
WPTE 2020 informal proceedings
© Rubén Rubio, Narciso Martí-Oliet, Isabel Pita, Alberto Verdejo
This work is licensed under the
Creative Commons Attribution License.

Metalevel transformation of strategies∗

Rubén Rubio, Narciso Martí-Oliet, Isabel Pita, Alberto Verdejo
Universidad Complutense de Madrid, Spain

{rubenrub,narciso,ipandreu,jalberto}@ucm.es

The Maude strategy language was introduced to avoid using complex and verbose metalevel programs
to control rule application. However, just as multiple levels of reflection are required for some tasks,
reflective manipulation and generation of strategies are convenient in multiple situations. Some exam-
ples of reflective strategy transformations are presented, which implement special forms of evaluation
or extend the strategy language while preserving its advantages.

1 Introduction

Rewriting logic and its implementation Maude are reflective languages where important aspects of its
own metatheory can be represented. Hence, manipulating, transforming, and analyzing rewriting logic
theories specified in Maude can be easily done within Maude. This feature has been extensively used, for
example, in Full Maude [4, Part II], a language extension written in Maude itself and whose additional
constructs and commands are finally translated to the Core Maude language and executed by its interpreter,
and the Maude Formal Environment [8] to check properties like confluence and termination on Maude
specifications.

These reflective features have also been used to control rewriting. By default, the executions of a
rewriting system are sequences of independent rule applications where the next rule and position are cho-
sen nondeterministically. Sometimes, it is convenient to consider a limited subset of behaviors and express
them at a higher level, without modifying the base system. This is the purpose of rewriting strategies [2],
expressed in Maude since its beginnings using its reflective features. Since programming metalevel com-
putations is hard for beginners and verbose, an object-level strategy language has been proposed, tested,
and finally made available in Maude 3.0 [4]. Although the strategy language has been introduced to avoid
the need for the metalevel, the language itself and its operations have been metarepresented, and users
may still resort to the metalevel to analyze strategy specifications and construct strategies depending on
metatheoretic aspects. This move to the metalevel does not limit the interaction at the object-level and the
usage of verification tools like the model checker for systems controlled by strategies [13].

After reviewing the basics of rewriting and Maude, including its reflective features and its strategy lan-
guage, this paper presents three examples of metalevel transformations generating strategies to solve spe-
cific problems. The first example is related to context-sensitive rewriting, the second one is an extension of
the Maude strategy language with additional constructs such as congruence operators and generic traver-
sals, and the third is a framework to specify compositional or agent-based strategy-controlled systems.
Maude 3.0 can be downloaded from maude.cs.illinois.edu and its extension with the strategy-aware
model checker is available at maude.ucm.es/strategies, as well as the different examples appearing
here, for which a direct hyperlink is provided next to each section title.

∗Research partially supported by MCI Spanish project TRACES (TIN2015-67522-C3-3-R). Rubén Rubio is partially sup-
ported by MU grant FPU17/02319.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://maude.cs.illinois.edu
http://maude.ucm.es/strategies

2 Metalevel transformation of strategies

2 Rewriting logic and Maude

Rewriting logic [11] was proposed in 1992 as a unified model of concurrency extending membership
equational logic with nondeterministic and possibly conditional rewriting rules. A rewrite theory ℛ =
(Σ,𝐸,𝑅) consists of a signature Σ of order-sorted operators, a set of equations 𝐸, and a set of rewriting
rules 𝑅. Terms are considered modulo equations and also structural axioms like commutativity, asso-
ciativity, and identity that cannot be naively handled as regular equations due to its reversible nature.
Maude [4] is a specification language based on rewriting logic, where rewrite systems can be specified
compositionally, executed, and analyzed. Specifications are written in a mathematical-like notation and
organized in modules of different kinds: functional modules (fmod) represent equational theories with
sort, subsort, and op declarations, and equations of the form eq 𝑙 = 𝑟 .; system modules (mod) are
complete rewrite theories with the addition of rules rl 𝑙 => 𝑟 .; and now strategy modules (smod) spec-
ify alternative ways of applying these rules using strategies. Maude specifications are executable under
certain requirements [4] and the Maude system offers several commands to reduce terms equationally,
to rewrite a term with the rules modulo equations and axioms, to search the rewriting graph, etc.
Moreover, it includes an LTL model checker [4, §12].

2.1 Reflection and metalevel computations

Rewriting logic is a reflective logic, whose objects and operations can be consistently represented in it-
self. Maude offers a predefined universal theory [4, §17] to metatheoretically represent terms, equations,
rules, modules, and so on. Operations like matching, reduction, and rule application can be programmed
generically using regular operators and equations, but Maude provides special operators backed by the
object-level implementation in C++ to allow efficient reflective computations. Metarepresentations can in
turn be metarepresented and terms be moved between different levels, yielding arbitrarily high reflective
towers.

This universal theory is specified in the META-LEVEL and its imported modules, and it relies on the
Qid sort of quoted identifiers, arbitrary words prefixed by an apostrophe. A variable X of sort Nat is
metarepresented as the quoted identifier 'X:Nat, and the constant 'Nat of sort Qid is ''Nat.Qid.
Terms with arguments are represented using the operator _[_] : Qid NeTermList -> Term, like
'_+_['X:Nat, 's_['0.Zero]] for X + s 0. Operator declarations, equations, rules, and similar
statements are represented as terms with a syntax similar to the object-level reference. For example,
the operator + may have a declaration op '_+_ : 'Nat 'Nat -> 'Nat [comm assoc] . and be
involved in an equation eq '_+_['X:Nat, '0.Zero] = 'X:Nat [none] . where the trailing brack-
ets enclose the set of operator or statement attributes. Metamodules are terms with argument slots like
fmod_is_sorts_.____endfm for each kind of module member. Auxiliary functions getOps, getEqs,
getRls, etc., are defined to obtain these components.

Operations are accessible through some descent functions like metaMatch for matching, metaApply
for rule application, metaReduce for equational reduction, metaRewrite, etc. For instance, metaReduce
receives the metarepresentations of a module and a term, and produces a pair containing the reduced term
and its calculated sort. The complete specification of the metalevel is in the Maude prelude and explained
in [4, §17].

Rubén Rubio, Narciso Martí-Oliet, Isabel Pita, Alberto Verdejo 3

2.2 The Maude strategy language

Strategies have been specified since the beginnings of Maude using the reflective features explained in the
previous section, but to make strategy specification more accessible and understandable, an object-level
strategy language was proposed, prototyped using Full Maude, tested, and finally implemented at the C++
level in Maude 3.0, with new features like compositional and parameterized strategy modules [14]. Its
design is inspired on other strategy languages like ELAN [1] and Stratego [3]. A strategy expression 𝛼
restricts the possible next steps during the rewriting process and can be described as a transformation from
an initial term 𝑡 to the set of terms that this controlled but not necessarily deterministic rewriting yields as
a result. This is what the command srewrite 𝑡 using 𝛼 and its depth-first version dsrewrite show,
by exploring all allowed execution paths.

The application of a rule 𝑟𝑙[𝑥1 ← 𝑡1, …, 𝑥𝑛 ← 𝑡𝑛] is the basic element of the language, referred
by its label 𝑟𝑙 and taking an optional initial substitution. Tests match 𝑃 s.t. 𝐶 discard executions
when the subject term does not match 𝑃 or satisfy the condition 𝐶 . The match keyword can be changed
to amatch to match anywhere within the term. These elements can be combined with the concatenation
𝛼;𝛽 that executes 𝛽 on the results of 𝛼, the disjunction 𝛼|𝛽 that includes the executions allowed by any
of its arguments, the iteration 𝛼* and normalization 𝛼! operators that iterate 𝛼 any number of times
or until no more iterations are possible, and the conditional 𝛼?𝛽:𝛾 that evaluates 𝛼 and then 𝛽 on its
results, but if 𝛼 does not produce any, it executes 𝛾 on the initial term. Two constants idle and fail
represent the strategy that produces the initial term as result and the strategy that does not produce any
result. The last combinator allows rewriting selected subterms matchrew 𝑃 s.t. 𝑥1 using 𝛼1, …,
𝑥𝑛 using 𝛼𝑛: the terms matched by the variables 𝑥1,…,𝑥𝑛 in the pattern are rewritten in parallel using
𝛼1,…,𝛼𝑛, respectively, and their results are combined to produce the global results. Moreover, named
strategies taking arguments can be declared as strat name : 𝑠1 ⋯ 𝑠𝑛 @ 𝑠 . with its signature, defined
sd name(𝑝1, …, 𝑝𝑛) := 𝛼 ., and called name(𝑡1, ⋯, 𝑡𝑛) even recursively. More details can be found
in [4, §10] and examples are shown in the following sections.

The strategy language and strategy modules are also represented at the metalevel, faithfully reproduc-
ing the object-level syntax in most cases. Its combinators are specified as terms of the Strategy sort in
the META-STRATEGY module. For instance, a simple rule application is written 'label[none]{empty}
and a strategy call 'name[[TL]] with TL a possibly empty list of metarepresented terms. Strategy mod-
ules smod_is_sorts_._______endsm as well as strategy declarations and definitions are specified too,
and the commands srewrite and dsrewrite are accessible through the metaSrewrite descent func-
tion. Notice that previous prototypes of the strategy language were specified within Maude, so strategy
expressions were Maude terms that can be directly manipulated at its object-level or at its metalevel if nec-
essary. These prototypes were more easily extensible, since the execution of strategies was implemented
in Maude itself, at the expense of efficiency.

2.3 Interactive interfaces

Writing interactive interfaces in Maude is relatively easy, and it is usually done to offer a convenient
interface to the logic and semantic frameworks specified in the language. The archetype is Full Maude [4,
§15], an extended interpreter written in Maude where many features implemented in C++ have been
first tested. The functionality of the Core Maude interpreter is replicated there along with additional
features like tuple types and object-oriented modules. Users can also extend Full Maude to include their
own features and commands. Moreover, since Maude 3.0 [5], the interactive capabilities of Maude have
increased due to new external objects that allow reading and writing files as well as the standard input and

4 Metalevel transformation of strategies

output streams.

3 An introductory example 🔗

Context-sensitive rewriting [10] is a restricted form of term rewriting defined by simple constraints at-
tached to the symbols of the signature. Maude has builtin support for this kind of restrictions, but their
direct application is not enough to obtain real normal forms, as we will see with a lazy programming ex-
ample, for which strategies are needed. Generating these strategies from the context-sensitive restrictions
will be the purpose of our first metalevel transformation. Let us introduce first the following functional
module [6] that attempts to specify a lazy integer list:

fmod LAZY-LIST i s
protect ing INT .
so r t LazyList .

op nil : -> LazyList [ctor] .
op _:_ : Int LazyList -> LazyList [ctor] .

var E : Int . var N : Nat . var L : LazyList .

op take : Nat LazyList -> LazyList .
eq take(0, L) = nil .
eq take(s(N), E : L) = E : take(N, L) .

op natsFrom : Nat -> LazyList .
eq natsFrom(N) = N : natsFrom(N + 1) .

endfm

Even though natsFrom(𝑛) represents an infinite list, containing all natural numbers from 𝑛, we would
expect that the lazy evaluation of a term like take(3, natsFrom(0)) leads to 0:1:2:nil. Maude’s
reduce command is eager, so the evaluation of this term will not terminate because of the continuous re-
duction of the second argument of the list in the natsFrom definition. Fortunately, Maude allows append-
ing some attributes to operator declarations that exclude arguments from rewriting: regarding equations,
the attribute strat restricts reduction to the arguments whose indices are provided as a zero-terminated
list; regarding rules, the attribute frozen inhibits rewriting with rules inside a given subset of arguments.
For example, the attributes of the _:_ operator can be changed to [ctor strat (1 0)] to avoid reduc-
ing inside the second argument. However, this still does not produce a valid result.
Maude> reduce take(3, natsFrom(0)) .
rewrites: 2
result LazyList: 0 : take(2, natsFrom(0 + 1))

In the vocabulary of context-sensitive rewriting, strat and frozen annotations correspond to replace-
ment maps 𝜇 ∶ Σ → 𝒫 (ℕ) where 𝜇(𝑓) ⊆ {1,…,ar(𝑓)} for all 𝑓 ∈ Σ. Reduction is only allowed in the 𝜇-
replacing positions of any term 𝑡, defined recursively as the top position and every 𝜇-replacing position of
each 𝑡𝑖 if 𝑡 = 𝑓(𝑡1,…,𝑡𝑛) and 𝑖 ∈ 𝜇(𝑓). Exhaustively reducing in these positions leads to 𝜇-normal forms,
and this is exactly what the previous command did for take(3, natsFrom(0)) and 𝜇(_:_) = {1}. As
we have seen, 𝜇-normal forms are not necessarily actual normal forms, but they can be useful as part of
complete and lazy normalization procedures. Among the different proposed approaches to normaliza-
tion via 𝜇-normalization [6], we will implement a layered evaluation that safely resumes reduction on

http://maude.ucm.es/strategies/examples/munorm.maude

Rubén Rubio, Narciso Martí-Oliet, Isabel Pita, Alberto Verdejo 5

the subterms of non-replacing positions. This will be achieved by means of a generated signature-aware
strategy, proposed by Salvador Lucas.

The following function csrTransform implements a metalevel module transformation that extends
the metarepresentation of the input module Mwith strategy declarations and definitions to normalize terms
as described in the previous paragraph. Its global shape is given by the following equation1.

op csrTransform : Module -> StratModule .
eq csrTransform(M) = smod getName(M) i s

getImports(M) *** module importation
so r t s 'AnyTerm ; getSorts(M) . *** sort decls
getSubsorts(M) *** subsort decls
strat2frozen(getOps(M)) *** operator decls
getMbs(M) *** sort membership axioms
none *** equations
getRls(M) *** rules
eqs2rls(getEqs(M))
getStrats(M) *** strategy decls
(s t r a t 'norm-via-munorm : nil @ 'AnyTerm [none] .)
(s t r a t 'munorm : nil @ 'AnyTerm [none] .)
(s t r a t 'decomp : nil @ 'AnyTerm [none] .)
getSds(M) *** strategy definitions
(sd 'norm-via-munorm[[empty]] :=

'munorm[[empty]] ; t ry ('decomp[[empty]]) [none] .)
(sd 'munorm[[empty]] := one(all) ! [none] .)
(sd 'decomp[[empty]] := makeDecomp(getOps(M)) [none] .)

endsm .

Apart from the new strategies, the transformed module is essentially a copy of the original one. However,
since the Maude strategy language can only control rule application, we translate all equations to rules,
and all strat attributes to frozen annotations.

eq eqs2rls(none) = none .
eq eqs2rls(eq L = R [Attrs] . Eqs) = r l L => R [Attrs] . eqs2rls(Eqs) .

The entry point for the layered normalization strategy is norm-via-munorm, which executes two auxil-
iary strategies munorm for 𝜇-normalization, and then decomp for resuming normalization inside frozen
arguments. munorm is implemented by exhaustively (!) applying the rules in the module respecting the
frozen restrictions (all). Assuming the input system is 𝜇-confluent, i.e. under the context-sensitive re-
strictions, the order in which rules are applied does not affect the result, so all is executed for efficiency
under the one operator that discards alternative rewrite orders. The decomp strategy continues normal-
ization on the symbol arguments and consists of the disjunction of matchrew combinators for each 𝑓 ∈ Σ
that apply norm-via-munorm to each subterm:

matchrew 𝑓(𝑥1, …, 𝑥𝑛) by …, 𝑥𝑖 using norm-via-munorm, …

Since they depend on the signature of the module, decomp is reflectively generated by the makeDecomp
function that walks through the operators declared in the module. Some auxiliary functions like makeVar
and makeVarList are used to generate sequentially-numbered variable metarepresentations of the given
sorts.

1Strategy declarations must include the intended sort to which they will be applied. However, the strategies defined here are
somehow polymorphic, so we declare AnyTerm just to take its place.

6 Metalevel transformation of strategies

op makeDecomp : OpDeclSet -> Strategy .
eq makeDecomp(none) = fail .
eq makeDecomp(op Q : nil -> Ty [Attrs] . Ops) = makeDecomp(Ops) .
eq makeDecomp(op Q : NeTyL -> Ty [Attrs] . Ops) =

(matchrew Q[makeVarList(NeTyL, 1)] s . t . nil
by makeUsingPart(NeTyL, 1)) | makeDecomp(Ops) .

op makeUsingPart : NeTypeList Nat -> UsingPairSet .
eq makeUsingPart(Ty, N) = makeVar(N, Ty) using 'norm-via-munorm[[empty]] .
eq makeUsingPart(Ty NeTyL, N) = makeUsingPart(Ty, N),

makeUsingPart(NeTyL, s(N)) .

Since no matchrew is generated for constants, the strategy decomp would fail when applied to one, so
this strategy is surrounded by a try(𝛼) ≡ 𝛼 ? idle : idle combinator to avoid it.

Finally, the term csrTransform(upModule('LAZY-LIST, true)) can be reduced to obtain the
transformed 'LAZY-LIST module, where upModule evaluates to the metarepresentation of the mod-
ule whose name is given. Then, the norm-via-munorm strategy can be applied to a term using the
metaSrewrite function or using Full Maude2:

(select CSR-TRANSFORM .)
(load csrTransform(upModule('LAZY-LIST , true)) .)
(select LAZY-LIST .)
(srewrite take(3, natsFrom(0)) using norm-via-munorm .)
srewrite in LAZY-LIST : take(3, natsFrom(0)) using norm-via-munorm .

Solution 1
result LazyList: 0 : 1 : 2 : nil

No more solutions

The evaluation now terminates and its result is meaningful. The generated norm-via-munorm can be
applied to any term in this module, but only in this module since it explicitly refers to its signature. The
following example shows an extension of the Maude strategy language adding new combinators based on
the subject module in which strategies are to be applied.

4 Theory-dependent extensions of the strategy language 🔗

When the Maude strategy language was designed, the objective was not to include a vast repertory of
operators to concisely express a wide range of tasks, like in the case of Stratego [3], but to be compact
and expressive enough. Thanks to the reflectivity, the language can be extended to better suit a specific
purpose or to incorporate a missing feature. In this section, we will apply this postulate and extend the
language with the so-called congruence operators from ELAN [1] and Stratego, and the generic traversals
from Stratego. Both operator families depend on the signature of the subject module where strategies are
applied, so they will be implemented as module transformations. For the extension to be useful, the user
should not be forced to renounce to the advantages of the strategy language, so we provide the means to
use extended strategies at the object level and with the strategy-aware model checker.

2Full Maude commands are typed between parentheses, once the full-maude.maude file is loaded. Its last version can be
downloaded from maude.cs.illinois.edu.

http://maude.ucm.es/strategies/examples/congruenceOpsExt.maude
http://maude.cs.illinois.edu

Rubén Rubio, Narciso Martí-Oliet, Isabel Pita, Alberto Verdejo 7

META-LEVEL SLANG-GRAMMAR

ext(𝑀) extGram(𝑀)

𝑀

𝑡𝛼

𝛽

metaParse

metaSrewrite

parse
transform

Figure 1: Typical structure of a strategy language extension

Congruence operators are strategy combinators that reproduce the data operators of the target module
with their arguments replaced by strategies. The strategies in the congruence operator are applied to
the corresponding arguments of the subject term’s top symbol if they coincide, i.e. they are semantically
equivalent to a matchrew construct of the form

𝑓(𝛼1, …, 𝛼𝑛) ≡ matchrew 𝑓(𝑥1, …, 𝑥𝑛) by 𝑥1 using 𝛼1, …, 𝑥𝑛 using 𝛼𝑛.

On the other hand, generic traversals are operators that allow applying a strategy along the structure of
any term without explicitly mentioning it: all(𝛼) applies 𝛼 to all arguments of the top symbol, one(𝛼)
applies 𝛼 to the first argument from left to right in which it succeeds3, and some(𝛼) is equivalent to
all(try(𝛼)). For example, the decomp strategy in Section 3 can be defined using generic traversals as
simply all(norm-via-munorm).

The approach used to implement them, which is directly applicable to other extensions, consists of
the steps illustrated in Figure 1. Given a module 𝑀 , the predefined module META-LEVEL is extended like
in Section 3 with the metarepresentations of the congruence operators of sort Strategy:

op generateCongOps : OpDeclSet -> OpDeclSet .
eq generateCongOps(none) = none .
eq generateCongOps(op Q : TyL -> Ty [ctor Attrs] . Ops) =

(op Q : repeatType('Strategy , size(TyL))
-> 'Strategy [ctor removeId(Attrs)] .) generateCongOps(Ops) .

eq generateCongOps(Op Ops) = generateCongOps(Ops) [owise] .

However, the builtin metaSrewrite does not know these new operators so it will be unable to execute
them. We should then implement their semantics from scratch or translate them to the standard language.
The second option is simpler and automatically allows using all the strategy-related machinery of the in-
terpreter with extended strategies, including the model checker. This translation is defined in the extended
META-LEVEL as a function transform between terms of sort Strategy. Notice that the equations defin-
ing transform are generated by the module transformation, so they must metarepresent Strategy terms
and involve two levels of reflection. The complete example is available in the strategy language example
collection [9].

Since the strategy language does not provide means to perform generic traversals of terms and since
we have chosen to translate extended strategies to standard ones, we should implement generic traversals
using module-specific strategies. Namely, we can translate the strategy all(𝛼) via the disjunction of
𝑓(𝛼, …, 𝛼) for all 𝑓 ∈ Σ, and one(𝛼) using the disjunction for all 𝑓 of

𝑓 (𝛼, idle, …, idle) or−else ⋯ or−else 𝑓 (idle, idle, …, 𝛼).
3Not to be confused with the one and all operators of the strategy language. In the implementation, the generic traversal

operators are renamed to gt-all, gt-one, and gt-some.

8 Metalevel transformation of strategies

Finally, we want to write and use extended strategies at the object level. In order to do so, an ex-
tensible grammar of the strategy language, named SLANG-GRAMMAR in Figure 1, is defined along with
a metalevel extension function that incorporates new productions for the extended strategies. A parse
function is also provided to convert the term parsed by the predefined parsing function metaParse into
the metarepresentation of extended strategies. All these components have been programmed generically,
so that they can be easily reused for other language extensions. An interactive interface based on the
external objects of Maude 3.0 is available to experiment with the extensions [9]. For example, in a mod-
ule with rules rl [swap] : f(X, Y) => f(Y, X) . and rl [next] : a => b ., the extended strategy
f(swap, gt-all(next)) can be executed:

SLExt> select EXAMPLE .
Module EXAMPLE is now the current module.
SLExt> srew f(f(a, b), f(a, a)) using f(swap, gt-all(next)) .
Solution 1: f(f(b, a), f(b, b))
No more solutions.

5 Multistrategies 🔗

The strategy-controlled system model proposed in Maude is the combination of a rewrite system and
a strategy expression that controls this system as a whole. However, many systems are better specified
compositionally. A typical example are object- or agent-oriented systems, in which each object or agent
would follow its own strategy. Likewise, describing the interaction of players in games with a single
sequential strategy control flow is cumbersome. Hence, we propose the following model transformation
to facilitate this specification problem. Instead of a single strategy expression 𝛼, the system control will
be specified by a multistrategy: an undetermined number of strategies 𝛼1,…,𝛼𝑛 and a global strategy 𝛾
that describes how they are combined. Two builtin 𝛾 are provided: a concurrent one, in which the next
strategy to take a step can be any of them, and a turn-based one, in which strategies are executed in a
fixed order. A fundamental question is which are the atomic steps of the 𝛼𝑖 strategies that are interleaved
in the global execution, i.e. its granularity. As in the model checker [13], rule application is considered
the main atomic step, but a few more strategies are executed atomically like matchrews with a non-trivial
pattern and conditions in the conditional operator, since they assume a particular structure or invariant of
the term that may not be preserved if another strategy thread modifies the term during the while.

Multistrategies are implemented using strategies at the metalevel and an augmented execution envi-
ronment. Essentially, to evaluate the strategies 𝛼1, …, 𝛼𝑛 on the subject term 𝑡, they are transformed
into the term { 𝑡 :: < 1 % 𝛼1 > ⋯ < 𝑛 % 𝛼𝑛 >, 𝑀 } that includes the metarepresentation 𝑡 of
the subject term, of the strategies 𝛼𝑖, and of the module 𝑀 where they are evaluated. The evolution of
this execution context is defined by some rules, which modify the strategy representations and execute
them according to their semantics, governed by the global strategy 𝛾 . The rules that do not alter the subject
term (but choose alternatives, expand iterations…) are called control rules and those modifying the term
with rules of the underlying system are called system rules. With control(N) and system(N) as the
disjunction of all control and system rules applied to the thread N, global control strategies, like turn(N,
M) for executing M strategies in turns starting from the Nth one and freec to execute them concurrently,
can be specified as follows:

sd =>>(N) := control(N) * ; system(N) .
sd turns(N, M) := =>>(N) ? turns(s(N) rem M, M) : idle .
sd freec := (matchrew C s . t . { T :: < N % S > TS, M } := C

http://maude.ucm.es/strategies/examples/multistrategies.tar.gz

Rubén Rubio, Narciso Martí-Oliet, Isabel Pita, Alberto Verdejo 9

by C using =>>(N)) ? freec : idle .

Auxiliary operations and an interactive interface are defined to easily execute multistrategies and to obtain
meaningful counterexample traces when model checking these systems. The complete commented Maude
code is available at [9].

Let us omit in this extended abstract the implementation details and conclude with a simple example:
the module LLIST specifies a list of letters (a, b, c, …), which can be appended with a put rule, and a
strategy seq that does so with a list of them in order:

r l [put] : LS => LS L [nonexec] .
sd seq(nil) := idle . sd seq(L LS) := top(put[L <- L]) ; seq(LS) .

After loading the interactive interface in multistrat-iface.maude and the module above, for instance,
we can execute multiple seq calls by turns or concurrently:

MStrat> select LLIST .
MStrat> srew eps using seq(a b), seq(c d) by turns .
Solution 1: a c b d
No more solutions.
MStrat> srew eps using seq(a b), seq(c d) by concurrent .
Solution 1: a b c d […]
Solution 6: c d a b
No more solutions.

More interesting examples are available at [9], including the specification of the Lamport’s bakery
algorithm and the Tic-Tac-Toe game, where relevant properties are model checked using different com-
binations of process or player strategies.

6 Related work and conclusions

As we indicated throughout the paper, the reflective capabilities of Maude have extensively been used to
build extensions of Maude and frameworks for specific languages and utilities. Apart from Full Maude
and the Maude Formal Environment, other relevant examples are Real Time Maude [12] for specification
and verification of real-time systems, and the mobile agents extension Mobile Maude [7]. The strategy
language was introduced to control rewriting at the object-level without the conceptual difficulties of
reflective computations and the intricate shape of metalevel programs. However, some tasks still require
resorting to the metalevel, like writing interactive interfaces or generating strategies depending on the
specification or some input data.

With these examples, we aim to show that manipulating, transforming, and generating strategies is
accessible and has useful applications. The reflective representation of the object-level strategy language
provides the means to easily do this within Maude, while having strategies executed by the efficient builtin
engine. Another interesting example of this approach is a framework for simulating and verifying mem-
brane systems [15].

References
[1] Peter Borovanský, Claude Kirchner, Hélène Kirchner & Christophe Ringeissen (2001): Rewriting

with Strategies in ELAN: A Functional Semantics. Int. J. Found. Comput. Sci. 12(1), pp. 69–95,
doi:10.1142/S0129054101000412.

http://dx.doi.org/10.1142/S0129054101000412

10 Metalevel transformation of strategies

[2] Tony Bourdier, Horatiu Cirstea, Daniel J. Dougherty & Hélène Kirchner (2009): Extensional and Intensional
Strategies. In Maribel Fernández, editor: Proceedings Ninth International Workshop on Reduction Strate-
gies in Rewriting and Programming, WRS 2009, Brasilia, Brazil, 28th June 2009, EPTCS 15, pp. 1–19,
doi:10.4204/EPTCS.15.1.

[3] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas & Eelco Visser (2008): Stratego/XT 0.17. A lan-
guage and toolset for program transformation. Science of Computer Programming 72(1-2), pp. 52–70,
doi:10.1016/j.scico.2007.11.003.

[4] Manuel Clavel, Francisco Durán, Steven Eker, Santiago Escobar, Patrick Lincoln, Narciso Martí-Oliet, José
Meseguer, Rubén Rubio & Carolyn Talcott (2019-12): Maude Manual v3.0. Available at http://maude.
lcc.uma.es/maude30-manual-html/maude-manual.html.

[5] Francisco Durán, Steven Eker, Santiago Escobar, Narciso Martí-Oliet, José Meseguer, Rubén Rubio & Car-
olyn Talcott (2020): Programming and Symbolic Computation in Maude. Journal of Logical and Algebraic
Methods in Computer Programming 110, doi:10.1016/j.jlamp.2019.100497.

[6] Francisco Durán, Santiago Escobar & Salvador Lucas (2004): New Evaluation Commands for Maude Within
Full Maude. In Narciso Martí-Oliet, editor: Proceedings of the Fifth International Workshop on Rewriting
Logic and its Applications, WRLA 2004, Barcelona, Spain, March 27-April 4, 2004, Electronic Notes in
Theoretical Computer Science 117, Elsevier, pp. 263–284, doi:10.1016/j.entcs.2004.06.014.

[7] Francisco Durán, Adrián Riesco & Alberto Verdejo (2007): A Distributed Implementation of Mobile Maude.
In Grit Denker & Carolyn Talcott, editors: Proceedings of the 6th International Workshop on Rewriting Logic
and its Applications, WRLA 2006, Vienna, Austria, April 1-2, 2006, Electronic Notes in Theoretical Computer
Science 176(4), Elsevier, pp. 113–131, doi:10.1016/j.entcs.2007.06.011.

[8] Francisco Durán, Camilo Rocha & José María Álvarez (2011): Towards a Maude Formal Environment. In
Gul Agha, Olivier Danvy & José Meseguer, editors: Formal Modeling: Actors, Open Systems, Biological
Systems - Essays Dedicated to Carolyn Talcott on the Occasion of Her 70th Birthday, LNCS 7000, Springer,
pp. 329–351, doi:10.1007/978-3-642-24933-4_17.

[9] Steven Eker, Narciso Martí-Oliet, José Meseguer, Isabel Pita, Rubén Rubio & Alberto Verdejo: Strategy
language for Maude. Available at http://maude.ucm.es/strategies.

[10] Salvador Lucas (2002): Context-Sensitive Rewriting Strategies. Inf. Comput. 178(1), pp. 294–343,
doi:10.1006/inco.2002.3176.

[11] José Meseguer (1992): Conditional rewriting logic as a unified model of concurrency. Theoretical Computer
Science 96(1), pp. 73–155, doi:10.1016/0304-3975(92)90182-F.

[12] Peter Csaba Ölveczky (2014): Real-Time Maude and Its Applications. In Santiago Escobar, editor: WRLA
2014, Held as a Satellite Event of ETAPS, Grenoble, France, April 5-6, 2014, Revised Selected Papers, LNCS
8663, Springer, pp. 42–79, doi:10.1007/978-3-319-12904-4_3.

[13] Rubén Rubio, Narciso Martí-Oliet, Isabel Pita & Alberto Verdejo (2019): Model checking strategy-controlled
rewriting systems. In Herman Geuvers, editor: FSCD 2019, June 24-30, 2019, Dortmund, Germany, LIPIcs
131, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 34:1–34:18, doi:10.4230/LIPIcs.FSCD.2019.31.

[14] Rubén Rubio, Narciso Martí-Oliet, Isabel Pita & Alberto Verdejo (2019): Parameterized strategies specifica-
tion in Maude. In José Fiadeiro & Ionuț Țuțu, editors: Recent Trends in Algebraic Development Techniques.
24th IFIP WG 1.3 International Workshop, WADT 2018, Egham, UK, July 2–5, 2018, Revised Selected Papers,
LNCS 11563, Springer, pp. 27–44, doi:10.1007/978-3-030-23220-7_2.

[15] Rubén Rubio, Narciso Martí-Oliet, Isabel Pita & Alberto Verdejo (2020): Simulating and model checking
membrane systems using strategies in Maude. In: 7th International Workshop on Rewriting Techniques for
Program Transformations and Evaluation, WPTE 2020, pp. 1–10.

http://dx.doi.org/10.4204/EPTCS.15.1
http://dx.doi.org/10.1016/j.scico.2007.11.003
http://maude.lcc.uma.es/maude30-manual-html/maude-manual.html
http://maude.lcc.uma.es/maude30-manual-html/maude-manual.html
http://dx.doi.org/10.1016/j.jlamp.2019.100497
http://dx.doi.org/10.1016/j.entcs.2004.06.014
http://dx.doi.org/10.1016/j.entcs.2007.06.011
http://dx.doi.org/10.1007/978-3-642-24933-4_17
http://maude.ucm.es/strategies
http://dx.doi.org/10.1006/inco.2002.3176
http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://dx.doi.org/10.1007/978-3-319-12904-4_3
http://dx.doi.org/10.4230/LIPIcs.FSCD.2019.31
http://dx.doi.org/10.1007/978-3-030-23220-7_2

	Introduction
	Rewriting logic and Maude
	Reflection and metalevel computations
	The Maude strategy language
	Interactive interfaces

	An introductory example
	Theory-dependent extensions of the strategy language
	Multistrategies
	Related work and conclusions

