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1 Introduction

When an input is modified, incremental computing enables efficient computation of the output that cor-
responds to the modified input by using the output for the original input. Formally, for a computation f ,
the original input x, and the modified input x⊕dx, where dx and⊕ denote the modification and the appli-
cation of the modification, respectively, incremental computing efficiently calculates f (x⊕dx) by using
f (x). Incremental computing has many applications, including structured editors [4,9,14], database pro-
cessing [13], and developing dynamic data structures [3]. Readers who are interested in the literature can
refer to an extensive survey [21].

Among other incremental computing methods, incrementalizing lambda calculus (ILC) [5] is a
promising approach. Given function f :: A→ B, which is the subject of the incremental computing,
ILC derives its derivative, ∂ f :: (A,∆A)→ ∆B, where ∆A and ∆B denote types of modifications on A
and B, The derivative is characterized by the following equation, in which (⊕A) :: (A×∆A)→ A and
(⊕B) :: (B×∆B)→ B denote application of modifications, respectively. .

f (x⊕A dx) = f (x)⊕B ∂ f (x,dx) (1)

That is, incremental computing is achieved by modifying the previous output, f (x), by the result of the
derivative, ∂ f (x,dx).

ILC has two good characteristics. First, the approach is purely based on program transformations
and requires nothing on the side of the interpreter, compiler, and runtime system. Therefore, it can be
immediately combined with other optimization methods. Second, the approach is applicable to expres-
sions in the simply-typed lambda calculus, if each of its primitive functions has its derivative; hence, it
is potentially applicable to complex and realistic programs.

Giarrusso et al. [11] proposed an improvement of ILC. Their method can deal with the fixed-point
operator, which was the missing piece of applying ILC to realistic programs, and combines ILC with the
cache-transfer transformation [18] that remembers the values calculated in the original computation. As
Equation (1) indicates, the derivative should calculate the modification of the output without using any
information from the computation of f (x), except the final output. Thus, the derivative may recompute
most of the computation of f (x). The cache-transfer transformation enables us to reuse the intermediate
results of f (x) and thereby removes a major source of inefficiency.

Unfortunately, the method by Giarrusso et al. is rather complicated and difficult to apply to programs
written in realistic languages. In particular, it requires input programs to be preprocessed by using A’-
normalization and lambda lifting. Furthermore, their method is not applicable to typed languages because
it introduces arbitrary recursively nested tuples of cached values.
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This paper aims to make ILC practical by adopting a semantic approach. It reformulates ILC in
terms of parametricity of polymorphic types [22,24] (Section 3.2). This reformulation relieves ILC from
a particular source language: the correctness of the incremental program can be proved solely from a
certain polymorphic type of the function that is the subject of incremental computing; incrementaliza-
tion can be achieved by simply supplying the polymorphic function with some operators, which can be
systematically obtained from their derivatives. The approach enables not only the original ILC but also
an improvement based on caches (Section 3.3). It is ready to apply to realistic typed functional programs.
Its potential is demonstrated by applications to Haskell programs (Section 2).

2 Incrementalizing Lambda Calculus at Work

2.1 Incrementalizing Lambda Calculus

First, we consider the following simple program. We use Haskell to describe programs, except that all
binary operators are uncurried.

sqInc :: R→ R
sqInc x = (x+1)× (x+1)

ILC [5, 11] is based on derivatives that calculate modifications on the output from modifications on
inputs. We consider simple modifications by increasing or decreasing.

type ∆R= R
(⊕) :: (R,∆R)→ R
x⊕dx = x+dx

∆R is the type for modifications of numbers, and ⊕ denotes an application of a modification.
ILC assumes that every primitive operation has its derivative that propagates modifications on inputs

to those on outputs. The following shows the derivatives.

(∂+) :: ((R,R),(∆R,∆R))→ ∆R
(∂+) ((x,y),(dx,dy)) = dy+dx

(∂×) :: ((R,R),(∆R,∆R))→ ∆R
(∂×) ((x,y),(dx,dy)) = x×dy+dx× y+dx×dy

∂const :: R→ ∆R
∂const x = 0

The derivative of +, namely ∂+, simply propagates modifications. The derivative of×, namely ∂×, mul-
tiplies the modification values by the original inputs. Constants are also regarded as primitive operations
and are captured by const x = x. Accordingly, x+1 is regarded as x+const 1. Because constants cannot
be modified, the derivative of const returns the “zero” modification.

The original ILC by Cai et al. [5] provided a syntactic transformation to obtain a derivative of a
program whose primitive operators have the derivatives. The method results in the following ∂ sqInc
from sqInc.

∂ sqInc :: (R,∆R)→ ∆R
∂ sqInc (x,dx) = (∂×) ((x+1,x+1),((∂+) ((x,1),(dx,∂const 1)),(∂+) ((x,1),(dx,∂const 1))))

The function, ∂ sqInc, can be simplified as follows.
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∂ sqInc (x,dx) = { definitions of ∂+ and ∂const }
(∂×) ((x+1,x+1),(dx,dx))

= { definition of ∂× }
2× (x+1)×dx+dx×dx

It is not difficult to see that ∂ sqInc is in fact a derivative of sqInc.

2.2 Short Cut to Incremental Numeric Computation

Instead of the syntactic transformation, our proposal uses a template obtained by abstracting all occur-
rences of the primitive operations.

sqIncT :: ∀α. ((α,α)→ α)→ ((α,α)→ α)→ (R→ α)→ α → α

sqIncT (+) (×) const x = (x+ const 1)× (x+ const 1)
The template, sqIncT, has a polymorphic type, in which every occurrence of the type of modifiable val-
ues (R, in this example) is abstracted1. Then, the corresponding derivative is obtained by supplying the
following derivative-associated operators to the template. Each derivative-associated operator simulta-
neously applies both the original primitive operation and its derivative.

type DAR = (R,∆R)
(+da) :: (DAR,DAR)→ DAR
(x,dx)+da (y,dy) = (x+ y,(∂+) ((x,y),(dx,dy)))

(×da) :: (DAR,DAR)→ DAR
(x,dx)×da (y,dy) = (x× y,(∂×) ((x,y),(dx,dy)))

constda :: R→ DAR
constda x = (const x,∂const x)

Now define ∂ sqInc as follows.
∂ sqInc :: DAR→ ∆R
∂ sqInc (x,dx) = let (y,dy) = sqIncT (+da) (×da) constda (x,dx) in dy

It is not difficult to see that the function, ∂ sqInc, is equivalent to the one obtained in Section 2.1.
One may consider ∂ sqInc unsatisfactory. ∂ sqInc contains the computation of sqInc; therefore, the

incremental version is very similar to the naive recomputation of sqInc. This problem is essential in
ILC. For each primitive operator, its derivative requires the original input passed to the operator; hence,
recomputation is necessary. Giarrusso et al. [11] solved this problem by another transformation that
derives programs for caching the calculated results.

Our approach solves this problem by borrowing an idea from the partial evaluation [16,23]. Consider
f :: A→ ∆A and its derivative ∂ f :: (A,∆A)→ ∆. The type of a derivative, (A,∆A)→ ∆B, is isomorphic
to A→ ∆A→ ∆B. Therefore, by supplying the original input (of type A), we can get the function (of type
∆A→ ∆B) that translates a modification on the input to the corresponding one on the output. Formally,
we would like to derive f cda :: A→ (A,∆A→ ∆B) satisfying the following equation.

f cda x = ( f x,λdx→ ∂ f (x,dx))
When we hope to know f x, we can instead use f cda x; moreover, as a “side effect”, f cda x additionally
yields a function that enables us to update the output of f x.

Unfortunately, the above definition of f cda cannot avoid recomputation because both f and ∂ f tra-
verse over x. We remove the multiple traversals by supplying the template with different operators, called
caching derivative-associated operators.

The following is the caching derivative-associated module for sqInc.
1The input of const cannot be modified and thus is not abstracted.
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type CDA∆R,R = (R,∆R→ ∆R)
(+cda) :: (CDA∆R,R,CDA∆R,R)→ CDA∆R,R
(x, fx)+

da (y, fy) = (x+ y,λda→ (∂+) ((x,y),( fx da, fy da)))

(×cda) :: (CDA∆R,R,CDA∆R,R)→ CDA∆R,R
(x, fx)×da (y, fy) = (x× y,λda→ (∂×) ((x,y),( fx da, fy da)))

constcda :: R→ CDA∆R,R
constcda x = (const x,λda→ ∂const x)

The caching derivative-associated module constructs function closures that correspond to the compu-
tation of derivatives. The function closure will be invoked when the original input is modified (the
modification is expressed by da).

Now define sqInccda as follows, where id x = x is the identify function.
sqInccda :: R→ CDA∆R,R
sqInccda x = sqIncT (+cda) (×cda) constcda (x, id)

The function satisfies the following equations.
(let (y, f ) = sqInccda x in y) = sqInc x
(let (y, f ) = sqInccda x in y⊕ f dx) = sqInc (x⊕dx)

The first equation shows that sqInccda results in the same value as sqInc. The second one states that
sqInccda additionally yields a function that behaves as the derivative with avoiding recomputation of
sqInc.

The limitation of sqInccda is that it cannot deal with a series of modifications. This problem can be
solved by supplying recursively-caching operators to the template. Currently, the function part results
in the modification, ∆R; instead, the recursively-caching variant constructs a function that additionally
results in a new function (of the same type as itself) for dealing with the next modification. Because of
the space limitation, the construction is omitted.

2.3 Average for Multiset

Next, we consider the example discussed by Giarrusso et al. [11]: calculation of the average of a multiset
(i.e., bag).

average x = sum x/ length x

For simplicity of presentation, here we regard a list as a multiset. We consider reverse list concatenations2

as modifications. We regard sum, length, and (/) as primitives. The following shows their derivatives.
type Bag = [R]
type ∆Bag = Bag
(⊕) :: (Bag,∆Bag)→ Bag
x⊕dx = dx++ x

∂ sum :: (Bag,∆Bag)→ ∆R
∂ sum (x,dx) = sum dx

∂ length :: (Bag,∆Bag)→ ∆R
∂ length (x,dx) = length dx

(∂/) :: ((R,R),(∆R,∆R))→ ∆R
(∂/) ((x,y),(dx,dy)) = (x+dx)/ (y+dy)− x/ y

2Reverse concatenation is faster than usual concatenation for small modifications.
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Table 1: Elapsed times for two implementations of average computing (in seconds).
#modifications 1,000 2,000 5,000 10,000 100,000 1,000,000 10,000,000

average 0.20 1.14 6.78 26.89 N/A N/A N/A
averagecda 0.00 0.00 0.00 0.02 0.06 0.53 7.54

The original ILC cannot derive efficient incremental computing program for this example. Because
(∂/) uses the original inputs, which are the results of sum x and length x, the derivative of average
requires recomputation of sum and length. To avoid this inefficiency, we derive averagecda, which is the
cashing incremental version of average.

First, we prepare a template for average.

averageT :: ∀α,β . (α → β )→ (α → β )→ ((β ,β )→ β )→ α → β

averageT sum length (/) x = sum x/ length x

Note that the polymorphic type correctly captures types of modifiable values, R and Bag.
Second, we derive caching derivative-associated versions of the primitive operators.

type CDA∆Bag,Bag = (Bag,∆Bag→ ∆Bag)
type CDA∆Bag,R = (R,∆Bag→ ∆R)
sumcda :: CDA∆Bag,Bag→ CDA∆Bag,R
sumcda (x, fx) = (sum x,λda→ ∂ sum (x, fx da))

lengthcda :: CDA∆Bag,Bag→ CDA∆Bag,R
lengthcda (x, fx) = (length x,λda→ ∂ length (x, fx da))

(/cda) :: (CDA∆Bag,R,CDA∆Bag,R)→ CDA∆Bag,R
(x, fx)/

cda (y, fy) = (x/ y,λda→ (∂/) ((x,y),( fx da, fy da)))

Finally, we obtain the incremental program by supplying these operators to the template.

averagecda :: Bag→ CDA∆Bag,R
averagecda x = averageT sumcda lengthcda (/cda) (x, id)

To evaluate the effectiveness of the proposed approach, average and averagecda were compared3.
The initial input was a list of 104 double-precision numbers. Each modification concatenated a list of
100 double-precision numbers. For each modification, the new average was calculated. The environment
of the experiment consisted of Intel Core i7-7600U CPU (2.80 GHz), 16 GB memory, GHC 8.0.2, and
Ubuntu 18.04 on Windows Subsystem Linux. The optimization flag was -O2. Elapsed times (including
the time for input generation) were measured by using the runtime option -s. Table 1 summarizes the
results of the experiment. averagecda was significantly faster. While average needs time quadratic to the
number of modifications, averagecda takes roughly constant time for each modification.

3 Background Theory

This section formulates the incremental computing method presented in the previous section.

3Actually, the recursively-caching variant discussed in Section 2.2 is used.
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3.1 Modification, Functor, and Module

Given a type A, ∆A denotes the type of its modifications. (⊕A) :: (A×∆A)→ A applies a modification to
a value. Subscripts may be omitted if they are apparent from their context. For function f :: A→ B, its
derivative is a function ∂ f :: (A,∆A)→ ∆B that satisfies the following equality.

f (x⊕A dx) = f x⊕B ∂ f (x,dx)

To capture the variation of function definitions, such as multi-input and multi-output functions, we
borrow the notion of functors from the category theory. Functors are similar to type constructors. For
functor F and type A, FA is a type that contains A inside the “structure” of F. Functors can be applied to
functions as well: for functor F and function f :: A→ B, the function F f :: FA→ FB applies f to every
“occurrence” of A in FA. Each functor F should satisfy FidA = idFA, where idT is the identity function for
type T , and F( f ◦g) = F f ◦Fg. Examples of functors include the identity functor, IA = A and I f a = f a,
the diagonal functor, DA = (A,A) and D f (a1,a2) = ( f a1, f a2), and a constant functor, KRA = R and
KR f a = a. In what follows, F and G are used as metavariables that range over functors.

We impose two assumptions on functors. First, each functor F is associated with zipF :: (FA,FB)→
F(A,B), which pairs the corresponding elements of two operands. It should satisfy the following laws:
Ffst (zipF (a,b)) = a and Fsnd (zipF (a,b)) = b, where fst (a,b) = a and snd (a,b) = b. Note that
unzipF x = (Ffst x,Fsnd x) is the inverse of zipF. The zipF function is necessary only for aligning original
values and modifications, i.e., identifying the corresponding pair of an A value and a ∆A modification in
FA and F(∆A); therefore, it is safe to assume that zipF takes two structures of exactly the same shape.
Second, structures expressed by functors cannot be modified. In particular, we assume that ∆(FA) '
F(∆A) and (⊕FA) ◦ unzipF = F(⊕A), i.e., modifications on FA are specified by the modifications on the
A parts. For example, ∆(DA) ' D(∆A) = (∆A,∆A) and (x,y)⊕DA (dx,dy) = (x⊕A dx,y⊕A dy). These
assumptions hold for many functors including those constructed by products (tuples), coproducts (tagged
sum), constants, and arrows (functions).

We capture a set of primitive functions by a module and its signature. A module is a set of functions,
and its signature is a set of the types of functions. For example, (+), (×), and const considered in Section
2.2 forms a module ((+),(×),const), and its signature is ((R,R)→ R,(R,R)→ R,R→ R). Module
M whose signature is S is denoted by M :: S . To focus on a module that manipulates a particular type
of values, we usually express signatures by using type parameters. For example, the above-mentioned
signature may be written by S = SR, where SX = ((X ,X)→ X ,(X ,X)→ X ,R→ X). This approach
can be naturally extended to modules that deal with more than one type of values, by either considering
tagged sums of these types, or considering multi-parameter functors.

3.2 Incremental Computing without Cache

Now we reformulate the original ILC by templates and modules. A template is a polymorphic function
that takes a module as a parameter. We derive its derivative by supplying the derivative-associated
module. Correctness of this approach can be proved by parametricity [22, 24]. Parametricity helps us
to understand the relationship between two instances of a polymorphic function. Here, we derive the
relationship between two instances of the template from the relationship between two modules, namely,
the original and the derivative-associated.

Definition 1. For a module M = ( fi)i∈I :: SA = (FiA→ GiA)i∈I , its derivative-associated module is
M da = ( fi

da)i∈I :: S(DAA) where DAA = (A,∆A) and each fi
da (i ∈ I) is defined as follows:
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fi
da :: Fi(DAA)→ Gi(DAA)

fi
da x = let (x′,dx) = unzipFi

x in zipGi
( fi x′,∂ fi (x′,dx)).

Section 2.2 already introduced an instance of a derivative-associated module. For example, the defi-
nition of (+da) is obtained by instantiating Fi = D and Gi = I:

(+da) xy
= { definition above }

zipI ((+) (Dfst xy),(∂+) (unzipD xy))
= { let xy = ((x,dx),(y,dy)); definitions of zipI, Dfst and unzipD }

((+) (x,y),(∂+) ((x,y),(dx,dy))).

The following theorem derives derivatives.

Theorem 2. Let M da :: S(DAA) be the derivative-associated module of M :: SA. Then, for any poly-
morphic function g :: ∀α. Sα → Fα → Gα , the following two properties hold:

• (Gfst ◦g M da ◦ zipF) (x,dx) = g M x,

• Gsnd ◦g M da ◦ zipF is a derivative of g M .

Proof. The proof is based on parametricity [22, 24]. For the first property, it is sufficient to show Gifst ◦
fi
da = fi ◦Fifst for every fi :: FiA→ GiA ∈M , which is apparent from the definition of fi

da. The second
one can be proved by showing (⊕GA) ◦ unzipG ◦ g M da ◦ zipF = g M ◦ (⊕FA). This equation follows
from (⊕GiA)◦unzipGi

◦ fi
da = fi ◦ (⊕FiA)◦unzipFi

for every fi ∈M , which is justified as follows:

((⊕GiA)◦unzipGi
◦ fi

da) x
= { definition of fi

da and canceling unzipGi
with zipGi

}
let (x′,dx) = unzipFi

x in fi x′⊕GiA ∂ fi (x′,dx)
= { ∂ fi is the derivative of fi }

let (x′,dx) = unzipFi
x in fi (x′⊕FiA dx).

3.3 Incremental Computing with Cache

Caches can be introduced similarly, by supplying a template with a caching derivative-associated mod-
ule. However, the situation is subtly different. We need zip′F :: (FA,B→ FC)→ F(A,B→C), which is a
variant of zip′F. The function, zip′F should satisfy Ffst (zip′F (a, f )) = a and F(@b) (Fsnd (zip′F (a, f ))) =
f b, where (@b) f = f b. Such zip′F exists for functors constructed from products, coproducts, constants,
and arrows. Let CDAB,A = (A,B→ ∆A).

Definition 3. For a module M = ( fi)i∈I :: SA= (FiA→GiA)i∈I , its caching derivative-associated module
is M cda = ( fi

cda)i∈I :: ∀δ . S(CDAδ ,A) where each fi
cda (i ∈ I) is defined as follows:

fi
cda :: ∀δ . Fi(CDAδ ,A)→ Gi(CDAδ ,A)

fi
cda x = let (y,g) = unzipFi

x in zip′Gi
( fi y,λda→ ∂ fi (y,Fi(@da) g)).

Sections 2.2 and 2.3 contain instances of caching derivative-associated modules. For example, the
definition of (+cda) is obtained as follows.

(+cda) ((x, fx),(y, fy))
= { definition above, where unzipD ((x, fx),(y, fy)) = ((x,y),( fx, fy)) }

zip′I (x+ y,λda→ (∂+) ((x,y),( fx da, fy da)))
= { definition of zip′I }

(x+ y,λda→ (∂+) ((x,y),( fx da, fy da)))
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The following theorem proves the correctness of the incrementalization.

Theorem 4. Let M cda :: ∀δ . S(CDAδ ,A) be the caching derivative-associated module of M :: SA. Then,
for any polymorphic function g :: ∀α. Sα→ Fα→Gα , the following two equations hold, where gcda x=
g M cda (zipF (x,Fid)):

• Gfst (gcda x) = g M x,

• (let (r, f ) = unzipG (gcda x) in r⊕GA G(@dz) f ) = g M (x⊕FA dz).

Proof. The proof is based on parametricity [22, 24]. The first equation follows from Gifst ◦ fi
cda =

fi ◦Fifst for every fi :: FiA→ GiA ∈M , which is apparent from the definition of fi
cda. For the second

equation, we first reason about fi :: FiA→ GiA ∈M .

let (r, f ) = unzipGi
( fi

cda x) in r⊕GiA Gi(@dz) f
= { definition of fi

cda }
let (y,g) = unzipFi

x
(r, f ) = unzipGi

(zip′Gi
( fi y,λdz→ ∂ fi (y,Fi(@dz) g)))

in r⊕GiA Gi(@dz) f
= { property of zip′ and unzip }

let (y,g) = unzipFi
x in fi y⊕GiA ∂ fi (y,Fi(@dz) g)

= { property of derivative }
let (y,g) = unzipFi

x in fi (y⊕FiA Fi(@dz) g)

Now the second equation follows from parametricity.

let (r, f ) = unzipG (gcda x) in r⊕GA G(@dz) f
= { parametricity: because of the reasoning above }

g M (let (r, f ) = unzipF (zipF (x,Fid)) in r⊕FA F(@dz) f )
= { property of zip, unzip, and Fid }

g M (x⊕FA dz)

4 Discussions

This paper reformulated ILC [5, 11] by using parametricity. ILC has two major characteristics. First, it
is applicable to general higher-order functional programs. The original ILC by Cai et al. is applicable to
simply-typed lambda calculus. The one by Giarrusso et al. is applicable to a Turing-complete, higher-
order functional language. The current approach is applicable to any typed functional languages that
satisfy parametricity. Roughly speaking, any reasonably defined typed pure functional language satisfies
parametricity, except for some corner cases such as nontermination and selective strictness [15, 24].
The current approach clarified that the proof of the correctness ILC can be largely simplified if the
underlying language satisfies parametricity. Second, ILC is a pure program transformation and therefore
requires none of special interpreter, compiler, nor runtime system. This is a important characteristics
for incrementalizing programs written in practical languages. Unfortunately, the ILC by Giarrusso et
al. is not satisfactory from this perspective because it requires A’-normalization and lambda lifting as
preprocessing. The current approach only needs the templates obtained by a variant of lambda lifting and
avoids A’-normalization. Note that existing methods [8,17,26] can automate the derivation of templates.

Programs derived by Theorem 2 are essentially the same as those obtained by the ILC by Cai et al.
Programs derived by Theorem 4 are different from those obtained by the ILC by Giarrusso et al. Their
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caching method is based on recursively nested tuples, which is unavailable in typed language. Instead,
the current approach developed a function-based method for caching.

Sundaresh and Hudak [23] proposed an incrementalization method based on partial evaluation [16].
Teitelbaum et al. [18, 20] developed an incrementalization method based on caching. All of them in-
troduce program transformations applicable to general-purpose programming languages but do not use
derivatives. The current proposal combines partial evaluation and tupling [7, 12] with ILC. Tupling is
a variant of caching and enables simultaneous evaluation of multiple functions on the same input. It is
used for developing the derivative-associated and caching derivative-associated modules.

There are many other program incrementalization methods that are based on different design deci-
sion. Those that consider domain-specific programs include [4, 9, 13, 14, 19, 20, 25]. Those that require
modifications on runtime system include [1–3, 6].

The proposed approach of using derivative-associated modules instead of standard modules is similar
to the one by Elliott [10]. The objective of Elliott’s method is not incrementalization but automatic
differentiation, i.e., differentiating numeric programs as mathematics. Studying the relationship between
the proposed method and Elliott’s method may open up a new perspective on how to connect program
incrementalization and mathematical differentiation.
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