
Model checking parameterized by the semantics in
Maude

Adrián Riesco

Universidad Complutense de Madrid, Madrid, Spain

FLOPS 2018, Nagoya
May 10th, 2018

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 1 / 41

Motivation

Motivation

• Model checking is an automatic technique for checking whether a property,
usually stated in modal logic, holds in a system.

• It starts from an initial state and exhaustively traverses all the reachable
states.

• It is a useful verification tool for concurrent systems.

• It helps detecting complex interleaving failures might be overlooked during
the implementation and testing phases.

• State-of-the-art model checkers usually check models of the systems.

• The translation from the real code to the model is an important issue.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 2 / 41

Motivation

Motivation

• Maude is a high-performance logical framework where the semantics of other
programming languages can be specified and analyzed.

• Maude modules correspond to specifications in rewriting logic.

• Rewriting logic allows specifiers to represent many models of concurrent and
distributed systems.

• This logic is an extension of membership equational logic (MEL).

• MEL supports, in addition to equations, the statement of membership axioms
characterizing the elements of a sort.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 3 / 41

Motivation

Motivation

• Rewriting logic extends membership equational logic by adding rewrite rules.

• These rules represent transitions in a concurrent system and can be
nondeterministic.

• An important feature of rewriting logic is that it is reflective

• It can be faithfully interpreted in terms of itself.

• This feature is efficiently implemented in Maude by means of the
META-LEVEL module.

• This allows us to use Maude modules and terms as usual data.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 4 / 41

Motivation

Motivation

• Defining the semantics of a programming language in Maude presents
advantages:

• Maude specifications are executable, so the specification gives the specifier an
interpreter of the semantics for free.

• Maude provides several analysis tools, including an LTL model checker.

• Maude has been used to specify the semantics of many languages, such as
CCS, Lotos, and Java.

• The K-Maude compiler is able to translate K specifications into Maude.

• It has eased the methodology to describe programming language semantics in
Maude, as shown for the C semantics.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 5 / 41

Motivation

Motivation

• In Maude, we can:
• Define the semantics of programming languages.
• Execute programs written in these languages.
• Model check systems.

• If we put all together, we can model check programs whose semantics has
been specified in Maude.

• However, we obtain a counterexample that refers to the semantics of the
language but not directly to the actual program under analysis.

• This extra layer of complexity makes the counterexample even more difficult
to understand in real applications.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 6 / 41

Motivation

Motivation

• We present two generic transformations for relating the counterexample
generated by the Maude model checker with the semantics of the language.

• These transformations can be applied to concurrent programs following either
a message-passing approach or a shared-memory approach.

• They:
• Reduce the counterexample.
• Focus on the main events depending on the semantics.
• Return a JSON-like result.

• Maude specifiers get, in addition to an interpreter for their language, a model
checker for the object language for free.

• They also get a model checker for real code for all those programming
languages that are already specified in Maude.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 7 / 41

Motivation

Outline

• We first present how these semantics can be specified in Maude.

• We introduce some simple examples for each semantics.

• We present the counterexamples for each program.

• We present the transformation for improving these counterexamples.

• We focus on what we are solving, details about how to do it are discussed in
the paper.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 8 / 41

Preliminaries Semantics in Maude

Syntax in Maude

• Given a grammar:

Ins ::= Var := Exp
| If Cond then Ins fi

| Ins ; Ins | . . .
Exp ::= Exp + Exp

| Exp ∗ Exp | . . .
Cond ::= true | false | . . .
. . .

• A parser is built by first defining sorts for each non-terminal symbol.

• Then, we must define an operator for each production rule.

• When a rule just maps symbols, subsorting is enough.

• Maude mixfix syntax allows us to define the real syntax of each particular
programming language.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 9 / 41

Preliminaries Semantics in Maude

Semantics in Maude

• Semantics are represented in Maude by means of conditional rewrite rules.

• Inference rules have the form:

P1 . . . Pn

state1 ⇒ state2
id

in the semantics, which indicates that state2 is reached from state1 if the
premises P1 . . . Pn hold

• The corresponding rewrite rules are written in Maude as:

crl [id] : state1 => state2 if P1 /\ ... /\ Pn .

where the conditions Pi can be either equalities or rewrite conditions.

• In general we have small step semantics, because programs might do not
terminate and the distributed nature of our process prevents the complete
execution of any of them.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 10 / 41

Preliminaries Shared-memory semantics

Shared-memory semantics

• We use a simple imperative language as running example.

• This language includes:
• Assignments X := E.
• Sequential composition INS ; INS’.
• Conditional statements if COND then INS fi.
• Loops while COND do INS od and repeat INS forever.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 11 / 41

Preliminaries Shared-memory semantics

Shared-memory semantics

• Processes executing programs written with this syntax are wrapped into
processes of the form [ID, Prog].

• PS is a set of processes put together by using P | P’.

• M is the memory, which consists of a set of pairs [V1, N1]...[Vn, Nn].

• The whole system is a pair of the form [PS, M]

• We assume all variables in the system are initialized beforehand.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 12 / 41

Preliminaries Shared-memory semantics

Shared-memory semantics

• The semantics of this system is defined by using rewrite rules for each
instruction.

• The rule asg executes an assignment in a process.

• The process I has Q := N as the first instruction.

• The memory contains the pair [Q, X].

• Then the instruction is executed by updating the value of the variable from X

to N:

rl [asg] : {[I, Q := N ; R] | S, [Q, X] M}

=> {[I, R] | S, [Q, N] M} .

• Note that this is a small-step semantics and hence N is completely evaluated.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 13 / 41

Preliminaries Shared-memory semantics

Shared-memory semantics

• Similarly, a repeat puts the body of the loop before repeating the
instruction:

rl [repeat] : {[I, repeat P forever ; R] | S, M}

=> {[I, P ; repeat P forever ; R] | S, M} .

• Using this syntax, we describe the verification of the Dekker algorithm.

• It ensures mutual exclusion by making each process actively wait for its turn.

• This turn is indicated by a variable that is only changed by the process
exiting the critical section.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 14 / 41

Preliminaries Shared-memory semantics

Shared-memory semantics

• We present a simplification for the second process.

• A bug has been introduced, hence violating the mutual exclusion property.

repeat

c1 := 1 ; *** It should be c2 := 1 ;

while c1 = 1 do

if turn = 1 then

c2 := 0 ;

while turn = 1 do skip od ;

c2 := 1

fi

od ;

cs2 := 1 ; *** start critical section for process 2

cs2 := 0 ; *** end critical section for process 2

turn := 1 ;

c2 := 0

forever

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 15 / 41

Preliminaries Shared-memory semantics

Shared-memory semantics

• Hence, given:
• The initial state {[1,prog1] | [2,prog2], [c1,0][c2,0][cs1,0][cs2,0]

[turn,1]}.
• An atomic formula enterCrit that holds when the variable given as argument

(either cs1 or cs2) has value 1 (i.e., the corresponding process is in the
critical section).

• A formula []∼ (enterCrit(cs1) /\ enterCrit(cs2)).

• We check whether mutual exclusion holds.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 16 / 41

Preliminaries Shared-memory semantics

Shared-memory semantics

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 17 / 41

Preliminaries Shared-memory semantics

Shared-memory semantics

• This counterexample is difficult to follow:
• As a minor issue, because of the presentation.
• As a major issue, because it gives information that it is useful from the Maude

point of view but not from the programming language point of view.

• For example, the user might not be interested in the steps involving the
repeat rule, since it does not modify the memory.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 18 / 41

Preliminaries Message-passing semantics

Message-passing semantics

• We consider for our message-passing semantics a simple functional language
that supports:

• let expressions.
• Conditional expressions
• Basic arithmetic and Boolean operations.
• to ID : M expressions for sending messages.
• receive expressions for receiving them.

• Processes have the form [ID | E | ML], with:
• ID a natural number identifying the process.
• E the expression being evaluated.
• ML a list of natural numbers standing for the messages received thus far.

• The whole system is a term of the form || PS, D ||.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 19 / 41

Preliminaries Message-passing semantics

Message-passing semantics

• We have rules of the form D, ro |- e => e’ for simplifying expressions,
given:

• A set of declarations D.
• An environment ro.
• Expressions e and e’.

• Rule Let1 shows how the expression e in a let expression is simplified.

• Rule Let2 applies the appropriate substitution when a value has been
obtained for the variable.

crl [Let1] : D,ro |- let x = e in e’ => let x = e’’ in e’

if D,ro |- e => e’’ .

rl [Let2] : D,ro |- let x = v in e’ => e’[v / x] .

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 20 / 41

Preliminaries Message-passing semantics

Message-passing semantics

• We use rules at the process level to model how messages are sent and
received.

• Rule send shows how a message is introduced into the list of received
messages of id’.

• Value 1 is used to indicate that the message was delivered correctly.

• Rule receive is in charge of consuming messages.

• It substitutes a receive expression by the first message in the list.

rl [send] :

|| [id | let x = (to id’ : n) in e | nl] [id’ | e’ | nl’] ps , D ||

=> || [id | let x = 1 in e | nl] [id’ | e’ | nl’ . n] ps , D || .

rl [receive] :

[id | let x = receive in e | n . nl]

=> [id | let x = n in e | nl] .

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 21 / 41

Preliminaries Message-passing semantics

Message-passing semantics

• We will use a simple synchronization protocol between a server and two
clients to illustrate how the model checker behaves in this case.

• We have the following initial state, with the server identified by 0 and the
clients by 1 and 2.

• The server receives the client identifiers as arguments.

• The clients receive the server identifier:

|| [0 | server(1, 2) | nilML]

[1 | client(0) | nilML]

[2 | client(0) | nilML], decs ||

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 22 / 41

Preliminaries Message-passing semantics

Message-passing semantics

• The declarations decs indicate that

1 The server sends a message (0) to the process identified by the first argument
(client 1).

2 Another message (1) to the process identified by the second argument (2).
3 Then waits for two messages and returns 1 if it receives 0 and 1 (in this order)

and 0 otherwise.
4 In turn, the client receives a message and just returns the same message to the

server.

server(x, y) <= let a = to x : 0

in let b = to y : 1

in let c = receive

in let d = receive

in If Equal(c, 0) And Equal(d, 1)

Then 1 Else 0 &

client(x) <= let y = receive

in let z = to x : y in z

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 23 / 41

Preliminaries Message-passing semantics

Message-passing semantics

• A näıve user might expect messages from clients to be received in the same
order as they were sent from the server.

• The final state would always be 1.

• We check it with the formula <> [] finalValue(0, 1).

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 24 / 41

Transformations Transformation for shared-memory semantics

Transformation for shared-memory semantics

• We rely in the following assumption: properties refer to memory states.

• We only need to keep those transitions in the original counterexample
performed by rules that modify the memory.

• For example, for the previous program we will only keep those steps involving
the asg rule.

• We consider this is a safe assumption, since in these systems the access to
the shared resources is critical.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 25 / 41

Transformations Transformation for shared-memory semantics

Transformation for shared-memory semantics

• We need some information from the user to transform the counterexample.

• We need the name of the sort used for processes.

• If processes have an id it can be indicated to make the transformed
counterexample easier to read.

• We also require the sorts for the memory.

• In this way we can identify the rules modifying it and keep them in the result.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 26 / 41

Transformations Transformation for shared-memory semantics

Transformation for shared-memory semantics

We display the following information:

• The process executed (field unit) when the rule is applied.

• If the process has an identifier it will be displayed in the id field.

• The whole system (field system) before the rewrite rule is applied.

• The state of the memory:
• The state before applying the rule (field memory-before).
• The state after applying it (field memory-after).

• The value of all atomic formulas before and after applying the rule (field
props).

• For each atomic proposition in the formula we display its name, arguments,
and how its value changed with the current rule.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 27 / 41

Transformations Transformation for shared-memory semantics

Transformation for shared-memory semantics

• In our example, we would start by introducing Memory as the sort used for
the memory.

• In turn, Process is the sort used for processes.

• We also indicate that the first argument for Process stands for the identifier.

Maude> (memory sorts Memory .)

Memory sorts introduced: Memory

Maude> (unit Process id 1 .)

Unit sort introduced: Process

It is identified by the 1 argument.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 28 / 41

Transformations Transformation for shared-memory semantics

Transformation for shared-memory semantics

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 29 / 41

Transformations Transformation for message-passing semantics

Transformation for message-passing semantics

• We designed two different ways to transform counterexamples for
message-passing semantics.

• The first one summarizes the actions performed by the processes during the
computation.

• The second one presents trace-like information with the main actions that
took place.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 30 / 41

Transformations Transformation for message-passing semantics

Transformation for message-passing semantics

• In both cases we require the user to introduce:
• The sort for the processes.
• The argument standing for its identifier, if it exists.
• The constructors for sending and consuming messages.

• The tool will use this information to identify those rules in charge of dealing
with messages and to locate the processes and their identifiers, as well as the
messages sent and consumed.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 31 / 41

Transformations Transformation for message-passing semantics

Transformation for message-passing semantics

• We denote as summary mode our first approach.

• This transformation presents the following information for each process:
• Its identifier (id field).
• Its final value (value field). Note that in some cases this value will not be a

normal form, since some functions (e.g. servers) might be non-terminating.
• The list of messages it has sent (sent field).
• The list of messages it has consumed (consumed field).

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 32 / 41

Transformations Transformation for message-passing semantics

Transformation for message-passing semantics

• We would indicate that processes are terms of sort Process and their
identifier is its first argument.

• We also state to : as the instruction for sending messages and receive for
the one consuming them.

Maude> (unit Process id 1 .)

Unit sort introduced: Process

It is identified by the 1 argument.

Maude> (msg creation to_:_ .)

Message creation operators introduced: to_:_

Maude> (msg consumption receive .)

Message consumption operators introduced: receive

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 33 / 41

Transformations Transformation for message-passing semantics

Transformation for message-passing semantics

Maude> (msg passing analysis modelCheck(init, <> [] finalValue(0, 1)) .)

{processes =[

{ id = 0,

value = [0 | 0 | nilML],

sent = [to 1 : 0, to 2 : 1],

consumed = [1, 0]},

{ id = 1,

value = [1 | 1 | nilML],

sent = [to 0 : 0],

consumed = [0]},

{ id = 2,

value = [2 | 1 | nilML],

sent = [to 0 : 0],

consumed = [1]}

]}

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 34 / 41

Transformations Transformation for message-passing semantics

Transformation for message-passing semantics

• It might be useful to understand the interleaving between different messages
and processes.

• We also present a trace-like counterexample, that we call trace mode.

• In this semantics is not clear the notion of step.

• We decided to focus on messages and display information when a message is
sent or consumed.

• However, we noticed that some properties might change some steps after a
message was sent or received.

• We include in the trace those steps where at least one atomic property
changes its truth value.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 35 / 41

Transformations Transformation for message-passing semantics

Transformation for message-passing semantics

• In this approach each step contains the following information:
• The identifier of the process that performed the action (id field).
• The action that took place (action field):

• msg-consumed,
• msg-sent, or
• prop-changed.

• The messages involved in the action (messages field).
• The state of all processes before and after applying the rule

(processes-before and processes-after fields).
• How the properties changed with the rewrite rule (props field).

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 36 / 41

Transformations Transformation for message-passing semantics

Transformation for message-passing semantics

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 37 / 41

Concluding remarks and ongoing work

Conclusions

• We have presented two transformations that allow specifiers to model check
real code and interpret the counterexamples obtained.

• These transformations are restricted to languages following either a
shared-memory or a message passing approach.

• They have been implemented using Maude metalevel.

• Semantics extracted from Maude literature (references in the paper).

• This tool sets the basis for further development in this direction.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 38 / 41

Concluding remarks and ongoing work

Ongoing work

• On the theoretical side, it is interesting to study how this approach relates to
similar approaches, like partial evaluation transformations.

• On the tool side, it would be interesting to define transformations for other
approaches.

• We are also interested in performing a pre-analysis of the semantics to infer
information about the language and hence save time and work to the user.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 39 / 41

Concluding remarks and ongoing work

Ongoing work

• It would be interesting to extend the tool with slicing.

• This technique keeps only those instructions related to the values reached by
a set of variable of interest, to reduce the size of Maude traces.

• Regarding efficiency, it is possible to reduce the number of states when model
checking Maude specifications.

• The transformation transforms rules into equations given some properties
hold.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 40 / 41

Concluding remarks and ongoing work

Ongoing work

• Some of these properties are the executability requirements, which can be
proved in some cases using the Maude Formal Environment.

• The last property invisibility, which requires that the transformed rules do not
change the truth value of the predicates.

• In our shared-memory model we would transform all those rules that do not
modify the memory.

• Further assumptions on the message-passing approach would be required to
ensure soundness.

• Overall, our long-term goal is to obtain a parameterized transformation for
real languages, in the same way as Java PathFinder works for Java.

• In this sense we will probably need to generalize other aspects of the tool, so
it deals with structures such as objects.

A. Riesco (UCM) Model checking parameterized by the semantics FLOPS 2018 41 / 41

	Motivation
	Preliminaries
	Semantics in Maude
	Shared-memory semantics
	Message-passing semantics

	Transformations
	Transformation for shared-memory semantics
	Transformation for message-passing semantics

	Concluding remarks and ongoing work

