
Temporal Random Testing for Spark Streaming

A. Riesco and J. Rodŕıguez-Hortalá

Universidad Complutense de Madrid, Madrid, Spain

12th International Conference on integrated Formal Methods, iFM 2016
June 3, 2016

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 1 / 26

Preliminaries

Preliminaries

• With the rise of Big Data technologies, distributed stream processing systems
(SPS) have gained popularity in the last years.

• These systems are used to continuously process high volume streams of data.

• Applications range from anomaly detection, low latency social media data
aggregation, or the emergent IoT market.

• Although the first precedents of stream processing systems were developed in
the 90s, with the boom of SPS a plethora of new systems have arisen.

• They are characterized by a distributed architecture designed for horizontal
scaling.

• Among them Spark Streaming stands out as a particularly attractive option,
with a growing adoption in the industry.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 2 / 26

Preliminaries Spark

Spark

• Apache Spark is a fast and general engine for large-scale data processing.

• Programs are executed up to 100x faster than Hadoop MapReduce in
memory, or 10x faster on disk.

• This performance is obtained thanks to its capabilities for in memory
processing and caching for iterative algorithms.

• Spark provides a collection-based higher level API inspired in functional
programming.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 3 / 26

Preliminaries Spark

Spark

• It also presents a “batteries included” philosophy accelerates the development
of Big Data processing applications.

• These “batteries” include libraries for scalable machine learning, graph
processing, an SQL engine, and Spark Streaming.

• Spark programs can be written in Java, Scala, Python, or R.

• The core of Spark is a batch computing framework based on manipulating so
called Resilient Distributed Datasets (RDDs).

• RDDs provide a fault tolerant implementation of distributed immutable
multisets.

• Computations are defined as transformations on RDDs.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 4 / 26

Preliminaries Spark

Spark

• The set of predefined RDD transformations includes typical higher-order
functions like map, filter, etc.

• It also includes aggregations by key and joins for RDDs of key-value pairs.

• We can also use Spark actions, which allow us to collect results into the
program driver, or store them into an external data store.

• Actions are impure, so idempotent actions are recommended in order to
ensure a deterministic behavior even in the presence of recomputations.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 5 / 26

Preliminaries Spark

Spark

scala> val cs : RDD[Char] = sc.parallelize("let’s count some

letters", numSlices=3)

scala> cs.map{(_, 1)}.reduceByKey{_+_}.collect()

res4: Array[(Char, Int)] = Array((t,4), (,3), (l,2), (e,4), (u,1), (m,1),

(n,1), (r,1), (’,1), (s,3), (o,2), (c,1))

1 By using parallelize we obtain an RDD {let’s count some letters}
with 3 partitions.

2 Applying map we have {(l,1)(e,1)(t,1)(’,1)(s,1)(,1)(c,1)(o,1)

(u,1)(n,1)(t,1)(,1)(s,1)(o,1)...}
3 The function reduceByKey applies addition to the second component of

those pairs whose first component is the same.

4 The action collect allows us to print the final result.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 6 / 26

Preliminaries Spark

Spark

scala> val cs : RDD[Char] = sc.parallelize("let’s count some

letters", numSlices=3)

scala> cs.map{(_, 1)}.reduceByKey{_+_}.collect()

res4: Array[(Char, Int)] = Array((t,4), (,3), (l,2), (e,4), (u,1), (m,1),

(n,1), (r,1), (’,1), (s,3), (o,2), (c,1))

1 By using parallelize we obtain an RDD {let’s count some letters}
with 3 partitions.

2 Applying map we have {(l,1)(e,1)(t,1)(’,1)(s,1)(,1)(c,1)(o,1)

(u,1)(n,1)(t,1)(,1)(s,1)(o,1)...}
3 The function reduceByKey applies addition to the second component of

those pairs whose first component is the same.

4 The action collect allows us to print the final result.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 6 / 26

Preliminaries Spark

Spark

scala> val cs : RDD[Char] = sc.parallelize("let’s count some

letters", numSlices=3)

scala> cs.map{(_, 1)}.reduceByKey{_+_}.collect()

res4: Array[(Char, Int)] = Array((t,4), (,3), (l,2), (e,4), (u,1), (m,1),

(n,1), (r,1), (’,1), (s,3), (o,2), (c,1))

1 By using parallelize we obtain an RDD {let’s count some letters}
with 3 partitions.

2 Applying map we have {(l,1)(e,1)(t,1)(’,1)(s,1)(,1)(c,1)(o,1)

(u,1)(n,1)(t,1)(,1)(s,1)(o,1)...}
3 The function reduceByKey applies addition to the second component of

those pairs whose first component is the same.

4 The action collect allows us to print the final result.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 6 / 26

Preliminaries Spark

Spark

scala> val cs : RDD[Char] = sc.parallelize("let’s count some

letters", numSlices=3)

scala> cs.map{(_, 1)}.reduceByKey{_+_}.collect()

res4: Array[(Char, Int)] = Array((t,4), (,3), (l,2), (e,4), (u,1), (m,1),

(n,1), (r,1), (’,1), (s,3), (o,2), (c,1))

1 By using parallelize we obtain an RDD {let’s count some letters}
with 3 partitions.

2 Applying map we have {(l,1)(e,1)(t,1)(’,1)(s,1)(,1)(c,1)(o,1)

(u,1)(n,1)(t,1)(,1)(s,1)(o,1)...}
3 The function reduceByKey applies addition to the second component of

those pairs whose first component is the same.

4 The action collect allows us to print the final result.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 6 / 26

Preliminaries Spark Streaming

Spark Streaming

• These notions of transformations and actions are extended in Spark
Streaming from RDDs to DStreams (Discretized Streams).

• DStreams are series of RDDs corresponding to micro-batches.

• These batches are generated at a fixed rate according to the configured batch
interval.

• Spark Streaming is synchronous: given a collection of input and transformed
DStreams, all the batches for each DStream are generated at the same time
as the batch interval is met.

• Actions on DStreams are also periodic and are executed synchronously for
each micro batch.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 7 / 26

Preliminaries Spark Streaming

Spark Streaming

• We present the streaming version of the previous function.

object HelloSparkStreaming extends App {
val conf = new SparkConf().setAppName("HelloSparkStreaming")

.setMaster("local[5]")
val sc = new SparkContext(conf)
val batchInterval = Duration(100)
val ssc = new StreamingContext(sc, batchInterval)
val batches = "let’s count some letters, again and again"

.grouped(4)
val queue = new Queue[RDD[Char]]
queue ++= batches.map(sc.parallelize(_, numSlices = 3))
val css : DStream[Char] = ssc.queueStream(queue,

oneAtATime = true)
css.map{(_, 1)}.reduceByKey{_+_}.print()
ssc.start()
ssc.awaitTerminationOrTimeout(5000)
ssc.stop(stopSparkContext = true)

}

Time: 1449638784400 ms

(e,1)
(t,1)
(l,1)
(’,1)
...

Time: 1449638785300 ms

(i,1)
(a,2)
(g,1)

Time: 1449638785400 ms

(n,1)

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 8 / 26

Preliminaries Spark Streaming

Spark Streaming

• List of 4 characters arrive in each batch interval.

• For each of these batches, we apply the previous count.

u ≡ {”let ′”} {”s co”} {”unt ”} . . . {”n”}

----------------------- -----------------------

Time: 1449638784400 ms ... Time: 1449638785400 ms

----------------------- -----------------------

(e,1) (n,1)

(t,1)

(l,1)

(’,1)

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 9 / 26

Preliminaries Spark Streaming

In this talk

• We present sscheck, a test-case generator for Spark Streaming.

• We illustrate it with examples.

• We outline the underlying theoretical basis, although the details are in the
paper.

• Related work also waits for the interested listener in the paper.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 10 / 26

Property-based testing Introduction to property-based testing

Property-based testing

• In Property-based testing tests are stated as properties, which are first order
logic formulas that relate program inputs and outputs.

• PBT works as follows:
• Several inputs are generated randomly.
• The tool checks whether the outputs fulfill the formula.

• The main advantage is that the assertions are exercised against hundreds of
generated test cases, instead of against a single value like in xUnit frameworks

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 11 / 26

Property-based testing ScalaCheck

Property-based testing for Core Spark

• Is it possible to use PBT with Core Spark?

• Is is just an adaptation of the existing framework (ScalaCheck).

• We generate random RDDs, possibly using the random generators for the
values contained in the RDDs.

• And formulas (usually in FOL) to check the results after applying the
functions under test.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 12 / 26

Property-based testing ScalaCheck

Property-based testing for Spark Streaming

• Properties for streams are not straightforward.

• We have to consider temporal relations:
• Events happen after/at the same time that other events.
• Events take a specific time to happen.

• We need a logic and a test-case generator that handles time.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 13 / 26

LTLss

LTLss

• LTLss is a variant of propositional lineal temporal logic where formulas
ϕ ∈ LTLss are defined as:

ϕ ::= ⊥ | > | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ |
Xϕ | ♦tϕ | �tϕ | ϕ Ut ϕ

• The operators in the logic are:

Next indicates that the property holds in the next state.
Eventually in the next n batches, which indicates that a property holds in

at least one of the next n batches.
Always for the next n batches, which indicates that a property holds

for the next n batches.
Until ϕ1 until ϕ2 in the next n batches, which indicates that, before

n batches have passed, ϕ2 must hold and, for all batches
before that, ϕ1 must hold.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 14 / 26

LTLss

LTLss : Logic for finite words

• The logic for finite words proves judgements u, i � ϕ : v for u ∈ Σ∗, i ∈ N+,
and v ∈ {>,⊥, ?}.

• A formula is evaluated to ? when the word (stream) under test is too short
for the formula.

• Given the word u ≡ {b} {b} {a, b} {a} .

• u � �4 (a ∨ b) : >, since either a or b is found in the first four states.

• u � �5 (a ∨ b) : ?, since the property holds until the word is consumed, but
the user required more steps.

• u � �2(b → ♦2 a) : ⊥, since in the first state we have b but we do not have
a until the 3rd state.

• The generator defined by the formula �2(b → ♦2 a) would randomly

generate words such as {b} {a, b} {a} , {a} {a} {a} , or

{a} {b} {a} , among others.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 15 / 26

LTLss

LTLss : Next form

• Thanks to timeouts, an interesting property of LTLss is that it is possible to
compute beforehand the length of the test to avoid inconclusive results.

• They also allow to express formula in next form.

• We say that a formula ψ ∈ LTLss is in next form iff. it is built by using the
following grammar:

ψ ::= ⊥ | > | p | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | ψ → ψ | X ψ

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 16 / 26

LTLss

LTLss : Next form

• The next form allows us to evaluate formulas in a stepwise way.

• The basic idea for each step is to analyze atomic formulas and consume next
operators.

• Hence, we can easily generate new letters in each step.

• It also provides an efficient evaluation algorithm when using a lazy
implementation.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 17 / 26

LTLss

Letter simplification

Definition (Letter simplification)

Given a formula ψ in next form and a letter s ∈ Σ, the function ls(ψ, s) simplifies
ψ with s as follows:

• ls(>, s) = >.

• ls(⊥, s) = ⊥.

• ls(p, s) = p ∈ s.

• ls(¬ψ, s) = ¬ls(ψ).

• ls(ψ1 ∨ ψ2, s) = ls(ψ1) ∨ ls(ψ2).

• ls(ψ1 ∧ ψ2, s) = ls(ψ1) ∧ ls(ψ2).

• ls(ψ1 → ψ2, s) = ls(ψ1)→ ls(ψ2).

• ls(Xψ, s) = ψ.

Applying propositional logic when definite values are found, it is possible to use
this algorithm to obtain a value for the formula as soon as possible.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 18 / 26

LTLss

Example: Banned users

• We generate random DStreams of pairs (userId, boolean) where the
boolean value is false if the user has performed a malicious action at that
moment.

• The property specifies a transformation of that input DStream into an output
stream containing the user ids of banned users, which have been malicious at
some previous moment in time.

• For that we use:
• A generator that generates good batches, where no malicious behavior has

happened, until a bad batch for a particular malicious id occurs.
• After that we generate either good or bad batches.
• A property that states:

• We always get good inputs, until we ban the malicious id.
• Each time we find a malicious id, it is banned forever.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 19 / 26

LTLss

Example: Banned users

def checkExtractBannedUsersList(testSubject :

DStream[(UserId, Boolean)] => DStream[UserId]) = {

val batchSize = 20

val (headTimeout, tailTimeout, nestedTimeout) = (10, 10, 5)

val (badId, ids) = (15L, Gen.choose(1L, 50L))

val goodBatch = BatchGen.ofN(batchSize, ids.map((_, true)))

val badBatch = goodBatch + BatchGen.ofN(1, (badId, false))

val gen = BatchGen.until(goodBatch, badBatch, headTimeout) ++

BatchGen.always(Gen.oneOf(goodBatch, badBatch), tailTimeout)

type U = (RDD[(UserId, Boolean)], RDD[UserId])

val (inBatch, outBatch) = ((_ : U)._1, (_ : U)._2)

...

}

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 20 / 26

LTLss

Example: Banned users

def checkExtractBannedUsersList(testSubject :

DStream[(UserId, Boolean)] => DStream[UserId]) = {

...

val formula : Formula[U] = {

val badInput : Formula[U] = at(inBatch)(_ should

existsRecord(_ == (badId, false)))

val allGoodInputs : Formula[U] = at(inBatch)(_ should

foreachRecord(_._2 == true))

val badIdBanned : Formula[U] = at(outBatch)(_ should

existsRecord(_ == badId))

(allGoodInputs until badIdBanned on headTimeout) and

(always { badInput ==> (always(badIdBanned) during nestedTimeout) }

during tailTimeout)

}

forAllDStream(gen)(testSubject)(formula)

}

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 21 / 26

LTLss

Example: Banned users

• Given the dummy implementation:

def statelessListBannedUsers(ds : DStream[(UserId, Boolean)]) :

DStream[UserId] = ds.map(_._1)

• The tool returns the following information:

Time: 1452577112500 ms - InputDStream1 (20 records)

(6,true)

(3,true)

...

Time: 1452577113000 ms - InputDStream1 (20 records)

(5,true)

(29,true)

...

16/01/11 21:38:33 WARN DStreamTLProperty: finished test case 0

with result False

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 22 / 26

LTLss

Example: Twitter

def getHashtagsOk = {

type U = (RDD[Status], RDD[String])

val hashtagBatch = (_ : U)._2

val numBatches = 5

val possibleHashTags = List("#spark", "#scala", "#scalacheck")

val tweets = BatchGen.ofNtoM(5, 10,

TwitterGen.tweetWithHashtags(possibleHashTags))

val gen = BatchGen.always(tweets, numBatches)

val formula : Formula[U] = always {

at(hashtagBatch){ hashtags =>

hashtags.count > 0 and

(hashtags should

foreachRecord(possibleHashTags.contains(_))) }

} during numBatches

forAllDStream(gen)(TweetOps.getHashtags)(formula)

}.set(minTestsOk = 10).verbose

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 23 / 26

LTLss

Example: Twitter
Time: 1452668590000 ms - InputDStream1 (7 records)

Lmawirg khX kzuea #spark gvy qub

Xgo HBvne #spark q xmhm ozcmzwm ctymzbnq fhaf

btisyv #scalacheck Fv b auRsnep s e dc Nes yorYuj wd zLeab

lxo ucvhno le ikaZ #scalacheck

...

Time: 1452668590000 ms

#spark

#spark

#scalacheck

#scalacheck

#scala

#scala

#scalacheck

16/01/12 23:03:13 WARN DStreamTLProperty: finished test case 0

with result True

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 24 / 26

Conclusions and Ongoing Work

Conclusions

• We have explored the idea of extending property-based testing with temporal
logic and its application to testing programs developed with a stream
processing system.

• We have decided to work with a concrete system, Spark Streaming, in our
prototype.

• In this way the tests are executed against the actual test subject and in a
context closer to the production environment where programs will be
executed.

• We think this could help with the adoption of the system by professional
programmers.

• For this reason we have used Specs2, a mature tool for behavior driven
development, for dealing with the difficulties of integrating our logic with
Spark and ScalaCheck.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 25 / 26

Conclusions and Ongoing Work

Future work

• There are many open lines of future work.

• Moving to FOL.

• We also consider developing versions for other languages with Spark API, in
particular Python.

• It would also be interesting supporting other SPS, like Apache Flink.

• Finally, we intend to explore other formalisms for expressing temporal and
cyclic behaviors.

A. Riesco (UCM) Temporal Random Testing for Spark Streaming iFM 2016 26 / 26

	Preliminaries
	Spark
	Spark Streaming

	Property-based testing
	Introduction to property-based testing
	ScalaCheck

	LTLss
	Conclusions and Ongoing Work

