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In previous research we showed that there are correct translations from the pi-calculus with Stop
into CH, a core language of Concurrent Haskell. Correctness means that processes before and after
the translation behave the same. Technically, we use contextual semantics, and require that at least
so-called may- and should-convergence of processes are retained by the translation. Translations
are restricted to be modular in the syntactical structure. In this paper we solve a problem that was
left open in our previous research: correct translations must use at least two extra one-place buffers
per channel in CH to correctly encode the synchronous communication of the pi-calculus with the
asynchronous concurrency primitives provided by CH. The necessity of at least two of these buffers
was conjectured, but a proof was missing. In this paper we prove the conjecture by transferring the
problem into a problem of the two simple process-languages PISIMPLE and CHSIMPLE without
channels and one-place buffers with unit content, where we prove the impossibility of modular simple
translations. Thus we also show that the reason for requiring at least two extra one-place buffers for
a correct translation from the pi-calculus with Stop into CH is only its weak synchronisation power.

1 Introduction

The issue of expressivity of concurrent programming languages, in particular the relation of the syn-
chronous pi-calculus to other concurrent programming languages and their relations can in principle be
answered by investigating correct translations from one language into another. For instance, translations
between synchronous and asynchronous variants of the 7m-calculus and reasoning on their correctness
can be found in [3| |1} 16]. However, in our research paper [[14]] we investigated modular translations from
the synchronous pi-calculus [} [12| 4], in particular the synchronous pi-calculus with Stop [[L1] into a
core-language of Concurrent Haskell 2, (7,19, [10]. The latter is a functional programming language with
concurrent threads and so-called MVars as synchronization primitives. MVars are one-place buffers that
are either filled or empty. As semantics we use observational semantics where two convergence proper-
ties are observed: may- and should-convergence. Both are defined in terms of a reduction semantics and
a notion of success, where may-convergence means that a process can be reduced to a successful result
and should-convergence means that all reduction possibilities lead to success. We were able to prove that
at least one translation preserves the properties, which qualifies it for a comparison of expressivity. This
translation uses the idea to construct so-called private MVars (i.e. MVars that are known to exactly one
sender and one receiver) to establish safe and correct communication. This approach is comparable to
using private names for translating the synchronous pi-calculus into the asynchronous pi-calculus [3} [1].
A disadvantage of this translation is that a new (private) M Var must be created (and garbage collected)
for every communication action between two processes. That is why we also started an investigation
for a search for classes of further correct translations with similar properties but an a priori fixed num-
ber of MVars per channel, i.e. translations that do not use (an unbounded number of) private MVars.
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2 Impossible Translations

Our search delivers candidates of correct translations that use two or more so-called check-MVars for
synchronization where a check-MVar is an MVar that is either filled by the unit value () or it is empty
(check-MVars are quite similar to binary semaphores). Since no candidate translations are detected that
only use one check-MVar, even by extensive automated searches by our implemented tool, this leads
to the formulation of the conjecture that such translations are impossible. The answer to this question
justifies the unavoidable use of at least 2 MVars for such translations. Our proof method by using the
two simplified languages also shows that that this holds also in the case of only one channel, and that
a clever use of channel-names in MVars in the pi-calculus to CH translation does not help. Informally
speaking: “synchronous communication can be simulated by asynchronous communication but requires
two locks”. To the best of our knowledge this is a novel result.

This paper is an analysis into translations using only one check-M Var, with the final result that the
conjecture holds. We transfer the reasoning into simpler languages: PISIMPLE is derived from the pi-
calculus by removing several constructs and using only one channel: the simplified language only permits
parallel processes consisting of !, ?, which mean output and input, respectively, and the final constants 0
(the silent process) and 1 (the successful process). Synchronous communication in PISIMPLE is always
of the form 191 | 79> | @ — Q1 | Q> | Q, which means that no data is transferred, only the synchronous
communication is visible. The language CHSIMPLE is a simplified concurrent process language with
2 one-place-buffers, behaving like MVars that may store only a potential unit value, and where one is
for the usual send/receive-synchronization and the other is for additional synchronization (for instance,
the receiver may acknowledge that it received the message by this second MVar). A process consists
of parallel subprocesses which are sequential commands for filling/emptying the buffers, and the final
constants 0 and 1. The restricted form of MVars (that are either empty or filled, but only with a unit
value) behave like locks, where filling an empty M Var corresponds to set the lock, und emptying a filled
MVar corresponds to reset the lock. However, the roles of lock and unlock can also be interchanged
(using filling for set and emptying for unlock) which is a difference to usual locks.

Our main result is that there is no correct modular translation from PISIMPLE into CHSIMPLE
(Theorem [6.9), which can be transferred back to the corresponding question for the synchronous pi-
calculus with Stop and CH, where it means that there are no correct translations from the synchronous
pi-calculus with Stop into CH which only use one global check-M Var per channel (Corollary [6.10). This
shows that the reason for the impossibility of simple modular translations from the pi-calculus with Stop
into CH is only the weak synchronization property of one check-M Var together with one send-MVar. We
also discuss some variants of the languages and the translations in Section |/} In particular, we consider
a simpler case (so-called PT-only translations). These translations also use one check-M Var, but are not
allowed to use the additional send-MVar. We show in Theorem [7.1]that there also does not exist a correct
PT-only translation from PISIMPLE into CHSIMPLE.

Our proof method for the theorems is an extensive case analysis and an inductive reasoning per-
formed using the languages PISIMPLE and CHSIMPLE, where the induction is on the syntactic length
of translations, where the structuring is on a representation of various regular languages.

2 The Translation Problem

The paper solves the open problem of (im)possibility of certain forms of simple translations from the
pi-calculus into Concurrent Haskell (CH) by showing that indeed there are no such translations. Before
we formally define a specialized form of this question, we informally explain the issue for the pi-calculus
and CH and then argue for a simplified but equivalent formulation.
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The synchronous pi-calculus that we use, permits parallel processes, channel names, input-, output-
prefixes, (new) name restriction, replication and a Stop constant [5,[12]. The translation is into CH, a
core language of Concurrent Haskell that is a monomorphically typed core language of Haskell, extended
by concurrent threads using monadic programming, where threads can be started and terminated, and the
only synchronization is by one-place buffers (so-called MVars) which can be filled, if they are empty,
and read-off and emptied, if they are filled. Trying to fill a filled M Var or to empty an empty M Var leads
to blocking of the calling thread. In [14] there is an investigation on the correct translations from the
pi-calculus into CH, showing that there are correct translations, where the simplest one uses two MVars
per channel. These translations are restricted to modular ones: it is like a homomorphism and there is
only one non-local element in the translations: the creation of an MVar representing Stop.

2.1 The Automated Tools

The first attack to find the most simple translation was to use our tool Refute—P [[14]] for finding correct
translations from pi-calculus into CH. It is implemented in Haskell such that one parameter is the search
space, or a generator for the search space, and the tool scans all these translations to find a correct one.
The possibility of no MVar was already excluded by formal arguments. This attack was not successful in
finding a translation that only uses one global MVar, which leads to the conjecture that one global M Var
is insufficient for a correct modular translation.

We will follow the idea to look for the same problem for sublanguages of the pi-calculus and CH:
There is only one channel name, and one MVar that can hold a unit value and further restrictions. This
leads to a simplified formulation of the languages and the translation problem (Section [3)), where the
proof of impossibility of a modular translation indeed answers the original problem negatively (Section
B)). The final proof consists of a series of case distinctions structuring the cases using regular expressions
to represent (infinite) sets of translations. We then test them as a translation for a critical, finite test set of
(20) simplified pi-processes, which is again supported by the tool Refute—Rege It processes the regular
expression to obtain a finite list of simple regular expressions that do not contain the alternative-operator.
Such a simpler regular expression represents a class of translations. The expressions may contain non-
nested exponentials and a nonterminal M as the last symbol with the meaning “more...”. Then the
pattern is checked whether it represents a correct or incorrect translation. The tool is implemented in
Haskell and that helps to automatically structure and verify the complex case distinctions.

3 Languages for Distributed Processes

We define abstract and simplified models of the pi-calculus and of Concurrent Haskell. We will later
explain the connection between the simplification and the original and also explain its consequences.

3.1 The Language PISIMPLE

Definition 3.1. We define the simple process language (PISIMPLE) by the following grammar:

Subprocesses U = O|1|WU|MU
Processes P = U|IUIP
lavailable viahttps://gitlab.com/davidsabel/refute-pi

2available via https://gitlab.com/davidsabel/refute-regex including several case analyses that are performed by
the tool.
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4 Impossible Translations

The informal meaning of the symbols is: 0 means silence; 1 means success, ! means an output, and ?
means an input, and | is parallel composition. For example, the expression ?!!1 | 1?0 is a process, also
21N and 2111 1120 1 11 1111211, We assume that | is commutative and associative. Thus a process
can be seen as a multiset of subprocesses. We sometimes write ? (or !, respectively) to abbreviate the
subprocess ?0 (or !0, respectively).

o . . D . . PIS
Definition 3.2. The operational semantics, or the (non-deterministic) execution (using —>-steps) of the
processes is as follows:
1. If some subprocess of P is 1, then the complete process P is successful.

2. A communication step is as follows \U; | W, | P LEEN Ul I P

3. These steps can be iterated.

. o PIS_ . PIS
The reflexive-transitive closure of — is denoted as ——.

Note that there may be more than one execution of processes, but every execution terminates.
Example 3.3. All possible executions of P = 210 | !'1 | 20 are:

PIS .
P=2101111720 01!1120 (a communication)

PIS . o

— 101110 (a communication; and now it is successful)

PIS .
P=20111120 — 101111720 (a communication)

PIS . .

011110 (a communication, terminated, but not successful)

PIS .
P=20111120 — ?2001'110 (a communication)

PIS . o

— 101110 (a communication; and now it is successful)

This means there may be executions leading to a successful process, and at the same time executions
leading to a fail.

We define the observations of may- and should-convergence, that will be used to test the pro-
cesses. While may-convergence tests whether a successfully ending reduction sequence exists, should-
convergence requires to keep may-convergence on all evaluation possibilities. In the literature there is
also a notion of must-convergence that in addition forbids the possibility of an infinite evaluation. In
the setting of the simple languages, should- and must-convergence coincide, since there are no infinite
evaluations. For more general calculi, like the pi-calculus with replication or Concurrent Haskell, the
notions differ. See e.g. [I8,[13]] for discussions on these notions.

Definition 3.4. A process P is called
e successful, if there is a subprocess 1, i.e. P =1 | P’ for some P’
e may-convergent if there is some successful process P’ with P PISx, P

) . PIS )
e should-convergent if for all processes P’ with P —— P’, the process P’ is may-convergent.
o must-divergent or a fail, if there is no execution leading to a successful process.
PIS . .
—5 P’ where P’ is a fail.

Note, that should-convergence is the same as must-convergence in the literature, since execution
always terminates in PISIMPLE.

e may-divergent if for some processes P': P
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3.2 The Language CHSIMPLE

Subprocesses in the language CHSIMPLE are built from 0,1 and the symbols S,R, P, T, which mean:
send, receive, put, take, respectively. Processes can be seen as lists of subprocesses: they are composed
by parallel composition | which is assumed to be associative and commutative.

Definition 3.5. The language CHSIMPLE is defined as follows:
Subprocesses: U == O0|1|SU|RU|PU|TU
Processes: P = U|UIP
We sometimes write X to abbreviate X0 for X € {S,R,P,T}.
Definition 3.6. The operational semantics of processes of CHSIMPLE is a non-deterministic reduction

relation ( & ) as follows. There are two I-place buffers (MVars): a send-receive-MVar, and a check-
MVar. Both can be full (written as full) or empty (written as 0), and only an empty one can be filled and
a full one can be read-off, where it is empty after the read. The four available commands are S,R,P,T
with following operational meaning:

S:  (send) fills the send-receive-MVar,

R:  (receive) empties the send-receive-MVar,

P: (put) fills the check-MVar,
T: (take) empties the check-MVar,

The operational semantics operates on triples (P,M,M,), where P is a CHSIMPLE-process, M is the
send-receive MVar, and M is the check-MVar, and for some process P it starts with (P,0,0).

The relation <> is defined as follows:

cS
L] —

U | P fI/tll Mz)
ULP,0,M)
U P, My, full)

UlP,M,0)

SU | P,0,M,)
CS

(
o (RUIP, fullM) = (
CS

(
(

PU | P,M,,0) —

CS

(
(
(
(TU | P,My, full) =

[ ]
. . . . .. CS,*
and the reduction relation is the reflexive, transitive closure ——.
Definition 3.7. A process P is called

e successful, if there is a subprocess 1 of P, i.e. P =1 | P’ for some P’.

e may-convergent, should-convergent, must-divergent, or may-divergent, resp. iff the triple (P,0,0)
is may-convergent, should-convergent, must-divergent, or may-divergent, resp.
A triple (P,M,,M;) is called

e successful, if P is successful.

e may-convergent, if there is some successful (P',M{,M}) with (P, M],MQ) S (P M MS).

e should-convergent, if for all triples (P',M{,M}) with (P,M;,M>) —— 5

(P',M},M}) is may-convergent.

— (P',M|,M}), the triple

e must-divergent or a fail, if there is no execution leading to a successful triple.

e may-divergent, if for some triple (P’ ,M{,M}): (P,M;,M,) —— Cox

is a fail.

— (P',M},M},), where (P',M|, M)
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Example 3.8. An example for a reduction sequence is:
(SO 1 R1,0,0) <> (0 1 R1, full,0) < (011,0,0) (successful)

The process SO | R1 is even should-convergent. As a second example consider the process SR1. It is
should-convergent, since

(SR1,0,0) <> (R1, full,0) <> (1,0,0)

is the only possible reduction sequence for SR1.

4 Translations Between the SIMPLE Languages

We consider translations from PISIMPLE to CHSIMPLE, where we are interested in correct trans-
lations, i.e. such that may-convergent processes are translated into may-convergent ones and should-
convergent processes into should-convergent ones, and vice versa. This means that we search for so-
called convergent-equivalent translations. See [[15] for discussions and notions on the correctness of
translations.

Definition 4.1. A (modular) translation t : PISIMPLE — CHSIMPLE is a homomorphism on the lan-
guages, and defined by the mappings: t(!) =s1; ©(?) =s2;, (1) = 1, 7(0) =0; (1) = 1 where s;
is a string over {P,T,S}, and s, is a string over {P,T,R}. If s\ contains exactly one occurrence of S,
and s, contains exactly one occurrence of R, then it is called a send-receive-unique translation, SRU-
translation.

We are mostly interested in modular SRU-translations, so sometimes we will only speak of transla-
tion, if it is clear from the context. If 7 is a modular translation then we call (7(!),7(?)) = (s1,52) the
translation pair (corresponding to 7), which is cleary sufficient to define the translation.

Example 4.2. Let 71(!) = S, 7,(?) = R. Then 11(10 1 221) = SO | RR1.
For the translation T, with 7(!) = PPST and 1,(?) = TPTRPPPP, a translation example is
7(1?0 1 ??) = PPSTTPTRPPPPO | TPTRPPPPT PTRPPPP.

Definition 4.3. A translation 7 is called correct, if it is convergence equivalent, i.e. for all PISIMPLE
processes P:

e P is may-convergent iff T(P) is may-convergent, and
o P is should-convergent iff T(P) is should-convergent.

Remark 4.4. Contextual equivalence on subprocesses in the calculi PISIMPLE and CHSIMPLE is de-
fined as U, ~ U, if for all contexts C (i.e. processes with a hole at subprocess position):

o C[U,] is may-convergent iff C|Uy] is may-convergent

o C[U,] is should-convergence iff C[Us] is should-convergent

Analogously, contextual equivalence can be defined on processes by testing invariance of may- and
should-convergence in all contexts that have the hole at process position.

Correctness of a translation implies (see [15]) that the translation is observationally correct, i.e.

C|U] is may-convergent iff T(C)[t(U)] is may-convergent and C[U] is should-convergent iff ©(C)[t(U)]
is should-convergent, which implies adequacy w.r.t. ~ of T, i.e. T(U;) ~ T(Up) = U ~ U>.
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Example 4.5. Translation T, from Example is not correct, since for instance the process |71 is must-
divergent, but T\ (1?1) = SR1 is should-convergent (see Example .

The translation 73(!) = SPP, 13(?) = RTT can be refuted, however, the counterexample process was
hard to find. We found one and verified it using Refute-Pi. We explain it for the SIMPLE languages.
One counterexample process is | | 7| 1211, which is neither may- nor should-convergent, which means
it is must-divergent. The translated process SPP | RTT | SPPRTTSPP]1 has a successful reduction se-
quence: execute the commands corresponding to order given by the following numbering:

SPP|RTT | SPPRTT S P P 1
69 3413 1257810111214

This shows that the translated process is may-convergent. Hence the translation 3 is incorrect.

Remark 4.6. Note that if we would allow arbitrary translations ¢ : PISIMPLE — CHSIMPLE, then it
would be easy to define a correct one: Let

0, if P is must-divergent
o(P)=< 1, if P is should-convergent
PO | P1, otherwise

Then P is may-convergent iff 6(P) is may-convergent, and P is should-convergent iff 6(P) is should-
convergent. Note that © is computable, since may- and should-convergence in PISIMPLE are decidable.

Remark 4.7. There are (modular SRU-) translations T according to Definition 4. 1| such that

e T is may-convergence preserving, i.e. for all PISIMPLE-processes P: If P is may-convergent, then
T(P) is may-convergent. The simplest such translation is t(!) = S and ©,(?) = R, since every
communication in P can be done in Tt (P) by two steps.

e T is may-convergence reflecting, i.e. for all PISIMPLE-processes P: if ©(P) is may-convergent,
then P is may-convergent. The simplest one is 1s(!) = TPS and 15(?) = R. Then t5(P) cannot
execute any translated !-operation, since T PS will deadlock without performing any operation.
Thus t5(P) can also not perform any encoded ?-operation, since R-steps are impossible without a
preceding S-operation. Thus Ts(P) can only be may-convergent, if it contains a 1 on the surface,
but then P also contains a 1 on the surface and thus is may-convergent.

e T is should-convergence reflecting, i.e. for all PISIMPLE-processes P: If ©(P) is should-
convergent, then P is should-convergent. The simplest one is Ts(!) = TPS and t5(?) = R, as
above. The arguments are the same as for the previous case.

e T may-convergence equivalent, i.e. for all PISIMPLE-processes ‘P: process P is may-convergent
if, and only if T(P) is may-convergent. We found such a translation by using our tool. It refutes
all translations of size < 6, but it is unable to refute the following three translations of size 6:
(16(1),76(?)) = (PSPT,RT), (77(!),7(?)) = (ST,PPTR), and (13(!),13(?)) = (SPP,TTR). All
three translations preserve may-convergence, which can be easily shown, by observing that for
i=6,7,8: (Ti(!)fi(Pl) | Ti(?)fi(Pz) | T,'('P3),0,@) ﬁ) (‘C,'(Pl) | Ti(Pz) | Ti(P3),@,0)

We now show that tg is may-convergence equivalent. It suffices to show that T3 reflects may-
convergence: this can be done by an inductive argument. Consider a successful reduction se-
quence in the image (i.e. for w(P) for some PISIMPLE-process P), where only the prefixes
are shown and where the state of the MVars is omitted. If the reduction sequence is of the form
SPPITTR — PPI|TTR — PITTR — P| TR — TR — R — 0, then this can be simulated in



8 Impossible Translations

PISIMPLE by one reduction step. A special case is SPP1 | TTR| TTR — PP1 | TTR|ITTR —
PIUITTRITTR — P1ITRITTR — 1| TR TTR, where in PISIMPLE a successful state
can be reached by one reduction step, which corresponds to TR | TR. The only other case
is as follows: SPP|I|TTRITTR — PPITTRITTR — PITTRITTR — PITRITTR —
TRITTR — TR | TR, which deadlocks, and no further reduction step is possible, hence this
reduction sequence is not a witness for may-convergence in the image of 13. There are no other
cases, hence T3 is may-convergence reflecting.

Note that our tool Refute-Pi invalidates should-convergence preservation (and equivalence) in a large
search space. Thus an alternative proof of non-existence of modular translations may be trying to prove
that no should-convergence preserving translation exists, or no should-convergence equivalent transla-
tion. However, this may be harder than our approach.

5 The Pi-Calculus, Concurrent Haskell and their Relation to PISIMPLE
and CHSIMPLE

We will argue (in a sketchy way) that the nonexistence of a modular correct SRU-translation from
PISIMPLE into CHSIMPLE, also shows the nonexistence of modular correct translation from the pi-
calculus [5} [12] with Stop [[11]], into Concurrent Haskell [2| [7], where the translations can only use
global names for channels and M Vars.

We informally explain the pi-calculus and Concurrent Haskell such that our argument becomes plau-
sible: The main operation in the pi-calculus is communication: x(y).P | xu.P’ | P” permits an operation:
x is the channel-name where the two subprocesses x(y).P and xu.P’ can exchange data, which can only
be channel names. The result is P[u/y] | P’ | P”. Thus the channel name u is transported over x from
the second subprocess to the first one and the place holder y is replaced by « in P. There are also other
operations like replication of a subprocess, and manipulating name restriction using the operator v. We
added the constant process Stop that plays the role of a signal for success. Concurrent Haskell (CH) as
we use it, is a process calculus where the sequence of actions is done using monadic programming for
defining the sequence of actions, and the subprocesses are programmed mainly in usual Haskell.

PISIMPLE corresponds to a subset of the variant of the pi-calculus with Stop: Stop corresponds to
1; there is only one channel name, say x, and ! corresponds to the output-prefix Xy, and ? corresponds
to the input-prefix x(y), where y can be omitted, since only one fixed name will be transported over all
y. Since there is also only one name, we can omit it from the syntax, and thus the output Xy will be
represented by ! and the input x(y) by ?. The translations from the pi-calculus into Concurrent Haskell
that we investigated in [14] are only permitted to use one MVar for send and receive (i.e. for delivering
the message). In the simpler setting of this paper, only the information filled or empty is available (but
no message). Thus, we abbreviate those by the symbols S and R. There is also only one global check-
MVar, and writing and reading in CHSIMPLE are represented by P and 7. Note also that may-and
should-convergence are coincident by this transfer.

Thus the existence of a modular correct translation (satisfying the global condition) from the pi-
calculus with Stop into CH would imply a correct modular SRU-translation from PISIMPLE into
CHSIMPLE.
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6 Analyzing and Refuting Translation Patterns

6.1 Refuting Correctness of Translations

Now we explain how to proceed to refute a modular simple translation, where we will give only an
overview of our arguments which we did completely by a mixture of hand-made proofs and using our
tool Refute-Regex for lots of case analyses, and also the tool Refute-Pi for eliminating several short
translations.

The following is proved for a correct and modular translation 7:

e The number of P-s is the same as the number of 7-s in the multiset-union 7(!) U 7(?).

e 7(!) | 7(?) can be executed without any deadlock until the process is empty. Moreover, any par-
tial execution sequence of 7(!) | 7(?) can be completed, such that the process is empty after the
reduction sequence.

e There are no correct translations T with |t(!)| + |7(?)] < 10.
This is done by the tool Refute-Pi for checking translations from the synchronous pi-calculus with
Stop into CH see the remarks in Section[5]

6.2 Analyzing the Structure of Potentially Correct Translations

In many cases the so-called flat PISIMPLE processes are easy test examples. These are defined

as consisting only of subprocesses !k,?k for k € {0,1}. Small flat processes are Q; = !11?2,
Q= 101721, Q3= 11!'11?and Q4 = !l 7?1171, which are should-convergent. The processes
Q3,=!11...1!11? with n copies of !1, and Q4, = ?11 ... 1?1 |!, with n copies of ?1, are also

should-convergent, and are used as test-example processes in proofs.

In the following we fix the notation for s1,s,,r1, 7, for a given translation 7, which is always charac-
terized by 7(!) = 51Ss2 and 7(?) = r|Rr.

Now we explain how to proceed in the cases of translation patterns until all patterns are refuted.

A tedious case analysis shows the first result on the structure of the translation strings

Proposition 6.1. Let T be a correct SRU-translation for flat processes. Then s\ and ry do not contain the
pattern PP nor TT.

Proof (Sketch). Assuming a translation with pattern PP in s; can often be refuted from being correct by
trying the test-processes Q3 ,, which for sufficiently large n can force a deadlock. Similar for the pattern
TT and Q4.

Note that the cases for s; and r| are mostly symmetric but not completely, since the execution of R
is only possible after at least one execution of some S. O

A consequence of this proposition is that the prefixes s; and r| are sequences of the form ... PTPT ...
and can be written as one of the following four patterns: (PT)", (PT)"P, (TP)", (TP)"T for some n.

6.3 Further Restrictions for Prefixes

We will use regular expressions for representing infinitely many translation strings in CHSIMPLE using
the following ideas. We in general indicate whether a translation string ends, or may be continued. In
the latter case we use M for indicating that there may be “more”. We also use A for the empty string in
regular language patterns, repetitions using flat exponentiation and also | for alternatives.

Case analyses supported by our tool Refute-Regex permit to show the following properties:
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Lemma 6.2. There are no correct modular SRU-translations with s, € {(TP)"T,(PT)"P}.

Proof (sketchy explanation). This proof is done making case distinctions on the other parts where re-
stricted regular expressions are used to catch all cases. The regular expressions have repetitions, but not
nested ones. These repetitions permit implicit induction. O

Lemma 6.3. There are no correct modular SRU-translations with ry € {(TP)"T,(PT)"P}.

Proof (sketchy explanation). This proof is very similar to the proof of the previous lemma. However,
note that there is an asymmetry between sy, 1, hence there are some cases that are different. O

Example 6.4. The general idea of the tool is to look for deadlocks in the prefix, where exponents are
treated incompletely by an expansion, and if the M has to be expanded, then this is interpreted as un-
known. If the pattern failed completely, then it is signalled as unsolved. In a subcase, our simulator
Refute-Regex has as input (S(PT)*(A|T|TTM|P|PPM),(PT)*PR(A|PM|TM)), which will be expanded
first to 12 translation pairs. The subexpression S(PT)* is expanded into (S | SPT) and (PT)* into A | PT,
and then into 48 pairs. All cases are refuted but (STTM,PRPM). This is done using further detailing
and calls.

The result is that only the prefixes (TP)" and (PT)™ are possible for sy, r; of correct modular SRU-
translations. Hence there are four combinations of the prefixes. We will show in the following that also
these restricted translations can be refuted by further detailing n,m, s,, 1.

First we show two lemmas that cannot be proved directly using our simulator. We will exploit them
in submitting specialized patterns into the simulator Refute-Regex.

Lemma 6.5. Let T be a modular SRU-translation. Let ©(!) = (PT)"SPks3 and ©(?) = RT"r3, where
n>0, hk>2 h+k>5, s3 does not start with P, and r3 does not start with T. Then the translation is
not correct.

Lemma 6.6. Let (t(!),7(?)) be a translation pair of the form ((PT)"ST*M,RP"M), where n > 0, h,k >
2. Then the translation is not correct.

Using the two previous lemmas in combination with our tool, we are able to prove the following
two lemmas, where the first one refutes the first combination of the remaining patterns for s, 71, and the
second one refutes the other combinations.

Lemma 6.7. Let T be a correct modular SRU-translation. Then sy,ry of this translation are not of the
form (PT)". More details according to the structure of the arguments are:

1. In the case T(!) = (PT)"Ssy and ©(?) = (PT)™Rr», the string ry does not start with T.

2. In the case t(!) = (PT)"Ssy and ©(?) = (PT)™Rr,, the string ry is nonempty and does not start
with P.

Lemma 6.8. For a modular SRU-translation T, the translation patterns for the three cases
1. ©(!) = (PT)"Ssy and ©(?) = (TP)"Rr,
2. ©(1) = (TP)"Ssp and ©(?) = (PT)"Rr,
3. 7(!) = (TP)"Ss2 and ©(?) = (TP)"Rr,

do not contain any correct translations.

Proof (Sketch). This is proved by several case distinctions using regular expressions for the strings
s1,82,r1,r> and then using Refute-Regex. O
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Summarizing, Proposition [6.1]and Lemmas 6.3 and [6.8]imply the following theorem.
Theorem 6.9. There are no modular correct SRU-translations from PISIMPLE into CHSIMPLE.

Transferring this theorem to the issue of simple translations from the pi-calculus into CH, according
to the arguments in section 5| we obtain:
Corollary 6.10. There are no modular correct translations from the pi-calculus into CH, where the
translations uses only one check-MVar per channel.

7 Translations into Variants of CHSIMPLE

As a further question we consider very simple modular translations, i.e. we consider the case that the
translations are not permitted to use send- nor receive-actions. We call those translations PT-only trans-
lations, and hence it is only permitted to use P, 7" for the actions, and 0,1 for the last symbol of subpro-
cesses. We argue that there are no correct very simple translations from PISIMPLE into CHSIMPLE,
where the case analysis is also supported by our tool, to verify the cases and the case distinctions.

Theorem 7.1. There are no correct PT-only translations.

Proof (Sketch). This can be proved by a case analysis on the patterns for translations 7(!) and 7(?). First
it can be shown using a case analysis that for a correct PT-only translation, the strings 7(!) and 7(?) do
not contain an adjacent occurrence of P or T, i.e. PP or TT cannot occur. This implies that 7(!) and 7(?)
have alternating occurrences of P, T, hence are of the form (PT)", (PT)"P, (TP)", or (TP)"T for n > 0.
This however is not possible:

e The empty string is not possible, since then !1 (or ?1), which are must-divergent, would be trans-
lated into 1, which is should-convergent.

e The same holds for (PT)" and (PT)"P, since these strings alone can be completely executed.

e The remaining strings are (7P)", and (T P)"T. PT-only translations consisting only of these strings
for 7 and ! cannot be correct, since the translated processes are deadlocked where the co-image is
should-convergent. O

Remark 7.2. There is a correct modular SRU-translation from PISIMPLE — CHSIMPLE,, where
CHSIMPLE, is like CHSIMPLE, but with an extra copy of P, T; i.e. with P,T1,P>,T;, and P>,T»
also has an extra full/empty marker in the operational semantics. The correct modular translation is
14(!) = PISTo T\ and t4(?) = RP,. Since this is a simplified form of a correct SRU-translation of the
pi-calculus into CH, a correctness proof can be derived from the paper [14|] and Section |5\ An informal
argument is that there can only be one translated -operation run at the same time, since the operation
is protected by Py at the beginning and T at the end, which acts like a mutex to protect a critical section.
For the translation of !, i.e. RP,, there is no such protection, but if a translated sender has performed
S (in the sequence P\ST,T| and a translated receiver performs R, then no other sender or receiver can
perform any step, since the MVar corresponding to Py is full and the MVar corresponding to P, is empty).
Thus the only possible step in the whole system is to perform P> and thus the receiver completes its
operation.

Remark 7.3. There is a correct modular PT-only translation from PISIMPLE — CHSIMPLE3, where
CHSIMPLE; is defined analogously to CHSIMPLE) in Remark|[7.2] but with 3 copies of P,T. The correct
modular PT-only translation is ©(!) = PLP3T>T; and ©(?) = T3P,. Correctness can be derived from the
correctness result in Remark[7.2] since it replaces the send-MVar and S,R by the third check-MVar and
P, 1.
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Remark 7.4. One gap that remains to be analysed is whether there is a correct PT-only translation from
PISIMPLE — CHSIMPLE),. This is the same question as to whether there are correct translations from
PISIMPLE — CHSIMPLE where R,S may be used multiple times.

8 Conclusion

In this paper we solve an open question on the existence/nonexistence of correct modular translations
from the pi-calculus into CH, where the special question was on the number of MVars (synchronized
one-place buffers) that are required for every channel in the pi-calculus. The answer is that two are
sufficient, and that one is insufficient. It also establishes a sharp boundary between synchronous and
asynchronous communication in concurrent calculi.
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