
Simplifying Questions in Maude Declarative Debugger
by Transforming Proof Trees?

R. Caballero, A. Riesco, A. Verdejo, and N. Martı́-Oliet

Facultad de Informática, Universidad Complutense de Madrid, Spain

Abstract. Declarative debugging is a debugging technique that abstracts the exe-
cution details that in general may be difficult to follow in declarative languages to
focus on results. It relies on a data structure representing the wrong computation,
the debugging tree, which is traversed by asking questions to the user about the
correctness of the computation steps related to each node. Thus, the complexity of
the questions is an important factor regarding the applicability of the technique.
In this paper we present a transformation for debugging trees for Maude specifi-
cations that ensures that any subterm occurring in a question has been previously
replaced by the most reduced form that it has taken during the computation, thus
ensuring that questions become as simple as possible.

Keywords: declarative debugging, Maude, proof tree transformation

1 Introduction

Declarative debugging [15], also called algorithmic debugging, is a debugging tech-
nique that abstracts the execution details, that may be difficult to follow in general
in declarative languages, to focus on results. This approach, that has been used in
logic [17], functional [11], and multi-paradigm [8] languages, is a two-phase process [10]:
first, a data structure representing the computation, the so-called debugging tree, is built;
in the second phase this tree is traversed following a navigation strategy and asking to
an external oracle about the correctness of the computation associated to the current
node until a buggy node, an incorrect node with all its children correct, is found. The
structure of the debugging tree must ensure that buggy nodes are associated to incor-
rect fragments of code, that is, finding a buggy node is equivalent to finding a bug in
the program. Note that, since the oracle used to navigate the tree is usually the user,
the number and complexity of the questions are the main issues when discussing the
applicability of the technique.

Maude [4] is a high-level language and high-performance system supporting both
equational and rewriting logic computation. Maude modules correspond to specifica-
tions in rewriting logic [9], a simple and expressive logic which allows the representa-
tion of many models of concurrent and distributed systems. This logic is an extension
of equational logic, that in the Maude case corresponds to membership equational logic
(MEL) [1], which, in addition to equations, allows the statement of membership axioms

? Research supported by MEC Spanish projects DESAFIOS10 (TIN2009-14599-C03-01)
and STAMP (TIN2008-06622-C03-01), Comunidad de Madrid programs PROMETIDOS
(S2009/TIC1465) and PROMESAS (S-0505/TIC/0407), and UCM-BSCH-GR58/08-910502.



characterizing the elements of a sort. Rewriting logic extends MEL by adding rewrite
rules, that represent transitions in a concurrent system.

In previous papers we have faced the problem of declarative debugging of Maude
specifications both for wrong answers (incorrect results obtained from a valid input),
and for missing answers (incomplete results obtained from a valid input); a complete
description of the system can be found in [14]. Conceptually debugging trees in Maude
are obtained in two steps. First a proof tree for the erroneous result (either a wrong or
missing answer) in a suitable semantic calculus is considered. Then this tree is pruned
by removing those nodes that correspond to logic inference steps that does not depend
on the program and are consequently valid. The result is an abbreviated proof tree
(APT) which has the property of requiring less questions to find the error in the pro-
gram. Moreover, the terms in the APT nodes appear in their most reduced forms (for
instance function calls have been replaced by their results). Although unnecessary from
the theoretical point of view, this property of containing terms in their most reduced
form has been required since the earlier works in declarative debugging (see Section 2)
since otherwise the debugging process becomes unfeasible in practice due to the com-
plexity of the questions performed to the user.

However, the situation changes when debugging Maude specifications with the
strat attribute [4], that directs the evaluation order and can prevent some arguments
from being reduced, that is, this attribute introduces a particular notion of laziness,
making some subterms to be evaluated later than they would be in a “standard” Maude
computation. For this reason we will use in this paper a slightly different notion of nor-
mal form that takes into account strat: a term is in normal form if neither the term nor
its subterms has been further reduced in the current computation. When dealing with
specifications with this attribute the APT no longer contains the terms in their most
reduced forms, and thus the questions performed by the tool become too involved.

The purpose of this work is to define a program transformation that converts an
arbitrary proof tree T built for a specification with the strat attribute into a proof tree
T ′ whose APT contains all the subterms in their most reduced form. Since T ′ is also a
proof tree for the same computation the soundness and completeness of the technique
obtained in previous papers remain valid. Note that this improvement, described for the
equational subset of Maude (where strat is applied) improves the questions asked in
the debugging of both wrong and missing answers, including system modules, because
reductions are used by all the involved calculi. Note that, although we present here a
transformation for arbitrary proof trees, our tool builds the debugging trees in such a
way that some of this transformations are not needed (more specifically, we do not need
the “canonical” transformation we will see later). We prefer to build the proof tree and
then transform it to make the approach conservative: the user can decide whether he
wants to use the transformation or not.

The rest of the paper is organized as follows: the following section introduces some
related work and shows the contributions of our approach with respect to related pro-
posals. Section 3 introduces Maude functional modules, the debugging trees used to
debug this kind of modules, and the trees we want to obtain to improve the debugging
process. Section 4 presents the transformations applied to obtain these trees and the



theoretical results that ensure that the transformation is safe. Finally, we present the
conclusions and discuss some related ongoing work.

The source code of the debugger, examples, and much more information is available
at http://maude.sip.ucm.es/debugging/. Detailed proofs of the results shown in
this paper and extended information about the transformations can be found in [2].

2 Related Work

Since the introduction of declarative debugging [15] the main concerns with respect to
this technique were the complexity of the questions performed to the user, and also that
the process can become very tedious, and thus error-prone. The second point is related
to the number of questions and has been addressed in different ways [14,16]: nodes
whose correction only depends on the correction of their children are removed; state-
ments and modules can be trusted, and thus the corresponding nodes can be removed
from the debugging tree; a database can be used to prevent debuggers from asking the
same question twice; trees can be compressed [5], which consists in removing from the
debugging tree the children of nodes that are related to the same error as the father, in
such a way that the father will provide all the debugging information; a different ap-
proach consists in adding nodes to the debugging tree to balance it and thus traverse
it more efficiently [7]; finally, other techniques reduce the number of questions by al-
lowing complex answers, that direct the debugging process in a more specific direction,
e.g. [8] provides an answer to point out a specific subterm as erroneous.

This paper faces the first concern, the complexity of the questions, considering the
case of Maude specifications including the strat attribute. This attribute can be used to
alter the execution order, and thus the same subterm can be found in different forms in
the tree. The unpredictability of the execution order was already considered in the first
declarative debuggers proposed for lazy functional programming. In [12] the authors
proposed two ways of constructing the debugging trees. The first one was based on
source code transformations and the introduction of an impure primitive employed for
ensuring that all the subterms take the most reduced form (or a special symbol denoting
unevaluated calls). This idea was implemented in Buddha [13], a declarative debugger
for Haskell, and in the declarative debugger of the functional-logic language Toy [3].
The second proposal was to change the underlying language implementation, which of-
fers better performance. This technique was exploited in [11], where an implementation
based on graph reduction was proposed for the language Haskell.

In this paper we address a similar problem from a different point of view. We are
interested in proving formally the adequacy of the proposal and thus we propose a
transformation at the level of the proof trees, independent of the implementation. The
transformation takes an arbitrary proof tree and generates a new proof tree. We prove
that the transformed tree is a valid proof tree with respect to rewriting logic calculus
underlying Maude and that the subterms in questions are in their most reduced form.

3 Declarative Debugging in Maude

We present here Maude and the debugging trees used to debug Maude specifications.

http://maude.sip.ucm.es/debugging/


3.1 Maude

For our purposes in this paper we are interested in the equational subset of Maude,
which corresponds to specifications in MEL [1]. Maude functional modules [4], in-
troduced with syntax fmod ... endfm, are executable MEL specifications and their
semantics is given by the corresponding initial membership algebra in the class of al-
gebras satisfying the specification. In a functional module we can declare sorts (by
means of keyword sort(s)); subsort relations between sorts (subsort); operators (op)
for building values of these sorts, giving the sorts of their arguments and result, and
which may have attributes such as being associative (assoc) or commutative (comm),
for example; memberships (mb) asserting that a term has a sort; and equations (eq) iden-
tifying terms. Both memberships and equations can be conditional (cmb and ceq). The
executability requirements for equations and memberships are confluence, termination,
and sort-decreasingness [4].

We illustrate the features described before with an example. The LAZY-LISTS mod-
ule below specifies lists with a lazy behavior. At the beginning of the module we define
the sort NatList for lists of natural numbers, which has Nat as a subsort, indicating
that a natural number constitutes the singleton list:
(fmod LAZY-LISTS is
pr NAT .
sort NatList .
subsort Nat < NatList .

Lists are built with the operator nil for empty lists and with the operator _ _
for bigger lists, which is associative and has nil as identity. It also has the attribute
strat(0) indicating that only reductions at the top (the position 0) are allowed:
op nil : -> NatList [ctor] .
op _ _ : NatList NatList -> NatList [ctor assoc id: nil strat(0)] .

Next, we define a function from that generates a potentially infinite list starting
from the number given as argument. Note that the attribute strat(0) in _ _, used
in the righthand side of the equation, does not permit reductions in the subterms of
N from(s(N)), thus preventing an infinite computation because no equations can be
applied to from(s(N)):
op from : Nat -> NatList .
eq [f] : from(N) = N from(s(N)) .

where f is a label identifying the equation. The module also contains a function take
that extracts the number of elements indicated by the first argument from the list given
as the second argument. Since the strat(0) attribute in _ _ prevents the list from
evolving, we take the first element of the list and apply the function to the rest of the
list in a matching condition, thus separating the terms built with _ _ into two different
terms and allowing the lazy lists to develop all the needed elements:
op take : Nat NatList -> NatList .
ceq [t1] : take(s(N), N’ NL) = N’ NL’ if NL’ := take(N, NL) .
eq [t2] : take(N, NL) = 0 [owise] .

where owise stands for otherwise, indicating that the equation is used when no other
equation can be applied. Finally, the function head extracts the first element of a list,
where ˜> indicates that the function is partial:



(Reflexivity) (Congruence)

t→ t Rf

t1→ t ′1 . . . tn→ t ′n
f (t1, . . . , tn)→ f (t ′1, . . . , t ′n)

Cong

(Transitivity) (Replacement)

t1→ t ′ t ′→ t2
t1→ t2

Tr

{θ(ui) ↓ θ(u′i)}n
i=1 {θ(v j) : s j}m

j=1

θ(t)→ θ(t ′)
Rep

if t→ t ′⇐
∧n

i=1 ui = u′i∧
∧m

j=1 v j : s j

Fig. 1. Semantic calculus for reductions

op head : NatList ˜> Nat .
eq [h] : head(N NL) = N .

endfm)

We can now introduce the module in Maude and reduce the following term:
Maude> (red take(2 * head(from(1)), from(1)) .)
result NatList : 1 2 0

However, instead of returning the first two elements of the list, it appends 0 to the
result. The unexpected result of this computation indicates that there is some error in the
program. The following sections show how to build a debugging tree for this reduction,
how to improve it, and how to use this improved tree to debug the specification.

3.2 Debugging trees

Debugging trees for Maude specifications [14] are conceptually built in two steps:1 first,
a proof tree is built with the proof calculus in Figure 1, which is a modification of the
calculus in [1], where we use the notation t ↓ t ′ to indicate that t and t ′ are reduced to the
same term (which is used for both equality conditions of the form t = t ′ and matching
conditions t := t ′, where t may contain new variables) and we assume that the equations
are terminating and confluent and hence they can be oriented from left to right, and that
replacement inferences keep the label of the applied statement in order to point it out as
wrong when a buggy node is found. In the second step a pruning function, called APT, is
applied to the proof tree in order to remove those nodes whose correctness only depends
on the correctness of their children (and thus they are useless for the debugging process)
and to improve the questions asked to the user. This transformation can be found in [14].

Figure 1 describes the part of MEL we will use throughout this paper, the extension
to full MEL is straightforward and can be found in [2]. The figure shows that the proof
trees can infer judgments of the form t → t ′, indicating that t is reduced to t ′ by using
equations. The inference rules in this calculus are reflexivity, that proves that a term can
be reduced to itself; congruence, that allows to reduce the subterms; transitivity, used to
compose reductions; and replacement, that applies a equation to a term if a substitution

1 The implementation applies these two steps at once.



f(1)→ 1 f(2)
Rep

h(f(1))→ h(1 f(2))
Cong

h(1 f(2))→ 1
Rep

h(f(1))→ 1
Tr

2*h(f(1))→ 2*1
Cong

2*1→ 2
2*h(f(1))→ 2

Tr

t(2*h(f(1)),f(1))→ t(2,f(1))
Cong

f(1)→ 1 f(2)
Rep

t(2,f(1))→ t(2,1 f(2))
Cong

�
�
A
A 1

t(2,f(1))→ 1 2 0
Tr

t(2*h(f(1)),f(1))→ 1 2 0
Tr

Fig. 2. Proof tree for the reduction on Section 3.1

θ making the term match the lefthand side of the equation and fulfilling the conditions
is found. It is easy to see that the only inference rule whose correctness depends on the
specification is replacement; intuitively, nodes inferred with this rule will be the only
ones kept by APT. Thus, APT removes some nodes from the tree and can attach the
debugging information to some others in order to ease the questions asked to the user,
but cannot modify the judgments in the nodes, since it would require to modify the
whole structure of the tree, as we will see later.

We show in Figures 2 and 3 the proof tree associated to the reduction presented in
the previous section, obtained following Maude execution strategies,2 where t stands
for take, h for head, and f for from. The left child of the root of the tree in Figure 2
obtains the number of elements that must be extracted from the list, while the right child
unfolds the list one step further and takes the element thus obtained, repeating this op-
eration until all the required elements have been taken. Note that Maude cannot reduce
f(1) to its normal form (with respect to the tree) 1 2 3 f(4) with three consecutive
replacement steps because the attribute strat(0) prevents it.

From the point of view of declarative debugging, this tree is not very satisfactory,
because it contains nodes like t(2,1 f(2))→ 1 2 0, the root of the tree in Figure 3,
where the subterm f(2) is not fully reduced, which forces the user to obtain its expected
result and then (mentally) substitute it in the node in order to answer the question about
the correction of the node. We show the APT corresponding to this tree in Figure 4; note
that a transformation like APT cannot improve this kind of questions because there is
no node with the information we want to use, and thus the node (†) described above is
kept and will be used in the debugging process. Intuitively, we would like to gather all
the replacements related to the same term so we can always ask about terms with the
subterms in normal form, like t(2,1 2 ⊥), where⊥ is a special symbol indicating that
a term could be further reduced but its value is not necessary. The next section explains
how to transform proof trees in order to obtain questions with this form.

When examining a proof tree we are interested in distinguishing whether two syn-
tactically identical terms are copies of the same term or not. The reason is that it is more
natural for the user to have each copy in its more reduced form, without considering the
reductions of other copies of the same term (as happens with the term f(1) in the ex-
ample above; one of these terms is reduced to 1 f(2) while the second one is reduced

2 Actually, the value 3 in Figure 3 has been computed to mimic Maude’s behavior. Once it has
obtained take(0, f(3)) it tries to reduce its subterms, obtaining 3 although it will be never
used. All the transformations in this paper also work if this term is not computed.



(♠) f(2)→ 2 f(3)
Rep

t(1,f(2))→ t(1,2 f(3))
Cong

f(3)→ 3 f(4)
Rep

t(0,f(3))→ t(0,3 f(4))
Cong

t(0,3 f(4))→ 0
Rep

t(0,f(3))→ 0
Tr

t(1,2 f(3))→ 2 0
Rep

(♦) t(1,f(2))→ 2 0
Tr

t(2,1 f(2))→ 1 2 0
Rep

Fig. 3. Proof tree for the subtree ��AA1 on Figure 2

f(1)→ 1 f(2)
Rep

h(1 f(2))→ 1
Rep

f(1)→ 1 f(2)
Rep

f(2)→ 2 f(3)
Rep

f(3)→ 3 f(4)
Rep

t(0,3 f(4))→ 0
Rep

t(1,2 f(3))→ 2 0
Rep

(†) t(2,1 f(2))→ 1 2 0
Rep

t(2*h(f(1)),f(1))→ 1 2 0
Tr

Fig. 4. Abbreviated proof tree for the proof tree in Figure 2

to 1 2 3 f(4)). We achieve this goal by “painting” related terms in a proof tree with
the same color. Hence the same term can be repeated in several places in a proof tree,
but only those copies coming from the same original term will have the same color. We
refer to colored terms as c-terms and to trees with colored terms in their nodes as c-
trees. When talking about colored trees, t1 = t2 means that t1 and t2 are equally colored.
Therefore talking about two occurrences of a c-term t implicitly means that there are
two copies of the same term equally colored. Intuitively, all the terms in the lefthand
side of the root have different colors; the replacement inference rule introduces new
colors, while the reflexivity, transitivity, and congruence rules propagate them. More
details can be found in [2].

It is worth observing that computation trees represent a particular computation that
has already taken place in Maude. This means that we can be sure that the debugged
program satisfies the constraints required by Maude functional modules: equations must
be terminating, confluent, and sort-decreasing. Other requirements such as left-linearity
or constructor-based rules are not required in these modules. The details of how to carry
out a computation correspond to Maude and not to the debugger, which only represents
computations. During the tree construction process, the debugger already knows the ap-
propriate substitutions used in the associated computation as well as the places where
they must be applied for each computation step; our algorithms just modify the tree
taking into account this information. A subtle detail that allows us to move the compu-
tations forward is that the lefthand side of Maude equations must be a pattern, and thus
“frozen” terms (i.e., terms that are not built with constructors and cannot be reduced
because of the strat attribute) such as N . from(N’) cannot be used. Notice that in
Maude, term sharing is introduced incrementally by equational simplification, because
it analyzes righthand sides of equations to identify its shared subterms [6]. More details
can be found in [2].

3.3 The Lists Example Revisited

As explained in the previous section, the debugging tree in Figure 4 presents the draw-
back of containing nodes of the form t(2,1 f(2))→ 1 2 0, whose correction is dif-



�
�
A
A 2

f(1)→ 1 f(2)
Rep

f(2)→ 2 f(3)
Rep

f(3)→ 3 f(4)
Rep

2 f(3)→ 2 3 f(4)
Cong

f(2)→ 2 3 f(4)
Tr

1 f(2)→ 1 2 3 f(4)
Cong

(♥) f(1)→ 1 2 3 f(4)
Tr

t(2,f(1))→ t(2,1 2 3 f(4))
Cong

�
�
A
A 3

t(2,f(1))→ 1 2 0
Tr

t(2*h(f(1)),f(1))→ 1 2 0
Tr

Fig. 5. Proof tree for the reduction on Section 3.1

2 3 f(4)→ 2 3 f(4)
Rf

t(1, 2 3 f(4))→ t(1,2 3 f(4))
Cong

3 f(4)→ 3 f(4)
Rf

t(0, 3 f(4))→ t(0,3 f(4))
Cong

t(0,3 f(4))→ 0
Rep

t(0,3 f(4))→ 0
Tr

t(1,2 3 f(4))→ 2 0
Rep

t(1, 2 3 f(4))→ 2 0
Tr

t(2,1 2 3 f(4))→ 1 2 0
Rep

Fig. 6. Proof tree for the subtree ��AA3 on Figure 5

ficult to state because the subterms must be mentally reduced by the user in order to
compute the final result. We give in this section the intuitions motivating the transfor-
mations in the next section, transforming the trees and in Figures 2 and 3, that give
rise to the proof trees in Figures 5 and 6. The tree ��AA2 in Figure 5 has the same left
premise as the one in Figure 2, which shows the importance of coloring the terms in the
proof trees, because the algorithm distinguishes between the two f(1) thanks to their
different colors. The part of the tree depicted in Figure 5 shows how the reduction of
the subterms is “anticipated” by the algorithm in the previous section and thus the node
(♥) performs the reduction of f(1) to its normal form (with respect to the tree), and all
the replacement steps that were needed to reach it are contained in this subtree. The tree
��AA3 in Figure 6 shows the other part of the transformations: we get rid of the relocated

replacement inferences by using reflexivity steps.
The APT of our transformed proof tree is depicted in Figure 7. It has removed

all the useless information like reflexivity and congruence inferences, and has associ-
ated the replacement inferences, that contain debugging information, to the transitivity
inferences below them, returning a debugging tree where the lefthand side of all the
reductions have their subterms in normal form, as expected because the transformation
works driven by the APT transformation.

Since this transformation has been implemented in our declarative debugger, we can
start a debugging session to find the error in the specification described in Section 3.1.
The debugging process starts with the command:

Maude> (debug take(2 * head(from(1)), from(1)) -> 1 2 0 .)

This command builds the tree shown in Figure 7,3 which is traversed following
the navigation strategy divide and query [16], that selects in each case a node rooting

3 Actually, it builds the tree in Figure 4 and then transforms it into the tree in Figure 7.



f(1)→ 1 f(2)
Rep

h(1 f(2))→ 1
Rep

f(3)→ 3 f(4)
Rep

f(2)→ 2 3 f(4)
Rep

f(1)→ 1 2 3 f(4)
Rep

(•) t(0,3 f(4))→ 0
Rep

t(1,2 3 f(4))→ 2 0
Rep

(‡) t(2,1 2 3 f(4))→ 1 2 0
Rep

t(2*h(f(1)),f(1))→ 1 2 0
Tr

Fig. 7. Abbreviated proof tree for the transformed tree

a subtree with approximately half the size of the whole tree, and the first question,
associated with the node (‡) in Figure 7, is:
Is this reduction (associated with the equation t1) correct?
take(2,1 2 3 ?:NatList) -> 1 2 0
Maude> (no .)

where we must interpret ?:NatList as a term that has not reached a normal form (in the
sense it is not built with operators with the ctor attribute) but whose value is irrelevant
to compute the final result. The answer is (no .) because we expected to take only
1 2. Note that this node is the transformed version of the node (†) in Figure 4, that
would perform the question:
Is this reduction (associated with the equation t1) correct?
take(2,1 from(2)) -> 1 2 0

which is more difficult to answer because we have to think first about the reduction
of from(2) and then use the result to reason about the complete reduction. With the
answer given above the subtree rooted by (‡) in Figure 7 is considered as the current
one and the next questions are:
Is this reduction (associated with the equation t1) correct?
take(1,2 3 ?:NatList) -> 2 0
Maude> (no .)
Is this reduction (associated with the equation t2) correct?
take(0,3 ?:NatList) -> 0
Maude> (no .)

We answer (no .) in both cases for the same reason as in the previous case. With
these answers we have discovered that the node (•) is wrong. Hence, since it has no
children, it is the buggy node and is associated with a wrong statement:
The buggy node is: take(0,3 ?:NatList) -> 0
with the associated equation: t2

In fact, the equation t2 returns 0 but it should return nil.

4 Transforming Debugging Trees

In this section we present the transformation that ensures that the abbreviated proof
tree contains every term reduced as much as possible. This transformation is a two-step
process. First, a sequence of three tree transformations prepares the proof tree for the
second phase. We call the trees obtained by this transformation canonical trees. The
second phase takes a canonical tree as input and applies the algorithm that replaces
terms by its most reduced forms. The result is a proof tree for the same computation
whose APT verifies that every term is reduced as much as possible.



4.1 Reductions
We need to formally define the concepts of reduction and number of steps, which will
be necessary to ensure that a tree is in its most reduced form.

Definition 1. Let T be an APT, and t, t ′ two c-terms. We say that t → t ′ is a reduction
w.r.t. T if there is a node N ∈ T of the form t1→ t2 verifying:

– pos(t, t1) 6= /0, where pos(t, t1) is the set of positions of t containing t1.
– t ′ = t[t1 7→ t2], where t[t1 7→ t2] represents the replacement of every occurrence of

the c-term t1 by t2 in t.

In this case we also say that t is reducible (w.r.t. T ). A reduction chain for t will be
a sequence of reductions t0 = t → t1→ t2→ ··· → tn s.t. each ti→ ti+1 is a reduction
and that tn cannot be further reduced w.r.t. T .

Definition 2. Let T be an APT. Then:

– The number of reductions of a term t w.r.t. T , denoted as reduc(t,T ) is the sum of
the length of all the possible different reduction chains of t w.r.t. T .

– The number of reductions of a node of the form N = f (t1, . . . , tn)→ t w.r.t. T , de-
noted as reduc(N,T ) is defined as (∑n

i=1 reduc(ti,T ))+ reduc(t,T ).

In this definition the length of a reduction chain t0 → ··· → tn is defined as n. Re-
member that the aim of this paper is to present a technique to put together these reduc-
tions chains, transforming appropriately the proof tree, and using colors to distinguish
terms; when dealing with commutative or associativity, we will assume flatten terms
with the subterms ordered in an alphabetical fashion. Moreover, our technique assumes
that there is only one normal form for each c-term in the tree.

Definition 3. We say that an occurrence of a c-term t occurring in an APT T is in
normal form w.r.t. T if there is no reduction for any c-subterm of t in T .

Definition 4. Let T be an APT. We say that T is confluent if every c-term t occurring
in T has a unique normal form with respect to T .

Note that this notion of confluence is different from the usual notion of confluence
required in Maude functional modules: it requires all the copies of a (colored) term,
that can be influenced by the strat attribute, to be reduced to the same term. In the
rest of the paper we assume that, unless stated otherwise, all the APTs are colored and
confluent. With these definitions we are ready to define the concept of norm:

Definition 5. Let T be a proof tree, and T ′ = APT (T ). The norm of T , represented by
‖ T ‖, is the sum of the lengths of all the reduction chains that can be applied to terms
in T ′. More formally, given the reduc function in Definition 2:

‖ T ‖= ∑
N ∈ T ′

N 6= root(T ′)

reduc(N,T ′)

Thus, the norm is the number of reductions that can be performed in the corre-
sponding APT. Our goal is to obtain proof trees with associated norm 0, ensuring that
the questions performed to the user contain terms as reduced as possible. This is the pur-
pose of the proof tree transformations in the following section, which start with some
initial proof tree and produces an equivalent proof tree with norm 0.



(InsCong1)

InsCong
(

T1 . . .Tm
f (t1, . . . , tn)→ t

Rep

)
=

t1→ t1
Rf . . .

tn→ tn
Rf

f (t1, . . . , tn)→ f (t1, . . . , tn)
Cong

InsCong(T1) . . . InsCong(Tm)

f (t1, . . . , tn)→ t
Rep

f (t1, . . . , tn)→ t
Tr

(InsCong2)

InsCong
(

T1 . . .Tm
aj

R

)
=

InsCong(T1) . . . InsCong(Tm)

aj
R

aj any judgment, R any inference rule,n > 0

Fig. 8. Insert Congruences (InsCong)

(NTr1)

NTr

 Tt1→t2 Tt2→t3
t1→ t3

Tr Tt3→t4

t1→ t4
Tr

= NTr

NTr(Tt1→t2) NTr
(

Tt2→t3 Tt3→t4
t2→ t4

Tr

)
t1→ t4

Tr


(NTr2)

NTr
(

T1 . . .Tn
aj

R

)
=

NTr(T1) . . .NTr(Tn)

aj
R aj any judgment, R any inference rule

Fig. 9. Normalize Transitivities (NTr)

4.2 Canonical trees

Canonical trees are obtained from proof trees as explained in the following definition.

Definition 6. We define the canonical form of a proof tree T , which will be denoted
from now on as Can(T ), as

Can(T ) = RemInf (NTr(InsCong(T )))

where InsCong (insert congruences), NTr (normalize transitivities), and RemInf (re-
move superfluous inferences) are defined in Figures 8, 9, and 10, respectively.

It is assumed that the rules of each transformation are applied top-down. The first
transformation, InsCong, prepares the proof tree for allowing reductions on the argu-
ments ti of judgments of the form f (t1, . . . , tn)→ t by introducing congruence inferences
before these judgments take place. Initially no reduction is applied, and each argument
is simply reduced to itself using a reflexivity inference. Replacing these reflexivities by
non-trivial reductions for the arguments is the role of the algorithm introduced in the
next section. The next transformation, NTr, takes care of righthand sides. The idea is
that transitivity inferences occurring as left premises of other transitivity are associated



(R
em

Inf1 )
R

em
Inf 

Tt1 →
t ′1 ...Ttn →

t ′n

f(t1 ,...,tn )→
f(t ′1 ,...,t ′n )

C
o
n
g

Tt ′1 →
t ′′1
...Tt ′n →

t ′′n

f(t ′1 ,...,t ′n )→
f(t ′′1

,...,t ′′n
)
C
o
n
g

f(t1 ,...,tn )→
f(t ′′1

,...,t ′′n
)

T
r 

=

R
em

Inf (
m

erge (
Tt1 →

t ′1 ,
Tt ′1 →

t ′′1 ))
...R

em
Inf (m

erge (Ttn →
t ′n ,

Tt ′n →
t ′′n ))

f(t1 ,...,tn )→
f(t ′′1

,...,t ′′n
)

C
o
n
g

(R
em

Inf2 )
R

em
Inf 

Tt1 →
t ′1
...Ttn →

t ′n

f(t1 ,...,tn )→
f(t ′1 ,...,t ′n )

C
o
n
g

Tt ′1 →
t ′′1
...Tt ′n →

t ′′n

f(t ′1 ,...,t ′n )→
f(t ′′1

,...,t ′′n
)
C
o
n
g

T
f(t ′′1

,...,t ′′n
)→

e

f(t ′1 ,...,t ′n )→
e

T
r

f(t1 ,...,tn )→
e

T
r 

=

R
em

Inf 
m

erge (
Tt1 →

t ′1 ,
Tt ′1 →

t ′′1 )
...m

erge (Ttn →
t ′n ,

Tt ′n →
t ′′n )

f(t1 ,...,tn )→
f(t ′′1

,...,t ′′n
)

C
o
n
g

R
em

Inf(T
f(t ′′1

,...,t ′′n
)→

e )

f(t1 ,...,tn )→
e

T
r 

(R
em

Inf3 )
R

em
Inf 

F
t→

t1
C
o
n
g

t1 →
t1

R
f

Tt1 →
t ′

t1 →
t ′

T
r

t→
t ′

T
r 

=
R

em
Inf 

F
t→

t1
C
o
n
g

Tt1 →
t ′

t→
t ′

T
r 

(R
em

Inf4 )
R

em
Inf (

T
R
f

T
′

aj
T
r )

=
R

em
Inf (

T
′

T
R
f

aj
T
r )

=
R

em
Inf(T

′),
ajany

judgm
ent

(R
em

Inf5 )
R

em
Inf (

T
1
...T

n
aj

R )
=

R
em

Inf(T
1 )...R

em
Inf(T

n )

aj
R
,

ajany
judgm

ent,R
any

inference
rule

Fig.10.R
em

ove
superfluous

inferences
(R

em
Inf)



(Merge1)

merge
(

Tt→t1 Tt1→t ′

t→ t ′
Tr,Tt ′→t ′′

)
=

Tt→t1 merge(Tt1→t ′ ,Tt ′→t ′′)

t→ t ′′
Tr

(Merge2)

merge(Tt→t ′ ,Tt ′→t ′′) =
Tt→t ′ Tt ′→t ′′

t→ t ′′
Tr

Fig. 11. Merge Trees

to intermediate, not fully-reduced computations. Thus, NTr ensures that righthand sides
can be completely reduced by the algorithm in the next section. Finally, RemInf elimi-
nates some superfluous steps involving reflexivities, and combines consecutive congru-
ences in a “bigger step” single congruence, which avoids the production of unnecessary
intermediate results in the proof tree. This last process is done with the help of an aux-
iliary transformation merge (Figure 11), that combines two trees by using a transitivity.

A proof tree in canonical form is also a proof tree proving the same judgment.

Proposition 1. Let T be a proof tree. Then Can(T ) is a proof tree with the same root.

Moreover, applying these transformations cannot produce an increase of the norm:

Proposition 2. Let T be a proof tree and T ′ = Can(T ). Then ‖ T ‖≥‖ T ′ ‖.

4.3 Reducing the norm of canonical trees

We describe in this section the main transformation applied to the proof trees. This
transformation relies on the following proposition, that declares that in any proof tree
in canonical form there exist (1) a node with a reduction t1→ t ′1 such that t ′1 is in normal
form, that will be used to further reduce the terms, (2) a node that contains a reduction
t2→ t ′2, with t1 ∈ t ′2 (t1 is a subterm of t ′2), which means that t ′2 can be further reduced by
the previous reduction, and (3) a node such that it is not affected by the transformations
in the previous nodes. We will use node (1) to improve the reductions in node (2); this
transformation will only affect the nodes in the subtree that has (3) as root:

Proposition 3. Let T be a confluent c-proof tree in canonical form such that ‖ T ‖> 0.
Then T contains:

1. A node related to a judgment t1→ t ′1 such that:
– It is either the consequence of a transitivity inference with a replacement as

left premise, or the consequence of a replacement inference which is not the
left premise of a transitivity.

– t ′1 is in normal form w.r.t. T .
2. A node related to a judgment t2→ t ′2 with t1 ∈ t ′2.
3. A node related to a judgment t3→ t ′3 consequence of a transitivity step, with t1 6∈ t ′3.



Algorithm 1 presents the transformation in charge of reducing the norm of the proof
trees until it reaches 0. It first selects a node Nible (from reducible node), that contains a
term that has been further reduced during the computation,4 a node Ner (from reducer
node) that contains the reduction needed by the terms in Nible, and a node p0 limiting
the range of the transformation. Note that we can distinguish two parts in the subtree
rooted by the node in p0, the left premise, where Nible is located, and the right premise,
where Ner is located. Then, we create some copies of these nodes in order to use them
after the transformations. For example, the first step of the loop for the proof tree in
Figures 2 and 3 would set Nible to f(2)→ 2 f(3) and Ner to f(3)→ 3 f(4); they are
located in the subtree rooted by p0, the node (♦).

Step 6 replaces the proof of the reduction t1→ t ′1 by reflexivity steps t ′1→ t ′1. Since
the algorithm is trying to use this reduction before its current position, a natural conse-
quence will be to transform all the appearances of t1 in the path between the old and the
new position by t ′1, what means that in this particular place we would obtain the reduc-
tion t ′1→ t ′1 inferred, by Proposition 3, by either a transitivity or a replacement rule, and
with the appropriate proof trees as children. Since this would be clearly incorrect, the
whole tree is replaced by a reflexivity. In our example, the replacement f(3)→ 3 f(4)
(Ner) would be transformed into the reflexivity step 3 f(4)→ 3 f(4).

Step 7 replaces all the occurrences of t1 by t ′1 in the right premise of p0, as explained
in the previous step. In this way, the right premise of p0 is a new subtree where t1 has
been replaced by t ′1 and all the proofs related to t1→ t ′1 have been replaced by reflexivity
steps t ′1→ t ′1. Note that intuitively these steps are correct because t ′1 is required to be in
normal form, the tree is confluent, and the norm of this tree is 0, that is, all the possible
reductions of terms with the same color have been previously modified by the algorithm
to create a t1→ t ′1 proof. In our example, the appearances of f(3) in the right premise
of the node (♦) are replaced by 3 f(4); this subtree is already a proof tree.

Step 8 replaces the occurrences of t1 by t ′1 in the left premise of p0. We apply this
transformation only in the righthand sides because they are in charge of transmitting
the information, and in this way we prevent the algorithm from changing correct values
(inherited perhaps from the root). This substitution can be used thanks to the position p0,
which ensures that only the righthand sides are affected. In our example, we substitute
the term f(3) by 3 f(4) in the left child of (♦).

Step 9 combines the reduction in Nible with the reduction in Ner (actually, it merges
their copies, since the previous transformations have modified them). If the term t1 we
are further reducing corresponds to the term t ′2 in the lefthand side of the judgment in
Nible, then it is enough to use a transitivity to “join” the two subtrees. In other case, the
term we are reducing is a subterm of t ′2 and thus we must use a congruence inference
rule to reduce it, using again a transitivity step to infer the new judgment. This last step
would generate, in our example, a node combining the replacement (♠) and the one in
Ner in a transitivity step, giving rise to the node f(2)→ 2 3 f(4); in this way the left
child of (♦), and consequently the tree, becomes a proof tree again.

Finally, these transformations make the trees to lose their canonical form, and hence
the canonical form of the tree is computed again in step 10.

4 We select the first one in post-order to ensure that this node is the one that generated the term.



Algorithm 1 Let T be a proof tree in canonical form.

1. Let Tr = T
2. Loop while ‖ Tr ‖ > 0
3. Let Ner = t1→ t ′1 be a node satisfying the conditions of item 1 in Proposition 3,

Nible = t2→ t ′2 the first node in T’s post-order verifying the conditions of item 2 in
Proposition 3, and p0 the position of the subtree of T rooted by the first (furthest
from the root) ancestor of Nible satisfying item 3 in Proposition 3, such that the right
premise of the node in p0, Trp, has ‖ Trp ‖= 0.

4. Let Cer be a copy of the tree rooted by Ner.
5. Let Cible be a copy of the tree rooted by Nible and pible the position of Nible.
6. Let T1 be the result of replacing in T all the subtrees rooted by Ner by a reflexivity

inference step with conclusion t ′1→ t ′1.
7. Let T2 be the result of substituting all the occurrences of the c-term t1 by t ′1 in the

right premise of the subtree at position p0 in T1.
8. Let T3 be the result of substituting all the occurrences of the c-term t1 with t ′1 in

the righthand sides of the left premise of the subtree at position p0 in T2.
9. Let T4 be the result of replacing the subtree at position pible in T3 by the following

subtree:
(a) if t ′2 = t1.

Cible Cer

t2→ t ′1
Tr

(b) if t ′2 6= t1.

Cible

Cer

t ′2→ t ′2[t1 7→ t ′1]
Cong

t2→ t ′2[t1 7→ t ′1]
Tr

10. Let Tr be the result of normalizing T4.
11. End Loop

The next theorem is the main result of this paper. It states that after applying the
algorithm we obtain a proof tree for the same computation whose nodes are as reduced
as possible. Thus, the declarative debugging tool that uses this tree as debugging tree
will ask questions in its most simplified form.

Theorem 1. Let T be a proof tree in canonical form. Then the result of applying Algo-
rithm 1 to T is a proof tree Tr such that root(Tr) = root(T ) and ‖ Tr ‖= 0.

Observe that we have improved the “quality” of the information in the nodes without
increasing the number of questions, since the transformations do not introduce new
replacement inferences in the APT.

5 Concluding Remarks and Ongoing Work

One of the main criticisms to declarative debugging is the high complexity of the ques-
tions performed to the user. Thus, if the same computation can be represented by dif-
ferent debugging trees, we must choose the tree containing the simplest questions. In



Maude, an improvement in this direction is to ensure that the judgments involving re-
ductions are presented to the user with the terms reduced as much as possible. We
have presented a transformation that allows us to produce debugging trees fulfilling this
property starting with any valid proof tree for a wrong computation. The result is a
debugging tree with questions as simple as possible without increasing the number of
questions, which is specially useful when dealing with the strat attribute. Moreover,
the theoretical results supporting the debugging technique presented in previous papers
remain valid since we have proved that our transformation transforms proof trees into
proof trees for the same computation.

Although for the sake of simplicity we have focused in this paper on the equational
part of Maude, this transformation has been applied to all the judgments t→ t ′ appear-
ing in the debugging of both wrong (including system modules) and missing answers.
However, our calculus for missing answers also considers judgments t →norm t ′, indi-
cating that t ′ is the normal form of t; when facing the strat attribute, the inferences for
these judgments have the same problem shown here; we are currently working to define
a transformation for this kind of judgment.

References

1. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in membership
equational logic. Theoretical Computer Science, 236:35–132, 2000.

2. R. Caballero, N. Martı́-Oliet, A. Riesco, and A. Verdejo. Improving the debugging of
membership equational logic specifications. Technical Report SIC-02-11, Dpto. Sistemas
Informáticos y Computación, Universidad Complutense de Madrid, March 2011. http:
//maude.sip.ucm.es/debugging/.

3. R. Caballero and M. Rodrı́guez-Artalejo. DDT: A declarative debugging tool for functional-
logic languages. In Y. Kameyama and P. J. Stuckey, editors, Proceedings of the 7th Inter-
national Symposium on Functional and Logic Programming, FLOPS 2004, Nara, Japan,
volume 2998 of Lecture Notes in Computer Science, pages 70–84. Springer, 2004.

4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. Talcott. All
About Maude: A High-Performance Logical Framework, volume 4350 of Lecture Notes in
Computer Science. Springer, 2007.

5. T. Davie and O. Chitil. Hat-Delta: One right does make a wrong. In 7th Symposium on
Trends in Functional Programming, TFP 06, 2006.

6. S. Eker. Term rewriting with operator evaluation strategies. In Proceedings of the 2nd
International Workshop on Rewriting Logic and its Applications, WRLA 1998, volume 15 of
Electronic Notes in Theoretical Computer Science, pages 311–330, 1998.

7. D. Insa, J. Silva, and A. Riesco. Balancing execution trees. In V. M. Gulı́as, J. Silva, and
A. Villanueva, editors, Proceedings of the 10th Spanish Workshop on Programming Lan-
guages, PROLE 2010, pages 129–142. Ibergarceta Publicaciones, 2010.

8. I. MacLarty. Practical declarative debugging of Mercury programs. Master’s thesis, Univer-
sity of Melbourne, 2005.

9. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73–155, 1992.

10. L. Naish. A declarative debugging scheme. Journal of Functional and Logic Programming,
1997(3), 1997.

11. H. Nilsson. How to look busy while being as lazy as ever: the implementation of a lazy
functional debugger. Journal of Functional Programming, 11(6):629–671, 2001.

http://maude.sip.ucm.es/debugging/
http://maude.sip.ucm.es/debugging/


12. H. Nilsson and J. Sparud. The evaluation dependence tree as a basis for lazy functional
debugging. Automated Software Engineering, 4:121–150, 1997.

13. B. Pope. Declarative debugging with Buddha. In V. Vene and T. Uustalu, editors, Advanced
Functional Programming - 5th International School, AFP 2004, volume 3622 of Lecture
Notes in Computer Science, pages 273–308. Springer, 2005.

14. A. Riesco, A. Verdejo, N. Martı́-Oliet, and R. Caballero. Declarative debugging of rewriting
logic specifications. Journal of Logic and Algebraic Programming, 2011. To appear.

15. E. Y. Shapiro. Algorithmic Program Debugging. ACM Distinguished Dissertation. MIT
Press, 1983.

16. J. Silva. A comparative study of algorithmic debugging strategies. In G. Puebla, editor,
Logic-Based Program Synthesis and Transformation, volume 4407 of Lecture Notes in Com-
puter Science, pages 143–159. Springer, 2007.

17. A. Tessier and G. Ferrand. Declarative diagnosis in the CLP scheme. In P. Deransart, M. V.
Hermenegildo, and J. Maluszynski, editors, Analysis and Visualization Tools for Constraint
Programming, Constraint Debugging (DiSCiPl project), volume 1870 of Lecture Notes in
Computer Science, pages 151–174. Springer, 2000.


	Simplifying Questions in Maude Declarative Debugger by Transforming Proof Trees 

