
A Formal Proof Generator from Semi-formal Proof
Documents

Adrián Riesco1 Kazuhiro Ogata2,3

Facultad de Informática, Universidad Complutense de Madrid, Spain
ariesco@fdi.ucm.es

School of Information Science, JAIST, Japan

Research Center for Software Verification, JAIST, Japan
ogata@jaist.ac.jp

ICTAC 2017
Hanoi, Vietnam

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 1 / 23



Motivation

Motivation: CafeOBJ

CafeOBJ is a language for writing formal specifications and verifying
properties of them.

It implements equational logic by rewriting.

CafeOBJ specifications are executable, so the specifier can analyze how
different terms are reduced.

In particular, specifiers can write proof scores to prove properties on their
specifications.

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 2 / 23



Motivation

Motivation: Proof scores

Proof scores are proof outlines written in CafeOBJ.

If all proof scores return the expected value when executed (usually true),
then the corresponding theorems are proved.

This approach is known as “proving as programming.”

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 3 / 23



Motivation

Motivation: Proof scores

An important advantage of this approach is its flexibility: the syntax for
performing proofs is the same as for specifying systems.

However, we lose formality because CafeOBJ does not check proof scores in
any way.

For this reason, in this paper we present:
I An inductive theorem prover.
I A proof script generator that infers formal proofs from proof scores.

These tools extend the CafeInMaude compiler, implemented in Maude.

CafeInMaude takes advantage of Maude metalevel and stores a
metarepresentation of proof scores, so we can reason with them at the
metalevel.

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 4 / 23



Proof scores

Proving with proof scores

Let’s see how to verify part of a simple mutual exclusion protocol for two
processes.

We define the labels assigned to each process: that are rs and cs (remainder
section and critical section).

mod! LABEL {

[Label]

ops rs cs : -> Label {constr}

eq (rs = cs) = false .

}

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 5 / 23



Proof scores

Proving with proof scores

We define the constructors for the system (Sys).

init stands for the initial state.

enter1 and enter2 indicate that the first process and the second process
want to enter the critical section, respectively.

leave1 and leave2 indicate that they want to leave the critical section.

mod* 2P-MUTEX {

pr(LABEL)

[Sys]

-- any initial state

op init : -> Sys {constr}

-- transitions

ops enter1 enter2 : Sys -> Sys {constr}

ops leave1 leave2 : Sys -> Sys {constr}

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 6 / 23



Proof scores

Proving with proof scores

Observations on the system are obtained by using pc1 for the first process
and pc2 for the second one:

ops pc1 pc2 : Sys -> Label

The observations for the init state are both rs:

eq pc1(init) = rs .

eq pc2(init) = rs .

In the following we focus on the behavior when entering the critical section.

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 7 / 23



Proof scores

Proving with proof scores

We define c-enter1 and c-enter2 to check whether a process can enter the
critical section:

ops c-enter1 c-enter2 : Sys -> Bool

eq c-enter1(S) = (pc2(S) = rs) .

eq c-enter2(S) = (pc1(S) = rs) .

We use c-enter1 to define the behavior for enter1:

ceq pc1(enter1(S)) = cs if c-enter1(S) .

ceq pc2(enter1(S)) = rs if c-enter1(S) .

ceq enter1(S) = S if not c-enter1(S) .

The observations for enter2 are defined in the same way using c-enter2.

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 8 / 23



Proof scores

Proving with proof scores

We define an invariant stating that both processes cannot be at the critical
section at the same time:

op inv1 : Sys -> Bool

eq inv1(S) = not ((pc1(S) = cs) and (pc2(S) = cs)) .

How to prove this property?

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 9 / 23



Proof scores

Proving with proof scores

We first prove the invariant for the init state:

open 2P-MUTEX .

red inv1(init) .

close

Result: true

However, a similar proof score for inv1(enter1(s)) would fail:

open 2P-MUTEX .

op s : -> Sys .

red inv1(enter1(s)) .

close

Result: true xor(cs = pc1(enter1(s))) and cs = pc2(enter1(s)): Bool

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 10 / 23



Proof scores

Proving with proof scores

We need to enrich the proof score with a case splitting and an implication:

open 2P-MUTEX .

op s : -> Sys .

eq pc2(s) = rs .

red inv1(s) implies inv1(enter1(s)) .

close

What if
I We forget the complementary case ((pc2(s) = rs) = false)?
I We forget inductive cases (e.g. enter2)?
I We use the implication with any other function?

CafeOBJ does not check any of the above, so it is easy to miss a case.

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 11 / 23



Interactive theorem proving

Interactive theorem proving

The standard solution to this lack of formality is using an interactive theorem
prover.

We have developed the CafeInMaudeProofAssistant (CiMPA). It supports:
I Several equations as goals.
I Induction on constructors.
I Theorem of constants.
I Case splitting by true/false.
I Case splitting by constructors.
I Implication with induction hypotheses.
I Discharge goals by applying reduction.

CiMPA is implemented using Maude metalevel.

Each node of the proof tree contains the module where the equations for the
hypotheses and the case splitting thus far have been added.

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 12 / 23



Interactive theorem proving

Interactive theorem proving

Let’s see how to prove part of our protocol with CiMPA.

Goals are introduced by using the :goal command:

open 2P-MUTEX .

:goal{

eq [inv1 :nonexec] : inv1(S:Sys) = true .

}

We can apply induction on variables as:

:ind on (S:Sys)

:apply(si)

This command generates 5 new goals.

They follow their alphabetic ordering, so CiMPA starts by the subgoal for
enter1(S#Sys).

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 13 / 23



Interactive theorem proving

Interactive theorem proving

We ask now CiMPA to apply case splitting distinguishing whether the
equation eq pc2(S#Sys) = rs holds:

:def csb1 = :ctf {eq pc2(S#Sys) = rs .}

:apply(csb1)

Now we use an implication with the induction hypothesis as premise:

:imp [inv1] .

We have reached the leaf in the proof tree that corresponds to the proof
score for enter1.

We can discharge the goal by using equations:

:apply (rd)

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 14 / 23



CiMPG

CiMPG

We need to choose among flexibility in proof scores or formality in CiMPA.

Proof scores are more flexible, so it is easy to work with them.

They are only validated by a careful examination, so there are no guarantees
and it is more difficult to convince others.

We need a translation from proof scores to CiMPA proof scripts.

We have implemented this functionality in the CafeInMaudeProofGenerator
(CiMPG).

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 15 / 23



CiMPG

CiMPG

CiMPG provides annotations for identifying proof scores proof scripts for
CiMPA from them.

The restrictions imposed to these proof scores are:
I Reducing only goal-related terms.
I It ensures that no dummy goals are generated.
I Making sure that all environments import the same module.
I It is required to make sure that the property is being proved for the same

specification.
I Relying in functionalities that can be simulated by CiMPA commands.
I It ensures that the proof script can be generated.

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 16 / 23



CiMPG

CiMPG

These annotations are of the form :id(LAB):

open 2P-MUTEX .

:id(2p-mutex) --- CiMPG annotation

op s : -> Sys .

eq pc2(s) = rs .

red inv(s)implies inv(enter1(s)) .

close

The annotation :proof(LAB) is used to generate the script:

open 2P-MUTEX

:proof(2p-mutex)

close

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 17 / 23



CiMPG

CiMPG

CiMPG follows a metalevel algorithm to infer the proof.

It first infers the goal to be proved by generalizing the reduction commands
in the proof scores.

Then, it starts a loop that will modify the tree by
1 Looking for those proof scores related to the current goal.
2 Enriching the module.

It finds the appropriate proof scores by
1 Checking the goal in the proof score distinguish the same case as the current

node of the proof tree.
2 The splittings do not refer to different cases.

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 18 / 23



CiMPG

CiMPG

The module is enriched by:
1 Using induction.
2 Applying the theorem of constants.
3 Performing case splitting.
4 Modifying the goal (by using implications).

Once the module and the goal are equal to the ones in the proof score, the
goal can be discharged by using equations.

Note that the order for asserting cases is important, since an erroneous one
will generate modules do not correspond to those in the proof scores.

The loop finishes when no more proof scores can be used.

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 19 / 23



CiMPG

CiMPG

How does CiMPG help specifiers?

If we try to obtain the proof script from our original proof scores (where a
case for enter1) was missing CiMPG generates a postpone command.

If we ask CiMPA to show the state of the proof at that point it displays:

Next goal is 1-2: eq [inv :nonexec]: inv(enter1(S#Sys)) = true .

-- Assumptions:

eq pc2(S#Sys)= rs = false .

eq [inv :nonexec]: inv(S#Sys) = true .

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 20 / 23



Benchmarks

Benchmarks

The benchmarks performed thus far give us confidence in its applicability.

Name LOC Commands Time Comments

2p-mutex 50 + 70 28 470 ms Mutual exclusion protocol

TAS 50 + 230 76 2130 ms Spinlock

QLOCK 100 + 400 112 9510 ms Dijkstra’s binary semaphore

NSLPK 180 + 1100 284 48390 ms Authentication protocol NSLPK

Cloud 120 + 1700 383 96470 ms Cloud synchronization protocol

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 21 / 23



Concluding remarks and ongoing work Concluding remarks

Concluding remarks

We have presented two tools that combine different approaches to theorem
proving in CafeOBJ.

This combination is sound and, even though it is not complete, the examples
used thus far give us confidence in the technique.

In contrast to other approaches, which translate logics to take advantage of
different provers, CiMPG translates proofs.

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 22 / 23



Concluding remarks and ongoing work Ongoing work

Ongoing work

We are working in more commands for performing different kinds of case
splitting when dealing with sequences.

Once they are proved sound and added to CiMPA we plan to include them
into the CiMPG inference algorithm.

It would be also interesting to consider proof scores involving searches or
unification.

These extensions will allow us to analyze a new set of CafeOBJ proofs.

A. Riesco (DSIC) A Formal Proof Generator ICTAC 2017 23 / 23


	Motivation
	Proof scores
	Interactive theorem proving
	CiMPG
	Benchmarks
	Concluding remarks and ongoing work
	Concluding remarks
	Ongoing work


