
Introducing the ITP Tool: a Tutorial�

Manuel Clavel
(Universidad Complutense de Madrid, Spain

clavel@sip.ucm.es)

Miguel Palomino
(Universidad Complutense de Madrid, Spain

miguelpt@sip.ucm.es)

Adrián Riesco
(Universidad Complutense de Madrid, Spain

ariesco@fdi.ucm.es)

Abstract: We present a tutorial of the ITP tool, a rewriting-based theorem prover
that can be used to prove inductive properties of membership equational specifications.
We also introduce membership equational logic as a formal language particularly ad-
equate for specifying and verifying semantic data structures, such as ordered lists,
binary search trees, priority queues, and powerlists. The ITP tool is a Maude program
that makes extensive use of the reflective capabilities of this system. In fact, rewriting-
based proof simplification steps are directly executed by the powerful underlying Maude
rewriting engine. The ITP tool is currently available as a web-based application that
includes a module editor, a formula editor, and a command editor. These editors allow
users to create and modify their specifications, to formalize properties about them, and
to guide their proofs by filling and submitting web forms.

Key Words: inductive theorem proving, semantic data structures, membership equa-
tional logic, ITP

Category: F.3.1, F.4.2

1 Introduction

The ITP tool is a theorem prover that can be used to prove properties of mem-
bership equational specifications, as well as incompletely specified algorithms
on them, as a way to support incremental development of specifications. As an
introduction to the ITP tutorial, we recall in Section 1.1 the basic concepts un-
derlying the equational specification of data structures; then, in Section 1.2 we
highlight the advanced concepts provided by membership equational logic to
specify semantic data structures; finally, in Section 1.3, we discuss the models of
the membership equational specifications with respect to which the properties
are verified in the ITP tool.
� Research supported by Spanish MEC Projects TIC2003-01000, TIN2005-09207-C03-

03, and by Comunidad de Madrid Program S-0505/TIC/0407.

Journal of Universal Computer Science, vol. 12, no. 11 (2006), 1618-1650
submitted: 1/5/06, accepted: 15/10/06, appeared: 28/11/06 © J.UCS



1.1 Specification and Verification of Data Structures

The equational specification of data structures starts with the declaration of
an alphabet of symbols with which to build terms to represent the elements
of the data structure. These symbols are called the constructor symbols, and
(ground) constructor-terms are those built only with constructor symbols. Since
non-trivial data structures contain data of different types, contructors are typi-
cally declared along with the sorts of their arguments and of their results.

Example 1. Consider an equational specification of lists of integers. To represent
lists of integers as terms, we can declare the constant symbol nil and the binary
operator cons as constructors; the constant nil is a term of sort List, and the
operator cons takes terms of sort Int and List and builds terms of sort List.
For the sake of the example, we suppose that . . ., -1, 0, 1, . . . have been also
declared as constant symbols of the sort Int. In this specification, the empty list
[] is represented by the term nil and the list [1, 2] is represented by the term
cons(1, cons(2, nil)).

Interesting data structures provide operations over elements of the data type.
Their equational specifications include the declaration of the symbols that rep-
resent these operations, along with their definitions. The union of the alphabets
of constructor symbols and of operation symbols is called the signature of the
specification. The clauses that define the operations of a data structure are called
the axioms of the specification.

Example 2. Consider an equational specification of lists of integers with an op-
eration that returns the concatenation of two lists. To represent this operation
we can add to the alphabet in Example 1 a binary symbol append and introduce
in the specification the following equations:

∀{L}(append(nil, L) = L)

∀{I, L, L′}(append(cons(I, L), L′) = cons(I, append(L, L′))) ,

where I is a variable over the sort Int, and L and L′ are variables over the sort
List.

Equational specifications have many possible interpretations or models, which
are first-order structures M in which

– sorts s are interpreted as sets sM;

– constants c of the sort s are interpreted as elements cM in the set sM; and

– operators f are interpreted as functions fM over the elements in the sets
interpreting the sorts of their arguments, and which return elements in the
sets interpreting the sorts of their results.

1619Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



While the different interpretations have in common that they satisfy the
axioms included in the specification and their logical consequences, they are
different because each one can satisfy other properties, which cannot be derived
from those axioms using the inference rules of equational logic.

Example 3. All possible interpretations of the specification of lists of integers
introduced in Example 2 satisfy that

∀{I, L}(append(cons(I, nil), nil) = cons(I, nil)) ,

where I is a variable over the sort Int. However, some of them may satisfy that

append(append(L, L′), L′′) = append(L, append(L′, L′′)) , (1)

that is, that the operation append is associative, while others may satisfy its
negation

¬(append(append(L, L′), L′′) = append(L, append(L′, L′′))) ,

where L, L′ and L′′ are variables over the sort List.

Verifying an equational specification of a data structure consists in proving
that the required properties are satisfied at least by the “interesting” models.
Consequently, in the formulation of a verification task, it has to be clearly stated
which are those models that should satisfy the property.

Example 4. The inductive models of the specification introduced in Example 2
certainly verify (1). In these models the sets interpreting the sorts are inductively
generated by the constructors. For example, M is an inductive model for this
specification if and only if ListM (and, analogously, IntM) is defined as follows:

– nilM ∈ ListM.

– consM(I, L) ∈ ListM if I ∈ IntM and L ∈ ListM.

– Nothing else belongs to ListM.

1.2 Membership Equational Logic

A distinguishing feature of the specification of semantic data structures (such
as ordered lists, binary search trees, priority queues, and powerlists) from the
specifications of other data structures (such as lists, sets, queues, trees, etc.) is
that the constructors for semantic data structures are partial, that is, ground
constructor-terms not necessarily represent legal data.

1620 Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



Example 5. Consider now an equational specification of ordered lists of integers.
As in Example 1, we can use cons and nil as constructors to represent lists;
notice, however, that

– cons(1, nil) is both a list and an ordered list; and

– cons(2, cons(1, nil)) is a list, but not an ordered list.

That is, cons and nil are only partial for ordered lists.

Membership equational logic (MEL) is an expressive version of equational
logic; a full account of its syntax and semantics can be found in [Meseguer, 1998,
Bouhoula et al., 2000]. MEL has been designed to ease the task of specifying
semantic data structures. To handle partiality, MEL introduces the distinction
between kinds and sorts, which must be always associated to kinds. The idea is
that kinds can include “illegal” terms, while sorts only include “legal” terms.

Example 6. Let us specify ordered lists of integers in MEL. We first declare
a kind Bool? with an associated sort Bool (for legal Boolean values), a kind
Int? with an associated sort Int (for legal integers), and a kind List? with
three associated sorts, NeList (for legal non-empty lists), List (for legal lists)
and OList (for legal ordered lists). Then, we declare that nil is a constant
symbol of the kind List?, and that cons is a binary operator symbol that
takes terms of the kind Int? and terms of the kind List? and constructs terms
of the kind List?. For the sake of the example, we suppose that true and
false have been declared as constant symbols of the kind Bool?, and we also
suppose that . . ., -1, 0, 1, . . . have been declared as constant symbols of the
kind Int?, along with the standard arithmetic operations and relations (which
are represented as Boolean functions). This signature can be declared in the Diet
Maude specification language as follows:

kind Bool? = [Bool] .

kind Int? = [Int] .

kind List? = [NeList, List, OList] .

op nil : -> List? .

op cons : Int? List? -> List? .

Diet Maude is a syntactic sugar-free dialect of Maude [Clavel et al., 2005], a
high-performance interpreter for MEL (and its rewriting logic extension). In
Diet Maude, variables range over kinds (whose names must be included in the
variables’ names), and kinds must be explicitly declared with their associated
sorts. In the above signature, cons(1, nil), and cons(2, cons(1, nil)) are
well-formed terms since they have a kind, namely, List?. But they do not have
a sort, since we have not defined yet which terms represent legal non-empty lists,
lists, and/or ordered lists.

1621Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



To define which well-formed terms have a sort (and not only a kind), MEL
provides (conditional) membership equational axioms. A membership equational
axiom is a universally quantified membership assertion,

∀{x}(t(x) : s),

where t(x) is a pattern (that is, a well-formed term with variables in x), and s

is a sort (which must be associated to the kind of the pattern). As an axiom, it
declares that any well-formed term that is an instance of the pattern t(x) has
the sort s. Membership equational axioms can also be conditional,

∀{x}
((∧

i

wi(x) : si ∧
∧
j

uj(x) = vj(x)
)

→ t(x) : s
)
,

where conditions are conjunctions of equalities and membership assertions. A
membership assertion wi(x) : si in the condition of a conditional membership
axiom restricts the instances of t(x) that have the sort s to be (a subset of) those
for which the corresponding instances of wi(x) have the sort si. An equality
uj(x) = vj(x) in a conditional membership axiom behaves like an equality in a
conditional equation in equational logic.

Example 7. Consider the signature introduced in Example 6 to represent ordered
lists of integers. We can define the terms that represent legal non-empty lists,
legal lists, and legal ordered lists using the following membership axioms. Let
I, I ′ be variables of the kind Int? and let L be a variable of the kind List?.

– A term of the form cons(I, L) represents a legal non-empty list if I represents
a legal integer and L represents a legal list:

∀{I, L}((I : Int ∧ L : List) → cons(I, L) : NeList) .

– The constant nil represents a legal list.

nil : List .

– A term that represents a legal non-empty list represents a legal list as well:

∀{L}(L : NeList → L : List) .

– The constant nil represents a legal ordered list.

nil : OList .

– A term of the form cons(I, nil) represents a legal ordered list if I represents
a legal integer:

∀{I}(I : Int → cons(I, nil) : OList) .

1622 Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



– A term of the form cons(I, cons(I ′, L)) represents a legal ordered list if I and
I ′ represent legal integers, L represents a legal list, cons(I ′, L) represents a
legal ordered list, and I ≤ I ′:

∀{I, I ′, L}(
(I : Int ∧ I ′ : Int ∧ L : List∧ cons(I ′, L) : OList∧ I ≤ I ′ = true)

→ cons(I, cons(I ′, L)) : OList) .

The above membership axioms can be declared in Diet Maude as follows:

cmb cons(I:Int?, L:List?): NeList

if I:Int? : Int /\ L:List? : List .

mb nil : List .

cmb L:List? : List if L:List? : NeList .

mb nil : OList .

cmb cons(I:Int?, nil): OList if I:Int? : Int .

cmb cons(I:Int?, cons(I’:Int?, L:List?)): OList

if I:Int? : Int /\ I’:Int? : Int /\ L:List? : List /\

cons(I’:Int?, L:List?): OList /\ I:Int? <= I’:Int? = true .

In this context, the term cons(1, nil) has sorts NeList, List and OList, while
the term cons(2, cons(1, nil)) has only sorts NeList and List. That is, the
term cons(1, nil) represents both a (non-empty) legal list and a legal ordered
list, while the term cons(2, cons(1, nil)) represents a (non-empty) legal list
but not a legal ordered list.

To define the value of the operations over the elements of the data type, MEL
provides (conditional) equational axioms. An equational axiom is a universally
quantified equality,

∀{x}(t(x) = t′(x)) ,

where t(x) and t′(x) are patterns (which must have the same kind): t(x) is called
the left-hand side, which typically consists of a term representing an operation
call, and t′(x) the right-hand side of the equation. As an axiom, it declares that
any well-formed term that is an instance of the left-hand side is equal to the
corresponding instance of the right-hand side. Equational axioms can also be
conditional,

∀{x}
((∧

i

wi(x) : si ∧
∧
j

uj(x) = vj(x)
)

→ t(x) = t′(x)
)

,

where conditions are conjunctions of equalities and membership assertions.

1623Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



Example 8. Consider the operation that returns the tail of a list of integers.
We first extend the signature introduced in Example 7 with a unary operation
symbol tail that takes terms of the kind List? and returns terms also of the
kind List?. Then, we define that

– the tail of a list constructed by cons-ing an integer to a list is equal to this
list:

∀{I, L}(tail(cons(I, L)) = L) ,

where I is a variable of the kind Int? and L is a variable of the kind List?.

This equational axiom can be declared in Diet Maude as follows:

eq tail(cons(I:Int?, L:List?)) = L:List? .

Finally, MEL specifications have many possible interpretations or models,
which are first-order structures M in which

– kinds k are interpreted as sets kM;

– sorts s of the kind k are interpreted as subsets sM ⊆ kM;

– constants c of the kind k are interpreted as elements cM in the set kM; and

– operators f are interpreted as functions fM over the elements in the sets
interpreting the kinds of their arguments, and which return elements in the
sets interpreting the kinds of their results.

– sort-membership is interpreted as membership in the set interpreting the
sort.

The different interpretations have in common that they satisfy the axioms in-
cluded in the specification and their logical consequences. To prove that a prop-
erty is a logical consequence we can use the MEL inference system presented in
[Meseguer, 1998]. This is a sound and complete calculus that extends equational
logic with rules for proving memberships. In particular, to prove that a term t

has a sort s we can

– check that t is an instance of (the pattern of) a membership axiom and, in
the case of a conditional membership, prove that the conditions are fulfilled,
or

– prove that t is equal to another term t′ and that t′ has the sort s.

Example 9. Consider the specification of ordered lists with the tail operation
introduced in Example 8. We can prove that

∀{I, L}((I : Int ∧ L : List) → tail(cons(I, L)) : List) (2)

1624 Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



since, for any terms I and L, tail(cons(I, L)) is equal to L and L is, by as-
sumption, of the sort List. Thus, by soundness of the calculus, (2) is a logical
consequence and it holds in all the models of the specification.

1.3 The ITP Tool

The ITP tool is a theorem-proving assistant. It can be used to interactively verify
properties of MEL specifications with respect to its ITP-models. An ITP-model
is a model of the specification such that:

– It is an inductive model, in the sense that the sets interpreting the sorts in
the model are inductively generated by the membership axioms defining the
sorts in the specification. That is, sorts have no junk [Goguen et al., 1978].

– It is a standard model of the theory of arithmetic for the integer numbers.

Example 10. Let M be a model of the specification of ordered lists introduced
in Example 7. Let us suppose that M is also a standard model for the theory
of arithmetic, with IntM being the set of integer numbers Z, and <=M the in-
equality relation ≤. Then, NeListM is inductively generated by the membership
axioms defining NeList if and only if NeListM is defined as follows:

– consM(I, L) ∈ NeListM if I ∈ Z and L ∈ ListM.

– Nothing else belongs to NeListM.

Similarly, ListM is inductively generated if and only if:

– nilM ∈ ListM.

– L ∈ ListM if L ∈ NeListM.

– Nothing else belongs to ListM.

Finally, OListM is inductively generated if and only if:

– nilM ∈ OListM.

– consM(I, nilM) ∈ OListM if I ∈ Z.

– consM(I, consM(I ′, L)) ∈ OListM if I, I ′ ∈ Z, L ∈ ListM, consM(I ′, L) ∈
OListM, and I ≤ I ′.

– Nothing else belongs to OListM.

1625Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



By default, the ITP tool assumes that the sets interpreting the sorts are
also freely generated [Enderton, 2000], that is, two different ground constructor-
terms always denote different elements. However, users can “customize” the tool
for verifying properties about models that do not satisfy the “freeness” require-
ment; of course, some of the commands, whose soundness is based on this re-
quirement, would not be then available.

An important feature of the proposed semantic framework is that it supports
proofs by complete induction over the natural numbers and by structural induc-
tion. Another interesting feature is that incompletely specified operations can
be reasoned about to support incrementality. Unlike in most reasoning systems
including RRL [Kapur and Zhang, 1995] and ACL2 [Kaufmann et al., 2000], op-
erations do not have to be completely specified before inductive properties about
them can be verified mechanically.

Example 11. Consider an extension of the specification of ordered lists intro-
duced in Example 7 that includes an operation length to calculate the length of
a list. For the sake of the example, suppose that length is incompletely specified.

op length : List? -> Int? .

eq length(cons(I:Int?, L:List?)) = 1 + length(L:List?) .

Despite the fact that the length of an empty list is not defined, the following
property can be verified:

(∀{L}(L : List → length(L) : Int) ∧ 0 <= length(nil) = true)

→ ∀{L}(L : List → length(L) >= 0 = true) , (3)

where L is a variable of the kind List?. The proof goes as follows. Assume that

∀{L}(L : List → length(L) : Int) (4)

and that
0 <= length(nil) = true . (5)

Then, by induction on L,

∀{L}(L : List → length(L) >= 0 = true)

holds if
length(nil) >= 0 = true (6)

holds and, for any term L in the kind List?,

∀{I}(I : Int ∧ L : List → length(cons(I, L)) >= 0 = true) (7)

holds whenever
length(L) >=0 = true (8)

1626 Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



does. The base case (6) is a consequence, in the theory of arithmetic, of (4) and
(5). The inductive case (7) can be reduced to proving that

1 + length(L) >= 0 = true (9)

holds since, for any terms I and L of the kinds, respectively, Int? and List?,

(length(cons(I, L)) >= 0) = (1 + length(L) >= 0)

is a consequence of the axiom defining length. But, (9) is a consequence, in the
theory of arithmetic, of (4) and (8).

Finally, notice that the class of the ITP-models includes the initial model of
the specification,1 but possibly also many other models. This “tolerance” pro-
vides the extra freedom that is needed to inductively reason about incompletely
specified operations.

Example 12. That the initial model of the specification of ordered lists intro-
duced in Example 11 satisfies property (3) can be alternatively proved by notic-
ing that

0 <= length(nil) = true

does not hold in the initial model. In fact, it also satisfies

(∀{L}(L : List → length(L) : Int) ∧ 0 > length(nil) = true)

→ ∀{L}(L : List → length(L) >= 0 = true) (10)

simply because, again,
0 > length(nil) = true (11)

does not hold in the initial model. However, (10) cannot be verified, as expected,
in the class of the ITP-models since, for those in which (11) holds, then

length(nil) >= 0 = true

cannot be true.

2 Getting started

The ITP tool is a Maude program. It comprises over 8.000 lines of Maude code
that make extensive use of the reflective capabilities of the system. In fact,
rewriting-based proof simplification steps are directly executed by the powerful
1 In the initial model [Meseguer, 1998], sorts are interpreted as the smallest sets satis-

fying the axioms in the theory, and equality is interpreted as the smallest congruence
satisfying those axioms.

1627Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



underlying Maude rewriting engine, by transforming the Diet Maude specifica-
tions into Maude admissible modules.

The ITP tool is currently available as a web-based application that includes
a module editor, a formula editor, and a command editor. These editors allow
users to create and modify their specifications, to formalize properties about
them, and to guide the proofs by filling and submitting web forms. The web
application also offers a goal viewer, a script viewer, and a log viewer. They
generate web pages that allow the user to check, print, and save the current
state of a proof, the commands that have guided it, and the logs generated in
the process by the Maude system.

The ITP Web tool can be executed in two different ways: either as a remote or
as a local application. It comprises 2.000 lines of Maude code, 3.000 lines of JSP,
and 7.500 lines of Java. The only requirements to run the remote application
are a computer with an Internet connection and JDK 1.4.1 installed (it should
be available on most computers), and a browser. The remote application can be
accessed at the URL http://maude.sip.ucm.es:8080/webitp/, which displays
the initial window shown in Figure 1. Running the ITP tool as a local application
is more demanding. In addition to JDK 1.4.1 and a browser, it is also necessary
to have the Tomcat server installed, as well as Maude and the files containing
the specification of the ITP. The concrete details of the files needed and the
steps to follow to complete the installation can be found at http://maude.sip.
ucm.es/itp/.

2.1 Introducing a module

The screen captured in Figure 2 shows the ITP Web main menu: from it, Diet
Maude modules can be created (create button) and edited (open button), and
ITP scripts can be loaded (load). To give a taste of the tool, let us create the
module corresponding to the specification of lists of integers introduced in Ex-
ample 2 which contained an operation append to concatenate two lists.

To create a module from scratch, we push the create button, which takes us to
the module editor whose appearance is shown in Figure 3. A new module tmp-id
is opened which, by default, contains kinds for quoted identifiers, Booleans,
integers (with the standard operations), and strings. The kind Int? contains the
sorts Zero (for the number 0), NzNat (for natural numbers different from 0),
Nat (for natural numbers), NzInt (for integer numbers different from 0), and
Int (for integer numbers). There are three main actions that can be executed
from the module editor: modifying (modify column), inserting (insert column),
and deleting (delete column) an element from the module.

To insert a kind, sort, operator, membership, or equation, we have to select
the corresponding option from the drop-down list below insert and then push
select. The next step depends on the selection. For inserting a kind, we only need

1628 Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



Figure 1: Initial screen of the ITP Web

to write its name; for inserting a sort, in addition to its name, the kind to which it
belongs has to be specified: this is done by selecting one of the currently declared
kinds from a drop-down list which is dynamically updated. The insertion of a
new operator is guided by the menu in Figure 4. The operator’s name is written
below operator. Then, the types of the arguments are selected from a drop-down
list which contains the available kinds, and inserted (or removed) by pressing
add (delete). Finally, the type of the result is specified in the same manner using
the list below result. There is also a check box ctor that allows the operator to be
flagged as a free constructor. The procedure for adding a membership or equation
is similar in both cases: a term (or two, for an equation) has to be written and a
sort selected from those available. Conditions, if required, are added in a similar
way. Proceeding in this manner we introduce the whole specification LIST, as
shown in Figure 5. Once completed, we can press save to save the resulting
module in a file.2 We can also press next to load the module in the ITP database
and return to the ITP Web main menu.
2 In fact, save generates a web page with the ITP commands that have created the

module. To really save the module, save the content of this web page as a file.

1629Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



Figure 2: Main menu

Figure 3: Module editor

Figure 4: Inserting an operator

1630 Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



Figure 5: Specification of lists of integers

2.2 A first proof

A property that LIST should verify is that append is associative:

∀{L, L′L′′}(L : List ∧ L′ : List∧ L′′ : List)

→ append(append(L, L′), L′′) = append(L, append(L′, L′′)) , (12)

where L, L′, and L′′ are variables of the kind List?. This goal can be introduced
by choosing the command goal from the drop-down list beside select, in the main
menu; initially, this is the only option available, but once a goal has been intro-
duced other commands will appear in the list. The first step consists in choosing
the goal’s label and the module is going to refer to. In this case, we choose the
name list-assoc and the module LIST, as shown in Figure 6. The second step
consists in introducing the formula to be verified. For this, the tool takes us to
the formula editor. Formulas are constructed in a top-down, left-to-right fashion,
as illustrated by the partially built formula in Figure 7. The formula editor con-
tains a drop-down list from which the (sub)formula’s top structure is chosen:
this can be an equality (=), membership (:), implication (=>), conjunction (&),
or existential (E) or universal quantification (A). Once completed, we can press
next to return to the main menu: the goal’s label will appear in the proof state

viewer, as shown in Figure 8.
We can try to prove (12) by structural induction. For this, we select the

sort-ind command, that has now been included, along several other options, in

1631Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



Figure 6: Naming a goal

Figure 7: Building a formula

the drop-down list beside select. The command editor then asks to select from a
drop-down list of variables which one is to be used for the induction (L:List?
in this case); notice that the list only includes those variables for which the
goal hypothesis contains a membership assertion. The command generates then
an inductive subgoal for each of the memberships that specify the sort of the
variable, and it chooses one of them as the working subgoal and tags it with
(Selected). (Actually, the working subgoal can be changed using the command
sel.) The output is as in Figure 9.

We can use the goal viewer to obtain information about the selected subgoal:
its label, the property to be proved, the hypotheses and lemmas available (if

Figure 8: A goal just introduced

1632 Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



Figure 9: Subgoals

any), the “fresh” constants introduced (if any), and the original module. In this
case, the goal viewer shows us the following information:

Label: append-assoc@1.0

Formula:

A{L’:List? ; L’’:List?}(

((L’:List? : List)&(L’’:List? : List))

==>(append(append(nil,L’:List?),L’’:List?)

= append(nil,append(L’:List?,L’’:List?)))).

Notice that this is the subgoal corresponding to the base case in the inductive
proof: the module LIST should verify (12) when L is nil. At this point, we can
try to automatically prove append-assoc@1.0with the command auto, that sim-
plifies the goal, using the axioms in the original module along with the available
hypotheses and lemmas, and discharges it when it discovers an inconsistency3 or
reaches an identity. The command succeeds, the subgoal is discharged, and the
ITP returns to us with the remaining subgoal generated by the induction. The
goal viewer presents us with the following information:

Label: append-assoc@2.0

Formula:

A{V0#0:Int? ; V0#1:List?}(

(((V0#1:List? : List))&(V0#0:Int? : Int) &

(A{L’:List? ; L’’:List?}(

((L’:List? : List)&(L’’:List? : List))

==>(append(append(V0#1:List?,L’:List?),L’’:List?)

= append(V0#1:List?,

3 Inconsistencies, like having length(nil)=-1 and length(nil)>=0 = true, are de-
tected by the decision procedure for Presburger arithmetic with uninterpreted func-
tion symbols that the tool implements [Clavel et al., 2004].

1633Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



append(L’:List?,L’’:List?))))))

==>

(A{L’:List? ; L’’:List?}(

((L’:List? : List)&(L’’:List?: List))

==>(append(append(cons(V0#0:Int?,V0#1:List?),L’:List?),

L’’:List?)

= append(cons(V0#0:Int?,V0#1:List?),

append(L’:List?,L’’:List?)))))).

This is the subgoal corresponding to the inductive case: the module LIST should
verify (12) when L is cons(V0#0:Int?,V0#1:List?), assuming that it verifies
(12) when L is V0#1:List?. We can also try to prove this subgoal automatically
with the auto command and, again, the ITP succeeds and this completes the
proof. The script viewer shows the script of our proof, which can be saved in a
file for later use.

3 A script safari

We continue now exploring the ITP commands and illustrate how they are used
in several scripts.

3.1 More on induction and simplification

In addition to the command sort-ind to reason by structural induction, the ITP
also provides a nat-ind command to reason by induction over the natural num-
bers. This command takes a term of the kind Int? as argument and generates
three subgoals from the original goal (the first one added as a lemma in the
second and third): one which requires to prove that the term is of sort Nat; one
which states that the goal holds for the term being equal to 0; and another one
which states that the goal holds for the term being equal to n, assuming that it
holds for the term being less than n. To illustrate its use, let us consider a mod-
ule LIST-LENGTH that extends LIST with an operation to determine the length
of a list.

op length : List? -> Int? .

eq length(nil) = 0 .

eq length(cons(I:Int?, L:List?)) = 1 + length(L:List?) .

In the module LIST-LENGTH, the associativity of the operation append can
alternatively be proved by selecting nat-ind, that asks to introduce the term to
use for the induction (in this case, length(L1:List?)), as shown in Figure 10.
This selection gives rise to three subgoals. The first one, as mentioned above,
simply requires to prove that the term length(L1:List?) is of sort Nat. The
goal viewer now shows the following information:

1634 Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



Figure 10: Induction over natural numbers

Label: append-assoc-bis@0@1.0

Formula: A{L:List?}((L:List? : List)==>(length(L:List?): Nat)).

This subgoal is discharged straightforwardly by one application of the induction
scheme over lists (sort-ind) and two uses of the auto command. The goal viewer

shows the following information about the first (and selected) of the remaining
subgoals, which states that (12) holds for any terms L, L′, L′′ of the sort List

such that length(L) is equal to 0.

Label: append-assoc-bis@1.0

Formula:

A{L:List? ; L’:List? ; L’’:List?}(

(((L:List? : List))&(L’:List? : List)&(L’’:List? : List)

& (length(L:List?)= 0))

==>(append(append(L:List?,L’:List?), L’’:List?)

= append(L:List?,append(L’:List?,L’’:List?)))).

Lemmas:

cmb length(L:List?):Nat if L:List? : List[lem-append-assoc-bis@0].

Lemma lem-append-assoc-bis@0 corresponds to append-assoc-bis@0@1.0,
already proved. Now, in the case of append-assoc-bis@1.0, using auto seems
to have no effect except for the transformation of the variables into “fresh” con-
stants and the simplication of the goal, by adding the formulas in the antecedent
as hypotheses, as shown by the goal viewer:

Label: append-assoc-bis@1.0

Formula: append(append(L*List?,L’*List?),L’’*List?)

= append(L*List?,append(L’*List?, L’’*List?)).

Hypotheses:

mb L’’*List? : List[hyp-0].

mb L’*List? : List[hyp-1].

1635Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



Figure 11: Term splitting

mb L*List? : List[hyp-2].

eq length(L*List?)= 0[hyp-3].

Lemmas:

cmb length(L:List?): Nat if L:List? : List[lem-append-assoc@0].

New constants:

op L’’*List? : -> List? .

op L’*List? : -> List? .

op L*List? : -> List? .

Since the additional information provided by the hypotheses is not enough
to further reduce any of the terms in the simplified goal, to proceed with the
proof we must supply the ITP with guidelines to follow. In this case, it is use-
ful to make a case analysis on the structure of L*List. For this, we can use
the command term-split which asks for a term to perform the splitting on as
well as for its sort, as shown in Figure 11. This command replaces the subgoal
append-assoc-bis@1.0 with the two following ones, corresponding to the con-
structors for List:

Label: append-assoc-bis@1.1.0

Formula: (L*List? = nil)

==>(append(append(L*List?,L’*List?),L’’*List?)

= append(L*List?,append(L’*List?,L’’*List?))).

Label: append-assoc-bis@1.2.0

Formula: (((L*List? = cons(V1#0*Int?,V1#1*List?))

&(V1#1*List? : List))&(V1#0*Int? : Int))

==>(append(append(L*List?,L’*List?),L’’*List?)

= append(L*List?,append(L’*List?,L’’*List?))).

At this point, append-assoc-bis@1.1.0 and append-assoc-bis@1.2.0 have
the same hypotheses, lemmas, and new constants as append-assoc-bis@1.0.

1636 Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



Now we can try to prove the subgoal append-assoc-bis@1.1.0, correspond-
ing to the case when the list L*List? is nil, and auto easily succeeds. It adds
the equality in the antecedent as a new equational hypothesis; then, it simplifies
both sides of the equality in the consequent using the axioms, hypotheses, and
lemmas as rewrite rules; and finally, it discharges the simplified equality, because
two terms syntactically identical are trivially equal.

The other subgoal generated deserves closer attention. The list L*List? is
now built using cons and is not clear at all why the terms at both sides of the
equality symbol should reduce to a common one. But recall that this subgoal has
arisen while we are trying to prove the subgoal append-assoc-bis@1.0, that is,
the one in which length(L*List?) is equal to 0 (as stated in its hypothesis
[hyp-3]), and this is inconsistent with L*List? being constructed with cons.
In this case, the auto command adds the equalities and memberships in the
antecedent as new hypotheses:

eq L*List? = cons(V1#0*Int?,V1#1*List?) .

mb V1#1*List? : List .

mb V1#0*Int? : Int .

and it simplifies the hypothesis [hyp-3] to

eq 1 + length(V1#1*List?)= 0 .

Then it realizes, using the internal decision procedure for linear arithmetic with
uninterpreted function symbols [Clavel et al., 2004], that the term 0 cannot be
equal to 1 + length(V1#1*List?), since:

– the lemma [lem-append-assoc-bis@0] guarantees that, for any term L of
sort List, length(L) returns a term greater or equal than 0, and,

– by hypothesis, V1#1*List? is a term of the sort List;

and it discharges the subgoal, not because both sides of the equality in the con-
sequent can be reduced to a common term, but because the axioms, hypotheses,
and lemmas form an inconsistent specification.

We are now left with the proof of the third subgoal generated by nat-ind,
labeled append-assoc-bis@2.0, which states that (12) holds for any terms
L, L′, L′′ such that length(L) is equal to n, assuming that it holds for any
terms L1, L

′
1, L

′′
1 such that length(L1) is less than n.

Label: append-assoc-bis@2.0

Formula:

A{V0#0:Nat}(

(A{L:List? ; L’:List? ; L’’:List?}(

((((length(L:List?)< V0#0:Nat = true)

1637Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



&(L:List? : List))&(L’:List? : List))&(L’’:List? : List))

==>(append(append(L:List?,L’:List?),L’’:List?)

= append(L:List?,append(L’:List?, L’’:List?)))))

==>

(A{L:List? ; L’:List? ; L’’:List?}(

((((length(L:List?)= V0#0:Nat)

&(L:List? : List))&(L’:List? : List))&(L’’:List? : List))

==>(append(append(L:List?,L’:List?),L’’:List?)

= append(L:List?,append(L’:List?, L’’:List?)))))).

The proof proceeds exactly like that for append-assoc-bis@1.0. After applying
auto, it is necessary to make a case analysis whose subcases can be discharged
with auto. (This time, it is the proof of the first case which succeeds by incon-
sistency.)

In this example, the script produced by nat-ind is certainly more cumbersome
than the one for sort-ind. However, there are proofs (e.g., in the mergesort algo-
rithm) where nat-ind gives rise to proofs that cannot easily be done by structural
induction.

3.2 Lemmas and more

This example is more involved than the previous ones and, besides further illus-
trating the use of sort definitions, it will serve to introduce two additional ITP
commands: lem, to introduce auxiliary lemmas, and bool-split for Boolean case
analysis.

Consider an extension LIST-SORT of the specification of ordered lists in-
troduced in Example 7 that includes an operation insertion-sort to order a
non-empty list by inserting, at the right position, its first element into the list
that results from (recursively) ordering its tail.

op insert : Int? List? -> List? .

op insertion-sort : List? -> List? .

eq insertion-sort(nil) = nil .

eq insertion-sort(cons(I:Int?, L:List?))

= insert(I:Int?, insertion-sort(L:List?)) .

eq insert(I:Int?, nil) = cons(I:Int?, nil) .

ceq insert(I:Int?, cons(J:Int?, L:List?))

= cons(I:Int?, cons(J:Int?, L:List?))

if I:Int? <= J:Int? = true .

ceq insert(I:Int?, cons(J:Int?, L:List?))

1638 Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



= cons(J:Int?, insert(I:Int?, L:List?))

if I:Int? > J:Int? = true .

A property that LIST-SORT should verify is that insert-sort returns an
ordered list:4

∀{L}(L : List → insert-sort(L) : OList) , (13)

where L is a variable of the kind List?.

3.2.1 Goals which are lemmas

To start with, however, we will settle for a simpler result, namely that inserting
an element into an ordered list results in another ordered list:

∀{I, L}(I : Int ∧ L : OList → insert(I, L) : OList) , (14)

where I is a variable of the kind Int? and L is a variable of the kind List?. This
property is likely to be needed as a lemma in order to prove (13). We can try to
prove (14) by structural induction on L:List? with the sort-ind command. The
case generated for the empty list is trivial and is discharged by auto; however,
in the case of the singleton list, it merely transforms the goal into

Label: insert-olist@2.0

Formula: insert(I*Int?,cons(V0#0*Int?,nil)): OList.

Hypotheses:

mb I*Int? : Int[hyp-1].

mb V0#0*Int? : Int[hyp-0].

New constants:

op I*Int? : -> Int? .

op V0#0*Int? : -> Int? .

If we take a look at the equations for insert, the reason why the term

insert(I*Int?,cons(V0#0*Int?,nil))

cannot be further reduced becomes apparent: the two equations that might ap-
ply are conditional and depend on whether I*Int? <= V0#0*Int? or I*Int? >

V0#0*Int? is equal to true. Thus, to discharge the subgoal insert-olist@2.0
4 Notice that for the operation insertion-sort to be well-defined it would also be

necessary to prove that the resulting list is a permutation of the original one: we
leave this proof as an exercise to the reader.

1639Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



Figure 12: Boolean split

it is necessary to reason by cases. For that the ITP Web tool offers the command
bool-split, which asks for a Boolean term, as shown in Figure 12, and replaces
the subgoal with two new ones. As it can be checked with the goal viewer, in
both subgoals the formulas to be proved are the same; the difference lies in
the hypotheses associated to them: for the first one, the equation I*Int? <=

V0#0*Int? = true has been added while in the second the inequality I*Int?

<= V0#0*Int? is equal to false. Now, both subgoals can be automatically dis-
charged with auto.

The situation for the inductive step is similar: after applying auto we are left
with:

Label: insert-olist@3.0

Formula:

insert(I*Int?,cons(V0#1*Int?,cons(V0#2*Int?,V0#0*List?))): OList.

Hypotheses:

mb I*Int? : Int[hyp-6].

mb V0#0*List? : List[hyp-0].

mb V0#1*Int? : Int[hyp-1].

mb V0#2*Int? : Int[hyp-2].

mb cons(V0#2*Int?,V0#0*List?): OList[hyp-3].

cmb insert(I:Int?,cons(V0#2*Int?,V0#0*List?)): OList

if I:Int? : Int[hyp-5].

eq V0#1*Int? <= V0#2*Int? = true[hyp-4].

New constants:

op I*Int? : -> Int? .

op V0#0*List? : -> List? .

1640 Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



op V0#1*Int? : -> Int? .

op V0#2*Int? : -> Int? .

Again, we need to reason by case analysis and apply bool-split over I*Int? <=

V0#1*Int?. This time, however, only the first auto succeeds while the second
does not discharge the goal and presents us with:

Label: insert-olist@3.2.0

Formula:

cons(V0#1*Int?,insert(I*Int?,cons(V0#2*Int?,V0#0*List?))): OList.

along with the hypotheses and lemmas inherited from insert-olist@3.0, plus
the hypothesis corresponding to this case:

eq I*Int? <= V0#1*Int? = false[case--false].

Assuming that insert is well-defined, it is clear that

cons(V0#1*Int?,insert(I*Int?,cons(V0#2*Int?,V0#0*List?)))

is an ordered list, given that:

– V0#1*Int? is less than I*Int?, by hypothesis [case--false]; and

– cons(V0#1*Int?, cons(V0#2*Int?,V0#0*List?)) is an ordered list, since,
by hypothesis [hyp-4], V0#1*Int? is less than or equal to V0#2*Int? and,
by hypothesis [hyp-3], cons(V0#2*Int?,V0#0*List?) is an ordered list.

What we need is a lemma that makes this observation a general and explicit
statement about insert:

∀{I, J, L}(((I : Int ∧ J : Int ∧ L : List

∧ I <=J = true ∧ cons(I, L) : OList)

→ cons(I, insert(J, L)) : OList), (15)

where I and J are variables of the kind Int?, and L is a variable of the kind
List?.

3.2.2 Lemmas which are goals

To introduce a lemma, we choose lem in the drop-down list beside select and
this takes us to a formula editor like that for goals; see Figure 13. Back to the
main menu, after introducing (15), the proof state viewer shows that (15) has been
added as a new (and selected) subgoal cons-insert-olist@0; the goal viewer

shows that (15) has also been added to the subgoal insert-olist@3.2.0 as a
new hypothesis.

1641Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



Figure 13: A lemma

As usual, we prove cons-insert-olist@0 by induction on the structure of
the list L:List?. The case generated for the base case is trivially discharged
with auto whereas for the inductive case a Boolean case analysis on J*Int?

<= V0#0*Int? is needed. Unfortunately, the command auto cannot discharge
the subgoal corresponding to the case when J*Int? <= V0#0*Int? is true, but
presents us with:

Label: cons-insert-olist@2.2.0

Formula: cons(I*Int?,cons(V0#0*Int?,cons(J*Int?,nil))): OList.

and a number of hypothesis, including:

mb I*Int? : Int[hyp-1].

mb J*Int? : Int[hyp-2].

mb V0#0*Int? : Int[hyp-0].

mb cons(I*Int?,cons(V0#0*Int?,nil)): OList[hyp-3].

eq J*Int? <= V0#0*Int? = false[case--false].

However, it is then clear that the term

cons(I*Int?,cons(V0#0*Int?,cons(J*Int?,nil)))

is an ordered list, given that:

– I*Int? is less than or equal to V0#0*Int?, since, by hypothesis [hyp-3],
cons(I*Int?,cons(V0#0*Int?,nil)) is an ordered list; and

– V0#0*Int? is less than J*Int?, by hypothesis [case--false].

So why can’t the ITP prove it? The reason is that nowhere is explicitly stated
that I*Int? <= V0#0*Int? is equal to true. Now, this information can be ex-
tracted from the fact that cons(I*Int?,cons(V0#0*Int?,nil)) is a term of
sort OList by using the command term-split over this term. This prompts the ITP

1642 Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



to make explicit all assumptions about cons(I*Int?,cons(V0#0*Int?,nil)),
based on the membership axioms that define the sort OList and the fact that
cons and nil have been declared as free constructors; the resulting subgoal can
then be easily proved with auto.

We can try to prove the subgoal corresponding to the case when J*Int?

<= V0#0*Int? is false using the same script: auto, term-split over the term
cons(I*Int?,cons(V0#0*Int?,V0#1*List?)), and auto again. However, this
time, the last auto cannot discharge the subgoal, but presents us with:

Label: cons-insert-olist@2.2.1.0

Formula:

cons(V1#1*Int?,cons(V1#2*Int?,insert(J*Int?,V1#0*List?))): OList.

and a number of hypothesis, including:

Hipotesis:

mb J*Int? : Int[hyp-4].

mb V1#2*Int? : Int[hyp-9].

mb cons(V1#2*Int?,V1#0*List?): OList[hyp-10].

cmb cons(I:Int?,insert(J:Int?,V1#0*List?)): OList

if I:Int? <= J:Int? = true /\ cons(I:Int?,V0#1*List?): OList

/\ J:Int? : Int /\ I:Int? : Int[hyp-2].

eq V1#1*Int? <= V1#2*Int? = true[hyp-14].

eq J*Int? <= V1#2*Int? = false[case--false].

Again, it is clear that

cons(V1#1*Int?,cons(V1#2*Int?,insert(J*Int?,V1#0*List?)))

is an ordered list, given that:

– V1#1*Int? is less than or equal to V1#2*Int?, by hypothesis [hyp-14]; and

– cons(V1#2*Int?,insert(J*Int?,V1#0*List?)) is an ordered list, by the
induction hypothesis [hyp-2], under the hypotheses [hyp-10], [hyp-4],
[hyp-9], and [case-false].

So why can’t the ITP prove it? Because it cannot prove that

insert(J*Int?,V1#0*List?)

is a term of sort List, which is a condition in the membership axiom that
defines when terms of the form cons(I, cons(J, L)) are ordered lists. But, of
course, insert satisfies this lemma:

∀{I, L}(I : Int ∧ L : List → insert(I, L) : List), (16)

which can be easily proved by structural induction.

1643Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



3.2.3 Lemmas to prove goals

Suppose that (16) has been proved as a goal, and that the proof script has been
saved in a file insert-list.itp. Then, we can automatically insert (16) as a
lemma in the subgoal cons-insert-olist@2.2.1.0 by simply loading the file
with the load button. With this additional information, the command auto

succeeds in the proof of cons-insert-olist@2.2.1.0, and the proof of the
lemma is completed.

We can now try again to discharge the subgoal insert-olist@3.2.0 with
the command auto. The command succeeds this time, thanks to the lemma
lem-cons-insert-olist@0. This completes the proof of the fact that inserting
an element into an ordered list produces an ordered list. By clicking now on script

viewer, we can save the script for future use. In fact, we will need this result as
an auxiliary lemma for the main theorem we are interested in, that is, that the
list returned by insertion-sort is ordered.

After introducing (13) in the usual way by means of the formula editor, we can
try to prove it by structural induction. The base case is trivial and is discharged
by the command auto. However, in the inductive case, auto simply transforms
the goal into:

Label: insertion-sort-olist@2.0

Formula: insert(V0#0*Int?,insertion-sort(V0#1*List?)): OList.

Hypotheses:

mb V0#0*Int? : Int[hyp-0].

mb V0#1*List? : List[hyp-1].

mb insertion-sort(V0#1*List?): OList[hyp-2].

New constants:

op V0#0*Int? : -> Int? .

op V0#1*List? : -> List? .

It is clear that insert(V0#0*Int?,insertion-sort(V0#1*List?)) is an or-
dered list, since we know that inserting an element into an ordered list leaves it
ordered and, by induction hypothesis [hyp-2], insertion-sort(V0#1*List?)
is an ordered list. What we need then is to introduce the lemma insert-olist

in the subgoal insertion-sort-olist@2.0, by loading its proof script. After
that, the command auto succeeds, as expected.

3.3 Quantifiers too

Even though all the examples considered so far have consisted of universally
quantified formulas, the ITP can also deal with existential quantifiers: we illus-

1644 Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



trate its use with an example borrowed from PVS’s tutorial [Crow et al., 1995,
Section 4.3].

We wish to prove that any postage requirement of 8 cents or more can be
met solely with 3 and 5 cent stamps, i.e., is the sum of some multiple of 3 and
some multiple of 5:

∀{I}((I : Nat) → ∃{Three,Five}(Three : Nat ∧ Five : Nat

∧ I + 8 = (3 × Three) + (5 × Five))) , (17)

where I, Five, and Three are variables of the kind Int?.
As such, this is simply a property about natural numbers and the corre-

sponding specification is trivial and adds nothing to the default module; we just
change its name to STAMP:

spec STAMP is

kind Qid? = [Qid] .

kind Bool? = [Bool] .

kind Int? = [Int] .

kind String? = [String] .

endspec

After introducing (17) with the formula editor, the proof proceeds by induc-
tion on I:Int?. The subgoal corresponding to the base case is:

Label: stamps@1.0

Formula: E{Five:Int? ; Three:Int?}

(((0 + 8 = 3 * Three:Int? + 5 * Five:Int?)

&(Three:Int? : Nat))&(Five:Int? : Nat)).

Clearly, letting Three:Int? and Five:Int? both be 1 fulfills the base case;
such instantiation is communicated to the ITP Web tool through the exist-inst-

subs command. This takes us to a screen in which we specify the values to assign
to the existential variables, as shown in Figure 14.

The command exist-inst-subs replaces the goal with the following one:

Label: stamps@1.0

Formula: ((0 + 8 = 3 * 1 + 5 * 1) & (1 : Nat)) & (1 : Nat).

To unfold the conjunction we need to apply the conj command twice, after which
each of the conjuncts is immediately discharged with auto.

For the inductive step we need to find natural numbers Three and Five such
that

(1 + I) + 8 = 3 ∗ Three + 5 ∗ Five

1645Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



Figure 14: Existential instantiation

assuming that there exist natural numbers Three ′ and Five′ such that

I + 8 = 3 ∗ Three ′ + 5 ∗ Five′ .

Notice that if Five′ is 0 we can take Five to be 2 and Three to be equal to
Three ′ − 3; otherwise, we obtain the result by making Five equal to Five′ − 1
and Three to Three ′ + 2.

The ITP script mimics quite closely the proof above. First, auto transforms
the subgoal stamps@2.0 corresponding to the inductive case into:5

Label: stamps@2.0

Formula:

E{Five:Int? ; Three:Int?}

(((s V0#0*Int? + 8 = 3 * Three:Int? + 5 * Five:Int?)

&(Three:Int? : Nat))&(Five:Int? : Nat)).

Hypothesis:

Executables:

mb V0#0*Int? : Nat[hyp-0].

Non executables:

hyp-1 : E{Three:Int? ; Five:Int?}(

((V0#0*Int? + 8 = 3 * Three:Int? + 5 * Five:Int?) &

(Three:Int? : Nat))&(Five:Int? : Nat))

--------------------------------------

Lemmas:

--------------------------------------
5 Note that the ITP internal constructors for the natural numbers are the constant 0,

to represent the number 0, and the unary operator s, to represent the succesor of
any number.

1646 Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



New operators:

op V0#0*Int? : -> Int? .

with the induction hypothesis labeled as [hyp-1]. Note, however, that [hyp-1]
cannot be directly used by the command auto as executable additional informa-
tion, that is, as information that can be used in the rewriting-based simplication
steps. To remove the existential quantifier from [hyp-1], we can use the com-
mand exist-inst-hyp which results in a new subgoal with the same formula to be
proved but with the following additional executable hypotheses:

mb Five!hyp-1*Int? : Nat[hyp-2].

mb Three!hyp-1*Int? : Nat[hyp-3].

eq V0#0*Int? + 8

= 3 * Three!hyp-1*Int? + 5 * Five!hyp-1*Int?[hyp-4].

These hypotheses state that Three!hyp-1*Int? and Five!hyp-1*Int? are the
witnesses of [hyp-1], which is therefore removed from the list of available hy-
potheses. The rest of the proof is straightforward: we simply have to distin-
guish cases according to whether Five!hyp-1*Int? is zero or not, and instan-
tiate Three:Int? and Five:Int? accordingly. The sequence of commands is:
first, bool-split on Five!hyp-1*Int? <= 0; then, for the true-case, exist-inst-

subst (with Five:Int? and Three:Int? instantiated, respectively, to 2 and
Three!hyp-1*Int? - 3), cnj (twice), and auto (thrice); finally, for the false-
case, exist-inst-subst (with Five:Int? and Three:Int? instantiated, respectively,
to Five!hyp-1*Int? - 1 and Three!hyp-1*Int? + 2), cnj (twice), and auto

(thrice).

4 Conclusions

In this tutorial we have given a quick overview of the ITP tool, an inter-
active, rewriting-based theorem prover that can be used to prove inductive
properties of membership equational specifications. As an introduction to the
tool, we have presented membership equational logic and discussed its ade-
quacy for the specification and verification of semantic data structures, such
as ordered lists, binary search trees, priority queues, and powerlists. An inter-
esting feature of the proposed semantic framework is that incompletely speci-
fied operations can be reasoned about so as to support incrementality. That is,
unlike in most reasoning systems including RRL [Kapur and Zhang, 1995] and
ACL2 [Kaufmann et al., 2000], operations do not have to be completely specified
before inductive properties about them can be verified mechanically.

The ITP tool is currently available as a web-based application that includes
a module editor, a formula editor, and a command editor. These editors allow

1647Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



users to create and modify their specifications, to formalize properties about
them, and to guide their proofs by filling and submitting web forms. The ITP
is still an experimental tool, but the results obtained so far are quite encour-
aging. The ITP tool is the only theorem prover at present that supports rea-
soning about membership equational logic specifications. The powerful integra-
tion of term rewriting with a decision procedure for linear arithmetic with un-
interpreted function symbols [Clavel et al., 2004], while also available in other
rewriting-based theorem provers like RRL [Kapur and Zhang, 1995], has been
easily and efficiently implemented in the ITP by exploiting the reflective design
of the tool and the reflective capabilities of the Maude system. This fact has
encouraged us to plan to add other decision procedures to our tool in the near
future. Another interesting extension of the tool is the implementation of the
cover set induction method [Kapur and Subramaniam, 1996], a feature already
available in RRL [Kapur and Zhang, 1995].

Acknowledgements

We thank Deepak Kapur and José Meseguer for many interesting discussions
on the subject of inductive theorem proving; our current understanding of the
semantics underlying the ITP tool has greatly benefited from their questions,
criticisms, and suggestions to previous proposals. We also thank Marina Egea,
Narciso Mart́ı-Oliet, and Alberto Verdejo for very detailed comments on several
draft versions of this tutorial.

References

[Bouhoula et al., 2000] Bouhoula, A., Jouannaud, J.-P., and Meseguer, J. (2000).
Specification and proof in membership equational logic. Theoretical Computer Sci-
ence, 236:35–132.

[Clavel et al., 2005] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N.,
Meseguer, J., and Talcott, C. (2005). Maude manual (version 2.2). http://maude.
cs.uiuc.edu/manual/.

[Clavel et al., 2004] Clavel, M., Palomino, M., and Santa-Cruz, J. (2004). Integrat-
ing decision procedures in reflective rewriting-based theorem provers. In Antoy, S.
and Toyama, Y., editors, Fourth International Workshop on Reduction Strategies in
Rewriting and Programming, pages 15–24. Technical report AIB-2004-06, Depart-
ment of Computer Science, RWTH, Aachen.

[Crow et al., 1995] Crow, J., Owre, S., Rushby, J., Shankar, N., and Srivas, M.
(1995). A tutorial introduction to PVS. In Workshop on Industrial-Strength Formal
Specification Techniques, Boca Raton, Florida. http://www.csl.sri.com/papers/
wift-tutorial/.

[Enderton, 2000] Enderton, H. B. (2000). A Mathematical Introduction to Logic, Sec-
ond Edition. Academic Press.

[Goguen et al., 1978] Goguen, J. A., Thatcher, J., and Wagner, E. (1978). An initial
algebra approach to the specification, correctness, and implementation of abstract
data types. In Yeh, R., editor, Current Trends in Programming Methodology, IV:
Data Structuring, pages 80–149. Prentice Hall.

1648 Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



[Kapur and Subramaniam, 1996] Kapur, D. and Subramaniam, M. (1996). New uses
of linear arithmetic in automated theorem proving by induction. Journal of Auto-
mated Reasoning, 16(1-2):39–78.

[Kapur and Zhang, 1995] Kapur, D. and Zhang, H. (1995). An overview of rewrite
rule laboratory (rrl). J. Computer and Mathematics with Applications, 29(2):91–114.

[Kaufmann et al., 2000] Kaufmann, M., Manolios, P., and Moore, J. S. (2000).
Computer-Aided Reasoning: An Approach. Kluwer Academic Press.

[Meseguer, 1998] Meseguer, J. (1998). Membership algebra as a logical framework for
equational specification. In Parisi-Presicce, F., editor, Recent Trends in Algebraic
Development Techniques, 12th International Workshop, WADT’97, Tarquinia, Italy,
June 3 - 7, 1997, Selected Papers, volume 1376 of Lecture Notes in Computer Science,
pages 18–61. Springer-Verlag.

A ITP Tool commands

We summarize here the commands available in the tool:

– goal. This command introduces a goal to be proved with the ITP. It asks for
a label, the specification the goal is about, and the goal itself.

– lem. This command introduces a lemma to be proved with the ITP about
the current specification. It opens a formula editor like that for goal.

– auto. It first transforms all the variables into fresh constants and then reduces
the terms in the goal as much as possible by using the equations in the
module as rewrite rules. When necessary, decision procedures are applied to
check if the conditions of conditional equations are satisfied.

– sort-ind. To reason by structural induction over a given variable. The goals
are generated from the constructor memberships for the sort of the variable
and all its subsorts. Base cases correspond to unconditional memberships of
the form t : s, and give rise to new subgoals by replacing the given variable
in the current goal with t. The inductive steps correspond to conditional
memberships.

– nat-ind. Given a term of kind Int?, it generates three subgoals from the
current one. The first goal states that the term is actually of sort Nat. The
second one is the original goal with the assumption that the value of the
term is 0. The third subgoal states that if the original one holds when the
value of the term is less that N, then it also holds when its value is N.

– bool-split. It splits the current goal in two: one in which a given Boolean
term is assumed to be true and another one in which it is assumed to be
false.

– term-split. It asks for a term and a sort and then unifies the term with those
defining the giving sort. For each of the results of that unification, it replaces

1649Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial



the current goal with a new one in which the term has been substituted by the
corresponding instantiation and some new hypotheses (from the conditions
of the memberships) may have been added.

– exist-inst-subs. It instantiates the current existential goal with a given sub-
stitution.

– exist-inst-hyp. It instantiates one of the existential formulas in the hypotheses
with values that satisfy it.

– sel. It changes the active subgoal.

– conj. It unfolds a conjunction into its two conjuncts.

1650 Clavel M., Palomino M., Riesco A.: Introducing the ITP Tool: a Tutorial


