
TLP: page 1 of 52 C© Cambridge University Press 2012

doi:10.1017/S147106841200004X

1

Singular and plural functions for functional
logic programming

ADRIÁN RIESCO� and JUAN RODRÍGUEZ-HORTALÁ†
Dpto. Sistemas Informáticos y Computación, Facultad de Informática

Universidad Complutense de Madrid, Ciudad Universitaria–28040 Madrid

(e-mail: {ariesco, juanrh}@fdi.ucm.es)

submitted 11 February 2011; revised 17 November 2011; accepted 6 March 2012

Abstract

Modern functional logic programming (FLP) languages use non-terminating and non-

confluent constructor systems (CSs) as programs in order to define non-strict and non-

deterministic functions. Two semantic alternatives have been usually considered for parameter

passing with this kind of functions: call-time choice and run-time choice. While the former

is the standard choice of modern FLP languages, the latter lacks some basic properties –

mainly compositionality – that have prevented its use in practical FLP systems. Traditionally

it has been considered that call-time choice induces a singular denotational semantics, while

run-time choice induces a plural semantics. We have discovered that this latter identification

is wrong when pattern matching is involved, and thus in this paper we propose two novel

compositional plural semantics for CSs that are different from run-time choice.

We investigate the basic properties of our plural semantics – compositionality, polarity,

and monotonicity for substitutions, and a restricted form of the bubbling property for CSs –

and the relation between them and to previous proposals, concluding that these semantics

form a hierarchy in the sense of set inclusion of the set of values computed by them. Besides,

we have identified a class of programs characterized by a simple syntactic criterion for which

the proposed plural semantics behave the same, and a program transformation that can be

used to simulate one of the proposed plural semantics by term rewriting. At the practical

level, we study how to use the new expressive capabilities of these semantics for improving

the declarative flavor of programs. As call-time choice is the standard semantics for FLP,

it still remains the best option for many common programming patterns. Therefore, we

propose a language that combines call-time choice and our plural semantics, which we have

implemented in the Maude system. The resulting interpreter is then employed to develop and

test several significant examples showing the capabilities of the combined semantics.

KEYWORDS: non-deterministic functions, semantics, program transformation, term rewrit-

ing, Maude

� Research partially supported by the Spanish projects DESAFIOS10 (TIN2009-14599-C03-01) and
PROMETIDOS-CM (S2009/TIC-1465).

† Research partially supported by the Spanish projects FAST-STAMP (TIN2008-06622-C03-01/TIN),
PROMETIDOS-CM (S2009TIC-1465) and GPD-UCM (UCM-BSCH-GR58/08-910502).

2 A. Riesco and J. Rodŕıguez-Hortalá

1 Introduction

The combination of functional and logic features has been addressed in several

proposals for multi-paradigm programming languages (Roy and Haridi 2004;

Rodrı́guez-Hortalá and Sánchez-Hernández 2008; Hermenegildo et al. 2012; The

Mercury Team 2012) with different variants – lazy or eager evaluation of functions,

concurrent capabilities, support for object-oriented programming, et al. In this

work we focus on the integration into a single language of the main features of

lazy functional programming (FP) and logic programming (LP) that is described in

Antoy and Hanus (2010). Term rewriting (Baader and Nipkow 1998) and term graph

rewriting systems (Plump 1999) have often been used for modeling the semantics

and operational behavior of that approach to functional logic programming (FLP)

(DeGroot and Lindstrom 1986; Hanus 2007). In particular, the class of left-linear

constructor-based term rewriting systems – or simply constructor systems (CS) –

in which the signature is divided into two disjoint sets of constructor and function

symbols, is used frequently to represent programs. There the notion of value as a

term built using only constructor symbols – called constructor term or just c-term –

arises naturally, and this way a term rewriting derivation from an expression to

a c-term represents the reduction of that expression to one of its values in the

language being modelled. This corresponds to a value-based semantic view, in

which the purpose of computations is to produce values made of constructors.

Besides, term graphs are used for modelling subexpression sharing, where several

occurrences of the same subexpression are represented by several pointers to a single

node in a term graph, resulting in a potential improvement of the time and space

performance of programs. Sharing is at the core of implementations of lazy FP

and FLP languages, and so several variations of term graph rewriting have been

also used in formulations of the semantics of call-by-need in FP (Launchbury 1993;

Plasmeijer and van Eekelen 1993; Ariola et al. 1995) and FLP (Echahed and Janodet

1998; Albert et al. 2005; López-Fraguas et al. 2007; López-Fraguas et al. available

on request).

On the other hand, non-determinism is an expressive feature that has been used

for a long time in programming (McCarthy 1963; Hughes and O’Donnell 1990;

Dijkstra 1997) and system specification (Borovanský et al. 1998; Futatsugi and

Diaconescu 1998; Clavel et al. 2007). In both fields, one of the appeals of term

rewriting is its elegant way to express non-determinism through the use of non-

confluent term rewriting systems, obtaining a clean and high-level representation of

complex systems and programs. Non-determinism is integrated in FLP languages

by means of a backtracking mechanism in the style of Prolog (Sterling and Shapiro

1986). It is introduced by employing possibly non-terminating and non-confluent

CSs as programs, thus expressing non-strict and non-deterministic functions, which

are one of the most distinctive features of the paradigm (González-Moreno et al.

1999; Antoy and Hanus 2002; Antoy and Hanus 2010).1

1 Non-determinism also appears in FLP as a result of the utilisation of narrowing as the fundamental
operational mechanism (Hanus 2005), but as usual in many works in the field, we will focus on
rewriting aspects only, so our conclusions could be lifted to the narrowing case in subsequent works.

Singular and plural functions for functional logic programming 3

The point is that this combination of non-strictness and non-determinism gives

rise to several semantic alternatives (Søndergaard and Sestoft 1992; Hussmann

1993). In particular, in Sondergaard and Sestoft (1992) the different language

variants that result after adding non-determinism to a basic functional language

were expounded, structuring the comparison as a choice among different options

over several dimensions: strict/non-strict functions, angelic/demonic/erratic non-

deterministic choices, and singular/plural semantics for parameter passing, also

called call-time choice/run-time choice in Hussmann (1993). In the present paper we

assume non-strict angelic non-determinism, so we focus on the last dimension only.

To do that, let us take a look at the following example.

Example 1.1

Consider the program {f(c(X)) → d(X,X), X ? Y → X,X ? Y → Y } and the

expression f(c(0 ? 1)). From an operational perspective we have to decide when it

is time to fix the values for the arguments of functions:

• Under a call-time choice semantics, a value for each argument will be fixed on

parameter passing and shared between every copy of that argument that arises

during the computation. This corresponds to call-by-value in a strict setting

and to call-by-need in a non-strict setting, in which a partial value instead of a

total value is computed. So when applying the rule for f, the two occurrences

of X in d(X,X) will share the same value, hence d(0, 0) and d(1, 1) are correct

values for f(c(0 ? 1)) in this semantics, while it is not the case either for d(0, 1)

or d(1, 0).

• On the other hand, run-time choice corresponds to call-by-name, so the values

of the arguments are fixed as they are used – i.e., as their evaluation is

demanded by the matching process – and the copies of each argument

created by parameter passing may evolve independently afterwards. Under

this semantics not only d(0, 0) and d(1, 1) but also d(0, 1) and d(1, 0) are correct

values for f(c(0 ? 1)).

In general, a call-time choice semantics produces less results than run-time choice.

Modern functional-logic languages like Toy (López-Fraguas and Sánchez-Hernández

1999) or Curry (Hanus 2005) are heavily influenced by lazy functional programming

and so they implement sharing in their operational mechanism, which results in

call-by-need evaluation and the adoption of call-time choice. On the other hand,

term rewriting is considered a standard formulation for run-time choice,2 and is the

basis for the semantics of languages like the Maude (Clavel et al. 2007).

But we may also see things from another perspective.

Example 1.2

Consider again the program in Example 1.1. From a denotational perspective we

have to think about the domain used to instantiate the variables of program rules:

2 In fact angelic non-strict run-time choice.

4 A. Riesco and J. Rodŕıguez-Hortalá

• Under a singular semantics variables will be instantiated with single values

(which may be partial in a non-strict setting). This is equivalent to having

call-time choice parameter passing.

• The alternative is having a plural semantics, in which the variables are

instantiated with sets of values. Traditionally it has been considered that

run-time choice has its denotational counterpart on a plural semantics,

but we will see that this identification is wrong. Consider the expression

f(c(0) ? c(1)), under run-time choice, that is, term rewriting, the evaluation

of the subexpression c(0) ? c(1) is needed in order to get an instance of the

left-hand side of the rule for f. Hence, a choice between c(0) and c(1) is

performed and so neither d(0, 1) nor d(1, 0) are correct values for f(c(0) ? c(1)).

Nevertheless, under a plural semantics we may consider the set {c(0), c(1)},
which is a subset of the set of values for c(0) ? c(1) in which every element

matches the argument pattern c(X). Therefore, the set {0, 1} can be used for

parameter passing, obtaining a kind of “set expression” d({0, 1}, {0, 1}) that

yields the values d(0, 0), d(1, 1), d(0, 1), and d(1, 0).

The conclusion is clear: the traditional identification of run-time choice with a plural

semantics is wrong when pattern matching is involved.

Which of these is the more suitable perspective for FLP? This problem did not

appear in Sondergaard and Sestoft (1992) because no pattern matching was present,

nor in Hussmann (1993) because only call-time choice was adopted there. This fact

was pointed out for the first time in Rodriguez-Hortala (2008), where the παCRWL

logic – named πCRWL in that work – was proposed as a novel formulation

of a plural semantics with pattern-matching. This proves that one can conceive

a meaningful plural semantics that is different to run-time choice, i.e., run-time

choice is not the only plural semantics we should consider. We have seen that,

using the program above, the expression f(c(0 ? 1)) has more values than the

expression f(c(0) ? c(1)) under run-time choice although they only differ in the

subexpressions c(0 ? 1) and c(0) ? c(1), which have the same values under all three,

call-time choice, run-time choice, and plural semantics. That violates a fundamental

property of FLP languages stating that any expression can be replaced by any other

expression that could be reduced to exactly the same set of values. We will see

that our plural semantics shares with CRWL3 (González-Moreno et al. 1999) (the

standard logic for call-time choice4), a compositionality property for values that

makes it more suitable than run-time choice for a value-based language like current

implementations of FLP. Nevertheless, run-time choice can be a good option for

other kind of rewriting-based languages like the Maude, in which the notion of

value is not necessarily present, at least in the sense it is in FLP languages.

In this paper we have put together our previous results about plural semantics,

integrating our presentation of παCRWL from Rodriguez-Hortala (2008) with a

user level introduction to the Maude-based transformational prototype for παCRWL

3 Constructor-based ReWriting Logic.
4 In fact, angelic non-strict call-time choice.

Singular and plural functions for functional logic programming 5

(Riesco and Rodrı́guez-Hortalá 2010a). We have also included the results obtained

in Riesco and Rodriguez-Hortala (2010b), which is devoted to the exploration of

new expressive capabilities of our plural semantics. Although our plural semantics

allows an elegant encoding of some problems – in particular those with an implicit

manipulation of sets of values – call-time choice still remains the best option

for many common programming patterns (González-Moreno et al. 1999; Antoy

and Hanus 2002). Therefore, we propose a combined semantics for a language

in which the user can specify, for each function symbol, that arguments that are

considered “plural arguments” – thus being evaluated under our plural semantics –

and the arguments that are “singular arguments” – thus being evaluated under

call-time choice. This semantics is precisely specified by a modification of the

CRWL logic, which retains the important properties of CRWL and παCRWL, like

compositionality. These new features were implemented by extending our Maude

prototype, and then used to develop and test several significant examples showing

the expressive capabilities of a combined semantics.

Apart from giving a unified and revised presentation, we have made several

relevant advances. We have extended most of our results to deal with programs with

extra variables, and above all, we have introduced the new plural semantics πβCRWL

inspired by the proposal from Braßel and Berghammer (2009). The properties of this

semantics and its relation to call-time choice, run-time choice, and παCRWL have

been studied in depth and with technical accuracy. Our current implementation

does not deal with extra variables because they cause an explosion in the search

space when evaluated by term rewriting – we consider the development of a suitable

plural narrowing mechanism that could effectively handle extra variables, a possible

subject of future work.

The rest of the paper is organized as follows. Section 2 contains some technical

preliminaries and notations about term rewriting systems and the CRWL logic. In

Section 3 we introduce παCRWL and πβCRWL, two variations of CRWL to express

plural semantics, and present some of their properties, in particular compositionality.

In Section 4 we study the relation between call-time choice, run-time choice, and

our plural semantics, focusing on the set of values computed by each semantics and

concluding that these four semantics form a hierarchy in the sense of set inclusion.

We also present a class of programs characterized by a simple syntactic criterion

under which our two plural semantics are equivalent, and conclude the section

providing a simple program transformation that can be used to simulate παCRWL

with term rewriting. Section 5 begins with the presentation of our combinations

of call-time choice and plural semantics that are formalized through the CRWLσ
πα

and CRWLσ
πβ logics, which correspond to the combination of call-time choice with

παCRWL and πβCRWL, respectively. Then follows a user level introduction to

our Maude prototype, which implements the CRWLσ
πα logic as it is based on the

transformation from Section 4. The prototype is then employed to illustrate the

use of the combined semantics for improving the declarative flavor of programs.

This section concludes with a short sketch of the implementation of our prototype.

Finally, in Section 6 we outline some possible lines for future work. For the sake of

readability, some of the proofs have been moved to Riesco and Rodrı́guez-Hortalá

6 A. Riesco and J. Rodŕıguez-Hortalá

(2011), although the intutitions behind our main results have been presented in the

text.

2 Preliminaries

We present in this section the main notions needed throughout the rest of the paper:

Section 2.1 introduces constructor-based systems, while Section 2.2 describes the

CRWL framework.

2.1 Constructor systems

We consider the first-order signature Σ = CS � FS , where CS and FS are two

disjoint sets of constructor and defined function symbols, respectively, all of them

with associated arity. We write CS n (FS n resp.) for the set of constructor (function)

symbols of arity n ∈ �. We write c, d, . . . for constructors, f, g, . . . for functions, and

X,Y , . . . for variables of a numerable set V. The notation o stands for tuples of

any kind of syntactic objects. Given a set A, we denote by A∗ the set of finite

sequences of elements of that set. We denote the empty sequence by []. For any

sequence a1 . . . an ∈ A∗ and function f : A → {true, false}, we denote by a1 . . . an | f
the sequence constructed by taking in order every element from a1 . . . an for which f

holds. Finally, for any 1 � i � n, (a1 . . . an)[i] denotes ai.

The set Exp of expressions is defined as Exp � e ::= X | h(e1, . . . , en), where

X ∈ V, h ∈ CS n ∪ FS n and e1, . . . , en ∈ Exp. We use the symbol ≡ for the syntactic

equality between expressions, and in general for any syntactic construction. The set

CTerm of constructed terms (or c-terms) is defined like Exp, but with h restricted

to CS n (so CTerm ⊆ Exp). The intended meaning is that Exp stands for evaluable

expressions, i.e., expressions that can contain function symbols, while CTerm stands

for data terms representing values. We will write e, e′, . . . for expressions and t, s, . . .

for c-terms. The set of variables occurring in an expression e will be denoted as

var(e). We will frequently use one-hole contexts, defined as Cntxt � C ::= [] |
h(e1, . . . ,C, . . . , en), with h ∈ CS n ∪FS n, e1, . . . , en ∈ Exp. The application of a context

C to an expression e, written by C[e], is defined inductively as [][e] = e and

h(e1, . . . ,C, . . . , en)[e] = h(e1, . . . ,C[e], . . . , en).

A position of an expression is a chain of natural numbers separated by dots that

determines one of its subexpressions. Given an expression e by O(e) we denote the

set of positions in e, which is defined as O(X) = ε; O(h(e1, . . . , en)) = {ε} ∪ {i.o | i ∈
{1, . . . , n} ∧ o ∈ O(ei)}, where X ∈ V, h ∈ Σ, and ε denotes the empty or top position.

We will write o, p, q, u, v, . . . for positions. By e|o we denote the subexpression of e

at position o ∈ O(e), defined as e|ε = e; h(e1, . . . , en)|i.o = ei|o. The set of variable

positions in e is denoted as OV(e) and defined as OV(e) = {o ∈ O(e) | e|o ∈ V}.
Substitutions θ ∈ Subst are finite mappings θ : V −→ Exp, extending naturally to

θ : Exp −→ Exp. We write ε for the identity (or empty) substitution. We write eθ for

the application of θ to e, and θθ′ for the composition, defined by e(θθ′) = (eθ)θ′. The

domain and variable range of θ are defined as dom(θ) = {X ∈ V | Xθ
= X} and

vran(θ) =
⋃

X∈dom(θ) var(Xθ). If dom(θ0) ∩ dom(θ1) = ∅, their disjoint union θ0 � θ1 is

Singular and plural functions for functional logic programming 7

defined by (θ0 � θ1)(X) = θi(X), if X ∈ dom(θi) for some i ∈ {0, 1}; (θ0 � θ1)(X) = X

otherwise. Given W ⊆ V we write θ|W for the restriction of θ to W , and θ|\D is

a shortcut for θ|(V\D). We will sometimes write θ = σ[W] instead of θ|W = σ|W .

C-substitutions θ ∈ CSubst verify that Xθ ∈ CTerm for all X ∈ dom(θ). We say that

e subsumes e′, and write e � e′, if eσ ≡ e′ for some substitution σ.

A constructor-based term rewriting system (CS) or just CS or program P is a set of

rewrite rules or program rules of the form f(t1, . . . , tn) → r where f ∈ FS n, e ∈ Exp,

and (t1, . . . , tn) is a linear tuple of c-terms, where linearity means that variables

occur only once in (t1, . . . , tn). Notice that we allow r to contain extra variables, i.e.,

variables not occurring in (t1, . . . , tn). To be precise, we say that X ∈ V is an extra

variable in the rule l → r iff X ∈ var(r) \ var(l), and by vExtra(R) we denote the set

of extra variables in a program rule R. For any program P the set FS P of functions

defined by P is FS P = {f ∈ FS | ∃(f(p) → r) ∈ P}. We assume that every program

P contains the rules {X ? Y → X,X ? Y → Y , if true then X → X}, defining the

behavior of the infix function ? ∈ FS 2 and the mix-fix function if then ∈ FS 2 (used

as if e1 then e2), and that those are the only rules for that function symbols. Besides

? is right-associative, so e1 ? e2 ? e3 ≡ e1 ? (e2 ? e3). For the sake of conciseness we

will often omit these rules when presenting a program.

Given a program P, its associated term rewriting relation →P is defined as:

C[lσ] →P C[rσ] for any context C, rule l → r ∈ P and σ ∈ Subst. We write
∗→P

for the reflexive and transitive closure of the relation →P. In the following, we will

usually omit the reference to P or denote it by P � e → e′ and P � e →∗ e′.

2.2 The CRWL framework

The CRWL framework (González-Moreno et al. 1996; González-Moreno et al. 1999)

is considered a standard formulation of call-time choice by the FLP community

(Hanus 2007; Antoy and Hanus 2010). To deal with non-strictness at the semantic

level, Σ is enlarged with a new constant constructor symbol ⊥. The sets Exp⊥,

CTerm⊥, Subst⊥, CSubst⊥ of partial expressions, etc. are defined naturally. Our

contexts will contain partial expressions from now on unless explicitly specified.

Expressions, substitutions, etc. not containing ⊥ are called total. Programs in CRWL

still consist of rewrite rules with total expressions in both sides, so ⊥ does not

appear in programs. Partial expressions are ordered by the approximation ordering

� defined as the least partial ordering satisfying ⊥� e and e � e′ ⇒ C[e] � C[e′] for

all e, e′ ∈ Exp⊥,C ∈ Cntxt . This partial ordering can be extended to substitutions:

given θ, σ ∈ Subst⊥ we say θ � σ if Xθ � Xσ for all X ∈ V.

The semantics of a program P is determined in CRWL by means of a proof

calculus able to derive reduction statements of the form e � t, with e ∈ Exp⊥ and

t ∈ CTerm⊥, meaning informally that t is (or approximates to) a possible value of

e, obtained by iterated reduction of e using P under call-time choice. The CRWL-

proof calculus is presented in Figure 1. Rules RR (restricted reflexivity) and DC

(decomposition) are used to reduce any variable to itself, and to decompose the

evaluation of constructor-rooted expressions. Rule B (bottom) allows us to avoid

the evaluation of expressions in order to get a non-strict semantics. Finally, rule OR

8 A. Riesco and J. Rodŕıguez-Hortalá

RR

X X

X ∈ V DC

e1 t1 . . . en tn

c(e1, . . . , en) c(t1, . . . , tn)

c ∈ CSn

B

e ⊥
OR

e1 p1θ . . . en pnθ rθ t

f(e1, . . . , en) t

f(p1, . . . , pn) → r ∈ P
θ ∈ CSubst⊥

Figure 1. Rules of CRWL.

(outer reduction) expresses that to evaluate a function call we must first evaluate

its arguments to get an instance of a program rule, perform parameter passing (by

means of some substitution θ ∈ CSubst⊥), and then reduce the correspondingly

instantiated right-hand side. The use of partial c-substitutions in OR is essential to

express call-time choice, as only single partial values are used for parameter passing.

Notice also that by the effect of θ in OR, extra variables on the right-hand side of

a rule can be replaced by any partial c-term, but not by any expression as in term

rewriting.

We write P �CRWL e � t to express that e � t is derivable in the CRWL-calculus

using the program P. Given a program P, the CRWL-denotation of an expression

e ∈ Exp⊥ is defined as [[e]]sgP = {t ∈ CTerm⊥ | P �CRWL e � t}. In the following, we

will usually omit the reference to P when implied by the context.

3 Two plural semantics for constructor systems

In this section we present two semantic proposals for constructor systems that are

plural in the sense described in the Introduction, but at the same time are different

to the run-time choice semantics induced by term rewriting. We will formalize them

by means of two modifications of the CRWL-proof calculus, that will now consider

sets of partial values for parameter passing instead of single partial values. Thus,

only the rule OR should be modified. To avoid the need to extend the syntax with

new constructions to represent those “set expressions” that we mentioned in the

Introduction, we will exploit the fact that [[e1 ? e2]] = [[e1]] ∪ [[e2]] for any sensible

semantics – in particular each of the semantics considered in this work. Therefore,

the substitutions used for parameter passing will map variables to “disjunctions of

values.” We define the set CSubst?
⊥ = {θ ∈ Subst⊥ | ∀X ∈ dom(θ), θ(X) = t1 ? . . . ?

tn such that t1, . . . , tn ∈ CTerm⊥, n > 0}, for which CSubst⊥ ⊆ CSubst?
⊥ ⊆ Subst⊥

obviously holds. The operator ? : CSubst∗
⊥ → CSubst?

⊥ constructs the CSubst?
⊥

corresponding to a non-empty sequence of CSubst⊥, and it is defined as follows:

?(θ1 . . . θn)(X) =

{
X ? ρ1(X) ? . . . ? ρm(X) if ∃θi such that X
∈ dom(θi)

θ1(X) ? . . . ? θn(X) otherwise

where ρ1 . . . ρm = θ1 . . . θn | λθ.(X ∈ dom(θ)). This operator is overloaded to handle

non-empty sets Θ ⊆ CSubst⊥ as ?Θ =?(θ1 . . . θn), where the sequence θ1 . . . θn
corresponds to an arbitrary reordering of the elements of Θ – for example using

some standard order of terms in the line of Sterling and Shapiro (1986).

Singular and plural functions for functional logic programming 9

Lemma 1

For any θ1, . . . , θn ∈ CSubst⊥, dom(?{θ1 . . . θn}) =
⋃

i dom(θi).

Proof

Simple calculations using the definition of ?{θ1 . . . θn} (see Riesco and Rodrı́guez-

Hortalá 2011 for details). �

3.1 παCRWL

Our first semantic proposal is defined by the παCRWL-proof calculus in Figure 2.

The only difference with the CRWL-proof calculus in Figure 1 is that the rule OR

has been replaced by PORα (alpha plural outer reduction), in which we may compute

more than one partial value for each argument, and then use a substitution from

CSubst?
⊥ instead of CSubst⊥ for parameter passing, achieving a plural semantics.5

Besides, extra variables are instantiated by an arbitrary θe ∈ CSubst?
⊥ for the same

reason. Just like CRWL, the calculus evaluates expressions in the innermost way,

and avoids the use of any transitivity rule that would induce a step-wise semantics

like, for example, term rewriting. The motivation for that is to get a compositional

calculus in the values it computes, i.e., the semantics of an expression would only

depend on the semantics of its constituents, in a simple way – we will give a formal

characterization for that in Theorem 1. Note that the use of partial c-terms as

values is crucial to prevent the innermost evaluation from making functions strict,

thus losing lazy evaluation. Fortunately the rule B combined with the use of partial

substitutions for parameter passing ensure a lazy behavior for both παCRWL and

CRWL. Therefore, we could roughly describe the parameter passing of CRWL as

call-by-partial value, while παCRWL would perform call-by-set-of-partial values.

The calculus derives reduction statements of the form P �παCRWL e � t,

which expresses that t is (or approximates to) a possible value for e in this

semantics under the program P. For any παCRWL-proof we define its size as

the number of applications of rules of the calculus. The παCRWL-denotation of an

expression e ∈ Exp⊥ under a program P in παCRWL is defined as [[e]]αplP = {t ∈
CTerm⊥ | P �παCRWL e � t}. In the following, we will usually omit the reference

to P and αpl, and even will skip �παCRWL when it is clearly implied by the context.

Example 3.1

Consider the program of Example 1.1 that is {f(c(X)) → d(X,X), X ? Y → X,

X ? Y → Y }. The following is a παCRWL-proof for the statement f(c(0) ? c(1)) �

d(0, 1) (some steps have been omitted for the sake of conciseness):

0 0
DC

c(0) c(0)
DC

c(1) ⊥ B

.

..

c(0) c(0)

c(0)?c(1) c(0)
PORα

.

..

c(0)?c(1) c(1)

..

.
0?1 0

.

..
0?1 1

d(0?1, 0?1) d(0, 1)
DC

f(c(0)?c(1)) d(0, 1)
PORα

5 In fact, angelic non-strict plural non-determinism.

10 A. Riesco and J. Rodŕıguez-Hortalá

RR

X X

X ∈ V DC

e1 t1 . . . en tn

c(e1, . . . , en) c(t1, . . . , tn)

c ∈ CSn

B

e ⊥
PORα

e1 p1θ11

. . .
e1 p1θ1m1

. . .
en pnθn1

. . .
en pnθnmn rθ t

f(e1, . . . , en) t
if (f(p) → r) ∈ P, ∀i ∈ {1, . . . , n} Θi = {θi1, . . . , θimi}
θ = (

n⊎

i=1

?Θi) θe, ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , mi}
dom(θij) ⊆ var(pi), ∀i ∈ {1, . . . , n} mi > 0

dom(θe) ⊆ vExtra(f(p) → r), θe ∈ CSubst?⊥

Figure 2. Rules of παCRWL.

One of the most important properties of παCRWL is compositionality, a property

very close to the DET-additivity property for algebraic specifications of Hussmann

(1993), or the referencial transparency property of Søndergaard and Sestoft (1990).

This property shows that the παCRWL-denotation of any expression put in a context

only depends on the παCRWL -denotation of that expression, and formalizes the

idea that the semantics of the whole expression depends only on the semantics of

its constituents, as we have informally pointed above.

Theorem 1 (Compositionality of παCRWL)

For any program, C ∈ Cntxt and e ∈ Exp⊥:

[[C[e]]]αpl =
⋃

{t1 ,...,tn}⊆[[e]]αpl

[[C[t1 ? . . . ? tn]]]
αpl

for any arrangement of the elements of {t1, . . . , tn} in t1 ? . . . ? tn. As a consequence,

for any e′ ∈ Exp⊥:

[[e]]αpl = [[e′]]αpl iff ∀C ∈ Cntxt .[[C[e]]]αpl = [[C[e′]]]αpl

Proof

We have to prove that, for any t ∈ CTerm⊥, if C[e] � t then ∃{s1, . . . , sn} ⊆ [[e]]αpl

such that C[s1 ? . . . ? sn] � t; and conversely, that given {s1, . . . , sn} ⊆ [[e]]αpl such

that C[s1 ? . . . ? sn] � t then C[e] � t. Each of these statements can be proved by

induction on the size of the starting proof (see Riesco and Rodrı́guez-Hortalá 2011

for details). �

Contrary to what happens to call-time choice (López-Fraguas et al. 2008; López-

Fraguas et al. available on request), we cannot have a compositionality result for

single values like [[C[e]]] =
⋃

t∈[[e]][[C[t]]] for any arbitrary context C because e could

appear in a function call when put inside C, and that function might demand

more that one value from e because of the plurality of παCRWL. We can see this

considering the program from Example 1.1 extended with a function coin defined

by {coin → 0, coin → 1}, the context f(c([])) and the expression coin: in order to

Singular and plural functions for functional logic programming 11

compute the value d(0, 1) ∈ [[f(c(coin))]] we need {0, 1} ⊆ [[coin]], while a single

value of coin is not enough, which is reflected in the fact that d(0, 1) ∈ [[f(c(0 ? 1))]]

while d(0, 1)
∈ [[f(c(0))]] ∪ [[f(c(1))]]. On the other hand, note that we only need a

finite subset of the denotation of the expression put in context, and not the whole

denotation, which could be infinite, thus leading to t1 ? . . . ? tn being a malformed

expression, as we only consider finite expressions in this work. To illustrate this we

may consider again the program from Example 1.1, the symbols z ∈ CS 0, s ∈ CS 1

for the Peano natural numbers representation, and the function from defined as

{from(X) → X, from(X) → s(from(X))}. Then using the same context as above and

the expression from(z), in order to compute d(z, s(z)) ∈ [[f(c(from(z)))]] we just need

{z, s(z)} ⊆ [[from(z)]], but not the infinite set of elements in [[from(z)]]. The intuition

behind this is that, as we use c-terms as values and c-terms are finite, then any

computation of a value is a finite process that only involves a finite amount of

information: in this case a finite subset of the denotation of the expression put in

context.

Besides compositionality, παCRWL enjoys other nice properties like the following

polarity property.

Proposition 1 (Polarity of παCRWL)

For any program P, e, e′ ∈ Exp⊥, t, t′ ∈ CTerm⊥ if e � e′ and t′ � t then

P �παCRWL e � t implies P �παCRWL e′
� t′ with a proof of the same size

or smaller.

Proof

By a simple induction on the structure of e � t using basic properties of � (see

Riesco and Rodrı́guez-Hortalá 2011 for details). �

παCRWL also has some monotonicity properties related to substitutions. These

are formulated using the preorder �π over CSubst?
⊥ defined by θ �π θ′ iff ∀X ∈ V,

given θ(X) = t1 ? . . . ? tn and θ′(X) = t′1 ? . . . ? t′m then ∀t ∈ {t1, . . . , tn}∃t′ ∈
{t′1, . . . , t′m} such that t � t′; and the preorder �αpl over Subst⊥ defined by σ �αpl σ′

iff ∀X ∈ V, [[σ(X)]]αpl ⊆ [[σ′(X)]]αpl .

Proposition 2 (Monotonicity for substitutions of παCRWL)

For any program, e ∈ Exp⊥, t ∈ CTerm⊥, σ, σ′ ∈ Subst⊥, θ, θ′ ∈ CSubst?
⊥:

(1) Strong monotonicity of Subst⊥: If ∀X ∈ V, s ∈ CTerm⊥ given P �παCRWL
σ(X) � s with size K we also have P �παCRWL σ′(X) � s with size K ′ � K ,

then �παCRWL eσ � t with size L implies �παCRWL eσ′
� t with size L′ � L.

(2) Monotonicity of CSubst⊥: If θ, θ′ ∈ CSubst⊥ and θ � θ′ then P �παCRWL eθ �

t with size K implies P �παCRWL eθ′
� t with size K ′ � K .

(3) Monotonicity of Subst⊥: If σ �αpl σ′ then [[eσ]]αpl ⊆ [[eσ′]]αpl .

(4) Monotonicity of CSubst?⊥: If θ �π θ′ then [[eθ]]αpl ⊆ [[eθ′]]αpl .

The properties of παCRWL we have seen so far are shared with CRWL, which

is something natural taking into account that παCRWL is a modification of that

semantics. Nevertheless, there are some properties of CRWL – and as a consequence,

of call-time choice – that do not hold for παCRWL. One of these is the correctness

12 A. Riesco and J. Rodŕıguez-Hortalá

of the bubbling operational rule (Antoy et al. 2007), which can be formulated

as “under any program and for any C ∈ Cntxt , e1, e2 ∈ Exp⊥ we have that

[[C[e1 ? e2]]] = [[C[e1] ? C[e2]]].” Note that Examples 1.1 and 1.2 already show that

this property does not hold for run-time choice, the following (counter) example

proves that it is not the case for παCRWL .

Example 3.2

Consider the program P = {pair(X) → (X,X), X ? Y → X,X ? Y → Y } and

the expressions pair(0 ? 1) and pair(0) ? pair(1), which correspond to a bubbling

step using C = pair([]). It is easy to check that (0, 1) ∈ [[pair(0 ? 1)]]αpl while

(0, 1)
∈ [[pair(0) ? pair(1)]]αpl .

It was very enlightening for us to discover that the correctness of bubbling does

not hold for παCRWL, and in fact in Rodrı́guez-Hortalá (2008) it was wrongly

considered as true. This shows that CRWL and παCRWL are more different than

these may appear at first sight. In particular, regarding bubbling, the important

difference is that while παCRWL is only compositional with respect to subsets of the

denotation, CRWL is compositional with respect to single values of the denotation,

as we saw above. Compositionality with respect to single values is stronger than

compositionality with respect to subsets of the denotation, as the former implies the

latter, and this is also exemplified by the fact that we need compositionality with

respect to single values for bubbling to be correct, as we will see soon. On the other

hand, compositionality with respect to subsets of the denotation is enough to obtain

the result expressed at the end of Theorem 1, showing that expressions with the

same values are indistinguishable, which corresponds to the value-based philosophy

of FLP.

As the bubbling rule is devised to improve the efficiency of computations (Antoy

et al. 2007), it would be nice to be able to use it in some situations, although it

would only be for a restricted class of contexts. In this line, we have found that

bubbling is still correct under παCRWL for a particular kind of contexts called

constructor contexts or just c-contexts, which are contexts whose holes appear under

a nested application of constructor symbols only, that is, cC ::= [] | c(e1, . . . , cC, . . .

, en), with c ∈ CS n, e1, . . . , en ∈ Exp⊥. For c-contexts, παCRWL enjoys the same

compositionality for single values as CRWL – that property holds in CRWL for

arbitrary contexts – as shown in the following result.

Proposition 3 (Compositionality of παCRWL for c-contexts)

For any program, c-context cC and e ∈ Exp⊥:

[[cC[e]]]αpl =
⋃

t∈[[e]]αpl

[[cC[t]]]αpl

Proof

Very similar to the proof for the general compositionality of παCRWL from

Theorem 1 (see Riesco and Rodrı́guez-Hortalá 2011 for details). �

As compositionality for single values is the key property needed for bubbling to

be correct, we get the following result for bubbling in παCRWL.

Singular and plural functions for functional logic programming 13

Proposition 4 (Bubbling for c-contexts in παCRWL)

For any program, c-context cC and e1, e2 ∈ Exp⊥, [[cC[e1 ? e2]]]
αpl =

[[cC[e1] ? cC[e2]]]
αpl .

Proof

It is easy to prove that ∀e1, e2 ∈ Exp⊥ we have [[e1 ? e2]]
αpl = [[e1]]

αpl ∪ [[e2]]
αpl (see

Riesco and Rodrı́guez-Hortalá 2011). But then:

[[cC[e1 ? e2]]]
αpl

=
⋃

t∈[[e1 ? e2]]αpl [[cC[t]]]αpl by Proposition 3

=
⋃

t∈[[e1]]αpl ∪[[e2]]αpl [[cC[t]]]αpl

=
⋃

t∈[[e1]]αpl [[cC[t]]]αpl ∪
⋃

t[[e2]]αpl [[cC[t]]]αpl

= [[cC[e1]]]
αpl ∪ [[cC[e2]]]

αpl by Proposition 3

= [[cC[e1] ? cC[e2]]]
αpl �

We end our presentation of παCRWL with an example showing how we can use

παCRWL to model problems in which some collecting work has to be done.

Example 3.3

We want to represent the database of a bank in which we hold some data about its

employees. This bank has several branches and we want to organize the information

according to them. To do that we define a non-deterministic function branches

to represent the set of branches: a set is then identified with a non-deterministic

expression. We also use this technique to define non-deterministic function employees ,

which conceptually returns, for a given branch, the set of records containing the

information regarding the employees that work in that branch. Now we want to

search for the names of two clerks, which may be working in different branches.

To do this we define the function twoclerks , which is based upon the function find ,

which forces the desired pattern e(N,G, clerk) over the set defined by the expression

employees(branches):

P = {branches → madrid ,

branches → vigo,

employees(madrid) → e(pepe,man , clerk),

employees(madrid) → e(paco,man , clerk),

employees(vigo) → e(maria ,woman , clerk),

employees(vigo) → e(jaime,woman , clerk),

twoclerks → find (employees(branches)),

find (e(N,G, clerk)) → (N,N)}

With term rewriting twoclerks → find (employees(branches))
→∗ (pepe,maria), be-

cause in that expression the evaluation of branches is needed and thus one of the

branches must be chosen. On the other hand, with παCRWL the value (pepe,maria)

can be computed for twoclerks (some steps have been omitted for the sake of

conciseness, emps abbreviates employees , and brs abbreviates branches):

14 A. Riesco and J. Rodŕıguez-Hortalá

...

emps(brs) e(pepe,⊥, clerk)
PORα

...

emps(brs) e(maria,⊥, clerk)
PORα

...

(pepe ? maria, pepe ? maria) (pepe,maria)
DC

find(emps(brs)) (pepe,maria)
PORα

twoclerks (pepe,maria)
PORα

where

madrid madrid
DC

brs madrid
PORα

...

e(pepe,man, clerk) e(pepe,⊥, clerk)
DC

emps(brs) e(pepe,⊥, clerk)
PORα

3.2 πβCRWL

So far we have presented our first proposal for a plural semantics for constructor

systems, seen some interesting properties, and how to use it to solve collecting

problems. Nevertheless, this semantics also has some weak points that will be

illustrated by the following example.

Example 3.4

Starting from the program of Example 3.3, we want to search for the names of two

clerks paired with their corresponding genders. Therefore, following the same ideas,

we define a function find2NG that forces the desired pattern but now returning both

the name and the gender of two clerks, by the rule find2NG(e(N,G, clerk)) →
((N,G), (N,G)). Then, ((pepe,man), (maria ,woman)) would be one of the values

computed for the expression find2NG(employees(branches)), as expected. Neverthe-

less, we can also compute the value ((pepe,woman), (maria ,man)), which obviously

does not correspond to the intended meaning of find2NG , as can be seen in the

following proof (using the abbreviations above and also m for man , and w for

woman).

...

emps(brs) e(pepe, m, clerk)
...

emps(brs) e(maria, w, clerk)

...

((pepe ? maria, m ? w), (pepe ? maria, m ? w))
((pepe, w), (maria, m))

find2NG(emps(brs)) ((pepe, w), (maria, m))
PORα

This example is interesting because it shows a relevant flaw of παCRWL, since

there the matching substitutions [N/pepe, G/man] and [N/maria , G/woman] ob-

tained for different evaluations of the argument employees(branches) are wrongly

intermingled. Anyway, the program is not well conceived, as it does not specify

that each of the (N,G) pairs correspond to a particular clerk in the database,

Singular and plural functions for functional logic programming 15

thus preventing an unintended information mix-up. Nevertheless, a better semantic

behavior would have prevented “mixed” results like ((pepe,woman), (maria ,man)),

thus getting ((maria ,woman), (maria ,woman)) and ((pepe,man), (pepe,man)) as the

only total values for find2NG(employees(branches)), which does not fix the program

but at least avoids wrong information mix-up.6

This problem was also pointed out in Braßel and Berghammer (2009), where

an identification between d(0, 0) ? d(1, 1) and d(0 ? 1, 0 ? 1) – for d ∈ CS 2

and 0, 1 ∈ CS 0 – made by παCRWL for relevant contexts was reported. In the

technical setting presented in that paper another plural semantics that avoids

this problem is proposed, although its technical relation with call-time or run-

time choice is neither formally stated nor proved. In that work, that particular

plurality is achieved by allowing bubbling steps for constructor applications by

means of a rule that could be expressed in our syntax as [[c(e1, . . . , e
′
1 ? e′

2, . . . , en)]] =

[[c(e1, . . . , e
′
1, . . . , en) ? c(e1, . . . , e

′
2, . . . , en)]]. This kind of rules are well suited for a

step-wise semantics like the one presented in Braßel and Berghammer (2009), but

are more difficult to integrate with a goal-oriented proof calculus in the style of

CRWL or παCRWL, which – as we saw in the presentation of παCRWL above –

perform a kind of innermost evaluation of expressions by exploiting the use of

partial values to get a compositional calculus for a lazy semantics.

Hence, in order to adapt this idea to our framework, we could switch from bubbling

under constructors to bubbling of CSubst?
⊥, allowing the combination of substitutions

that only differ in the value they assign to a single variable. This can be realized by

defining a binary operator � to combine partial c-substitutions and a reduction

notion →� defined by the rule (θ � [X/e1])� (θ � [X/e2]) →� θ � [X/e1 ? e2] that

corresponds to a bubbling step for substitutions. Using this we could, for example,

perform the following bubbling derivation for substitutions.

[X/0, Y /0] � [X/0, Y /1] � [X/1, Y /0] � [X/1, Y /1]

→� [X/0, Y /0 ? 1] � [X/1, Y /0] � [X/1, Y /1]

→� [X/0, Y /0 ? 1] � [X/1, Y /0 ? 1] →� [X/0 ? 1, Y /0 ? 1]

This derivation shows a criterion that determines that the set of c-substitutions

{[X/0, Y /0], [X/0, Y /1], [X/1, Y /0], [X/1, Y /1]} can be safely combined into [X/0 ?

1, Y /0 ? 1] ∈ CSubst?
⊥ with no wrong substitution mix-up. On the other hand, for

[X/0, Y /0] � [X/1, Y /1] we should not be able to perform any →� step as these

substitutions differ in more than one variable, thus failing to combine those c-

substitutions into a single element from CSubst?
⊥. As can be seen in Figure 2,

the key for getting a plural behavior in παCRWL is finding a way to combine

different matching substitutions obtained from the evaluation of the same expression,

therefore this new combination method should give rise to another plural semantic

proposal. We conjecture that the resulting semantics expresses the same plural

semantics proposed in Braßel and Berghammer (2009) – the one resulting in that

setting when only variables of sort Ch (as defined in that paper) are used – although

6 In Section 5 we will see how to combine singular and plural function arguments to solve generalization
of this problem.

16 A. Riesco and J. Rodŕıguez-Hortalá

we will not give any formal result relating to both proposals. Let us call πβCRWL to

this new semantics in which parameter passing is only performed with substitutions

from CSubst?
⊥ that come from a successful combination of c-substitutions using the

relation →�, and consider the behavior of different plural semantics in the following

example.

Example 3.5

Consider the constructors c ∈ CS 1, d ∈ CS 2, l ∈ CS 4, and 0, 1 ∈ CS 0, and the

following program.

f(c(X)) → d(X,X) h(d(X,Y)) → d(X,X)

g(d(X,Y)) → l(X,X, Y , Y) k(d(X,Y)) → d(X,Y)

• f(c(0) ? c(1)) and f(c(0 ? 1)) behave the same in both παCRWL and πβCRWL.

In this case there is only one variable involved in the matching substitution and

thus no substitution mix-up like the ones seen before may appear. That is, for

both expressions we only have to combine the substitutions [X/0] and [X/1],

thus reaching the values d(0, 0), d(0, 1), d(1, 0), and d(1, 1) in both semantics.

• More surprisingly, we also get the same behavior for h(d(0, 0) ? d(1, 1)) and

h(d(0 ? 1, 0 ? 1)) in both παCRWL and πβCRWL. There the suspicious

expression is h(d(0, 0) ? d(1, 1)), which generates the matching substitutions

[X/0, Y /0] and [X/1, Y /1] that are wrongly combined by παCRWL into

the substitution ?{[X/0, Y /0], [X/1, Y /1]} = [X/0 ? 1, Y /0 ? 1], used to

instantiate the right-hand side of the rule for h. But this mistake has no

consequence because only X appears on the right-hand side of the rule for h,

therefore it has the same effect as combining [X/0, Y / ⊥] and [X/1, Y / ⊥]

into [X/0 ? 1, Y / ⊥], which is just what is done in πβCRWL as we will see

later on.

On the other hand, h(d(0 ? 1, 0 ? 1)) is not problematic as it generates the

matching substitutions [X/0, Y /0], [X/0, Y /1], [X/1, Y /0], and [X/1, Y /1]

that already cover all the possible instantiations of X and Y caused by its

combination in παCRWL, the substitution [X/0 ? 1, Y /0 ? 1]. The point

is that in a sense both {[X/0, Y /0], [X/0, Y /1], [X/1, Y /0], [X/1, Y /1]} and

[X/0 ? 1, Y /0 ? 1] have the same power. This will also be reflected by the

fact that πβCRWL would be able to combine the former set into the latter

CSubst?
⊥.

Again, we can reach the values d(0, 0), d(0, 1), d(1, 0), and d(1, 1) for each

expression in both semantics.

• It is for the expressions g(d(0, 0) ? d(1, 1)) and g(d(0 ? 1, 0 ? 1)) that we can see

a different behavior of παCRWL and πβCRWL. Once again g(d(0 ? 1, 0 ? 1))

is not problematic, and for it we can get the values l(0, 0, 0, 0), l(0, 0, 0, 1),

et al. and all the combinations of 0 and 1 in both semantics. But for

g(d(0, 0) ? d(1, 1)) we have that, for example, to compute l(0, 0, 0, 1) we need

the expression d(0, 0) ? d(1, 1) to generate both 0 and 1 for Y in the matching

substitutions. The only (total) matching substitutions that can be obtained

from the evaluation of d(0, 0) ? d(1, 1) are [X/0, Y /0] and [X/1, Y /1], which

Singular and plural functions for functional logic programming 17

cannot be combined by πβCRWL, hence we cannot get both 0 and 1 for Y

in the combined substitution. As a consequence l(0, 0, 0, 0) and l(1, 1, 1, 1) are

the only values computed for g(d(0, 0) ? d(1, 1)) by πβCRWL. On the other

hand, παCRWL computes all the combinations of 0 and 1 – like it did for

g(d(0 ? 1, 0 ? 1)) – as it is able to combine {[X/0, Y /0], [X/1, Y /1]} into

[X/0 ? 1, Y /0 ? 1].

• A more exotic discovery is that k(d(0, 0) ? d(1, 1)) does not behave the same

as for call-time choice, run-time choice, παCRWL, and πβCRWL, even though

it only uses a right-linear program rule, and it is a known fact that call-

time choice and run-time choice are equivalent for right-linear programs

(Hussmann 1993). CRWL (call-time choice), term rewriting (run-time choice),

and πβCRWL only compute the values d(0, 0) and d(1, 1) for k(d(0, 0) ? d(1, 1))

in the case of πβCRWL because it fails to combine [X/0, Y /0] and [X/1, Y /1].

Nevertheless, παCRWL is able to combine those substitutions into [X/0 ? 1,

Y /0 ? 1], thus getting additional values d(0, 1) and d(1, 0) for the expression

k(d(0, 0) ? d(1, 1)). However, we still strongly conjecture that πβCRWL – as

formulated below – is equivalent to call-time choice and run-time choice for

right-linear programs.

The previous example motivates the interest of a formal definition of πβCRWL.

It would be nice if it were by means of a proof calculus similar to CRWL and

παCRWLbecause then their comparison would be easier, and maybe they could

even share some of their properties, in particular compositionality. The above ideas

regarding bubbling derivations for substitutions have given us the right intuitions,

but these derivations are not so easy to handle as the following characterization

of compressible sets of c-substitutions illustrates, which will be the only sets of

substitutions that will be combined by πβCRWL.

Definition 1 (Compressible set of CSubst⊥)

A finite set Θ ⊆ CSubst⊥ is compressible iff for {X1, . . . , Xn} =
⋃

θ∈Θ dom(θ)

{(X1θ, . . . , Xnθ) | θ ∈ Θ} = {X1θ1 | θ1 ∈ Θ} × . . . × {Xnθn | θn ∈ Θ}

Note that this property is easily computable for Θ finite, as we only consider finite

domain substitutions.

Example 3.6

Let us see how the notion of compressible set of c-substitutions can be used to replace

the relation →� sketched above. We have seen that the substitutions [X/0, Y /0] and

[X/1, Y /1] should not be combined to prevent a wrong substitution mix-up. This

is reflected in the fact that the set {[X/0, Y /0], [X/1, Y /1]} is not compressible

because:

{(Xθ, Y θ) | θ ∈ {[X/0, Y /0], [X/1, Y /1]}} = {(0, 0), (1, 1)}

= {(0, 0), (0, 1), (1, 0), (1, 1)} = {0, 1} × {0, 1}
= {Xθx | θx ∈ {[X/0, Y /0], [X/1, Y /1]}} × {Y θy | θy ∈ {[X/0, Y /0], [X/1, Y /1]}}

18 A. Riesco and J. Rodŕıguez-Hortalá

RR

X X

X ∈ V DC

e1 t1 . . . en tn

c(e1, . . . , en) c(t1, . . . , tn)

c ∈ CSn

B

e ⊥
PORβ

e1 p1θ11

. . .
e1 p1θ1m1

. . .
en pnθn1

. . .
en pnθnmn rθ t

f(e1, . . . , en) t
if (f(p) → r) ∈ P, ∀i ∈ {1, . . . , n} Θi = {θi1, . . . , θimi}
is compressible, θ = (

n⊎

i=1

?Θi) θe, ∀i ∈ {1, . . . , n},
j ∈ {1, . . . , mi}dom(θij) ⊆ var(pi), ∀i ∈ {1, . . . , n} mi > 0

dom(θe) ⊆ vExtra(f(p) → r), θe ∈ CSubst?⊥

Figure 3. Rules of πβCRWL.

On the other hand, for Θ = {[X/0, Y /0], [X/0, Y /1], [X/1, Y /0], [X/1, Y /1]} the

substitutions it contains can be safely combined, therefore we should have that Θ is

compressible, as it happens:

{(Xθ, Y θ) | θ ∈ Θ} = {(0, 0), (0, 1), (1, 0), (1, 1)}
= {0, 1} × {0, 1} = {Xθx | θx ∈ Θ} × {Y θy | θy ∈ Θ}

Our last proposal for a plural semantics for CSs is based on the notion of

compressible set of c-substitutions, and it is defined by the πβCRWL-proof calculus

in Figure 3. Note that the only difference with παCRWL is that the rule PORα is

replaced by PORβ , which now demands the different matching substitutions obtained

from the evaluation of each function argument to be compressible. Apart from that,

compressible sets of partial c-substitutions are combined just like in παCRWLby

means of the ? operator.

This calculus, like CRWL and παCRWL, also derives reduction statements of

the form P �
πβCRWL

e � t, which expresses that t is (or approximates to) a

possible value for e in this semantics under the program P. Then the πβCRWL-

denotation of an expression e ∈ Exp⊥ under the program P in πβCRWL is defined

as [[e]]βpl
P = {t ∈ CTerm⊥ | P �

πβCRWL
e � t}. In the following, we will usually

omit the reference to P when implied by the context.

Example 3.7

Consider the program of Example 3.4, πβCRWL is able to avoid computing the

value ((pepe, woman), (maria ,man)) for the expression find2NG(employees(branches))

because the set of matching substitutions {[N/pepe, G/man], [N/maria , G/woman]}
is not compressible as can be easily checked by applying Definition 1 in a way

similar to Example 3.6. Nevertheless, the values ((maria ,woman), (maria ,woman))

and ((pepe,man), (pepe,man)) can be computed for find2NG(employees(branches))

by using the sets of substitutions {[N/pepe, G/man]} and {[N/maria , G/woman]},
respectively, for parameter passing, which are compressible, as they are singletons.

As we saw in Example 3.4, the function find2NG is wrongly conceived because

it does not specify that in each pair (N,G) the name N and the genre G must

Singular and plural functions for functional logic programming 19

correspond to the same clerk. πβCRWL cannot fix a wrong program, but at least is

able to prevent “mixed” results like ((pepe,woman), (maria ,man)).

It is also easy to check that πβCRWL has the same behavior as παCRWL

for Example 3.3, as sets like {[N/pepe, G/⊥], [N/maria , G/⊥]} are compressible.

Similarly, in Example 3.5, functions f and h behave the same under both se-

mantics, and πβCRWL also behaves for h and k as specified there, because

{[X/0, Y /0], [X/1, Y /1]} is not compressible, just like {[N/pepe, G/man], [N/maria ,

G/woman]}, while for Θ = {[X/0, Y /0], [X/0, Y /1], [X/1, Y /0], [X/1, Y /1]} we

have that Θ is compressible as seen in Example 3.6.

The following result shows that part of the equality that defines compressibility

always holds trivially, thus simplifying the definition of compressible set of c-

substitutions.

Lemma 2

For any finite set Θ ⊆ CSubst⊥ for {X1, . . . , Xn} =
⋃

θ∈Θ dom(θ) we have

{(X1θ, . . . , Xnθ) | θ ∈ Θ} ⊆ {X1θ1 | θ1 ∈ Θ} × . . . × {Xnθn | θn ∈ Θ}

As a consequence Θ is compressible iff

{(X1θ, . . . , Xnθ) | θ ∈ Θ} ⊇ {X1θ1 | θ1 ∈ Θ} × . . . × {Xnθn | θn ∈ Θ}

This gives another criterion to prove compressibility: Θ is compressible iff ∀θ1, . . . , θn
∈ Θ. ∃θ ∈ Θ such that ∀i.Xiθi ≡ Xiθ (which implies that (X1θ1, . . . , Xnθn) ≡
(X1θ, . . . , Xnθ)).

In a way this result exemplifies why πβCRWL is smaller than παCRWL in the sense

that in general it computes less values for a given expression under a given program,

as {X1θ1 | θ1 ∈ Θ} × . . . × {Xnθn | θn ∈ Θ} corresponds to the substitution ?Θ that

is always used for parameter passing in παCRWLwith no previous compressibility

test. We will see more about the relations between call-time choice, run-time choice,

παCRWL, and πβCRWL in Section 4.

We have just seen how πβCRWL corrects the excessive permissiveness of the

combinations of substitutions performed by παCRWL, but will it be able to do it

while keeping the nice properties of παCRWL– in particular compositionality – at

the same time. Fortunately, the answer is yes as shown by the following result.

Theorem 2 (Basic properties of πβCRWL)

The basic properties of παCRWL also hold for πβCRWL under any program, i.e, the

corresponding versions of Theorem 1 and Propositions 1–4 also hold for πβCRWL.

For Proposition 2 in particular we replace �αpl with �βpl , which is defined in terms

of πβCRWL instead of παCRWL, i.e., σ �βpl σ′ iff ∀X ∈ V, [[σ(X)]]βpl ⊆ [[σ′(X)]]βpl .

Nevertheless, in the following we will often omit the superscripts αpl and βpl in

�αpl and �βpl when those are implied by the context.

Proof

In each proof for the παCRWL versions of these results we start from a given

παCRWL-proof and build another one using a bigger expression with respect to �, a

20 A. Riesco and J. Rodŕıguez-Hortalá

more powerful substitution, interchanging an expression with an alternative of some

of its values. Therefore, we can use the same technique for πβCRWL to replicate any

PORβ step in the starting πβCRWL-proof by using the substitution used there for

parameter passing, which must be compressible by hypothesis, and that we are

able to obtain by using a similar reasoning to that performed in the proof for the

corresponding result for παCRWL. �

In this section we have presented two different proposals for a plural semantics for

non-deterministic constructor systems that are different from run-time choice. The

first one, παCRWL, is a pretty simple extension of CRWL that comes up naturally

from allowing the combination of several matching substitution through the operator

? for c-substitutions. But it is precisely the simplicity of that combination that leads

to a wrong information mix-up in some situations. These problems are solved in

πβCRWL, in which a compressibility test is added to prevent wrong combination of

substitutions. This could suggest that παCRWL is only a preliminary attempt that

should now be put aside and forgotten. Nevertheless, παCRWL will still be very

useful for us, again because of its simplicity, as we will see in subsequent sections.

Finally, note that both παCRWL and πβCRWL have been devised starting

from CRWL and then adding some criterion for combining different matching

substitutions for the same argument, so any number of alternative plural – and even

also compositional, possibly – semantics for constructor systems could be conceived

just by defining new combination procedures.

4 Hierarchy, equivalence, and simulation

In this section we will first compare different characteristics of the semantics

considered so far, with a special emphasis in the set of computed c-terms. Then

we will present a class of programs characterized by a simple syntactic criterion

under which our two plural semantics are equivalent. Finally, we will conclude the

section presenting a program transformation that can be used to simulate our plural

semantics by using term rewriting.

4.1 A hierarchy of semantics

We have already seen that CRWL, παCRWL, and πβCRWL enjoy similar properties

like polarity, monotonicity for substitutions, and, above all, compositionality, which

implies that two expressions have the same denotation if and only if they have the

same denotation when put under the same arbitrary context. This is not the case

for run-time choice as we saw when switching from f(c(0 ? 1)) to f(c(0) ? c(1))

in Examples 1.1 and 1.2, taking into account that for expressions c(0 ? 1) and

c(0) ? c(1) the same values are computed under run-time choice, i.e., the same

c-terms are reached by a term rewriting derivation.7

7 In fact compositionality can be achieved for run-time choice by using a different set of values instead of
the partial c-terms considered in this work. Those values essentially are recursively nested applications

Singular and plural functions for functional logic programming 21

But our main goal in this section is to study the relationship between call-time

choice, run-time choice, παCRWL, and πβCRWL with respect to the denotations they

define, which express a set of values computed by each semantics. To do this we

will lean on a traditional notion from the CRWL framework, the notion of shell |e|
of an expression e, which represents the outer constructor (thus partially computed)

part of e, defined as |⊥| =⊥, |X| = X, c(e1, . . . , en) = c(|e1|, . . . , |en|), |f(e1, . . . , en)| =⊥,

for X ∈ V, c ∈ CS , f ∈ FS . Now we can define our notion of denotation of an

expression in each of the semantics considered.

Definition 2 (Denotations)

For any program P, e ∈ Exp we define the denotation of e under the different

semantics as follows:

• [[e]]sgP = {t ∈ CTerm⊥ | P �CRWL e � t}.
• [[e]]rtP = {t ∈ CTerm⊥ | P � e →∗ e′ ∧ t � |e′|}.
• [[e]]αplP = {t ∈ CTerm⊥ | P �παCRWL e � t}.
• [[e]]βpl

P = {t ∈ CTerm⊥ | P �
πβCRWL

e � t}.

In the following, we will usually omit the reference to P when implied by the context.

As παCRWL and πβCRWL are modifications of CRWL, the relation between these

three semantics is straightforward.

Theorem 3

For any CRWL-program P, e ∈ Exp⊥

[[e]]sg ⊆ [[e]]βpl ⊆ [[e]]αpl

None of the converse inclusions holds in general.

Proof

Given a CRWL-proof for �CRWL e � t we can build a παCRWL-proof for �παCRWL
e � t just replacing every OR step by the corresponding PORβ step, as it is easy to

see that any singleton set of c-substitutions is compressible, and that ?{θ} = θ. As

a consequence [[e]]sg ⊆ [[e]]βpl . On the other hand, we can turn any πβCRWL-proof

into a παCRWL-proof just replacing any PORα step by the corresponding PORα,

as PORβ has stronger premises than PORα, and the same consequence. Therefore

[[e]]βpl ⊆ [[e]]αpl .

Regarding the failure of the converse inclusions in the general case, consider the

program {pair(X) → d(X,X), g(d(X,Y)) → d(X,Y)} for which it is easy to check

that [[pair(0?1)]]sg
� d(0, 1) ∈ [[pair(0?1)]]βpl and [[g(d(0, 0)?d(1, 1))]]βpl
� d(0, 1) ∈
[[g(d(0, 0)?d(1, 1))]]αpl . �

Concerning the relation between call-time choice and run-time choice, it was

already explored in the previous works of the authors (López-Fraguas et al. 2007,

2010), and we recast it here in the following theorem.

of constructor symbols to sets of values structured in the same way, therefore intrinsically more
complicated than plain c-terms, and anyway not considered in the present work (see López-Fraguas
et al. 2009a for details).

22 A. Riesco and J. Rodŕıguez-Hortalá

Theorem 4

For any CRWL-program P, e ∈ Exp, [[e]]sg ⊆ [[e]]rt . The converse inclusion does

not hold in general (as shown by Example 1.1).

On the other hand, we cannot rely on any precedent to study relation between

πβCRWL and run-time choice. Therefore, putting run-time choice in the right place

in the semantics inclusion chain from Theorem 3 will be one of the contributions of

this work. We anticipate that the conclusion is that πβCRWL computes more values

in general.

Theorem 5

For any CRWL-program P, e ∈ Exp, [[e]]rt ⊆ [[e]]βpl . The converse inclusion does

not hold in general.

It is easy to prove the last statement of Theorem 5, as in fact Example 1.2 is a

valid counter-example for that, but proving the first part is far more complicated.

The key for this proof is the following lemma stating that every term rewriting step

is sound with respect to πβCRWL.

Lemma 3 (One-step soundness of → with respect to πβCRWL)

For any CRWL-program P, e, e′ ∈ Exp if e → e′ then [[e′]]βpl ⊆ [[e]]βpl .

Note that any term rewriting step is of the shape C[f(p)σ] → C[rσ] for some

σ ∈ Subst and some program rule f(p) → r. If we could prove Lemma 3 for any step

performed at the root of the starting expression, i.e., f(p)σ → rσ implies [[rσ]]βpl ⊆
[[f(p)σ]]βpl , then we could use the compositionality of πβCRWL from Theorem 2 to

propagate the result [[rσ]]βpl ⊆ [[f(p)σ]]βpl to [[C[rσ]]]βpl ⊆ [[C[f(p)σ]]]βpl . To do that

we will use the following notion of πβCRWL-denotation of a substitution.

Definition 3 (Denotation of substitutions)

For any CRWL-program P, σ ∈ Subst⊥ the πβCRWL-denotation of σ under P is

[[σ]]βpl
P = {θ ∈ CSubst⊥ | ∀X ∈ V, P �

πβCRWL
σ(X) � θ(X)}

Denotations of substitutions enjoy several interesting properties. For example,

every σ ∈ Subst⊥ is more powerful than any combination of substitutions from

its denotation by means of the ? operator, in the sense that σ is bigger than the

combination with respect to the preorder �βpl – which implies that if we apply σ

to an arbitrary expression, we get an expression with a bigger denotation that if we

apply the combination, thanks to the monotonicity of Subst⊥ enjoyed by πβCRWL.

This is something natural because c-substitutions in [[σ]]βpl only contain a finite part

of the possibly infinite set of values generated for each expression in the range of σ.

Lemma 4

For any finite not empty Θ ⊆ [[σ]]βpl we have ?Θ �βpl σ.

Besides, it is clear that in any πβCRWL-proof that uses some σ ∈ Subst⊥ only

a finite amount of information is contained in σ. Therefore, in [[σ]]βpl is employed,

just like in any proof for a statement �
πβCRWL

e � t only a finite amount of

Singular and plural functions for functional logic programming 23

information in e is used. This follows because t is a finite element and the πβCRWL-

proof is also finite, otherwise the statement �
πβCRWL

e � t could not have been

proved. These intuitions are formalized in the following result.

Lemma 5

For any σ ∈ Subst⊥, e ∈ Exp⊥, t ∈ CTerm⊥ if �
πβCRWL

eσ � t then ∃Θ ⊆ [[σ]]βpl

finite and not empty such that �
πβCRWL

e(?Θ) � t

Proof (sketch)

First we prove the case where e ≡ X ∈ V. If X ∈ dom(σ) then we define some

θ ∈ CSubst⊥ as

θ(Y) =

⎧⎨
⎩
t if Y ≡ X

⊥ if Y ∈ (dom(σ) \ {X})
Y if Y
∈ dom(σ)

Otherwise if X
∈ dom(σ) then given Y = dom(σ) we define θ = [Y / ⊥]. In both cases

it is easy to see that taking Θ = {θ} then the conditions of the lemma are granted.

To prove the general case where e is not restricted to be a variable, we perform

an easy induction over the structure of eσ � t, using the property that for any

Θ,Θ′ ⊆ CSubst⊥, if Θ ⊆ Θ′ then ?Θ �π?Θ
′, combined with the monotonicity

under substitutions of πβCRWL (see Riesco and Rodrı́guez-Hortalá 2011 for

details). �

This result is very interesting because it expresses a particular property of our

plural semantics, as it can be also proved true for the corresponding definition of

παCRWL-denotation of a substitution. The key in this result is that the substitution

obtained for rebuilding the starting derivation is a substitution from CSubst?
⊥, which

are precisely the kind of substitutions used for parameter passing in our plural

semantics. On the other hand, this is not true for CRWL, and it is one of the

reasons why in general call-time choice computes less values than run-time choice:

just consider the derivation �CRWL d(X,X)[X/0 ? 1] � d(0, 1) for which there is no

substitution θ in CSubst⊥ – the kind of substitutions used for parameter passing

in CRWL – such that �CRWL d(X,X)θ � d(0, 1). Nevertheless, if we restrict to

deterministic programs, this property becomes true for CRWL – and besides in that

case run-time choice and call-time choice are equivalent too (see López-Fraguas

et al. 2007, 2010 for details).

Although Lemma 5 is a nice result, we still need an extra ingredient to be able to

use it for proving Lemma 3, thus enabling an easy proof for Theorem 5. The point

is that we cannot use an arbitrary substitution from CSubst?
⊥ for parameter passing

in πβCRWL but only a substitution that would be also compressible in order to

ensure that no wrong substitution mix-up is performed, which is precisely the main

feature of πβCRWL. Therefore, although a version of Lemma 5 for παCRWL can be

used for proving that term rewriting is sound with respect to παCRWL – as in fact

it was done in Rodriguez-Hortala (2008) – for proving its soundness with respect to

πβCRWL we will still need to do a little extra effort. And the missing piece is the

following notion of compressible completion of a set of c-substitutions, which adds

24 A. Riesco and J. Rodŕıguez-Hortalá

some additional c-substitutions to its input set in order to ensure that the resulting

set is then compressible.

Definition 4 (Compressible completion)

Given Θ ⊆ CSubst⊥ finite such that {X1, . . . , Xn} =
⋃

θ∈Θ dom(θ), its compressible

completion cc(Θ) is defined as

cc(Θ) = {[X1/X1θ1, . . . , Xn/Xnθn] | θ1, . . . , θn ∈ Θ}

Every compressible completion enjoys the following basic properties, which explain

why we call it “completion” and also “compressible.”

Proposition 5 (Properties of cc(Θ))

For any Θ ⊆ CSubst⊥ finite such that {X1, . . . , Xn} =
⋃

θ∈Θ dom(θ)

(a) cc(Θ) ⊆ CSubst⊥ and it is finite.

(b) Θ ⊆ cc(Θ). As a result, ?Θ �π?cc(Θ).

(c)
⋃

μ∈cc(Θ) dom(μ) = {X1, . . . , Xn}.
(d) cc(Θ) is compressible.

But, for the current task, the most interesting property of compressible completions

is the following.

Lemma 6

For any σ ∈ Subst⊥ and any Θ ⊆ [[σ]]βpl finite and not empty we have that

cc(Θ) ⊆ [[σ]]βpl too.

This is precisely the result we need to strengthen Lemma 5, so it now becomes

applicable for πβCRWL, as it allows us to shift from any subset of the πβCRWL-

denotation of a substitution to its compressible completion, which will be also more

powerful than the starting subset, thanks to Proposition 5(b).

Lemma 7

For any σ ∈ Subst⊥, e ∈ Exp⊥, t ∈ CTerm⊥ if �
πβCRWL

eσ � t then ∃Θ ⊆ [[σ]]βpl

finite, not empty, and compressible such that �
πβCRWL

e(?Θ) � t.

Proof

By Lemma 5 we get some Θ ⊆ [[σ]]βpl finite and not empty such that �
πβCRWL

e(?Θ) � t. Then by Lemma 6 we get that cc(Θ) ⊆ [[σ]]βpl too, and that it is finite,

not empty (as Θ ⊆ cc(Θ) and Θ is not empty), compressible and ?Θ �π?cc(Θ)

by Proposition 5. But then we can apply the monotonicity of Theorem 2 to get

�
πβCRWL

e(?cc(Θ)) � t, so we are done. �

We can now use this result to prove a particularization of Lemma 3 (one-step

soundness of → with respect to πβCRWL) for steps performed at the root of the

expression, i.e., of the shape f(p)σ → rσ. Thus, given some t ∈ [[rσ]]βpl , our goal

is proving that t ∈ [[f(p)σ]]βpl . First of all by Lemma 7 we get some compressible

Θ ⊆ [[σ]]βpl such that t ∈ [[r(?Θ)]]βpl . If we could use it to prove that t ∈ [[f(p)(?Θ)]]βpl

then by Lemma 4 we would get ?Θ �βpl σ, so by the monotonicity of Theorem 2

we could obtain t ∈ [[f(p)σ]]βpl as we wanted. As p ⊆ CTerm⊥ and Θ ⊆ CSubst⊥ we

can easily prove that ∀pi ∈ p, θj ∈ Θ we have �
πβCRWL

pi(?Θ) � piθj . All this can

be used to perform the following step, assuming Θ = {θ1, . . . , θm}.

Singular and plural functions for functional logic programming 25

p1(?Θ) p1θ1 ≡ p1θ1|var(p1)
. . .

p1(?Θ) p1θm ≡ p1θm|var(p1)

. . .
pn(?Θ) pnθ1 ≡ pnθ1|var(pn)

. . .
pn(?Θ) pnθm ≡ pnθm|var(pn) rθ ≡ r(?Θ) t

f(p1, . . . , pn)(?Θ) t
PORβ

for θ′ = (
⊎

?Θi) � θe where ∀i ∈ {1, . . . , n}.Θi = {θj |var(pi) | θj ∈ Θ}, θe = (?Θ)|Ve
for

Ve = vExtra(f(p) → r). It can be easily proved that having Θ compressible implies

that each Θi is also compressible – so the PORβ step above is valid – and that

rθ′ ≡ r(?Θ).

Therefore, we have just proved the soundness with respect to πβCRWL of term

rewriting steps performed at the root of the starting expression. So, all that is left is

using the compositionality of πβCRWL from Theorem 2 for propagating this result

for steps performed in an arbitrary context. A detailed proof for Lemma 3 can be

found in Riesco and Rodrı́guez-Hortalá (2011).

And now we are finally ready to prove Theorem 5.

Proof for Theorem 5

Given some t ∈ [[e]]rt , by definition ∃e′ ∈ Exp such that t � |e′| and e →∗ e′.

We can extend Lemma 3 to →∗ by a simple induction on the length of e →∗ e′,

hence [[e′]]βpl ⊆ [[e]]βpl . As ∀e ∈ Exp⊥, |e| ∈ [[e]]βpl (by a simple induction on the

structure of e), then t � |e′| ∈ [[e′]]βpl ⊆ [[e]]βpl , hence t ∈ [[e]]βpl by the polarity

of Theorem 2. Example 1.1 shows that the converse inclusion does not hold in

general. �

The evident corollary for all these results is the following inclusion chain.

Corollary 4.1

For any CRWL-program P, e ∈ Exp

[[e]]sg ⊆ [[e]]rt ⊆ [[e]]βpl ⊆ [[e]]αpl

Hence for any t ∈ CTerm , P �CRWL e � t implies P � e →∗ t, which implies

P �
πβCRWL

e � t, which implies P �παCRWL e � t.

Proof

The first part holds just combining Theorems 3, 4, and 5.

Concerning the second part, assume �CRWL e � t, in other words, t ∈ [[e]]sg . Then

by the first part t ∈ [[e]]rt , hence e →∗ e′ such that t � |e′|. But as t ∈ CTerm , it

is total and then t is maximal with respect to � (a known property of � easy to

check by induction on the structure of expressions), and so t � |e′| implies t ≡ |e′|,
which implies t ≡ e′, as t is total (easy to check by induction on the structure of t).

Therefore, e →∗ e′ ≡ t ∈ CTerm , which implies t ∈ [[e]]rt by definition, as for c-terms

t we have t � t ≡ |t| (a property of shells proved by induction on the structure of

t), but then t ∈ [[e]]βpl ⊆ [[e]]αpl by the first part, and so both �
πβCRWL

e � t and

�παCRWL e � t. �

26 A. Riesco and J. Rodŕıguez-Hortalá

4.2 Restricted equivalence of παCRWL and πβCRWL

In this section we will present a class of programs for which παCRWL and πβCRWL

behave the same, thus yielding exactly the same denotation for any expression. In

the previous section we saw that [[e]]βpl ⊆ [[e]]αpl for any expression and program,

therefore we just have to find a class of programs such that [[e]]αpl ⊆ [[e]]βpl also

holds for programs in that class.

The intuitions and ideas behind the characterization of that class of programs

come from Example 3.5. The program used there contains two functions f and

h defined by the rules {f(c(X)) → d(X,X), h(d(X,Y)) → d(X,X)}, with d ∈ CS 2,

under which it is easy to check that παCRWL and πβCRWL behave the same for

the expressions f(c(0) ? c(1)) and h(d(0, 0) ? d(1, 1)).

• Regarding f(c(0) ? c(1)), it is pretty natural for both plural semantics to behave

the same, as no wrong information mix-up can be performed when combining

two substitutions with singleton domain, like [X/0] and [X/1], coming when

evaluating c(0) ? c(1) to get an instance of c(X).

• The case for h(d(0, 0) ? d(1, 1)) is more surprising at first look because then

we can obtain the matching substitutions [X/0, Y /0] and [X/1, Y /1], which

cannot be safely combined because the set {[X/0, Y /0], [X/1, Y /1]} is not

compressible. But as seen in Example 3.5 this poses no problem because the

wrongly intermingled substitution [X/0 ? 1, Y /0 ? 1] used by παCRWL has the

same effect over the right-hand side d(X,X) of the rule for h as the substitution

[X/0 ? 1, Y / ⊥] that can be obtained from combining the compressible set

{[X/0, Y / ⊥], [X/1, Y / ⊥]}. This compressible set not only can be used for

parameter passing by πβCRWLbut also can be generated by evaluating the

arguments of h(d(0, 0) ? d(1, 1)) to get an instance of the left-hand side of the

rule for h as [X/0, Y / ⊥] � [X/0, Y /0] and [X/1, Y / ⊥] � [X/1, Y /1].

What the functions f and h have in common is that, for each argument of the

left-hand side of each of their program rules, at most one variable in that argument

appears also on the right-hand side. If we only have to care about one variable

then we can lower to ⊥ the value obtained for the other variables in the matching

substitution, thus getting a smaller – with respect to to � – matching substitution

corresponding to a smaller value that then can be computed, thanks to the polarity

of παCRWL from Proposition 1. The effect of this is that we would get a compressible

substitution that can be used by παCRWL to turn a PORα step using a possibly

non-compressible substitutions into a PORα step using a compressible substitutions

that would be then a valid PORβ step as well. Note that in this case extra variables

pose no problem, as the only difference between PORα and PORβ is the way they

handle the matching substitutions obtained by the evaluation of function arguments.

Then, as extra variables are instantiated freely and independently of the matching

substituions, they always behave the same under both παCRWL and πβCRWL.

In the following definition we formally define the class Cαβ of programs in which

the ideas above are materialized.

Singular and plural functions for functional logic programming 27

Definition 5 (Class of programs Cαβ)

The class of programs Cαβ is defined by

P ∈ Cαβ iff ∀(f(p1, . . . , pn) → r) ∈ P.∀i ∈ {1, . . . , n}.#(var(pi) ∩ var(r)) � 1

where, given a set S , #(S) stands for the cardinality of S . Note that any program

rule in which every argument on its left-hand side is ground or a variable passes

the test that characterizes Cαβ: for ground arguments no parameter passing is

performed, only matching, so we conjecture that if the arguments on the left-hand

side of each program rule are ground, then CRWL, term rewriting, παCRWL, and

πβCRWL behave the same. On the other hand, for variable arguments we have the

converse situation, so matching is trivial and parameter passing is an important

thing, so we conjecture that if the arguments on the left-hand side of each program

rule are variables, then term rewriting, παCRWL, and πβCRWL behave the same –

CRWL remains as the smaller semantics in this case; just consider the program

{pair(X) → d(X,X)} and the expression pair(0 ? 1) for which d(0, 1) cannot be

computed by CRWL, but it can be by any of the other three semantics.

Anyway, the class Cαβ is defined by a simple syntactic criterion, which can be

easily implemented in any mechanized program analysis tool, and that we have

implemented in our prototype from Section 5.

The following theorem formalizes the expected equivalence between παCRWL and

πβCRWL for programs in the class Cαβ .

Theorem 6 (Equivalence of παCRWL and πβCRWL for the class Cαβ)

For any program P ∈ Cαβ , e ∈ Exp⊥

[[e]]αplP = [[e]]βplP

This equivalence between παCRWL and πβCRWL will be very useful for us for

several reasons. First of all, as we will see in Section 4.3, παCRWL can be simulated

by term rewriting through a simple program transformation, which implies that the

same transformation can be used to simulate πβCRWL for the class of programs

Cαβ , thanks to the equivalence from Theorem 6. On the other hand, the class Cαβ is

defined by a simple syntactic criterion, which allows its application to mechanized

program analysis. Finally, this equivalence grows in importance after realising that

the class Cαβ contains many relevant programs: as a matter of fact, all the programs

considered in Section 5 – where we explore the expressive capabilities of our plural

semantics – belong to the class Cαβ .

4.3 Simulating plural semantics with term rewriting

In López-Fraguas et al. (2007, 2009a, 2010) it was shown that neither CRWL

can be simulated by term rewriting with a simple program transformation, nor

vice versa. Nevertheless, παCRWL can be simulated by term rewriting using the

transformation presented in the current section, which can then be used as the

basis for a first implementation of παCRWL. First, we will present a naive version

28 A. Riesco and J. Rodŕıguez-Hortalá

of this transformation, and show its adequacy; later, we will propose some simple

optimizations for it.

In this section we will restrict ourselves to programs not containing extra variables,

i.e., such that for any program rule l → r we have that var(r) ⊆ var(l) holds,

a restriction usually adopted in texts devoted to term rewriting systems (Baader

and Nipkow 1998; TeReSe 2003) for which term rewriting with extra variables is

normally considered as an extension of standard term rewriting. Besides, in practical

implementations, extra variables are usually handled by using narrowing (López-

Fraguas and Sánchez-Hernández 1999; Hanus 2006) or additional conditions to

restrict their possible instantiations (Clavel et al. 2007) in order to avoid a state

space explosion in the search process. Therefore, we leave the extension of our work

to completely deal with extra variables as a subject of future work.

4.3.1 A simple transformation

The main idea in our transformation is to postpone the pattern-matching process

in order to prevent an early resolution of non-determinism. Instead of presenting

the transformation directly, we will first illustrate this concept by applying the

transformation over the program P = {f(c(X)) → d(X,X)} from Example 1.1,

which results in the following program P̂.

P̂ = { f(Y) → if match(Y) then d(project (Y), project(Y)),

match(c(X)) → true, project(c(X)) → X }

In the resulting program P̂ the only rule for function f has been transformed, so

matching is transferred from the left-hand side to the right-hand side of the rule by

means of auxiliary functions, match and project . As a consequence, when we evaluate

by term rewriting under P̂ the function call to f, in the expression f(c(0) ? c(1)) we

are not forced anymore to solve the non-deterministic choice between c(0) and c(1)

before parameter passing, because any expression matches the variable pattern Y .

Therefore, the term rewriting step

f(c(0) ? c(1)) → if match(c(0) ? c(1)) then d(project(c(0) ? c(1)), project (c(0) ? c(1)))

is sound, thus replicating the argument of f freely without demanding any evaluation,

this way keeping its παCRWL-denotation untouched: this is the key to achieve

completeness with respect to παCRWL. Note that the guard if match(c(0) ? c(1)) is

needed to ensure that at least one of the values of the argument matches the original

pattern, otherwise the soundness of the step could not be granted. For example, if we

drop this condition in the translation of the rule “null (nil) → true” for defining an

emptiness test for the classical representation of lists in functional programming, we

would get “null (Y) → true,” which is clearly unsound because it allows us to rewrite

null(cons(0, nil)) into true. Later on, after resolving the guard, different evaluations

of the occurrences of project(c(0) ? c(1)) will solve the non-deterministic choice

implied by ?, and project the argument of c, thus leading us to the final values

d(0, 0), d(1, 1), d(0, 1), and d(1, 0), which are the expected values for the expression in

the original program under παCRWL.

Singular and plural functions for functional logic programming 29

In the following definition we formalize the transformation by means of the

function pST , which for any program rule returns a rule to replace it, and a set of

auxiliary match and project rules for the replacement.

Definition 6 (παCRWL to term rewriting transformation, simple version)

Given a program P, our transformation proceeds rule by rule. For every program

rule (f(p1, . . . , pn) → r) ∈ P such that f
∈ {?, if then } we define its transformation

as follows:

pST (f(p1, . . . , pn) → r)

= f(Y1, . . . , Yn) → if match(Y1, . . . , Yn) then r[Xij/project ij(Yi)]

where

• ∀i ∈ {1, . . . , n}, {Xi1, . . . , Xiki} = var(pi) ∩ var(r) and Yi ∈ V is fresh.

• match ∈ FS n is a fresh function defined by the rule match(p1, . . . , pn) → true.

• Each project ij ∈ FS 1 is a fresh symbol defined by the single rule project ij(pi) → Xij .

For f ∈ {?, if then } the transformation leaves its rules untouched.

It is easy to check that if we use the program P from Example 1.1 as input for

this transformation then it outputs the program P̂ from the discussion above, under
which we can perform the following term rewriting derivation:

f(c(0)?c(1)) → if match(c(0)?c(1)) then d(project(c(0)?c(1)), project(c(0)?c(1)))

→∗ if true then d(project(c(0)?c(1)), project(c(0)?c(1)))

→ d(project(c(0)?c(1)), project(c(0)?c(1))) →∗ d(project(c(0)), project(c(1))) →∗ d(0, 1)

We do not only claim that this transformation is sound but also have technical

results about the strong adequacy of our transformation pST () for simulating the

παCRWL logic using term rewriting. The first one is a soundness result, stating that

if we rewrite an expression under the transformed program, then we cannot get

more results than those that we can get in παCRWL under the original program.

Theorem 7

For any CRWL-program P, and any e ∈ Exp⊥ built up on the signature of P, we

have

[[e]]αplpST (P) ⊆ [[e]]αplP

As a consequence [[e]]rtpST (P) ⊆ [[e]]αplP .

Proof (sketch)

The first part states the soundness within παCRWL of the transformation. Assuming

παCRWL-proof for statement pST (P) �παCRWL e � t for some t ∈ CTerm⊥, we

can then build another παCRWL-proof for P �παCRWL e � t by induction on the

size of the starting proof – measured as the number of rules of παCRWL used. Full

details for that proof can be found in Riesco and Rodrı́guez-Hortalá (2011).

Concerning the second part, it follows from combining the first part with

Corollary 4.1, because then we can chain [[e]]rtpST (P) ⊆ [[e]]αplpST (P) ⊆ [[e]]αplP . �

Regarding completeness of the transformation, we obtained the following result

stating that, for any expression one can build in the original program, we can refine

30 A. Riesco and J. Rodŕıguez-Hortalá

by term rewriting under the transformed program any value computed for that

expression by παCRWL under the original program.

Theorem 8

For any CRWL-program P, and any e ∈ Exp, t ∈ CTerm⊥ built up on the signature

of P, if P �παCRWL e � t then exists some e′ ∈ Exp built using symbols of the

signature of pST (P) such that pST (P) � e →∗ e′ and t � |e′|. In other words,

[[e]]αplP ⊆ [[e]]rtpST (P).

The proof for this result is technically very involved. First of all we have to slightly

generalize Theorem 8 to consider not only the functions of the original program but

also the auxiliary match and project functions generated by the transformation in

order to obtain strong enough induction hypothesis.

Lemma 8

Given a CRWL-program P let P̂ � M = pST (P), where M is the set containing the

rules for the new functions match and project , and P̂ contains the new versions of

the original rules of P – note that by an abuse of notation, the rules for ?, if then

presented in Section 2.1 belong implicitly to both P � M and P̂ � M.

Then for any e ∈ Exp⊥, t ∈ CTerm⊥ constructed using just symbols in the

signature of P � M we have P � M �παCRWL e � t implies P̂ � M � e →∗ e′ such

that t � |e′|.

The proof for Lemma 8 is pretty complicated and it relies on several auxiliary

notions; a detailed proof can be found in Riesco and Rodrı́guez-Hortalá (2011).

Then Theorem 8 follows as an almost trivial consequence of Lemma 8.

Proof for Theorem 8

Let P̂ � M = pST (P) be, where M is the set containing the rules for the new

functions match and project , and P̂ contains the new versions of the original rules

of P.

If e ∈ Exp, t ∈ CTerm⊥ are built using symbols on the signature of P, then

P �παCRWL e � t implies P � M �παCRWL e � t, which implies P̂ � M � e →∗ e′

such that t � |e′| by Lemma 8, that is, pST (P) � e →∗ e′. �

To conclude, the following corollary summarizes the adequacy of the simulation

performed by our program transformation.

Corollary 4.2 (Adequacy of pST () for simulating παCRWL)

For any program P, e ∈ Exp built using symbols of the signature of P

[[e]]αplP = [[e]]rtpST (P)

Hence, ∀t ∈ CTerm we have that P �παCRWL e � t iff pST (P) � e →∗ t.

Proof

The fist part holds by a combination of Theorems 7 and 8.

For the second part if P �παCRWL e � t then t ∈ [[e]]αpl P = [[e]]rtpST (P) by the first

part, hence ∃e′ ∈ Exp such that pST (P) � e →∗ e′ and t � |e′|. But as t ∈ CTerm

then t is maximal with respect to � and so t ≡ |e′|, which implies t ≡ e′ (these are

Singular and plural functions for functional logic programming 31

known properties of shells and �), therefore pST (P) � e →∗ e′ ≡ t. On the other

hand, if pST (P) � e →∗ t then as t � t ≡ |t| (again because t is a total c-term) we

have t ∈ [[e]]rtpST (P) = [[e]]αplP , and so P �παCRWL e � t. �

As promised at the end of the previous subsection, we can now use the restricted

equivalence between παCRWL and πβCRWL from Theorem 6 to extend the adequacy

results of the simulation of παCRWL with term rewriting to πβCRWLfor the class

of programs Cαβ .

Corollary 4.3 (Restricted adequacy of pST () for simulating πβCRWL)

For any program P ∈ Cαβ , e ∈ Exp is built using symbols of the signature of P

[[e]]βpl
P = [[e]]rtpST (P)

Hence, ∀t ∈ CTerm we have that �
πβCRWL

e � t iff pST (P) � e →∗ t.

Proof

A straightforward combination of Corollary 4.2 and Theorem 6. �

This last result illustrates the interest of παCRWL. Because of its simplicity,

παCRWL sometimes combines matching substitutions in a wrong way, but it is pre-

cisely the same simplicity that allows it to be simulated by term rewriting through a

simple program transformation. As a result we can use any available implementation

of term rewriting, like the Maude system, to devise an implementation of παCRWL.

Besides, thanks to the restricted equivalence between παCRWL and πβCRWL, which

would also be an implementation of πβCRWL for the class Cαβ , and the membership

check of program to the class Cαβ could be also mechanized because Cαβ is defined

by a simple syntactic criterion. We will see how these ideas are developed in the

next sections, where the Maude-based implementation of our plural semantics is

presented, and the interest of the class Cαβ is illustrated.

4.3.2 An optimized transformation

As we have already mentioned in our comments after presenting the class Cαβ in

Definition 5, we expect that for ground or variable arguments run-time choice and

our plural semantics behave the same. We can take advantage of this for applying

some optimizations to the program transformation from Definition 6.

• When applied to null (nil) → true, the transformation returns the rules {null(Y)

→ if match(Y) then true, match(nil) → true}, which behave the same as the

original rule. The conclusion is that when a given pattern is ground then no

parameter passing will be done for that pattern, and thus no transformation

is needed.

• Something similar happens with pair(X) → d(X,X) for which {pair(Y) →
if match(Y) then d(project(Y), project(Y)),match(X) → true, project(X) → X}
is returned. In this case the pattern is a variable to which any expression

matches without any evaluation, and the projection functions are trivial, so no

transformation is needed either.

32 A. Riesco and J. Rodŕıguez-Hortalá

We can apply these ideas to get the following refinement of our original program

transformation.

Definition 7 (παCRWL to term rewriting transformation, optimized version)

Given a program P, our transformation proceeds rule by rule. For every program

rule (f(p1, . . . , pn) → r) ∈ P we define its transformation as follows:

pST (f(p1, . . . , pn) → r)

=

⎧⎨
⎩
f(p1, . . . , pn) → r if m = 0

f(τ(p1), . . . , τ(pn)) → if match(Y1, . . . , Ym)

then r[Xij/project ij(Yi)]
otherwise

where ρ1 . . . ρm = p1 . . . pn | λp.(p
∈ V ∧ var(p)
= ∅).

- ∀ρi, {Xi1, . . . , Xiki} = var(ρi) ∩ var(r) and Yi ∈ V is fresh.

- τ : CTerm → CTerm is defined by τ(p) = p if p
∈ {ρ1, . . . , ρm}; otherwise τ(ρi) = Yi.

• match ∈ FSm fresh is defined by the rule match(ρ1, . . . , ρm) → true.

• Each project ij ∈ FS 1 is a fresh symbol defined by the rule project ij(ρi) → Xij .

Note that this transformation is well defined because each ρi ∈ {ρ1, . . . , ρm}
contains at least one variable, and so it can be distinguished from any other ρj by

using syntactic equality, thanks to left linearity of program rules, therefore τ is well

defined.

We will not give any formal proof for the adequacy of this optimized transfor-

mation. Nevertheless, note how this transformation leaves untouched the rules for

? and if then without defining a special case for them. The simple transformation

from Definition 6 worked well for these rules that suggests that we are doing the

right thing.

We end this section with an example application of the optimized transformation,

over the program from Example 3.3. As expected, the transformed program behaves

under term rewriting like the original one under παCRWL.

Example 4.1

The only rule modified is the one for find , for which we get the following program:

{find (Y) → if match(Y) then (project(Y), project(Y)),

match(e(N,G, clerk)) → true,

project(e(N,G, clerk)) → N}

under which we can perform this term rewriting derivation for twoclerks

twoclerks → find (employees(branches))

→ if match(employees(branches))

then (project(employees(branches)), project(employees(branches)))

→∗ if match(e(pepe,man , clerk))

then (project(employees(branches)), project(employees(branches)))

→∗ (project(employees(branches)), project(employees(branches)))

→∗ (project(e(pepe,man , clerk)), project(e(maria ,woman , clerk))

→∗ (pepe,maria)

Singular and plural functions for functional logic programming 33

5 Programming with singular and plural functions

So far we have presented two novel proposals for the semantics of lazy non-

determi-nistic functions, studied some of its properties, and explored their relation

to previous proposals like call-time choice and run-time choice. Nevertheless, we

have seen just a couple of program examples using the semantics, so until now we

have hardly tested the way we can exploit the new expressive capabilities offered

by our plural semantics to improve the declarative flavor of programs. The present

section is devoted to the exploration of these expressive capabilities by means of

several programs that try to illustrate the virtues of our new plural semantics.

In Riesco and Rodrı́guez-Hortalá (2010a) the authors already explored the

capabilities of παCRWL by using the Maude system (Clavel et al. 2007) to develop an

interpreter for this semantics based on the program transformation from Section 4.3.

The resulting interpreter was then used for experimenting with παCRWL, showing

how it allows an elegant encoding of some problems, in particular those with

an implicit manipulation of sets of values. However, call-time choice still remains

the best option for many common programming patterns (González-Moreno et al.

1999; Antoy and Hanus 2002), and that is why it is the semantic option adopted

by modern functional-logic programming systems like Toy (López-Fraguas and

Sánchez-Hernández 1999) or Curry (Hanus 2006). Therefore, it would be nice to

have a language in which both options could be available. In this section we propose

such a language, where the user has the possibility to specify the arguments of each

function symbol that will be considered “plural arguments.” These arguments will

be evaluated using our plural semantics, which intuitively means that they will be

treated like sets of elements of the corresponding type8 instead of single elements,

while the others will be evaluated under the usual singular/call-time choice semantics

traditionally adopted for FLP. Thereby in Riesco and Rodrı́guez-Hortalá (2010b)

we extended our Maude-based prototype to support this combination of singular

and plural arguments, and used it to develop and test several programs that we

think are significant examples of the possibilities of the combined semantics. The

source code for these examples and the interpreter to test the same can be found at

http://gpd.sip.ucm.es/PluralSemantics.

As we have two different plural semantics available, we get two different semantics

resulting from their combination with call-time choice that we have precisely

formalized by means of two novel variants of CRWL called CRWLσ
πα and CRWLσ

πβ ,

corresponding to the combination of call-time choice with παCRWL and πβCRWL,

respectively. Our prototype is based on the program transformation from Section 4.3,

therefore it is an implementation of CRWLσ
πα , and so CRWLσ

πβ is only supported for

programs in the class Cαβ described in Section 4.2. After those calculus, we introduce

the concrete syntax of our interpreter and motivate the combination of singular and

plural semantics with a simple example, while the next examples illustrate how

to combine singular and plural arguments in depth. Then after a short discussion

8 As types are not considered through this work; here we mean the type naturally intended by the
programmer.

34 A. Riesco and J. Rodŕıguez-Hortalá

ORσ
πα

e1 p1θ11

. . .
e1 p1θ1m1

. . .
en pnθn1

. . .
en pnθnmn rθ t

f(e1, . . . , en) t
if (f(p) → r) ∈ P, ∀i ∈ {1, . . . , n} Θi = {θi1, . . . , θimi}
θ = (

n⊎

i=1

?Θi) θe, ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , mi} dom(θij) ⊆ var(pi)

dom(θe) ⊆ vExtra(f(p) → r), θe ∈ CSubst?⊥
∀i ∈ {1, . . . , n} mi > 0, ∀i ∈ sgArgs(f).mi = 1

ORσ
πβ

e1 p1θ11

. . .
e1 p1θ1m1

. . .
en pnθn1

. . .
en pnθnmn rθ t

f(e1, . . . , en) t
if (f(p) → r) ∈ P, ∀i ∈ {1, . . . , n} Θi = {θi1, . . . , θimi} is compressible

θ = (
n⊎

i=1

?Θi) θe, ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , mi} dom(θij) ⊆ var(pi)

dom(θe) ⊆ vExtra(f(p) → r), θe ∈ CSubst?⊥
∀i ∈ {1, . . . , n} mi > 0, ∀i ∈ sgArgs(f).mi = 1

Figure 4. The rules ORσ
πα and ORσ

πβ
.

about the use of singular and plural arguments, we conclude this section with a

brief outline of the implementation of our prototype.

5.1 The logics CRWLσ
πα and CRWLσ

πβ

We assume a mapping plurality : FS → {sg , pl}∗ called plurality map such that,

for every f ∈ FS n, plurality(f) = b1 . . . bn sets its plurality behavior: if bi =

sg then the ith argument of f will be interpreted with a singular semantics,

otherwise it will be interpreted under a plural semantics. In this line sgArgs(f) =

{i ∈ {1, . . . , ar(f)} | plurality(f)[i] = sg} and plArgs(f) = {i ∈ {1, . . . , ar(f)} |
plurality(f)[i] = pl} are the sets of singular and plural arguments of some f ∈ FS .

In particular we say that f is a singular function if sgArgs(f) = {1, . . . , ar(f)} and

that it is a plural function when plArgs(f) = {1, . . . , ar(f)}. A related notion is that

of singular and plural variables of a pattern: sgVars(f(p)) =
⋃

i∈sgArgs(f) var(pi) and

plVars(f(p)) =
⋃

i∈plArgs(f) var(pi).

Thus, we employ the plurality map to express the function arguments that are

considered singular arguments and plural arguments. With this at hand we now

define the combined semantics CRWLσ
πα and CRWLσ

πβ as the result of taking the

rules of CRWL and replacing the rule OR by either the rule ORσ
πα or rule ORσ

πβ

from Figure 4. As any variant of CRWL, these calculi derive reduction statements

of the form P �CRWLσ
πα

e � t and P �CRWLσ
πβ

e � t that express that t is (or

approximates to) a possible value for e in CRWLσ
πα or CRWLσ

πβ , respectively, under

the program P. The denotations [[e]]sαpP and [[e]]sβpP established by these semantics are

defined as usual – see Definition 2.

Singular and plural functions for functional logic programming 35

Just like in παCRWL and πβCRWL, we consider sets of partial values for parameter

passing instead of single partial values, but the novelty is that now these sets are

forced to be singleton for singular arguments. This is reflected in the new rules

ORσ
πα and ORσ

πβ , corresponding to PORα and PORβ respectively, that now have

been tuned to take account of the plurality map; as for singular arguments, we are

only allowed to compute a single value, thus performing parameter passing over it

with a substitution from CSubst⊥ (as obviously ?{θ} = θ), and achieving a singular

behavior (call-time choice).

Example 5.1

Consider the program {f(X, c(Y)) → d(X,X, Y , Y)} and a plurality map such

that plurality(f) = sg pl. The following is a CRWLσ
πα-proof for the statement

f(0 ? 1, c(0) ? c(1)) � d(0, 0, 0, 1) (some steps have been omitted for the sake of

conciseness).

(∗)
c(0) ? c(1) c(0)

...
c(0) ? c(1) c(1)

...
0 ? 1 0

...
0 0

...
0 0

...
0 ? 1 0

...
0 ? 1 1

d(0, 0, 0 ? 1, 0 ? 1) d(0, 0, 0, 1)
DC

f(0 ? 1, c(0) ? c(1)) d(0, 0, 0, 1)
ORσ

πα

where (∗) is the following proof:

0 0
DC

c(0) c(0)
DC

c(1) ⊥ B

...
c(0) c(0)

c(0) ? c(1) c(0)
ORσ

πα

Note that d(0, 1, 0, 1) is not a correct value for the expression f(0 ? 1, c(0) ? c(1))

under CRWLσ
παbecause the first argument of f is singular and therefore the two

occurrences of X on the right-hand side of its rule share the same single value

fixed on parameter passing. Besides, as this program is in the class Cαβ , it behaves

the same under παCRWL and πβCRWL, and therefore also under CRWLσ
πα and

CRWLσ
πβ , so the previous proof and comments also hold for CRWLσ

πβ .

On the other hand, if we take the same program and evaluate f(0 ? 1, c(0) ? c(1))

under term rewriting – which ignores the plurality map – its behavior is significantly

different:

f(0 ? 1, c(0) ? c(1)) → f(0 ? 1, c(0)) → d(0 ? 1, 0 ? 1, 0, 0)

→ d(0, 0 ? 1, 0, 0) → d(0, 1, 0, 0)

The first step resolving the choice between c(0) and c(1) is unavoidable in order to

get an expression matching for the only rule for f, thus for any reachable c-term the

last two arguments of d will be the same, contrary to what happens in CRWLσ
πα and

CRWLσ
πβ under the given plurality map. Nevertheless, its first two arguments can be

different, contrary to what happens under CRWLσ
πα and CRWLσ

πβ . In conclusion, it

36 A. Riesco and J. Rodŕıguez-Hortalá

is easy to define a program and a plurality map for them such that neither CRWLσ
πα

nor CRWLσ
πβ are comparable to term rewriting with respect to set inclusion of the

computed values.

A useful intuition about programs comes from considering the singular arguments

as fixed individual values, while thinking about the plural ones as sets. We could

have chosen to specify the plurality or singularity of functions instead of that of

its arguments, but the use of arguments with different plurality arises naturally in

programs, in the same way it is natural to have arguments of different types. We

will illustrate this fact later by means of different examples.

Regarding properties of these semantics (see Riesco and Rodrı́guez-Hortalá 2011

for more details), both CRWLσ
πα and CRWLσ

πβ inherit the properties of παCRWL from

Section 3.1, for the same reason πβCRWL inherits the properties of παCRWL. The

most important among these properties is their compositionality, which expresses

the value-based philosophy underlying CRWLσ
πα and CRWLσ

πβ , “all I know about an

expression is its set of values,” and that holds for the corresponding reformulation

of Theorem 1 – as it can be proved by a straightforward modification of the proof

for that theorem. Bubbling is also incorrect for both CRWLσ
πα and CRWLσ

πβ , just

like it happens for παCRWL and πβCRWL: in fact Example 3.2 can be reused to

prove it. Nevertheless, just like for παCRWL and πβCRWL, bubbling is correct for

a particular kind of contexts, in this case not only for c-contexts but also for the

bigger class of singular contexts sC, which are contexts whose holes appear only

under a nested application of constructor symbols or singular function arguments:

sC ::= [] | c(e1, . . . , sC, . . . , en) | f(e1, . . . , sC, . . . , en), with c ∈ CS n, f ∈ FS n such

that the subcontext appears in a singular argument of f, and e1, . . . , en ∈ Exp⊥. For

singular contexts we get a compositionality result for singular contexts analogous

to that of Proposition 3 – following the same scheme as the proof for Theorem 1 –

that can be used to easily prove the correctness of bubbling for singular contexts.

We conclude our discussion about CRWLσ
πα and CRWLσ

πβ with the following

result stating that these are in fact conservative extensions of both CRWL (call-time

choice, or equivalently singular non-determinism) and their corresponding plural

semantics, as it was apparent from their rules.

Theorem 9 (Conservative extension)

Under any program and for any e ∈ Exp⊥:

(1) If the program contains no extra variables and every function is singular, then

[[e]]sαp = [[e]]sg = [[e]]sβp.

(2) If every function is plural, then [[e]]sαp = [[e]]αpl and [[e]]sβp = [[e]]βpl .

Proof

If every function is singular and the program contains no extra variables, then ORσ
πα

and ORσ
πβ are equivalent to OR, so CRWL, CRWLσ

πα , and CRWLσ
πβ , behave the

same. Note that the absence of extra variables is essential, as for example from

program {f → d(X,X)} we get [[f]]sg
� d(0, 1) ∈ [[f]]sαp = [[f]]sβp.

Similarly, if every function is plural then ORσ
πα and ORσ

πβ are equivalent to PORα

and PORβ , respectively. Note that extra variables pose no problem in this case, as

Singular and plural functions for functional logic programming 37

(plural SAMPLE-PROGRAM is

f is plural .

f(c(X)) -> p(X, X) .

endp)

Figure 5. Concrete syntax of programs.

any of these plural semantics is able to instantiate them with an arbitrary substitution

from CSubst?
⊥. �

5.2 Commands

In this section we introduce concrete syntax of our language and the commands

provided by our interpreter. The system is started by loading in the Maude the

file plural.maude, available at http://gpd.sip.ucm.es/PluralSemantics. It starts an

input/output loop that allows the user to introduce commands by enclosing them in

parens. Programs start with the keyword plural, followed by the module name and

the keyword is, and finish with endp, as exemplified in Figure 5. The body of each

program is a list of statements of the form e1 -> e2 ., indicating that the program

rule e1 → e2 is a part of the program.

The plurality map is specified by means of is annotations for each function of

the program. These annotations have the form f is plurality ., where plurality can

take the values singular for singular functions, plural for plural functions, or a

sequence composed by the characters s and p specifying in more detail the plurality

behavior for each function argument, along the lines of the beginning of Section 5.1:

If the i th element of this chain is the character s then the i th argument of f will

be a singular argument, otherwise it will be considered a plural argument. Functions

are considered singular by default when no is annotation is provided.

The system is able to evaluate any expression built with the symbols of the

program under the semantics specified by the CRWLσ
πα logic. The prototype does not

support programs with extra variables for two main reasons. First of all it is based

on the transformation from Section 4.3, whose adequacy has been only proved for

programs without extra variables. But the main reason is the lack of a suitable

narrowing mechanism for plural variables, which is the resort usually employed by

FLP systems to deal with the space explosion caused by extra variables (López-

Fraguas and Sánchez-Hernández 1999; Hanus 2005; Hanus 2007). We consider the

development of a plural narrowing mechanism, an interesting subject of future work,

but for now and for the rest of the paper, we restrict ourselves to programs not

containing extra variables.

The system provides by default the constant c-terms tt (for true) and ff (for

false), and two more handy functions: the binary function _?_, which is used with

infix notation, and the if_then_ function, which is used with mix-fix notation,

defined by the following rules:

X ? Y -> X .

X ? Y -> Y .

if tt then E -> E .

Note that, since no is annotation is provided, both functions are singular.

38 A. Riesco and J. Rodŕıguez-Hortalá

Once a module has been introduced, the user can evaluate expressions with the

command

(eval [[depth = DEPTH]] EXPRESSION .)

where EXPRESSION is the expression to be evaluated and DEPTH is a bound in the

number of steps. If this last value is omitted, the search is assumed to be unbounded.

If the term can be reduced to a c-term, it will be printed and the user can use

(more .)

until no more solutions are found.

It is also possible to switch between two evaluation strategies, depth-first and

breadth-first, with the following commands:

(depth-first .)

(breadth-first .)

Finally, the system can be rebooted with the command

(reboot .)

5.3 Examples

In this section we show how to use the above-mentioned commands by means of

two examples.

5.3.1 Clerks

First we show how to implement in our tool the program from Example 3.3, slightly

extended by adding a new branch to the bank. The different branches are defined by

using the non-deterministic function ?, which here has to be understood as the set

union operator. In the same line, for each branch the function employees returns

the set of its employees:

branches -> madrid ? vigo ? badajoz .

employees(madrid) -> e(pepe, men, clerk) ? e(paco, men, boss) .

employees(vigo) -> e(maria, women, clerk) ? e(jaime, men, boss) .

employees(badajoz) -> e(laura, women, clerk) ? e(david, men, clerk) .

Now, we define a function twoclerks, which searches in the database for the

names of two employees working as clerks. It calls the function find, which has

been marked with the keyword plural in order to express that its argument will be

understood as a set of records from the database of the bank. Therefore, although

the same variable N is used in the two components of the pair on the right-hand

side of its rule, each one can be instantiated with different values:

twoclerks -> find(employees(branches)) .

find is plural .

find(e(N,G,clerk)) -> p(N,N) .

Singular and plural functions for functional logic programming 39

Once the module has been loaded in our system,9 we can use the eval command

to evaluate expressions, and the command more to find the next solutions:

Maude> load clerks.plural

Module introduced.

Both alpha and beta plural semantics supported for this program.

Maude> (eval twoclerks .)

Result: p(pepe,pepe)

Maude> (more .)

Result: p(pepe,maria)

This program works as we expected, even if all the functions are marked as plural

(i.e., if παCRWL is used). However, it can be improved in several directions. First

of all, we are interested in getting two different clerks. To do that we will define

a function vals that generates a list containing different values of its argument.

This function will use an auxiliary function newIns that appends an element at the

beginning of the list ensuring that the remaining elements of the list are different

from the new one. This is checked by diffL, which returns the list in its second

argument when it does not contain its first argument, or otherwise fails. Thus, a

disequality test is needed, but in our minimal framework we do not dispose of

disequality constraints, common in FLP languages (Hanus 2007; Antoy and Hanus

2010). Nevertheless, we can implement a ground version of disequality through

regular program rules as it is done here in the function neq.

newIns is singular .

newIns(X, Xs) -> cons(X, diffL(X, Xs)) .

diffL(X, nil) -> nil .

diffL(X, cons(Y, Xs)) ->

if neq(X, Y) then cons(Y, diffL(X, Xs)) .

neq(pepe, paco) -> tt .

neq(pepe, maria) -> tt .

. . .

Note that we need newIns, diffL, and neq to be singular because these essentially
perform tests, and when performing a test we naturally want the returning value to
be the same that has been tested. For example, the following program

isWoman(maria) -> tt .

isWoman(laura) -> tt .

. . .

filterWomen(P) -> if isWoman(P) then P

would have a funny behavior if filterWomen had been declared a plural function

because then for filterWomen(maria ? pepe) we could compute pepe as a correct

value.

9 The tool also indicates whether the program belongs to the class Cαβ – remember that in that case
CRWLσ

πα and CRWLσ
πβ

would be equivalent and so both would be supported by the system – or not.

40 A. Riesco and J. Rodŕıguez-Hortalá

On the other hand, the function vals is marked as plural because it is devised to

generate lists of different values of its argument. Note the combination of plurality

to obtain more than one value from the argument of vals, and singularity, which

is needed for the tests performed by newIns:

vals is plural .

vals(X) -> newIns(X, vals(X)) .

We now generalize our search function to look for any number of clerks, not just

two. To do that we will use the function nVals below, which returns a list of different

values corresponding to different evaluations of its second argument. Therefore, that

second argument has to be declared as plural, while its first argument is singular, as

it fixes the number of values claimed (that is, the length of the returning list in the

Peano notation for natural numbers):

nVals is sp .

nVals(N, E) -> take(N, vals(E)) .

take(s(N), cons(X, Xs)) -> cons(X, take(N, Xs)) .

take(z, Xs) -> nil .

This nVals function is an example of how the use of plural arguments allows us

to simulate some features that in a pure call-time choice context have to be defined

at the meta level, in this case the collect (López-Fraguas and Sánchez-Hernández

1999) or the findall (Hanus 2005) primitives of standard FLP systems.

Finally, the function nClerks starts the search for a number of different clerks

specified by the user. It uses the auxiliary function findClerks, which returns the

name of the clerks:

nClerks is singular .

nClerks(N) -> nVals(N, findClerk(employees(branches))) .

findClerk is singular .

findClerk(e(N,G,clerk)) -> N .

Now we can search for three different clerks, obtaining pepe, maria, and laura

as the first possible result:

Maude> (eval nClerks(s(s(s(z)))) .)

Result: cons(pepe,cons(maria,cons(laura,nil)))

As anticipated in Example 3.4, we can use this technique to solve the problem

of finding the names of the clerks paired with their genre, but avoiding the wrong

information mix-up caused by a purely plural approach using the style of the plural

find function above, under παCRWL. To do this we just have to define a new

auxiliary function findClerksNG, which this time returns a pair composed by the

name of the clerk and his or her genre.

nClerksNG is singular .

nClerksNG(N) -> nVals(N, findClerkNG(employees(branches))) .

findClerkNG is singular .

findClerkNG(e(N,G,clerk)) -> p(N, G) .

Singular and plural functions for functional logic programming 41

The fact that findClerksNG is singular, just like findClerks, ensures that the

names and genres will be correctly paired. Besides, note that the whole Clerks

program presented here belongs to the class Cαβ , therefore its evaluation under

CRWLσ
πα and CRWLσ

πβ is the same and any wrong information mix-up is prevented.

We can check this by searching again for three different clerks:

Maude> (eval nClerksNG(s(s(s(z)))) .)

Result: cons(p(pepe,men),cons(p(maria,women),cons(p(laura,women),nil)))

In the next example we will see more clearly how to decide the plurality of

functions. Remember that the key idea is that singular arguments are used to fix

their values, while plural arguments are needed when we want to use sets of values.

5.3.2 Dungeon

Ulysses has been captured and he wants to cheat his guardians using the gold he

carries from Troy. Thus, he needs to know whether there is an escape (what we

define as obtaining the key of its jail) and, if possible, which is the path to freedom

(we define each step of this path as a pair composed of a guardian and the item

Ulysses obtains from him).

He uses the function ask to interchange items and information with his guardians.

Since each guardian provides different information, we have to assure that they are

not mixed, and thus its first argument will be singular; on the other hand, he may

offer different items to the same guardian, thus the second argument will be plural:

this function needs plurality sp:

ask is sp .

The guardians have a complex behavior, circe exchanges Ulysses’ trojan-gold

by either the sirens-secret or an item(treasure-map); calypso, once she

receives the sirens-secret, offers the item(chest-code); aeolus can combine

two items;10 and polyphemus gives Ulysses the key once he can give him the

combination of the treasure-map and the chest-code:

ask(circe, trojan-gold) -> item(treasure-map) ? sirens-secret .

ask(calypso, sirens-secret) -> item(chest-code) .

ask(aeolus, item(M)) -> combine(M,M) .

ask(polyphemus, combine(treasure-map, chest-code)) -> key .

In the same line, askWho has as arguments a (fixed) guardian and a message

(probably with many items) for him, so it also has plurality sp. This function

returns the next step in the Ulysses’ path to freedom, that is, a pair with the

guardian and the items obtained from him with the function ask:

askWho is sp .

askWho(Guardian, Message) -> p(Guardian, ask(Guardian, Message)) .

10 Note that we say two items when the function only shows one. This rule uses the expressive power of
plural semantics to allow the combination of different items.

42 A. Riesco and J. Rodŕıguez-Hortalá

The following functions, which are in charge of computing the actions that

must be performed in order to escape, are marked as plural because they treat

their corresponding arguments as sets of pairs where the second component is an

item or some piece of information, and the first one is the actor which provided

it. The function discoverHow returns the set of pairs of that shape that can

be obtained starting from those contained in its argument, and then chatting to

the guardians. Hence, it returns either its argument or the result of exchanging

the current information with some guardian and then iterating the process. That

exchange is performed with discStepHow, which non-deterministically offers some

of the items or information available to one of the guardians:

discoverHow is plural .

discoverHow(T) -> T ? discoverHow(discStepHow(T) ? T) .

discStepHow is plural .

discStepHow(p(W, M)) -> askWho(guardians, M) .

guardians -> circe ? calypso ? aeolus ? polyphemus .

Note that the additional disjunction ? T in the recursive call to discStepHow
is needed to be able to combine the old information with the new one resulting
after one exchanging step. This point can be illustrated better with the following
program:

genPairs is plural .

genPairs(P) -> P ? genPairs(genPairsStep(P) ? P) .

genPairsStep is plural .

genPairsStep(P) -> p(P, P) .

genPairsBad is plural .

genPairsBad(P) -> P ? genPairsBad(genPairsStep(P)) .

There the functions genPairs and genPairsBad follow the same pattern as

the discoverHow, but this time are designed to generate values made up with

pairs and the supplied argument. Besides, these functions share the same “step

function” genPairsStep. Nevertheless, their behavior is very different, as we can

see evaluating the expressions genPairs(z) and genPairsBad(z): the point is that

the value p(p(z,z),z) can be computed for the former but not for the latter because

z and p(z,z) are values generated in different recursive calls to genPairsBad. But

this poses no problem for genPairs because the extra ? P in its definition makes it

possible to combine those values.

Finally, the search is started with the function escapeHow, which initializes the

search with the trojan gold provided by Ulysses:

escapeHow -> discoverHow(p(ulysses, trojan-gold)) .

Once the module is introduced, we can start the search with the following

command:

Maude> (eval escapeHow .)

Result: p(ulysses,trojan-gold)

Singular and plural functions for functional logic programming 43

When this first result has been computed, we can ask the tool for more with

the command more, which progressively will show the path followed by Ulysses to

escape:

Maude> (more .)

Result: p(circe,item(treasure-map))

Maude> (more .)

Result: p(circe,sirens-secret)

Maude> (more .)

Result: p(calypso,item(chest-code))

. . .

Maude> (more .)

Result: p(polyphemus,key)

In this example the function discoverHow is an instance of an interesting pattern

of plural function: a function that performs deduction by repeatedly combining the

information we have fed it with the information it infers in one step of deduction.

Therefore, in its definition the function ? has to be understood again as the set

union operator, as it is used to add elements to the set of deduced information. On

the other hand, the use of a singular argument in askWho is unavoidable to be able

to keep track of the guardian who answers the question, while its second argument

has to be plural because it represents the knowledge accumulated so far.

Several variants of this problem can be conceived, in particular currently it is

simplified because the items are not lost after each exchange – that is why Ulysses’

bag is bottomless. Anyway, we think that this version of the problem is relevant

because, in fact, it corresponds to a small model of an intruder analysis for a security

protocol, where Ulysses is the intruder, the guardians are the honest principals, the

key is the secret, and complex behaviors of the principals can be described through

the patterns on left-hand sides of program rules. In this case we assume that the

intruder is able to store any amount of information, and that this information

can be used many times. Nevertheless, we also think that different variants of the

problem should be tackled in future, and that the addition of equality and disequality

constraints to our framework could be decisive to deal with those problems.

With this program we conclude our presentation of some examples that show the

expressive capabilities of our plural semantics. In these examples we have tried to find

a way of using CRWLσ
πα for programming, so it could be more than just a semantic

eccentricity. Although we have found some interesting uses of our plural semantics,

in particular the meta-like function nVals, and the deduction programming pattern

corresponding to discoverHow, we cannot still say that we have found a “killer

application” for our plural semantics. Only time will tell us if these semantics are

useful, because these proposals are still too young to have a reasonable benchmark

collection. Our prototype opens the door to experimenting with these new semantics,

and in that sense it contributes to the development of such collection. Anyway, we

admit that our plural semantics probably will only be useful in some fragments

44 A. Riesco and J. Rodŕıguez-Hortalá

of the programs, and that is why we have proposed to combine it with the usual

singular semantics of FLP. As a final remark, the reader can check manually or by

using our prototype that all the program examples in this section belong to the Cαβ

class – and hence they behave the same both under CRWLσ
πα and CRWLσ

πβ– which

motivates the relevance of that class of programs. But again, as the collection of

examples is very small, this does not give a strong argument about the usefulness of

this class of programs, but just an encouraging indicator.

5.4 Discussion: to be singular or to be plural?

After these examples, we (hopefully) should have some intuitions about how to

decide the plurality of function arguments. Our first resort is considering that plural

arguments are used to represent sets of values, while singular arguments denote

single values. But this does not work for any situation, for example, consider the

function findClerk whose plurality is singular, although its argument intuitively

denotes a set of records from the database. On the other hand, we may consider that

its argument denotes a single record, and that findClerk defines how to extract

the name from a single employee, which motivates the final plurality choice. In this

case the program behaves the same declaring findClerk either singular or plural,

because the variables in its arguments are used only once. As a rule of thumb we

should try to have as little plural arguments as possible because these arguments

increase the search space more than the singular ones, as using a plural semantics

we can compute more values than under a singular semantics as seen in Section 4.1.

Hence, in this case it is better to declare findClerk as singular.

Thus, having a more formal criterion about the equivalence of plurality maps

would be useful to minimize the search space of our programs and understand them

better. A static adaptation of the determinism analysis of Caballero and López-

Fraguas (2003) could be useful, as it would help us to detect deterministic functions

of our programs for which the plurality map would not matter as we expect to easily

extend the equivalence results of singular/call-time choice and run-time choice for

deterministic programs of López-Fraguas et al. (2007, 2010) to our plural semantics.

We also should try to develop equational laws about non-determinism. In fact, a

first step in this line is the discussion about the correctness of bubbling for singular

contexts from Section 5.1. Anyway, all these are subjects of future work.

5.5 Implementation

The system described in the previous sections has been implemented in the Maude

system (Clavel et al. 2007) a high-level language and high-performance system

supporting both equational and rewriting logic computation for a wide range

of applications. The fundamental ingredients for this implementation are a core

language into which all programs are transformed, and an interpreter for the

operational semantics of the core language that is used to execute programs.

The transformation into core language treats each program rule separately and

applies two different transformation stages to them. The first one applies the

Singular and plural functions for functional logic programming 45

modification of the transformation described in Definition 7, but now taking into

account only those arguments marked as pl in the plurality map described in

Section 5.1. Then in the second stage, which consists in the modification of the

sharing transformation of López-Fraguas et al. (2009c, Def. 1), we introduce a let-

binding for each singular variable that also appears on the right-hand side, therefore

obtaining subexpression-sharing, and as a consequence, a singular behavior for those

arguments.

Once source programs have been transformed into core programs, we can execute

them by using a heap-based operational semantics for the core language (Riesco and

Rodrı́guez-Hortalá 2010b). A heap is just a mapping from variables to expressions

that represents a graph structure, as the image of each variable is interpreted as a

subgraph definition. The nodes of that implied graph are defined according to those

let-bindings introduced by the transformation into core language. The operational

semantics manipulates this heap, and contains rules for removing useless bindings,

propagating the terms associated to a variable, and for creating new bindings for

each singular argument when their corresponding let-bindings are found. Finally,

in order to turn the operational semantics of the core language into an effective

operational mechanism for CRWLσ
πα , we have adapted the natural rewriting strategy

in Escobar (2004) to deal with these heaps, ensuring that the evaluation is performed

on-demand. The program transformation into core language, the interpreter, and

our adaptation of natural rewriting have been implemented in the Maude with

an intensive exploiting of its reflection capabilities, thus obtaining an executable

interpreter for CRWLσ
πα . More details about our implementation can be found

in Riesco and Rodrı́guez-Hortalá (2010b).

We decided to follow the line of employing the transformation from Definition 7

and then using a language that implements non-deterministic term rewriting to run

the transformed program, because our motivation was to obtain a simple proof

of concept prototype that could be used to experiment with the new semantics,

but obtaining an optimized implementation is out of scope of this work. The

addition of the natural rewriting on-demand strategy was necessary to reduce the

search space to a reasonable size, but we are aware of other approaches that

could improve the efficiency of the system. In particular, we could have adapted

the techniques in Antoy et al. (2002), Braßel and Huch (2007), and Braßel et al.

(2011) that rely on turning the function ? ∈ FS 2 into a constructor to explicitly

represent non-deterministic computations in a deterministic language, which results

in additional advantages like a kind of backtracking memoization called “sharing

across non-determinism.” That would have allowed us to use the Maude functional

modules, which are much more efficient than the non-deterministic system modules

that are used in our current implementation. But as functional modules perform

eager evaluation, we should also employ the context-sensitive rewriting (Lucas 1998)

features of the Maude – offered as strat annotations – to get the lazy evaluation

that corresponds to our semantics. That would have entailed adapting the techniques

from Antoy et al. (2002), Braßel and Huch (2007), and Braßel et al. (2011) from a

call-time choice setting to the run-time choice semantics of term rewriting, and also

using the techniques in Lucas (1997) to introduce the strat annotations needed

46 A. Riesco and J. Rodŕıguez-Hortalá

to ensure lazy evaluation. This is a possible road map that could be followed in

case a more optimized implementation of CRWLσ
πα is to be developed. The monad

transformer of Fischer et al. (2009) is another alternative in the same line, as it also

provides a representation of non-determinism with support for memoization in a

deterministic language, in this case Haskell, which could be used as the basis for the

implementation of CRWLσ
πα by modifying the transformation from FLP programs

with a call-time choice into Haskell from Braßel et al. (2010). As that work is placed

in a higher order setting, our plural semantics should be first extended with higher

order capabilities, following the line of González-Moreno et al. (1997).

6 Concluding remarks and future work

The starting point of this work is the observation that the traditional identification

between a run-time choice and a plural denotational semantics is wrong in a

non-deterministic functional language with pattern matching. To illustrate this, we

have provided formulations for two different plural semantics that are different

from a run-time choice: the παCRWL and πβCRWL semantics. We argue that the

run-time choice semantics induced by term rewriting is not the best option for a

value-based programming language like current implementations of FLP because

of its lack of compositionality. Nevertheless, our plural semantics are compositional

for a simple notion of value – the notion of partial c-term – just like the usual

call-time choice semantics adopted by modern FLP languages, following the value-

based philosophy of the FLP paradigm: “all I care about an expression is the

set of its values.” This, together with the fact that our concrete formulations for

these plural semantics are variants of the CRWL logic– a standard formulation

for singular/call-time choice semantics in FLP – turns the problem of devising a

combined semantics for singular and plural non-determinism into a trivial task,

getting the CRWLσ
πα and CRWLσ

πβ logics as a result. The combination of singular

and plural semantics in the same language is interesting and follows naturally

when programming, as it allows us to reuse known programming patterns from the

more usual singular/call-time choice semantics, standard in modern FLP systems,

while we are still able to use the new capabilities of the novel plural semantics

for some interesting fragments of the program. In these logics, apart from the

program, the user may specify for each function its arguments that will be marked

as singular and plural, resulting in different parameter passing mechanisms. A simple

intuition that works in most situations can be considering plural arguments as sets

of values and singular arguments as individual values. We have not only proposed

such semantic combinations but have also provided a prototype implementation

for CRWLσ
πα using the Maude system (see Riesco and Rodrı́guez-Hortalá 2010a,

2010b for details about the implementation), in which the program transformation

to simulate παCRWL with term rewriting – a standard formulation for run-time

choice – also presented in this work as a crucial ingredient. The resulting system,

available at http://gpd.sip.ucm.es/PluralSemantics is an interpreter for the CRWLσ
πα

logic that we have used to develop several program examples that exploit the new

Singular and plural functions for functional logic programming 47

expressive capabilities of the combined semantics to improve the declarative flavor

of programs.

Along the way we have also made several contributions at the foundational

level. We have studied the technical properties of παCRWL and πβCRWL, providing

formal proofs for its compositionality and also for other interesting properties like

polarity, several monotonicity properties for substitutions, and a restricted form

of bubbling for constructor contexts. Then we have compared different semantics

for non-determinism considered in this work with respect to the set of computed

values, concluding that these form the inclusion chain CRWL ⊆ term rewriting

⊆ πβCRWL ⊆ παCRWL, corresponding to the chain singular/call-time choice ⊆
run-time choice ⊆ β-plural ⊆ α-plural. Besides, we have determined that for the

class of programs Cαβ , characterized by a simple syntactic criterion, our plural

semantics proposals παCRWL and πβCRWL are equivalent. We have also provided a

formal proof of the adequacy of the (non-optimized version of the) transformation

used by our prototype to simulate παCRWL with term rewriting. As a consequence,

this transformation can be used to simulate πβCRWL for programs in the class

Cαβ . Regarding the combined semantics CRWLσ
πα and CRWLσ

πβ , it is easy to see

that these inherit the good properties of CRWL, παCRWL, and πβCRWL, and we

have also proved that the combined semantics are conservative extensions of both

singular/call-time choice and their corresponding plural semantics.

These questions were first approached in previous works by the authors

(Rodrı́guez-Hortalá 2008; Riesco and Rodrı́guez-Hortalá 2010a, 2010b); however,

in this paper we do not only give a revised and unified presentation but also include

several important novel results.

• All the technical results from those works have been extended to deal with

programs with extra variables except those results regarding the simulation of

παCRWL with term rewriting from Section 4.3. The new technical results have

been also proved for programs with extra variables. Besides, we have fixed

some errata from the original works, in particular the formulation of bubbling

for παCRWL, the definition of the operator ? over sequences of CSubst⊥, and

also some other minor mistakes in the proofs. The formulations of bubbling

for constructor and singular contexts are novel contributions of this paper.

• The plural semantics πβCRWL, inspired in the proposal from Braßel and

Berghammer(2009), is introduced in this work for the first time. We give

clear explanations of some problematic situations where παCRWL performs

a wrong information mix-up, and how our attempts to fix those problems,

inspired in the solutions from Braßel and Berghammer (2009), led us to the

current formulation of πβCRWL, which leans on the notion of compressible

set of partial c-substitutions.

• As the formulations of παCRWL and πβCRWL are very similar, it is not

difficult to check that πβCRWL also enjoys the same basic properties of

παCRWL. Nevertheless, it was more difficult to place πβCRWL in the semantic

inclusion chain from Rodrı́guez-Hortalá (2008), being a key idea the notion

of compressible completion of a set of CSubst⊥, and its related results. The

48 A. Riesco and J. Rodŕıguez-Hortalá

characterization of the class of programs Cαβ , for which παCRWL and πβCRWL

are equivalent, and the formal proof for that equivalence are also novel,

obviously.

• Finally, the logic CRWLσ
πβ is also a novel contribution of this work, but in

this case its definition is straightforward, because it follows the same pattern

as the definition for CRWLσ
πα .

Previous to our work, not much work has been done in the combination of singular

and plural non-determinism in functional or functional-logic programming, since

the mainstream approaches (Wadler 1985; López-Fraguas and Sánchez-Hernández

1999; Hanus 2005) only support the usual singular semantics. Closer are the

combinations of call-time and run-time choices of López-Fraguas et al. (2009a,

2009b) , which anyway follow a different approach, as the plural sides of CRWLσ
πα

and CRWLσ
πβ are essentially different to run-time choice. Anyway, we still think

that the combination of call-time choice and run-time choice is not very suitable for

value-based languages because of the lack of compositionality for values under run-

time choice. The monad transformer of Fischer et al. (2009), devised to improve the

laziness of non-deterministic monads while retaining a call-time choice semantics,

is based on a share combinator, which plays a role similar to the let-bindings of

our core language. The authors seem to be interested in staying in a pure call-time

choice framework, but maybe a combination of call-time and run-time choice could

be achieved there too, getting something similar to López-Fraguas et al. (2009a),

but again essentially different from CRWLσ
πα and CRWLσ

πβ for the same reason.

Besides, that work is focused on the implementation issues of FLP in concrete

deterministic functional languages, while in ours we start from the more abstract

world of CSs and are fundamentally concerned in exploring the language design

space.

We contemplate several interesting subjects of future work. As pointed in Sec-

tions 4.3 and 5.2, the development of a suitable plural narrowing mechanism would

be the key for finding an effective way of handling extra and free variables. Besides,

in our examples it has arisen the necessity of equality and disequality constraints

(whose ground versions have been simulated by using regular functions) that will

ease and shorten the definition of programs, and increase the expressiveness of the

setting. Both subjects would be interesting at theoretical and practical levels, as we

could then improve our prototype by extending it with those new features.

Similarly, adding higher order capabilities by the extension of CRWLσ
πα in the

line of González-Moreno et al. (1997), and implementing them by means of the

classic transformation of Warren (1982), would also be interesting and it is standard

in the field of FLP. Then, for example, we could define a more generic version

of discoverHow with an additional argument for the function used to perform a

deduction step (discStepHow in our dungeon problem). This higher order version

of CRWLσ
πα could also be used to face the challenges regarding the implementation

of type classes in FLP through the classical transformational technique of Wadler

and Blott (1989) pointed out by Lux (2009). Although some solutions based on

the frameworks of López-Fraguas et al. (2009a, 2009b) were already proposed in

Singular and plural functions for functional logic programming 49

Rodriguez-Hortala (2009), we think that an alternative based on CRWLσ
πα would

be better, thanks to its clean and compositional semantics. More novel would be

using the matching-modulo capacities of the Maude to enhance the expressiveness

of the semantics, after a corresponding revision of the theory of CRWLσ
πα . Besides,

as mentioned at the end of Section 5.5, some additional research must be done

to improve the performance of the interpreter, especially because of the increase

of the size of the search space due to the use of plural arguments. As we pointed

out there, an explicit representation of non-determinism on a deterministic language

seems promising (Antoy et al. 2002; Braßel and Huch 2007; Fischer et al. 2009;

Braßel et al. 2011), in particular the memoization capabilities of these approaches

could be exploited to deal with the non-determinism overhead caused by plural

arguments. Some possible concretization of this idea could be using the Maude

functional modules with strat annotations using the techniques in Lucas (1997), or

adapting the transformation in Braßel et al. (2010).

As suggested in Section 5.4, finding a criterion for the equivalence of plurality

maps and defining more equational laws for non-determinism, besides the restricted

forms of bubbling proposed here, would improve the understanding of programs,

which could finally lead to the development of more interesting program examples

that could illustrate the interest of the semantics. In this line we also find interesting

the relation between different notions of determinism entailed by CRWL, παCRWL,

and πβCRWL, and the relation between confluence of term rewriting and those

notions of determinism. We already made some advances in this line in previous

works (López-Fraguas et al. 2007, 2010).

To conclude, an investigation of the technical relation between πβCRWL and the

plural semantics from Braßel and Berghammer (2009), which inspired it, would be

very interesting. We conjecture a strong semantic equivalence between them.

References

Albert, E., Hanus, M., Huch, F., Oliver, J. and Vidal, G. 2005. Operational semantics for

declarative multi-paradigm languages. Journal of Symbolic Computation 40, 1, 795–829.

Antoy, S., Brown, D. and Chiang, S. 2007. Lazy context cloning for non-deterministic

graph rewriting. Proceedings of the Termgraph’06. Electronic Notes in Theoretical Computer

Science – ENTCS, 176, 1, 61–70.

Antoy, S. and Hanus, M. 2002. Functional logic design patterns. In FLOPS, Z. Hu and

M. Rodrı́guez-Artalejo, Eds. Lecture Notes in Computer Science, vol. 2441. Springer, New

York, USA, 67–87.

Antoy, S. and Hanus, M. 2010. Functional logic programming. Communications of ACM 53, 4,

74–85.

Antoy, S., Iranzo, P. J. and Massey, B. 2002. Improving the efficiency of non-deterministic

computations. Electronic Notes in Theoretical Computer Science 64, 73–94.

Ariola, Z. M., Felleisen, M., Maraist, J., Odersky, M. and Wadler, P. 1995. The call-by-

need lambda calculus. In Proceedings of 22nd Annual ACM SIGACT-SIGPLAN Symposium

on Principles of Programming Languages, POPL 1995. ACM, 233–246.

Baader, F. and Nipkow, T. 1998. Term Rewriting and All That. Cambridge University Press,

Cambridge, UK.

50 A. Riesco and J. Rodŕıguez-Hortalá

Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.-E. and Ringeissen, C. 1998.

An overview of ELAN. In Proceedings of the Second International Workshop on Rewriting

Logic and Its Applications, WRLA’98, Pont-à-Mousson, France, September 1–4, C. Kirchner

and H. Kirchner, Eds. Electronic Notes in Theoretical Computer Science, vol. 15. Elsevier,

329–344. http://www.elsevier.nl/locate/entcs/volume15.html.

Braßel, B. and Berghammer, R. 2009. Functional (logic) programs as equations over

order-sorted algebras. Informal Proceedings of 19th International Symposium on Logic-Based

Program Synthesis and Transformation, LOPSTR 2009.

Braßel, B., Fischer, S., Hanus, M. and Reck, F. 2010. Transforming functional logic

programs into monadic functional programs. In WFLP, J. Mariño, Ed. Lecture Notes in

Computer Science, vol. 6559. Springer, New York, USA, 30–47.

Braßel, B., Hanus, M., Peemöller, B. and Reck, F. 2011. KiCS2: A new compiler from

Curry to Haskell. In Proceedings of the 20th International Conference on Functional and

Constraint Logic Programming, WFLP 2011, H. Kuchen, Ed. Lecture Notes in Computer

Science, vol. 6816. Springer, New York, USA, 1–18.

Braßel, B. and Huch, F. 2007. On a tighter integration of functional and logic programming.

In APLAS, Z. Shao, Ed. Lecture Notes in Computer Science, vol. 4807. Springer, New York,

USA, 122–138.

Caballero, R. and López-Fraguas, F. 2003. Improving deterministic computations in lazy

functional logic languages. Journal of Functional and Logic Programming 2003, 1, 23.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J. and Talcott,

C. 2007. All About Maude: A High-Performance Logical Framework. Lecture Notes in

Computer Science, vol. 4350. Springer, New York, USA.

DeGroot, D. and Lindstrom, G. E. 1986. Logic Programming, Functions, Relations, and

Equations. Prentice Hall, Upper Saddle River, NJ, USA.

Dijkstra, E. W. 1997. A Discipline of Programming. Prentice Hall, Upper Saddle River, NJ,

USA.

Echahed, R. and Janodet, J.-C. 1998. Admissible graph rewriting and narrowing.

In Proceedings of the 1998 Joint International Conference and Symposium on Logic

Programming. MIT Press, Manchester, UK, 325–340.

Escobar, S. 2004. Implementing natural rewriting and narrowing efficiently. In Proceedings

of the 7th International Symposium on Functional and Logic Programming, FLOPS 2004,

Y. Kameyama and P. Stuckey, Eds. Lecture Notes in Computer Science, vol. 2998. Springer,

New York, USA, 147–162.

Fischer, S., Kiselyov, O. and Shan, C.-C. 2009. Purely functional lazy non-deterministic

programming. In ICFP ’09: Proceedings of the 14th ACM SIGPLAN International

Conference on Functional Programming. ACM, New York, NY, USA, 11–22.

Futatsugi, K. and Diaconescu, R. 1998. CafeOBJ Report. AMAST Series in Computing,

vol. 6. World Scientific, Singapore.

González-Moreno, J. C., Hortalá-González, T., López-Fraguas, F. and Rodrı́guez-

Artalejo, M. 1996. A rewriting logic for declarative programming. In Proceedings of the

European Symposium on Programming, ESOP 1996. Lecture Notes in Computer Science,

vol. 1058. Springer, New York, USA, 156–172.

González-Moreno, J. C., Hortalá-González, T., López-Fraguas, F. and Rodrı́guez-

Artalejo, M. 1999. An approach to declarative programming-based on a rewriting logic.

Journal of Logic Programming 40, 1, 47–87.

González-Moreno, J., Hortalá-González, M. and Rodrı́guez-Artalejo, M. 1997. A

higher order rewriting logic for functional logic programming. In Proceedings of the

International Conference on Logic Programming, ICLP 1997. MIT Press, Cambridge, MA,

USA, 153–167.

Singular and plural functions for functional logic programming 51

Hanus, M. 2005. Functional Logic Programming: From Theory to Curry. Tech. Rep. Christian-

Albrechts-Universität, Kiel, Germany.

Hanus, M. (Ed.) 2006. Curry: An integrated functional logic language (version 0.8.2). Accessed

3 October 2010. URL: http://www.informatik.uni-kiel.de/~curry/report.html.

Hanus, M. 2007. Multi-paradigm declarative languages. In Proceedings of the International

Conference on Logic Programming, ICLP 2007. LNCS, vol. 4670. Springer, New York, USA,

45–75.

Hermenegildo, M. V., Bueno, F., Carro, M., López-Garcı́a, P., Mera, E., Morales, J. F.

and Puebla, G. 2012. An overview of ciao and its design philosophy. Theory and Practice

of Logic Programming 12, 1–2, 219–252.

Hughes, J. and O’Donnell, J. 1990. Expressing and reasoning about non-deterministic

functional programs. In Proceedings of the 1989 Glasgow Workshop on Functional

Programming. Workshops in Computing, Springer, London, UK, 308–328.

Hussmann, H. 1993. Non-Determinism in Algebraic Specifications and Algebraic Programs.

Birkhäuser Verlag, Berlin, Germany.

Launchbury, J. 1993. A natural semantics for lazy evaluation. In Proceedings of the ACM

Symposium on Principles of Programming Languages, POPL 1993. ACM Press, New York,

USA, 144–154.

López-Fraguas, F., Martin-Martin, E., Rodrı́guez-Hortalá, J. and Sánchez-Hernández,

J. Available on request. Rewriting and narrowing for constructor systems with call-time

choice semantics. Submitted to Theory and Practice of Logic Programming .

López-Fraguas, F., Rodrı́guez-Hortalá, J. and Sánchez-Hernández, J. 2007. A simple

rewrite notion for call-time choice semantics. In Proceedings of the Principles and Practice

of Declarative Programming. ACM Press, New York, USA, 197–208.

López-Fraguas, F., Rodrı́guez-Hortalá, J. and Sánchez-Hernández, J. 2008. Rewriting

and call-time choice: The HO case. In Proceedings of the 9th International Symposium

on Functional and Logic Programming, FLOPS 2008. Lecture Notes in Computer Science,

vol. 4989. Springer, New York, USA, 147–162.

López-Fraguas, F., Rodrı́guez-Hortalá, J. and Sánchez-Hernández, J. 2009a. A fully

abstract semantics for constructor systems. In Proceedings of the 20th International

Conference on Rewriting Techniques and Applications, RTA 2009. Lecture Notes in

Computer Science, vol. 5595. Springer, Berlin, Germany, 320–334.

López-Fraguas, F., Rodrı́guez-Hortalá, J. and Sánchez-Hernández, J. 2009b. A

lightweight combination of semantics for non-deterministic functions. CoRR abs/0903.2205.

López-Fraguas, F., Rodrı́guez-Hortalá, J. and Sánchez-Hernández, J. 2009c. A flexible

framework for programming with non-deterministic functions. In Proceedings of the 2009

ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM 2009.

ACM, New York, USA, 91–100.

López-Fraguas, F. and Sánchez-Hernández, J. 1999. TOY: A multiparadigm declarative

system. In Proceedings of the Rewriting Techniques and Applications, RTA 1999. Lecture

Notes in Computer Science, vol. 1631. Springer, New York, USA, 244–247.

Lucas, S. 1997. Needed reductions with context-sensitive rewriting. In ALP/HOA, M. Hanus,

J. Heering and K. Meinke, Eds. Lecture Notes in Computer Science, vol. 1298. Springer,

Berlin, Germany, 129–143.

Lucas, S. 1998. Context-sensitive computations in functional and functional logic programs.

Journal of Functional and Logic Programming 1998, 1, 1–61.

Lux, W. 2009. Curry mailing list: Type-classes and call-time choice vs. run-time choice.

Accessed 3 October 2010. URL: http://www.informatik.uni-kiel.de/∼curry/listarchive/

0790.html.

52 A. Riesco and J. Rodŕıguez-Hortalá

McCarthy, J. 1963. A basis for a mathematical theory of computation. In Computer

Programming and Formal Systems, P. Braffort and D. Hirshberg, Eds. North-Holland,

Amsterdam, Netherlands, 33–70.

Plasmeijer, R. J. and van Eekelen, M. C. J. D. 1993. Functional Programming and Parallel

Graph Rewriting. Addison-Wesley, Boston, MA, USA.

Plump, D. 1999. Term graph rewriting. In Handbook of Graph Grammars and Computing by

Graph Transformation, vol. 2: Applications, Languages, and Tools. World Scientific, River

Edge, NJ, USA, 3–61.

Riesco, A. and Rodrı́guez-Hortalá, J. 2010a. A natural implementation of plural semantics

in Maude. In Proceedings of the 9th Workshop on Language Descriptions, Tools, and

Applications, LDTA 2009, T. Ekman and J. Vinju, Eds. Electronic Notes in Computer

Science, vol. 253(7). Elsevier, Maryland Heights, MO, USA, 165–175.

Riesco, A. and Rodrı́guez-Hortalá, J. 2010b. Programming with singular and plural non-

deterministic functions. In Proceedings of the 2010 ACM SIGPLAN Workshop on Partial

Evaluation and Program Manipulation, PEPM 2010. ACM, New York, USA, 83–92.

Riesco, A. and Rodrı́guez-Hortalá, J. 2011. Singular and Plural Functions for

Functional Logic Programming: Detailed Proofs. Tech. Rep. SIC-9/11, Dpto. Sistemas

Informáticos y Computación, Universidad Complutense de Madrid. November. URL:

http://gpd.sip.ucm.es/PluralSemantics.

Rodrı́guez-Hortalá, J. 2008. A hierarchy of semantics for non-deterministic term rewriting

systems. In Proceedings Foundations of Software Technology and Theoretical Computer

Science, FSTTCS 2008. Leibniz International Proceedings in Informatics. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik.

Rodrı́guez-Hortalá, J. 2009. Curry mailing list: Re: Type-classes and call-time choice vs.

run-time choice. Accessed 3 October 2010. URL: http://www.informatik.uni-kiel.de/∼
curry/listarchive/0801.html.

Rodrı́guez-Hortalá, J. and Sánchez-Hernández, J. 2008. Functions and lazy evaluation

in prolog. Electronic Notes in Theoretical Computer Science 206, 153–174.

Roy, P. V. and Haridi, S. 2004. Concepts, Techniques, and Models of Computer Programming.

MIT Press, Cambridge, MA, USA.

Søndergaard, H. and Sestoft, P. 1990. Referential transparency, definiteness and

unfoldability. Acta Informatica 27, 6, 505–517.

Søndergaard, H. and Sestoft, P. 1992. Non-determinism in functional languages. The

Computer Journal 35, 5, 514–523.

Sterling, L. and Shapiro, E. 1986. The Art of Prolog. MIT Press, MA, USA.

TeReSe. 2003. Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science,

vol. 55. Cambridge University Press, Cambridge, UK.

The Mercury Team. 2012. The Mercury Language Reference Manual, Version 11.07.1. The

Mercury Project, URL: http://www.mercury.csse.unimelb.edu.au/rss.xml.

Wadler, P. 1985. How to replace failure by a list of successes. In Proceedings of the Functional

Programming and Computer Architecture. LNCS, vol. 201. Springer, Berlin, Germany, 113–

128.

Wadler, P. and Blott, S. 1989. How to make ad-hoc polymorphism less ad hoc. In

Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages. ACM, New York, NY, USA, 60–76.

Warren, D. H. 1982. Higher-order extensions to Prolog: Are they needed? In Machine

Intelligence 10, J. Hayes, D. Michie and Y.-H. Pao, Eds. Ellis Horwood, Chichester, UK,

441–454.

