
A calculus for zoom debugging sequential Erlang programs∗

Rafael Caballero, Enrique Martin-Martin, Adrián Riesco, and Salvador Tamarit

Technical Report 07/13

Departamento de Sistemas Informáticos y Computación,

Universidad Complutense de Madrid

July, 2013

∗Research supported by MICINN Spanish project StrongSoft (TIN2012-39391-C04-04) and Comunidad de Madrid pro-
gram PROMETIDOS (S2009/TIC-1465).

Abstract

We present here the evaluation semantics for sequential Erlang programs specially developed to
be used for “zoom debugging.” We first introduce the syntax of the programs we want to evaluate
and then present the different evaluations that take place in the calculus. The rest of the sections
describes the calculus for references, values, and exceptions.

Keywords: Sequential Erlang, semantics.

1 Syntax

fname ::= Atom / Integer
lit ::= Atom | Integer | Float | Char | String | BitString | []

fun ::= fun(var1 , . . . , varn) -> exprs
clause ::= pats when exprs1 -> exprs2
pat ::= var | lit | [pats | pats] | { pats1, . . . , patsn } | var = pats

| #{ bitpat1, . . . , bitpatn }# | var = pats
bitpat ::= #< pat b >(opts)
pat b ::= var | Integer | Float
pats ::= pat | < pat, . . . , pat >
exprs ::= expr | < expr, . . . , expr >
expr ::= var | fname | fun | [exprs | exprs] | { exprs1, . . . , exprsn }

| #{ bitexpr1, . . . , bitexprn }#
| let vars = exprs1 in exprs2
| letrec fname1 = fun1 . . . fnamen = funn in exprs
| apply exprs (exprs1 , . . . , exprsn)

| call exprsn+1:exprsn+2 (exprs1 , . . . , exprsn)

| primop Atom (exprs1 , . . . , exprsn)

| try exprs1 of <var1 , . . . , varn> -> exprs2
catch <var’1 , . . . , var’m> -> exprs3

| case exprs of clause1 . . . clausen end

| do exprs1 exprs2 | catch exprs
bitexpr ::= #< expr >(opts)

ξ ::= Exception(valm)
val ::= lit | fname | fun | [vals | vals] | {vals1, . . . , valsn}
eval ::= lit | fname | fun | [evals | evals] | {evals1, . . . , evalsn} | ξ
vals ::= val | < val, . . . , val >
evals ::= eval | < eval, . . . , eval >
vars ::= var | < var, . . . , var >

Figure 1: Core Erlang’s Syntax

We present in this section the syntax of Sequential Core Erlang [1, 2]. The intermediate language
Core Erlang can be considered as a simplified version of Erlang, where the syntactic constructs have been
reduced by removing syntactic sugar. It is used by the compiler to create the final bytecode and it is very
useful in our context, because it simplifies the analysis required by the tool. Figure 1 presents its syntax
after removing the parts corresponding to concurrent operations, i.e. receive. The most significant
element in the syntax is the expression (expr). Besides variables, function names, lambda abstractions,
lists, and tuples, expressions can be:

• let: its value is the one resulting from evaluating exprs2 where vars are bound to the value of
exprs1.

• letrec: similar to the previous expression but a sequence of function declarations (fname = fun)
is defined.

• apply: applies exprs (defined in the current module) to a number of arguments.

• call: similar to the previous expression but the function applied is the one defined by exprsn+2 in
the module defined by exprsn+1. Both expressions should be evaluated to an atom. For example,
the expression call mergesort:comp(’a’,’b’) considering the previous program.

• primop: application of built-in functions mainly used to report errors. A typical example is the
report of a matching failure in a case expresion: primop ’match fail’ (’case clause’, ...).

• try-catch: the expression exprs1 is evaluated. If the evaluation does not report any error, then
exprs2 is evaluated. Otherwise, the evaluated expression is exprs3. In both cases the appro-
priate variables are bound to the value of exprs1. Note that m (in the catch branch) is the
system-dependent number of arguments that expections contain, usually the kind of exception and
information about the reason.

3

• case: a pattern-matching expression. Its value corresponds to the one in the body of the first clause
whose pattern matches the value of exprs and whose guard evaluates to true. There is always at
least one clause fulfilling these conditions, as we explain below.

Moreover, Erlang supports a data type representing chunks of raw and untyped data called binaries.
This data type is mainly used in socked-based communication applications, where segments—a.k.a. pack-
ets or datagrams—are represented as binaries that are sent through the network. These chunks of bits
are usually cumbersome to parse, but Erlang provides the bit syntax to easily parse the different fields
by matching.

The opts argument in bit patterns and expressions is a tuple of encoding options that is system
dependent. It is important to notice that opts can contain variables to be bound during evaluation. Unlike
the rest of patterns, bit patterns are not linear, so this variable size options can also be bound previously
in the same pattern. For example, <<Origin:8, Destination:8, Length:8, Message:Length>> is a
valid bit pattern. The non-linearity of bit patterns must be handled carefully when matching. Since
encoding options are system dependent, we will assume two functions to convert values to bit strings and
vice versa that will be used when matching:

• to_bits(val, opts), which given an integer or float value val and some encoding options opts re-
turns the bit string that represents val. For example, to_bits(127,{8,1,integer,unsigned,big})
will be evaluated to the bit string "011111111", the binary value of the unsigned integer 127 using
8 bits and big-endian.

• from_bits(bits, opts), which given a bit string bits and some encoding options opts, re-
turns a pair (val, bits’) where val is the value represented in the first bits of bits (ac-
cording to the encoding options opts) and bits’ is the rest of the bit string. For example,
from_bits("0111111100000011", {8,1,integer,unsigned,big}) is (127,"00000011"), where
127 is the result of interpreting the first 8 bits of the bit string as an unsigned integer with big-
endian, and "00000011" is the rest of the input bit string.

Finally, values represent the possible results of an expressions evaluation. To make the semantic rules
dealing with exceptions clearer, we have considered two categories: val, representing values that cannot
contain an exception ξ at any position; and eval, representing values possibly with exceptions at some
positions. These exceptions must contain the same system-dependent number of values m as the catch

branch of the try expression. In contrast to Erlang, the evaluation of an expression in Core Erlang
returns an ordered sequence < x1, . . . , xn > of zero or more values. Sequences, which were added in Core
Erlang to simplify the generation of efficient code and to allow certain optimizations to be performed
at the core level [1], are used intensively in the translation from Erlang to Core Erlang (for example
introducing case expressions that match several arguments at once, instead of nested chains of case

expressions matching the arguments in order). We use evals and vals to differentiate between sequences
of values posibly containing exceptions and sequences of values without expections, respectively.

2 Preliminaries

The set of variables occurring in an expression e is denoted by var(e). The notation locvar(r), with r
a reference to either a function clause or to a lambda-expression to indicate the set of local variables
defined in the body of the function/lambda-expression. The notation ctx (rλ) with rλ a reference to a
lambda expression fun(var1, . . . , varn) -> expr represents the context variables of rλ, that is ctx (rλ) =
var(expr) − ({var1, . . . , varn} ∪ locvar(rλ)). Observe that the set of context variables for a function
clause is always empty, but the body of lambda-expressions defined inside function clauses can include
local variables/arguments of the function in their bodies.

The calculus uses evaluations of the form:

〈guard(rb), θ〉 → val , which indicates that the guard of the branch referenced by rb has been evaluated
to val , given the context in θ.

〈pathbind(rb , vals), θ〉 → θ̂, which indicates that, given the context θ, the matching between the pattern

in the branch referenced by rb and the value vals is θ̂.

〈fails(vals, rb), θ〉, which indicates that the branch referenced by rb is not taken when the expression is
evaluated to vals and the context is denoted by the substitution θ.

4

〈succeeds(vals, rb), θ〉 → θ, which indicates that the branch referenced by rb is taken when the expression
is evaluated to vals and the context is denoted by the substitution θ.

〈vars, exprs, θ〉 → θ′, which indicates that the variables in vars are bound to values obtained when eval-
uating the expression exprs, giving rise to the substitution θ′.

〈exprs, θ〉 → vals, where exprs is the expression being evaluated, θ is a substitution, and vals is the value
obtained for the expression.

〈r, θ〉 → θ′, where r is a reference to a lambda-expression or a function, θ is a substitution, and θ′ is the
a new substitution obtained by extending θ. We also use the notation 〈r, θ〉 → θ′ when r references
to a function and we want to indicate that the ith clause has been used.

〈rc, vals, θ〉 → vals ′, which computes the value vals ′ obtained when evaluating a case expression, where
rc is the reference to the case expression, vals is the value obtained when computing the expression
on the top of the case, and vals is the context where the case is evaluated.

We assume in all cases that all the variables appearing in the first element of the tuples are in the
domain of θ, and the existence of a global environment ρ which is initially empty and is extended by
adding the functions defined by the letrec operator. The notation CESC |=(P,T) R, where R is an
evaluation, is employed to indicate that R can be proven w.r.t. the program P with the proof tree T in
CESC , while CESC 2P R indicates that R cannot be proven in CESC with respect to the program P .

We will present in the following the inference rules for the calculus, distinguishing between the rules
for references, the rules generating values, and the rules propagating exceptions.

3 Calculus for references

We present here the rules dealing with references. As explained above, references are just a way to point
to specific fragments of the code. The (PATBIND) axiom binds the variables in the pattern of the branch

referenced by rb to the values vals. This matching generates the substitution θ̂, which will be ⊥ when
the matching is not possible:

(PATBIND)
〈patbind(rb , vals), θ〉 → θ̂

with rb a reference to pats when exprs -> exprs ′ and θ̂ ≡ match(patsθ, vals).

The function match is in charge of performing syntactic matching as follows:
match(< pat1 , . . . , patn >, < val1 , . . . , valn >) = θ1] . . .] θn where θi = synMatch(pati , vali)
match(pat , val) = synMatch(pat , val)

synMatch(var , val) = [var 7→ val]
synMatch(lit1 , lit2) = id , if lit1 ≡ lit2
synMatch([pat1 |pat2], [val1 |val2]) = θ1] θ2, where θi ≡ synMatch(pati , vali)
synMatch({pat1 , . . . , patn}, {val1 , . . . , valn}) = θ1] . . .] θn, where θi ≡ synMatch(pati , vali)
synMatch(var = pat , val) = θ[var 7→ val], where θ ≡ synMatch(pat , val)
synMatch(#{bitpat1 , . . . , bitpatn}#,BitString) = θ1] . . .] θn, where

(θ1, BitString1) ≡ synMatchb(bitpat1 ,BitString)
(θ2, BitString2) ≡ synMatchb(bitpat2 θ1 ,BitString1)
. . .
(θn, ε) ≡ synMatchb(bitpatnθ1 . . . θn−1 ,BitStringn−1)

synMatch(pat , val) = ⊥ otherwise

synMatchb(# <var>(opts),BitString) = ([var 7→ val],BitString ′), if
from bits(BitString , opts) = (val ,BitString ′)

synMatchb(# <val>(opts),BitString) = (id ,BitString ′), if
from bits(BitString , opts) = (val ,BitString ′) and val ∈ Integer ∪ Float

The (GUARD) rule evaluates the guard of the branch referenced by rb :

5

(GUARD)
〈exprsθ, θ〉 → eval

〈guard(rb), θ〉 → eval

where rb is a reference to pats when exprs -> exprs ′

The (FAIL1) rule indicates that a branch cannot be executed when the pattern fails:

(FAIL1)
〈patbind(rb , vals), θ〉 → ⊥
〈fails(vals, rb), θ〉

where rb is a reference to pats when exprs -> exprs ′

The (FAIL2) rule is used when the matching succeeds but the when condition evaluated with the new
substitution fails:

(FAIL2)
〈patbind(rb , vals), θ〉 → θ′ 〈guard(rb), θ

′′〉 → ’false’

〈fails(vals, rb), θ〉
with θ′ 6= ⊥, θ′′ ≡ θ] θ′ and rb a reference to pats when exprs -> exprs ′.

The (SUCC) rule computes a new substitution when a branch is taken. This substitution consists of
the new variables obtained from the matching with the pattern:

(SUCC)
〈patbind(rb , vals), θ〉 → θ′ 〈guard(rb), θ

′′〉 → ’true’

〈succeeds(vals, rb), θ〉 → θ′

with θ′′ ≡ θ] θ′, and where rb is a reference to pats when exprs -> exprs ′.

The (BIND) rule evaluates the given expression and binds the variables in the sequence to the values
thus obtained:

(BIND)
〈exprs, θ〉 → < val1 , . . . , valn >

〈< r1 , . . . , rn >, exprs, θ〉 → {var1 7→ val1, . . . , varn 7→ valn}
with r1, . . . , rn references to variables var1 , . . . , varn .

The (BFUN) rule evaluates a reference to a lambda-expression or a function, given a substitution
binding all its arguments. This is accomplished by applying the substitution to the body (with notation
exprsθ) and then evaluating it:

(BFUN)
〈exprθ, θ〉 → evals

〈rf , θ〉 → evals

where rf references either to a function f = fun(var1, . . . , varn) -> expr , or to a lambda expression
defined as fun(var1, . . . , varn) -> expr

4 Calculus for values

We present in this section the inference rules for obtaining values from expressions. The basic rule is
(VAL), which states that values are evaluated to themselves:

(VAL)
〈vals, θ〉 → vals

The rule (SEQ) is in charge of evaluating a sequence of expressions, obtaining the final value for each
expression:

(SEQ)
〈expr1, θ〉 → val1 . . . 〈exprn, θ〉 → valn

〈< expr1, . . . , exprn >, θ〉 → < val1, . . . , valn >

Similarly, the rules (TUP) and (LIST) evaluate tuples and lists, respectively:

(TUP)
〈exprs1, θ〉 → vals1 . . . 〈exprsn, θ〉 → valsn

〈{exprs1, . . . , exprsn}, θ〉 → {vals1, . . . , valsn}

6

(LIST)
〈exprs1, θ〉 → vals1 〈exprs2, θ〉 → vals2

〈[exprs1|exprs2], θ〉 → [vals1|vals2]

The (CASE) rule is in charge of evaluating case expressions. It first evaluates the expression used
to select the branch. Once this evaluation has been performed, it checks that the values thus obtained
match the pattern on the ith branch and verify the guard, being this the first branch where this happens.
Finally, the evaluation continues to compute the final result:

(CASE) 〈c arg(rc), θ〉 → vals

〈fails(vals, r1), θ〉
〈fails(vals, ri−1), θ〉
. . .
〈succeeds(vals, ri), θ〉 → θ′ 〈c result(ri), θ

′′〉 → evals
〈caserc exprs of clause1 . . . clausen end, θ〉 → evals

where θ′′ ≡ θ] θ′ and rc is a reference to a case statement defined as
case exprs of pats1 when exprs ′1 ->r1 exprs ′′1

. . .
patsn when exprs ′n ->rn exprs ′′n end

and the labels r1, . . . , rn are references to the different branches that can be selected by the statement.

The (C ARG) rule evaluates the argument of a case expression, represented by its reference, given a
context:

(C ARG)
〈exprs, θ〉 → vals

〈c arg(rc), θ〉 → vals
with exprs the argument expression of the case referenced by rc

The (C RESULT) rule evaluates the body of the branch referenced by ri with the context θ:

(C RESULT)
〈exprsiθ, θ〉 → evals

〈c result(ri), θ〉 → evals
with exprsi the result expression of the case branch referenced by ri

The (LET) rule first binds the variables and then the computation continues by applying the substi-
tution thus obtained to the body:

(LET)
〈<r1 , . . . , rn>, exprs1, θ〉 → θ′〈exprs2θ

′′, θ′′〉 → evals

〈let <var r1
1 , . . . , var rn

n > = exprs1 in exprs2, θ〉 → evals

with θ′′ ≡ θ] θ′

The rule (CALL) evaluates a function defined in another module:

(CALL)

〈exprsn+1, θ〉 → Atom1 〈exprsn+2, θ〉 → Atom2

〈exprs1, θ〉 → vals1 . . . 〈exprsn, θ〉 → valsn
〈rf , θ′〉 → evals

〈call exprsn+1:exprsn+2(exprs1, . . . , exprsn), θ〉 → evals

where Atom2/n is a function defined as Atom2/n = fun (var1, . . . , varn) -> expr in the Atom1

module (Atom1 must be different from the built-in module erlang), rf its reference, and θ′ ≡ {var1 7→
vals1, . . . , varn 7→ valsn}.

Analogously, the (CALL EVAL) rule is in charge of evaluating built-in functions:

(CALL EVAL)

〈exprsn+1, θ〉 → ’erlang’ 〈exprsn+2, θ〉 → Atom2

〈exprs1, θ〉 → val1 . . . 〈exprsn, θ〉 → valn
eval(Atom2, val1, . . . , valn) = vals

〈call exprsn+1:exprsn+2(exprs1, . . . , exprsn), θ〉 → vals

where Atom2/n is a built-in function included in the erlang module.

The rule (APPLY1) evaluates a function defined be means of a lambda-expression. It evaluates the
function and the arguments and uses them to obtain the value:

7

(APPLY1)

〈exprs, θ〉 → rλ
〈exprs1, θ〉 → vals1 . . . 〈exprsn, θ〉 → valsn

〈rλ, θ′〉 → eval

〈apply exprs(exprs1, . . . , exprsn), θ〉 → eval

with rλ a reference to fun(var1, . . . ,varn) -> exprs ′, and θ′ ≡ θ] {var1 7→ vals1, . . . , varn 7→ valsn}

Analogously, the rule (APPLY2) evaluates a function defined in a letrec expression, thus contained
in ρ. The rule first evaluates the arguments and then uses the definition of the function to reach the final
result:

(APPLY2)

〈exprs, θ〉 → Atom/n
〈exprs1, θ〉 → vals1 . . . 〈exprsn, θ〉 → valsn

〈exprs ′θ′, θ′〉 → evals ′

〈apply exprs(exprs1, . . . , exprsn), θ〉 → evals ′

if ρ(Atom/n) = fun(var1 , . . . , varn) -> exprs’ and θ′ ≡ θ] {var1 7→ vals1, . . . , varn 7→ valsn}

The rule (APPLY3) indicates that first we need to obtain the name of the function, which must be
defined in the current module (extracted from the reference to the reserved word apply) and then compute
the arguments of the function. Finally the function, described by its reference, is evaluated using the
substitution obtained by binding the variables in the function definition to the values for the arguments:

(APPLY3)

〈exprs, θ〉 → Atom/n
〈exprs1, θ〉 → vals1 . . . 〈exprsn, θ〉 → valsn

〈rf , θ′〉 → evals

〈applyr exprs(exprs1, . . . , exprsn), θ〉 → evals

where Atom/n is a function defined in the current module r.mod as Atom/n = fun (var1 , . . . , var n)

-> expr, rf its reference, and θ′ ≡ {var1 7→ vals1, . . . , varn 7→ valsn}.

The rule (PRIMOP) evaluates Erlang predefined functions by using an auxiliary function eval, which
returns the value Erlang would compute:

(PRIMOP)

〈exprs1, θ〉 → val1 . . . 〈exprsn, θ〉 → valn
eval(Atom, val1, . . . , valn) = vals ′

〈primop Atom(exprs1, . . . , exprsn), θ〉 → vals ′

The rule (TRY1) evaluates a try expression when no exceptions are thrown. It just evaluates the
expressions and continues with the expression in the body:

(TRY1)
〈exprs1, θ〉 → vals ′ 〈exprs2θ

′′, θ′′〉 → evals

〈try exprs1 of <var1 , . . . , varn> -> exprs2 catch <var ′1 , . . . , var ′m> -> exprs3, θ〉 → evals

with θ′ ≡ match(< var1 , . . . , varn >, vals ′) and θ′′ ≡ θ] θ′.

The rule (TRY2) is in charge of evaluating try expressions throwing exceptions. It finds the pattern
matching the exception and the evaluates the expression in the catch branch:

(TRY2)
〈exprs1, θ〉 → Except(val1 , . . . , valm) 〈expr3 θ

′′, θ′′〉 → evals

〈try exprs1 of <var1 , . . . , varn> -> exprs2 catch <var ′1 , . . . , var ′m> -> exprs3, θ〉 → evals

with θ′ ≡ match(<var ′1 , . . . , var ′m>, <val1 , . . . , valm>) and θ′′ ≡ θ] θ′

The rule (VAL BITS) is used to evaluate bit strings. It evaluates the inner expressions to values and
then concatenates all their bit representations, obtained using the function to_bits:

(VAL BITS)
〈expr1 , θ〉 → vals1 . . . 〈exprn , θ〉 → valsn

〈#{bitexpr1, . . . , bitexprn}#, θ〉 → B1++B2++ . . . ++Bn

where bitexpr i = #< expr i >(optsi), to_bits(valsi , optsi) = Bi and valsi are integer or float
values.

Finally, the rules (DO) and (CATCH) expressions, simply reuse previous constructions, since they are
syntactic sugar [2]:

(DO)
〈let = exprs1 in exprs2, θ〉 → vals

〈do exprs1 exprs2, θ〉 → vals

8

(CATCH)
〈expr ′, θ〉 → vals

〈catch exprs, θ〉 → vals

with expr ′ ≡ {

try exprs of < var1, . . . , varn > ->

< var1, . . . , varn >

catch < varn+1, varn+2, varn+3 > ->

case varn+1 of

‘throw‘ when ‘true‘ ->
varn+2

‘exit‘ when ‘true‘ ->
{‘EXIT‘, varn+2}

‘error‘ when ‘true‘ ->
{‘EXIT‘, {varn+2, primop exc trace(varn+3)}}

end

5 Calculus for exceptions

We present in this section the inference rules to generate and propagate exceptions. The rule (SEQ E)
propagates an exception thrown inside a sequence:

(SEQ E)

〈expr1, θ〉 → val1 . . . 〈expr i, θ〉 → val i
〈expr i+1, θ〉 → ξ

〈< expr1, . . . , exprn >, θ〉 → ξ

Similarly, the rule (TUP E) propagates an exception thrown inside a tuple:

(TUP E)

〈expr1, θ〉 → vals1 . . . 〈expr i, θ〉 → valsi
〈expr i+1, θ〉 → ξ

〈{exprs1, . . . , exprsn}, θ〉 → ξ
We use the rules (LIST E1) and (LIST E2) to propagate an exception thrown on the first or second

component of a list, respectively:

(LIST E1)
〈exprs1, θ〉 → ξ

〈[exprs1|exprs2], θ〉 → ξ

(LIST E2)
〈exprs1, θ〉 → vals1 〈exprs2, θ〉 → ξ

〈[exprs1|exprs2], θ〉 → ξ

The rule (LET E) propagates an exception thrown in the expression:

(LET E)
〈exprs1, θ〉 → ξ

〈let < var1, . . . , varn > = exprs1 in exprs, θ〉 → ξ

The rules (APPLY E1) and (APPLY E2) indicate that an exception is thrown if either the function or
the arguments throw an exception:

(APPLY E1)
〈exprs, θ〉 → ξ

〈apply exprs(exprs1, . . . , exprsn), θ〉 → ξ

(APPLY E2)

〈exprs, θ〉 → vals
〈exprs1, θ〉 → vals1 . . . 〈exprsi, θ〉 → valsi

〈exprsi+1, θ〉 → ξ

〈apply exprs(exprs1, . . . , exprsn), θ〉 → ξ

The rule (APPLY E3) throws a bad_function exception when the function being applied has not been
defined:

(APPLY E3)

〈exprs, θ〉 → vals
〈exprs1, θ〉 → vals1 . . . 〈exprsn, θ〉 → valsn

〈applyr exprs(exprs1, . . . , exprsn), θ〉 → Except(error, bad function, . . .)

9

if vals is neither a lambda abstraction nor an fname defined in ρ or in r .mod .

The rules (APPLY E4) and (APPLY E5) throw an exception indicating that the number of arguments
is different from the number of parameters. The former is in charge of lambda abstractions while the
latter is in charge of defined functions:

(APPLY E4)

〈exprs, θ〉 → fun(var1, . . . ,varm) -> exprs ′

〈exprs1, θ〉 → vals1 . . . 〈exprsn, θ〉 → valsn

〈apply exprs(exprs1, . . . , exprsn), θ〉 → Except(error, anon called with m args, . . .)

if m 6= n

(APPLY E5)
〈exprs, θ〉 → Atom/m 〈exprs1, θ〉 → vals1 . . . 〈exprsn, θ〉 → valsn

〈apply exprs(exprs1, . . . , exprsn), θ〉 → Except(error, called with n args, . . .)
if m 6= n

The rules (CALL E1), (CALL E2), and (CALL E3) throw an exception when either the module name,
the function name, or any of the arguments are evaluated to an exception:

(CALL E1)
〈exprsn+1, θ〉 → ξ

〈call exprsn+1:exprsn+2(exprs1, . . . , exprsn), θ〉 → ξ

(CALL E2)
〈exprsn+1, θ〉 → vals1 〈exprsn+2, θ〉 → ξ

〈call exprsn+1:exprsn+2(exprs1, . . . , exprsn), θ〉 → ξ

(CALL E3)

〈exprsn+1, θ〉 → vals ′1 〈exprsn+2, θ〉 → vals ′2
〈exprs1, θ〉 → vals1 . . . 〈exprsi, θ〉 → valsi 〈exprsi+1, θ〉 → ξ

〈call exprsn+1:exprsn+2(exprs1, . . . , exprsn), θ〉 → ξ

The rules (CALL E4) and (CALL E5) throw a bad_argument exception when either the module or the
function is not an atom:

(CALL E4)

〈exprsn+1, θ〉 → vals ′1 〈exprsn+2, θ〉 → vals ′2
〈exprs1, θ〉 → vals1 . . . 〈exprsn, θ〉 → valsn

〈call exprsn+1:exprsn+2(exprs1, . . . , exprsn), θ〉 → Exception(error, bad argument, . . .)
if vals ′1 is not an atom

(CALL E5)

〈exprsn+1, θ〉 → Atom1 〈exprsn+2, θ〉 → vals ′2
〈exprs1, θ〉 → vals1 . . . 〈exprsn, θ〉 → valsn

〈call exprsn+1:exprsn+2(exprs1, . . . , exprsn), θ〉 → Exception(error, bad argument, . . .)
if vals ′2 is not an atom

The rule (CALL E6) throws an undefined_function exception when the function is not defined in
the specified module:

(CALL E6)

〈exprsn+1, θ〉 → Atom1 〈exprsn+2, θ〉 → Atom2

〈exprs1, θ〉 → vals1 . . . 〈exprsn, θ〉 → valsn

〈call exprsn+1:exprsn+2(exprs1, . . . , exprsn), θ〉 → Exception(error, undefined function, . . .)

if the function Atom2/n is not defined and exported in module Atom1

The rule (PRIMOP E) propagates the exceptions thrown by its arguments:

(PRIMOP E)
〈exprs1, θ〉 → vals1 . . . 〈exprsi, θ〉 → valsi 〈exprsi+1, θ〉 → ξ

〈primop Atom(exprs1, . . . , exprsn), θ〉 → ξ

The rule (CASE E) propagates an exception thrown while evaluating the expression:

(CASE E1)
〈exprs1, θ〉 → ξ

〈case exprs1 of patsn when exprs ′n -> exprsn end, θ〉 → ξ

10

References

[1] Richard Carlsson. An introduction to Core Erlang. In Proceedings of the Erlang Workshop 2001, in
connection with PLI 2001, pages 5–18, 2001.

[2] Richard Carlsson, Björn Gustavsson, Erik Johansson, Thomas Lindgren, Sven-Olof Nyström, Mikael
Pettersson, and Robert Virding. Core Erlang 1.0.3 language specification, November 2004. Available
at http://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf.

11

http://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf

	Syntax
	Preliminaries
	Calculus for references
	Calculus for values
	Calculus for exceptions

