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Preliminaries

Preliminaries

• With the rise of Big Data technologies, distributed stream processing systems
(SPS) have gained popularity in the last years.

• These systems are used to continuously process high volume streams of data.

• Applications range from anomaly detection, low latency social media data
aggregation, or the emergent IoT market.

• Although the first precedents of stream processing systems were developed in
the 90s, with the boom of SPS a plethora of new systems have arisen.

• They are characterized by a distributed architecture designed for horizontal
scaling.

• Among them Spark Streaming stands out as a particularly attractive option,
with a growing adoption in the industry.
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Preliminaries Spark

Spark

• Apache Spark is a fast and general engine for large-scale data processing.

• Programs are executed up to 100x faster than Hadoop MapReduce in
memory, or 10x faster on disk.

• This performance is obtained thanks to its capabilities for in memory
processing and caching for iterative algorithms.

• Spark provides a collection-based higher level API inspired in functional
programming.
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Preliminaries Spark

Spark

• It also presents a “batteries included” philosophy accelerates the development
of Big Data processing applications.

• These “batteries” include libraries for scalable machine learning, graph
processing, an SQL engine, and Spark Streaming.

• Spark programs can be written in Java, Scala, Python, or R.

• The core of Spark is a batch computing framework based on manipulating so
called Resilient Distributed Datasets (RDDs).

• RDDs provide a fault tolerant implementation of distributed immutable
multisets.

• Computations are defined as transformations on RDDs.
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Preliminaries Spark

Spark

• The set of predefined RDD transformations includes typical higher-order
functions like map, filter, etc.

• It also includes aggregations by key and joins for RDDs of key-value pairs.

• We can also use Spark actions, which allow us to collect results into the
program driver, or store them into an external data store.

• Actions are impure, so idempotent actions are recommended in order to
ensure a deterministic behavior even in the presence of recomputations.
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Preliminaries Spark

Spark

scala> val cs : RDD[Char] = sc.parallelize("let’s count some

letters", numSlices=3)

scala> cs.map{(_, 1)}.reduceByKey{_+_}.collect()

res4: Array[(Char, Int)] = Array((t,4), ( ,3), (l,2), (e,4), (u,1), (m,1),

(n,1), (r,1), (’,1), (s,3), (o,2), (c,1))

1 By using parallelize we obtain an RDD {let’s count some letters}
with 3 partitions.

2 Applying map we have {(l,1)(e,1)(t,1)(’,1)(s,1)( ,1)(c,1)(o,1)

(u,1)(n,1)(t,1)( ,1)(s,1)(o,1)...}
3 The function reduceByKey applies addition to the second component of

those pairs whose first component is the same.

4 The action collect allows us to print the final result.
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Preliminaries Spark Streaming

Spark Streaming

• These notions of transformations and actions are extended in Spark
Streaming from RDDs to DStreams (Discretized Streams).

• DStreams are series of RDDs corresponding to micro-batches.

• These batches are generated at a fixed rate according to the configured batch
interval.

• Spark Streaming is synchronous: given a collection of input and transformed
DStreams, all the batches for each DStream are generated at the same time
as the batch interval is met.

• Actions on DStreams are also periodic and are executed synchronously for
each micro batch.
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Preliminaries Spark Streaming

Spark Streaming

• We present the streaming version of the previous function.

object HelloSparkStreaming extends App {
val conf = new SparkConf().setAppName("HelloSparkStreaming")

.setMaster("local[5]")
val sc = new SparkContext(conf)
val batchInterval = Duration(100)
val ssc = new StreamingContext(sc, batchInterval)
val batches = "let’s count some letters, again and again"

.grouped(4)
val queue = new Queue[RDD[Char]]
queue ++= batches.map(sc.parallelize(_, numSlices = 3))
val css : DStream[Char] = ssc.queueStream(queue,

oneAtATime = true)
css.map{(_, 1)}.reduceByKey{_+_}.print()
ssc.start()
ssc.awaitTerminationOrTimeout(5000)
ssc.stop(stopSparkContext = true)

}

-----------------------
Time: 1449638784400 ms
-----------------------
(e,1)
(t,1)
(l,1)
(’,1)
...
-----------------------
Time: 1449638785300 ms
-----------------------
(i,1)
(a,2)
(g,1)
-----------------------
Time: 1449638785400 ms
-----------------------
(n,1)
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Preliminaries Spark Streaming

Spark Streaming

• List of 4 characters arrive in each batch interval.

• For each of these batches, we apply the previous count.

u ≡ {”let ′”} {”s co”} {”unt ”} . . . {”n”}

----------------------- -----------------------

Time: 1449638784400 ms ... Time: 1449638785400 ms

----------------------- -----------------------

(e,1) (n,1)

(t,1)

(l,1)

(’,1)
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Preliminaries Spark Streaming

In this talk

• We present sscheck, a test-case generator for Spark Streaming.

• We illustrate it with examples.

• We outline the underlying theoretical basis, although the details are in the
paper.

• Related work also waits for the interested listener in the paper.
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Property-based testing Introduction to property-based testing

Property-based testing

• In Property-based testing tests are stated as properties, which are first order
logic formulas that relate program inputs and outputs.

• PBT works as follows:
• Several inputs are generated randomly.
• The tool checks whether the outputs fulfill the formula.

• The main advantage is that the assertions are exercised against hundreds of
generated test cases, instead of against a single value like in xUnit frameworks
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Property-based testing ScalaCheck

Property-based testing for Core Spark

• Is it possible to use PBT with Core Spark?

• Is is just an adaptation of the existing framework (ScalaCheck).

• We generate random RDDs, possibly using the random generators for the
values contained in the RDDs.

• And formulas (usually in FOL) to check the results after applying the
functions under test.
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Property-based testing ScalaCheck

Property-based testing for Spark Streaming

• Properties for streams are not straightforward.

• We have to consider temporal relations:
• Events happen after/at the same time that other events.
• Events take a specific time to happen.

• We need a logic and a test-case generator that handles time.
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LTLss

LTLss

• LTLss is a variant of propositional lineal temporal logic where formulas
ϕ ∈ LTLss are defined as:

ϕ ::= ⊥ | > | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ |
Xϕ | ♦tϕ | �tϕ | ϕ Ut ϕ

• The operators in the logic are:

Next indicates that the property holds in the next state.
Eventually in the next n batches, which indicates that a property holds in

at least one of the next n batches.
Always for the next n batches, which indicates that a property holds

for the next n batches.
Until ϕ1 until ϕ2 in the next n batches, which indicates that, before

n batches have passed, ϕ2 must hold and, for all batches
before that, ϕ1 must hold.
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LTLss

LTLss : Logic for finite words

• The logic for finite words proves judgements u, i � ϕ : v for u ∈ Σ∗, i ∈ N+,
and v ∈ {>,⊥, ?}.

• A formula is evaluated to ? when the word (stream) under test is too short
for the formula.

• Given the word u ≡ {b} {b} {a, b} {a} .

• u � �4 (a ∨ b) : >, since either a or b is found in the first four states.

• u � �5 (a ∨ b) : ?, since the property holds until the word is consumed, but
the user required more steps.

• u � �2(b → ♦2 a) : ⊥, since in the first state we have b but we do not have
a until the 3rd state.

• The generator defined by the formula �2(b → ♦2 a) would randomly

generate words such as {b} {a, b} {a} , {a} {a} {a} , or

{a} {b} {a} , among others.
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LTLss

LTLss : Next form

• Thanks to timeouts, an interesting property of LTLss is that it is possible to
compute beforehand the length of the test to avoid inconclusive results.

• They also allow to express formula in next form.

• We say that a formula ψ ∈ LTLss is in next form iff. it is built by using the
following grammar:

ψ ::= ⊥ | > | p | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | ψ → ψ | X ψ
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LTLss

LTLss : Next form

• The next form allows us to evaluate formulas in a stepwise way.

• The basic idea for each step is to analyze atomic formulas and consume next
operators.

• Hence, we can easily generate new letters in each step.

• It also provides an efficient evaluation algorithm when using a lazy
implementation.
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LTLss

Letter simplification

Definition (Letter simplification)

Given a formula ψ in next form and a letter s ∈ Σ, the function ls(ψ, s) simplifies
ψ with s as follows:

• ls(>, s) = >.

• ls(⊥, s) = ⊥.

• ls(p, s) = p ∈ s.

• ls(¬ψ, s) = ¬ls(ψ).

• ls(ψ1 ∨ ψ2, s) = ls(ψ1) ∨ ls(ψ2).

• ls(ψ1 ∧ ψ2, s) = ls(ψ1) ∧ ls(ψ2).

• ls(ψ1 → ψ2, s) = ls(ψ1)→ ls(ψ2).

• ls(Xψ, s) = ψ.

Applying propositional logic when definite values are found, it is possible to use
this algorithm to obtain a value for the formula as soon as possible.
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LTLss

Example: Banned users

• We generate random DStreams of pairs (userId, boolean) where the
boolean value is false if the user has performed a malicious action at that
moment.

• The property specifies a transformation of that input DStream into an output
stream containing the user ids of banned users, which have been malicious at
some previous moment in time.

• For that we use:
• A generator that generates good batches, where no malicious behavior has

happened, until a bad batch for a particular malicious id occurs.
• After that we generate either good or bad batches.
• A property that states:

• We always get good inputs, until we ban the malicious id.
• Each time we find a malicious id, it is banned forever.
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LTLss

Example: Banned users

def checkExtractBannedUsersList(testSubject :

DStream[(UserId, Boolean)] => DStream[UserId]) = {

val batchSize = 20

val (headTimeout, tailTimeout, nestedTimeout) = (10, 10, 5)

val (badId, ids) = (15L, Gen.choose(1L, 50L))

val goodBatch = BatchGen.ofN(batchSize, ids.map((_, true)))

val badBatch = goodBatch + BatchGen.ofN(1, (badId, false))

val gen = BatchGen.until(goodBatch, badBatch, headTimeout) ++

BatchGen.always(Gen.oneOf(goodBatch, badBatch), tailTimeout)

type U = (RDD[(UserId, Boolean)], RDD[UserId])

val (inBatch, outBatch) = ((_ : U)._1, (_ : U)._2)

...

}
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LTLss

Example: Banned users

def checkExtractBannedUsersList(testSubject :

DStream[(UserId, Boolean)] => DStream[UserId]) = {

...

val formula : Formula[U] = {

val badInput : Formula[U] = at(inBatch)(_ should

existsRecord(_ == (badId, false)))

val allGoodInputs : Formula[U] = at(inBatch)(_ should

foreachRecord(_._2 == true))

val badIdBanned : Formula[U] = at(outBatch)(_ should

existsRecord(_ == badId))

( allGoodInputs until badIdBanned on headTimeout ) and

( always { badInput ==> (always(badIdBanned) during nestedTimeout) }

during tailTimeout )

}

forAllDStream(gen)(testSubject)(formula)

}
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LTLss

Example: Banned users

• Given the dummy implementation:

def statelessListBannedUsers(ds : DStream[(UserId, Boolean)]) :

DStream[UserId] = ds.map(_._1)

• The tool returns the following information:

-------------------------------------------

Time: 1452577112500 ms - InputDStream1 (20 records)

-------------------------------------------

(6,true)

(3,true)

...

-------------------------------------------

Time: 1452577113000 ms - InputDStream1 (20 records)

-------------------------------------------

(5,true)

(29,true)

...

16/01/11 21:38:33 WARN DStreamTLProperty: finished test case 0

with result False
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LTLss

Example: Twitter

def getHashtagsOk = {

type U = (RDD[Status], RDD[String])

val hashtagBatch = (_ : U)._2

val numBatches = 5

val possibleHashTags = List("#spark", "#scala", "#scalacheck")

val tweets = BatchGen.ofNtoM(5, 10,

TwitterGen.tweetWithHashtags(possibleHashTags))

val gen = BatchGen.always(tweets, numBatches)

val formula : Formula[U] = always {

at(hashtagBatch){ hashtags =>

hashtags.count > 0 and

( hashtags should

foreachRecord(possibleHashTags.contains(_)) ) }

} during numBatches

forAllDStream(gen)(TweetOps.getHashtags)(formula)

}.set(minTestsOk = 10).verbose
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LTLss

Example: Twitter
Time: 1452668590000 ms - InputDStream1 (7 records)

-------------------------------------------

Lmawirg khX kzuea #spark gvy qub

Xgo HBvne #spark q xmhm ozcmzwm ctymzbnq fhaf

btisyv #scalacheck Fv b auRsnep s e dc Nes yorYuj wd zLeab

lxo ucvhno le ikaZ #scalacheck

...

-------------------------------------------

Time: 1452668590000 ms

-------------------------------------------

#spark

#spark

#scalacheck

#scalacheck

#scala

#scala

#scalacheck

16/01/12 23:03:13 WARN DStreamTLProperty: finished test case 0

with result True
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Conclusions and Ongoing Work

Conclusions

• We have explored the idea of extending property-based testing with temporal
logic and its application to testing programs developed with a stream
processing system.

• We have decided to work with a concrete system, Spark Streaming, in our
prototype.

• In this way the tests are executed against the actual test subject and in a
context closer to the production environment where programs will be
executed.

• We think this could help with the adoption of the system by professional
programmers.

• For this reason we have used Specs2, a mature tool for behavior driven
development, for dealing with the difficulties of integrating our logic with
Spark and ScalaCheck.
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Conclusions and Ongoing Work

Future work

• There are many open lines of future work.

• Moving to FOL.

• We also consider developing versions for other languages with Spark API, in
particular Python.

• It would also be interesting supporting other SPS, like Apache Flink.

• Finally, we intend to explore other formalisms for expressing temporal and
cyclic behaviors.
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