]
env(sem(s,d, t),x, p1, p2,p( wrtr, n))→ env(sem( s, d, t ),x, p1, p2,p(wrtr13,0)) [n = d∧n 6= 0 ]
env(sem(s,d, t),x, p1, p2,p(wrtr13,0))→ env(sem( s, d, t ),1, p1, p2,p(wrtr15,0))
env(sem(s,d, t),x, p1, p2,p(wrtr15,0))→ env(sem( s, d +U 2, t ),x, p1, p2,p(return,0)) [ t 6= d +U 2 ]
env(sem(s,d, t),x, p1, p2,p(wrtr15,0))→ env(sem(s+U 1, d, t ),x, p1, p2,p(return,0)) [ t = d +U 2 ]


Figure 1: an LCTRSR4 for the reader/writer program

env(sem( 1, 1, 3 ),0,p( rdr, 0),p( rdr, 0),p( wrtr, 0))
→R4 env(sem( 1, 1, 3 ),0,p( rdr6(0),0),p( rdr, 0),p( wrtr, 0))
→R4 env(sem( 1, 1, 3 ),0,p( rdr6(0),0),p( rdr6(0),0),p( wrtr, 0))
→R4 env(sem(1−U 1, 1, 3 ),0,p( rdr7(0),0),p( rdr6(0),0),p( wrtr, 0))
→R4 env(sem( 0, 1, 3 ),0,p( rdr7(0),0),p( rdr6(0),0),p( wrtr, 0))
→R4 env(sem( 0, 1, 3+U 2),0,p( rdr7(0),0),p( rdr6(0),0),p( wrtr, 3))
→R4 env(sem( 0, 1, 5 ),0,p( rdr7(0),0),p( rdr6(0),0),p( wrtr, 3))
→R4 env(sem( 0, 1, 5 ),0,p( rdr8(0),0),p( rdr6(0),0),p( wrtr, 3))
→R4 env(sem( 0, 1, 5+U 2),0,p( rdr8(0),0),p( rdr6(0),5),p( wrtr, 3))
→R4 env(sem( 0, 1, 7 ),0,p( rdr8(0),0),p( rdr6(0),5),p( wrtr, 3))
→R4 env(sem( 0, 1+U 2, 7 ),0,p( return, 0),p( rdr6(0),5),p( wrtr, 3))
→R4 env(sem( 0, 3, 7 ),0,p( return, 0),p( rdr6(0),5),p( wrtr, 3))
→R4 env(sem( 0, 3, 7 ),0,p( return, 0),p( rdr6(0),5),p(wrtr13,0))
→R4 env(sem( 0, 3, 7 ),1,p( return, 0),p( rdr6(0),5),p(wrtr15,0))
→R4 env(sem( 0, 3+U 2, 7 ),1,p( return, 0),p( rdr6(0),5),p( return,0))
→R4 env(sem( 0, 5, 7 ),1,p( return, 0),p( rdr6(0),5),p( return,0))
→R4 env(sem( 0, 5, 7 ),1,p( return, 0),p( rdr7(0),0),p( return,0))
→R4 env(sem( 0, 5, 7 ),1,p( return, 0),p( rdr8(1),0),p( return,0))
→R4 env(sem(0+U 1, 5, 7 ),1,p( return, 0),p( return, 0),p( return,0))
→R4 env(sem( 1, 5, 7 ),1,p( return, 0),p( return, 0),p( return,0))

Figure 2: a reduction ofR4
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