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Membrane systems are a biologically-inspired computational model based on the structure of bio-
logical cells and the way chemicals interact and traverse their membranes. Although its dynamics
is described by rules, encoding membrane systems into rewriting logic is not straightforward due to
its complex control mechanisms, and multiple alternatives have been proposed in the literature and
implemented in the Maude specification language. The recent release of the Maude strategy language
and its associated strategy-aware model checker [15] allow specifying these systems more easily, so
that they become executable and verifiable for free. An interactive environment based on a previous
prototype by Oana Andrei and Dorel Lucanu [4] is available to operate with the membranes.

1 Introduction

A membrane system or P system [14] is an unconventional distributed and parallel computational model
inspired on the structure and interactions of biological cells, proposed in 1998 by Gheorghe Păun. Its
theoretical study has led to interesting results like its Turing completeness and the ability to compute NP
problems in polynomial time, albeit at an exponential space grow, and its applications cover both biolog-
ical and non-biological fields [7]. Although simulating P systems is complex, due to its nondeterministic
and distributed nature, some simulators have been developed for research and educational purposes [7].
Verification of these systems through model checking has also been addressed [11, 1].

The connection with rewriting logic and rewriting strategies has been explored in [1, 3, 2, 4]. These
works propose different ways of implementing the membrane control mechanisms in the specification
language Maude [9] based on rewriting logic. The latter presents a prototype capable of running single
evolution steps, which was programmed in Full Maude using a primitive version of the Maude strategy
language and some metalevel strategy controllers that generate the strategies dynamically. In this paper,
we specify the membrane control using strategies generated at compile-time from the membrane speci-
fications and valid to evaluate all possible instances. The interactive prototype maintains the membrane
specification language of Andrei and Lucanu, but it is reimplemented and enhanced with new features like
loading specifications from file using the new external objects of Maude 3.0, showing the multiset of rules
applied, computing complete membrane executions, and model checking linear time properties expressed
in a builtin but extensible language of atomic propositions. Model checking is directly backed by our
model checker for systems controlled by strategies [15], which is able to consider membrane evolution
steps as the transitions of the model. The interactive prototype and the strategy-aware model checker can
be downloaded at http://maude.ucm.es/strategies.
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ported by MU grant FPU17/02319.
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𝑟1,1 ∶ 𝑎𝑎 → (𝑎𝑎𝑑, in 𝑀2) 𝑟1,2 ∶ 𝑎 → (𝑎, in 𝑀2) 𝑟1,3 ∶ tic → (tic, in 𝑀2)

𝑎𝑛 tic 𝑀1
𝑟2,1 ∶ 𝑑𝑎 → 𝑐 𝑟2,3 ∶ tic → tac 𝑟2,5 ∶ 𝑑 tac → 𝑑
𝑟2,2 ∶ 𝑐 → 𝑑 𝑟2,4 ∶ 𝑎 tac → 𝑎 tic 𝑟2,6 ∶ tac → 𝛿 𝑟2,4, 𝑟2,5 > 𝑟2,6 𝑀2

Figure 1: Venn diagram of a divisor-calculator membrane system

2 Membrane systems

A P system is a collection of cell membranes that can be seen as multisets populated by other nested
membranes, objects playing the role of chemicals, and evolution rules describing their reactions and
communication. All of them are assumed to be contained inside a single topmost skin membrane. Ob-
jects are usually opaque symbols represented by letters, and evolution rules 𝑢 → 𝑣 consist of a multiset 𝑢
of objects and a multiset 𝑣 of targets of the form (𝑤, 𝑡) where 𝑤 is multiset of objects and 𝑡 determines
whether these must stay in the membrane (ℎ𝑒𝑟𝑒), be transferred to the enclosing one (𝑜𝑢𝑡), or to a nested
one (𝑖𝑛𝑗). Moreover, a special symbol 𝛿 causes the enclosing membrane to be dissolved. An evolution step
is the nondeterministic parallel application of as many evolution rules as possible to the objects of each
membrane, often regulated by priority relations. Membrane computations are sequences of these steps
until no more are possible, and sometimes their results are interpreted as the number of objects yield in
a designated membrane. For example, the Venn diagram of Fig. 1 is a membrane system to compute
divisors of a number, read as the number of 𝑑 in the skin membrane. Many variants of P systems have
been defined including special objects as promoters and inhibitors, allowing membranes to be created or
duplicated, etc.

Membrane configurations are written like ⟨𝑀1 ∣ 𝑎𝑏𝑐 ⟨𝑀2 ∣ 𝑐 𝑑⟩⟩ where the membrane 𝑀1 contains
the objects 𝑎, 𝑏 and 𝑐 and the membrane 𝑀2, which in turn contains two objects, 𝑐 and 𝑑. More precisely,
an evolution step consists of the following phases:

1. Applying the evolution rules to each membrane in a maximal parallel manner (see below).

2. Sending and receiving the objects contained in 𝑜𝑢𝑡, 𝑖𝑛 and ℎ𝑒𝑟𝑒 targets.

3. Dissolving membranes containing 𝛿, thus dropping its objects and membranes to the enclosing
membrane.

The maximal parallel rewrite is described by a multiple choice of rules or multiset 𝐴𝑖 ∶ 𝑅𝑖 → ℕ for each
membrane 𝑀𝑖 with rules 𝑅𝑖. A multiset of objects 𝑊 can be applied a multiset of rules 𝐴 if the union
of their left-hand sides with multiplicities is contained in 𝑊 , and the result gets that union replaced by
the union of the right-hand sides in 𝐴. Such a choice 𝐴 is maximal if 𝐴 ∪ {𝑟} cannot be applied to 𝑊
for no matter which rule 𝑟. Hence, a maximal parallel rewrite is the application of a maximal multiset of
rules 𝐴𝑖 to each membrane with at least one non-empty 𝐴𝑖. The choice of each 𝐴𝑖 may not be unique,
so this phase is nondeterministic. Moreover, when a priority relation 𝜌𝑖 is imposed, not all choices are
admissible. We consider two ways of understanding the rule priorities: a strong sense, in which a choice
𝐴 is admissible if for all 𝑟 >𝜌𝑖 𝑟′, 𝐴(𝑟) > 0 implies 𝐴(𝑟′) = 0; and a weak sense, if for 𝑟 ∈ 𝑅𝑖 no 𝐵 can be
applied such that 𝐵(𝑟) > 𝐴(𝑟) and 𝐵(𝑟′) = 𝐴(𝑟′) for all 𝑟′ such that 𝑟 ≯𝜌𝑖 𝑟′. Intuitively, a rule cannot be
applied at all in the strong sense if a rule with higher priority is applicable, but it could be applied in the
weak sense as long as it does not limit the application of any higher priority one.
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3 Rewriting logic, Maude and its strategy language

Rewriting logic [13] was proposed by José Meseguer as a unified model of concurrency where nonde-
terministic and possibly conditional rewriting rules are defined on top of an equational logic. A rewrite
theory ℛ = (Σ,𝐸,𝑅) consists of a signature Σ of sorts and operators, a set of equations 𝐸, and a set
of rewriting rules 𝑅. The executions of a rewriting system are the successive and independent applica-
tion of these rules on terms, modulo equations and axioms like commutativity, associativity and identity.
Maude [9] is a specification language based on rewriting logic, where rewrite systems can be specified
compositionally, executed and analyzed. Functional modules (fmod) represent equational theories with
sort, subsort and op declarations, and equations of the form eq 𝑙 = 𝑟 .; system modules (mod) are
complete rewrite theories with the addition of rules rl 𝑙 => 𝑟 .; and now strategy modules allow spec-
ifying arbitrary constraints on how rules should be applied.

Although strategies have been used in Maude since its beginnings thanks to its reflective features, to
make strategy specification more accessible and understandable, an object-level strategy language was
proposed, tested, and finally implemented at the C++ level in Maude 3.0. Its design is inspired on other
strategy languages like ELAN [5] and Stratego [6]. The main ingredient of the language is the application
of rules 𝑟𝑙[𝑥1 ← 𝑡1, … 𝑥𝑛 ← 𝑡𝑛] referred by their labels 𝑟𝑙 and taking an optional initial substitution.
Tests match 𝑃 s.t. 𝐶 discard executions unless the subject term matches 𝑃 and satisfies the condition
𝐶 . The initial keyword can be changed to amatch to match anywhere within the term. These elements
can be combined with the concatenation 𝛼;𝛽 that executes 𝛽 on the results of 𝛼, the disjunction 𝛼|𝛽 that
permits the executions allowed by any of its arguments, the iteration 𝛼* and normalization 𝛼! operators
that iterate 𝛼 any number of times or until the last successful iteration, and the conditional 𝛼?𝛽:𝛾 that
evaluates 𝛼 and then 𝛽 on its results, but if 𝛼 does not produce any, it executes 𝛾 on the initial term. Two
constants idle and fail represent the strategy that produces the initial term as result and the strategy
that does not produce any result. Another combinator allows rewriting selected subterms matchrew 𝑃
s.t. 𝑥1 using 𝛼1, …, 𝑥𝑛 using 𝛼𝑛. The terms matched by the variables 𝑥1,…,𝑥𝑛 in the pattern
are rewritten in parallel using 𝛼1,…,𝛼𝑛 respectively, and their results are combined to produce the global
results. Moreover, strategies can be given names to be called, receive parameters, and be defined recur-
sively in strategy modules. More details can be found in [9, §10] and examples are shown in the following
sections.

Strategy language expressions do not necessarily describe a deterministic sequence of rewrites since
a rule application may have different outcomes, and various combinators like the disjunction and itera-
tion introduce nondeterministic choices. Two Maude commands srewrite and dsrewrite explore all
possible execution paths and show all the solutions they reach.

4 Representing membrane systems in Maude

Membrane systems have already been specified in rewriting logic and Maude [3, 4]. The nested membrane
structure and the multisets of objects are naturally represented by terms with commutative and associative
operators, but the challenge is applying evolution rules locally, in a maximal way, and respecting the
turns of communication and dissolving. Previous works have solved it by controlling rule application
using Maude reflective features [1], by representing evolution rules and computing the steps at the object
level [3], or even using a particular combination of reflection and a primitive version of the Maude strategy
language [4]. Our specification of membrane configurations in the following module only slightly differs
from these:
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mod P-SYSTEM-CONFIGURATION i s
i nc lud ing QID-LIST .

so r t s Obj Membrane MembraneName Target .
so r t s EmptySoup MembraneSoup ObjSoup TargetSoup Soup .

subsort Obj < ObjSoup . subsort Membrane < MembraneSoup .
subsort Target < TargetSoup .
subsorts EmptySoup < MembraneSoup ObjSoup TargetSoup < Soup .

op <_|_> : MembraneName Soup -> Membrane [ctor] .
op delta : -> Obj [ctor] .

op empty : -> EmptySoup [ctor] .
op __ : Soup Soup -> Soup [ctor assoc comm id: empty] .

A membrane consists of a name and a multiset juxtaposition of objects, membranes, and targets of sort
Soup. Each component type defines a subsort, ObjSoup, MembraneSoup, TargetSoup to ease operating
with them. Targets are expressed as pairs:

ops here out : -> Target [ctor] .
op in_ : MembraneName -> Target [ctor] .
op `(_,_`) : Soup Target -> TargetSoup [ctor] .

Objects with a common target are combined into a common pair by an equation, and three rules are defined
to resolve the communication between cells:

vars MN MN' : MembraneName .
vars W W' CW : Soup .
var T : Target .

eq (W, T) (W', T) = (W W', T) .

r l [here] : (W, here) => W .
r l [in] : (CW, in MN) < MN | W > => < MN | W CW > .
r l [out] : < MN | W (CW, out) > => < MN | W > CW .

Another rule dis triggers the effect of the 𝛿 symbol by dissolving a non-skin membrane:

r l [dis] : < MN | W < MN' | W' delta > > => < MN | W W' > .
endm

Evolution rules are represented as plain rewriting rules, leaving their controlled application to strate-
gies1. Part of the definition of these strategies is generic and part depends on the rules and priorities of
the membrane system, but not on any particular configuration. For a membrane 𝑀 with rules 𝑟1,…,𝑟𝑛
and without priorities, such a specific definition will be

sd membraneRules(𝑀) := 𝑟1 | ⋯ | 𝑟𝑛 .

A maximal parallel step is specified by the mpr strategy in the following strategy module, in terms of the
system-specific handleMembrane.

1Another possibility to limit the locality of evolution rules is adding a membrane context: the rule 𝑣 → 𝑤 for the membrane
𝑀 could also be transformed to < 𝑀 | 𝑣 S:Soup > ⇒ < 𝑀 | 𝑤 S:Soup >.
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smod P-SYSTEM-STRATEGY i s
protect ing P-SYSTEM-CONFIGURATION .

s t r a t handleMembrane : MembraneName @ Soup .
s t r a t s mpr visit-mpr communication @ Soup .
s t r a t nested-mpr : MembraneSoup @ Soup .

var MN : MembraneName . var S : ObjSoup . var TS : TargetSoup .
var MS : MembraneSoup . var K : Nat .

sd mpr := visit-mpr ; communication ; (dis !) .
sd communication := (in | out | here) ! .

sd visit-mpr :=
(matchrew < MN | S MS > by S using handleMembrane(MN))

? matchrew < MN | S TS MS > by MS using t ry (nested-mpr(MS))
: matchrew < MN | S MS > by MS using nested-mpr(MS) .

sd nested-mpr(empty) := fail .
sd nested-mpr(M MS) := (matchrew M MS by M using visit-mpr)

? matchrew M' MS by MS using t ry (nested-mpr(MS))
: matchrew M MS by MS using nested-mpr(MS) .

The three phases of an evolution step (see Section 2) are concatenated in the main strategy mpr: (1)
visit-mpr applies the evolution rules to the membranes, (2) communication transmits all targeted
objects through the membranes, and (3) dis ! dissolves them exhaustively. The visit-mpr strategy
executes the parameter handleMembrane on the objects of the topmost membrane and then delegates
the nested ones to nested-mpr. The requirement that at least an evolution rule must be applied in the
whole system is enforced by the conditionals. When no rewrite is possible the strategies must fail, but if
handleMembrane succeeds, the evolution of the nested membranes is allowed to fail by the try(𝛼) ≡
𝛼 ? idle : idle combinator. nested-mpr receives the full nested membrane soup and recursively
processes the membranes one at a time2.

The handleMembrane strategy can be accommodated to different situations, depending on the rule
priorities and their interpretation. The case without priorities or with a weak interpretation of them can
be handled by the following strategy inner-mpr:

s t r a t inner-mpr : MembraneName @ Soup .
sd inner-mpr(MN) := (matchrew S TS by S using membraneRules(MN))

? inner-mpr(MN) : amatch TS s . t . TS =/= empty .

For a membrane name MN, it calls membraneRules repeatedly until it cannot be applied again. The
matching pattern S TS separates the objects from the targets, and ensures that the products of the evolution
rules are not used in the same step. Finally, amatch TS is executed to check whether there is a target in
the term, i.e. if an evolution rule has been applied. With membraneRules being a disjunction of rules,
as above, the mpr strategy implements a maximal parallel step.

Priorities in the weak sense can also be handled by adding a lattice of or-else combinators to the
membraneRules definition. Assuming that 𝑃 ⊆ 𝑅× 𝑅 is a generator set for this priority relation, a recur-
sive procedure is able to generate a strategy respecting the priorities at each application: (1) consider the

2The definition of the nested-mpr strategy is not efficient since all possible matches of the set-like argument will be tried
at each call, hence processing the membranes in all possible orderings. This can be avoided at the expense of clarity.
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disjunction of the minimal elements in 𝑃 , (2) replace each such 𝑟 by (𝑟1 | ⋯ | 𝑟𝑛) or−else 𝑟 where
𝑟1,…,𝑟𝑛 are all rules satisfying (𝑟𝑖, 𝑟) ∈ 𝑃 , (3) iterate this procedure up to the maximal elements. To
optimize the algorithm on the fly, we can transform 𝛼 or−else 𝛽 | 𝛼 or−else 𝛾 to 𝛼 or−else (𝛽 | 𝛾).
The correctness of this procedure follows from the fact that a rule will only be applied when its predeces-
sors in the order have failed, due to the semantics of the or-else combinator, and that all rules appear
in the expression because they must be reachable from the minimal elements of the order relation. The
size of the strategy is bounded by the number of rules and the relation pairs in 𝑃 .

When the priority of the rules is understood in the strong sense, the skeleton of inner-mpr cannot
be exploited since it executes each rule independently, and respecting strong priorities requires knowing
which rules have been previously applied. However, a variation of the previous procedure can be used.
The parameter handleMembrane is defined using a new strategy strong-mpr that receives a set of labels
of rules that have already been applied:

s t r a t strong-mpr : MembraneName QidSet @ Soup .
sd handleMembrane(MN) := strong-mpr(MN, empty) .

The definition of strong-mpr(𝑀, AR) for a strategy 𝑀 whose priority is generated by 𝑃 is given
recursively as:

1. Take the disjunction of 𝛼𝑟 ≔ 𝑟 ; strong-mpr(𝑀, (𝑟, AP)) for every minimal element of 𝑃 . The
recursive call adds 𝑟 to the comma-separated set AP of applied rules.

2. Replace each term in the disjunction by

(𝛼𝑟1 | ⋯ | 𝛼𝑟𝑛) or−else
(match S s . t . {𝑟′ ∈ 𝑅𝑖 ∣ 𝑟′ >𝜌𝑖 𝑟} intersect AP = empty ; 𝛼𝑟)

where S is a variable of sort Soup, and 𝑟1, …, 𝑟𝑛 are all the elements that satisfy (𝑟𝑖, 𝑟) ∈ 𝑃 .

3. Iterate this procedure on the left-hand side of the or−else up to the maximal elements.

4. To ensure that strong-mpr fails iff no rule has been applied and that no rules are applied inside
targets, complete the generated expression, say 𝛾 , to

(matchrew S TS by S using 𝛾) or−else match S s . t . AP =/= empty

The previous construction guarantees that rules are executed only if no rule with higher precedence has
been applied.

Finally, executions to irreducible configurations are described by the following strategy comp. Note
that we omit the trivial executions in which no step has been applied.

s t r a t s mcomp mcomp2 @ Soup .
sd mcomp := mpr ; mcomp2 .
sd mcomp2 := mpr ? mcomp2 : idle .

Executions of a bounded number of steps can also be specified with definitions sd mcomp2(0) := idle .
and sd mcomp2(s(K)) := mpr ? mcomp2(K) : idle ..

Fortunately, the interactive environment in Section 6 will make unnecessary to instantiate these strate-
gies manually: membraneRules and strong-mpr are contructed equationally following the above pro-
cedures from the membrane programs read from file.
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5 Model checking

Model checking [8] is an automated verification technique based on the exhaustive exploration of the
executions of a system model to check properties of its intended behavior. Multiple variants and algorithms
exist, but traditionally the model is represented as a state and transition system. Formally, this is a Kripke
structure 𝒦 = (𝑆,→,𝐴𝑃 ,𝐼,ℓ) with a set of states 𝑆, a binary relation (→) ⊆ 𝑆 × 𝑆, a finite set of atomic
propositions 𝐴𝑃 , a finite set of initial states 𝐼 ⊆ 𝑆, and a labeling function ℓ ∶ 𝑆 → 𝒫 (𝐴𝑃 ). Properties
are expressed in terms of these labels, usually in some temporal logics providing operators to specify how
they occur in time3. Well-known examples are CTL* and its sublogics LTL (Linear Temporal Logic) and
CTL (Computational Tree Logic).

For rewriting systems, a natural model is considering terms as states and single-step rule rewrites as
transitions; and for P systems, the natural model has membrane configurations as states and evolution steps
as transitions. Mapping membrane configuration to terms is straightforward, as we have seen in Section 4,
but matching evolution steps and rewrite rules is not. Strategies and the possibility to consider them as
atomic transitions in our strategy-aware model checker is a solution to this problem.

Maude includes since its 2.0 version an on-the-fly LTL model checker [10] that we have recently ex-
tended to support systems controlled by strategies [15]. Looking at strategies as subsets 𝐸 of admitted
executions of a model 𝒦 , the satisfaction of a linear-time property (𝒦,𝐸) ⊨ 𝜑 can be understood as
𝒦,𝜋 ⊨ 𝜑 for all 𝜋 ∈ 𝐸, since linear properties refer to individual executions4. By providing a nonde-
terministic small-step semantics for the execution of strategies, whose steps correspond to rule rewrites
of the underlying terms, we determine which are the executions allowed by a Maude strategy expression.
In practice, the graph determined by the strategy semantics gives the standard Kripke structure where to
apply the standard model-checking algorithms.

Users should specify the atomic propositions as regular operators of a predefined sort Prop and its
satisfaction relation using a predefined symbol _|=_ (see [15] or [9, §12] for details). For membrane
systems, we provide a predefined set of properties, among others:

mod P-SYSTEM-PREDS i s
protect ing P-SYSTEM-CONFIGURATION .
i n c lud ing SATISFACTION . protect ing EXT-BOOL .

subsort Soup < State .

op isAlive : MembraneName -> Prop [ctor] .
op contains : MembraneName Soup -> Prop [ctor] .

op {_} : BoolExpr -> Prop [ctor] .
op _=_ : NatExpr NatExpr -> BoolExpr [ctor] .
op count : MembraneName Soup -> NatExpr [ctor] .

For example, the property { count(M1, a) = 2 * count(M2, b) } says that the number of as in M1
doubles the number of bs in M2. The satisfaction of these propositions is defined equationally in the same
module. Finally, the predefined STRATEGY-MODEL-CHECKER module declares a special modelCheck
operator that gives access to the strategy-aware model checker.

3For model checking, it is usually assumed that all executions are non-terminating, and so finite executions are stutter-
extended by repeating their final state forever, like in Spin [12] and other verification tools.

4Branching-time properties have also been studied, and CTL* and 𝜇-calculus can be checked on Maude specifications con-
trolled by strategies, including these membrane systems, via an external tool [16].
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op modelCheck : State Formula Qid QidList Bool ~> ModelCheckResult [...] .

Its arguments are the initial state, the LTL formula to be checked, and the name of a strategy in the module
to control the system, plus two other optional arguments. The fourth one is very useful in this case: a
list of named strategies whose executions must be considered as atomic steps of the verified system. Like
this, the executions of an mpr step can be automatically seen as the steps of the model, making the next
operator of the temporal logics work as expected and hiding the intermediate states in which the rules that
are supposed to be executed in parallel are being applied. Thus, issuing

red modelCheck(< M1 | a b < M2 | a > >, [] contains(M1, a), 'comp, 'mpr) .

will check the property that M1 always contain one a in all membrane executions from the given initial
one. Again, the interactive environment automatically handles this behind the scenes.

6 The membrane system environment

After downloading the membrane example from http://maude.ucm.es/strategies and loading the
memparse.maude file into Maude, we can execute the interactive environment with

Maude> erew initREPL(repl) < repl : MemREPL | none > .

** Membrane system environment in Maude **

Membrane>

The environment offers different commands that are listed by typing help. The first command is load
followed by a filename, which loads a membrane specification from a file and runs the commands in it.
load divisor.memb loads the membrane system of Fig. 1. Its membrane M2 is there expressed in the
format of [4] as follows:

membrane M2 is
ev r21 : d a -> c . ev r23 : tic -> tac . ev r25 : d tac -> d .
ev r22 : c -> d . ev r24 : a tac -> a tic . ev r26 : tac -> delta .
pr r24 > r26 . pr r25 > r26 .

end

When loading the file, the strategies described in Section 4 are generated for later use by the following
commands. The names of the loaded membranes are shown by the show membranes command, and
their complete definition can be listed with show followed by a membrane name.

Two commands, trans and compute, allow simulating evolution steps and computations. The first
one executes a single step, indicating the multiset of rules applied for each membrane.

Membrane> trans < M1 | a a a tic < M2 | d tac > > .
Solution 1 with r11 r12 r13 in M1, r25 in M2 :

< M1 | c c c < M2 | a a a d d tic > >
Solution 2 with r12 r12 r12 r13 in M1, r25 in M2 :

< M1 | c c c < M2 | a a a d tic > >
No more solutions.

The compute command shows all irreducible states that can be found by successive transitions.

compute < M1 | a a a a a a a a tic < M2 | empty > > .
Solution 1: < M1 | d d d d >

http://maude.ucm.es/strategies
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Solution 2: < M1 | < M2 | d d d > >
Solution 3: < M1 | d d >
Solution 4: < M1 | d >
No more solutions.

The interpretation of rule priorities, either weak or strong, can be set globally with the set priority
command that causes strategies to be recompiled accordingly. By default, strong priorities are used.

Moreover, we can check properties of the membrane executions by using the check command. The
properties are expressed in LTL for the predefined language of atomic propositions described in Section 5,
which can anyhow be extended by modifying the environment source code.
Membrane> check < M1 | a a a a a a a a a a a a < M2 | a b b > >

satisfies [] ({ count(M1, d) = 0 } \/ { count(M1, d) divides 12 }) .
The property is satisfied.

When the property is not satisfied, the output shows a counterexample describing the intermediate steps
and the rules that have been applied.
Membrane> check < M2 | a a d d tic >

satisfies [] (contains(M2, tac) -> O contains(M2, tic)) .
| < M2 | a a d d tic >�
with r21 r21 r23 in M2

| < M2 | c c tac >�
with r22 r22 r26 in M2

X < M2 | delta d d >

The check command admits bounded model checking on the number of objects in the configuration,
where the bound may be indicated between brackets after the check keyword. This is useful for membrane
systems that, unlike this example, have an unbounded configuration space.

7 Related work and conclusions

The transformation from membrane systems to rewrite theories controlled by strategies and the interactive
prototype are inspired by [4], but here strategies are compiled statically from membrane specifications and
evaluated in a much cleaner way using the Maude strategy language, now efficiently supported in Core
Maude. That work pointed out the difficulty to apply analysis tools like the model checker, already used
in their first work [1], to their strategy-based prototype that we have solved with the strategy-aware model
checker and its opaque strategies feature. Although the strategy-free prototype of their first work was
able to model check LTL properties, its discrete time steps do not correspond to evolution steps of the
membrane system, and so properties like the second of the previous section cannot be expressed, and coun-
terexamples are much longer and difficult to understand. Moreover, our prototype seems to be more effi-
cient: the first property of the divisor’s example is model checked 3.6 times faster in ours, and the square
calculation example included in their article runs in 56% of the time, even though our prototype reads the
membrane specification from an external file and starts an interactive interface before model checking.
There are other examples of model-checking tools for membrane systems like kPWorkbench [11] for LTL
and CTL properties of kernel P systems, but the interesting point of our approach is that model checking
comes automatically as a consequence of specifying the system in rewriting logic and the Maude strategy
language.

As future work, other variants and extensions of membrane systems not currently supported by the
environment can be implemented, like promoters and inhibitors, membrane creation and duplication, non-
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integral object multiplicities, etc. Moreover, the simulation and verification capabilities can be extended
with a search command, or support for other temporal logics. The changes are expected to be done without
much effort from the current version of the prototype.
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