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Abstract

With the rise of Big Data technologies, distributed stream processing systems have gained popu-
larity in the last years. These are used to continuously process streams of data from various sources,
like customer activity or sensors measurements, to obtain an always up to date view of the data that
allows the system to react on time to events. Stream processing systems, like any other system dealing
with time and events, are hard to test. But we can find several proposals in the literature for dealing
with those problems. In particular we focus on Pnueli’s approach based on the use of temporal logic
for testing reactive systems. Our final goal is facilitating the adoption of temporal logic as an every
day tool for the development of stream processing programs. To do that, we consider property-based
testing (PBT), a random testing technique that has gained popularity in the software development
industry, as a bridge between formal logic and software development practices like test driven de-
velopment. As PBT only handles finite test cases, we propose a novel discrete time linear temporal
logic for finite words. In order to increase its expressiveness for formulating stricter properties, in
this logic we associate a timeout to each temporal connective, that determines the maximum time
at which the corresponding sub-formulas should be solved to true for the whole formula to hold. We
implement our logic as a library extending ScalaCheck for testing Spark Streaming programs.
Keywords: Stream processing systems, Spark, Random testing, Property-based testing, LTL, Tem-
poral Logic, Scala, Big data
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1 Introduction

With the rise of Big Data technologies [32], distributed stream processing systems (SPS) [1, 18, 34]
have gained popularity in the last years. These systems are used to continuously process high volume
streams of data. One of the earliest examples of the new generation systems from the Internet era is
Millwheel [1], which was designed and used by Google for tasks like anomaly detection and cluster-health
monitoring. Twitter is also a prominent user of stream processing systems like Apache Storm [18] and
its successor Twitter Heron [27]—which was developed in-house by Twitter—, and has used both to
process the massive continuous flow of tweets in the Twitter Firehose, computing approximate statistics
about tweets with latencies of seconds, that are then used in data products like Twitter’s trending topics.
Another example is Yahoo’s S4 [21], which was used for live parameter tuning of its search advertising
system using the user traffic. Stream processing has also applications to security, since companies have
started publishing large amounts of real-time data on this subject to share information among them and
improve their results (see e.g. the IBM page for this aim, https://exchange.xforce.ibmcloud.com/).
Finally, the resurge of the IoT market promises new applications of stream processing to sensor data, or
its application to machine-to-machine communication [10]. But the first precedents of stream processing
systems come back as far as the early synchronous dataflow programming languages like Lucid [31] or
Lustre [13]

As the field has grown mature, several standard architectures for streaming processing like the Lambda
Architecture [17, 18], the Kappa Architecture [14], or reactive streams [15, 8] have been proposed for
implementing a cost effective, always up-to-date view of the data that allows the system to react on time
to events. These architectures deal in different ways with tradeoffs between latency, performance, and
system complexity. The bar is also raised by the complexity of the algorithms involved. Stream processing
systems need to keep up with the speed on the input data stream, which often translates in strict sublinear
performance requirements that can only be met by employing sophisticated and approximate algorithms,
even for computing aggregations that otherwise would be simple in other settings, like offline batch
computations [2, 9, 12]. Similary specialized machine learning and data stream mining algorithms had
to be designed for its application to the stream processing context [20, 6].

When complex architectures and algorithms are involved, having good testing tools at our disposal
becomes particularly important. Besides, stream processing systems, like any other system dealing with
time and events, are intrinsically hard to test. We can find several proposals in the literature for dealing
with those problems; in particular, in this work we consider Pnueli’s approach [25, 26] based on the use
of temporal logic for testing reactive systems. Our final goal is facilitating the adoption of temporal logic
as an every day tool for the average programmer when facing the task of employing a SPS to implement
a transformation of data streams. For this reason we decided to use a technique that is familiar to
programmers and choose property-based testing (PBT) [7], a random testing technique that has gained
popularity in the software development industry. Classical unit testing with xUnit-like frameworks [19]
is based on specifying input - expected output pairs; they compare the expected output with the one
obtained by applying the corresponding input to the test subject. On the other hand, in property based
testing we specify a property as a formula in a restricted version of first order logic, which relates input and
outputs, and then the testing framework checks the property against a bunch of inputs that are randomly
synthesized. If a counterexample disproving the property is found, then the test fails, otherwise it passes.

We use PBT as a bridge between formal logic and software development practices like test driven
development [5], for which PBT is a valuable tool, accepted by the software development community.
The key idea is extending PBT to allow using temporal logic operators to define properties. As PBT
only handles finite test cases, we need a temporal logic for finite words, like those used in the field of
runtime verification [16]. PBT implementations are lightweight systems that do not attempt to perform
sophisticated automatic deductions, nor an exhaustive traversal of the search space like model checking
systems. Instead, a PBT system just executes many random tests as quick as possible, to perform a
fast scouting of the search space looking for a counterexample that might refute the property under test.
Although this might look like a weak procedure, empirical studies [7, 28] have shown that in practice
random PBT obtains good results, with a quality comparable to more sophisticated techniques. For this
reason, each test case generated in our system represents a finite prefix of an infinite word, so a test
execution corresponds to the evaluation of a temporal logic formula over that prefix.

There are several logics for finite words proposed in the field of runtime verification [3, 4]. Just like
[3], we consider a 3-valued logic, where the third value corresponds to an inconclusive result used as
the last resort when the input finite word is consumed before completely solving the temporal formula.
This led us naturally to considering temporal operators with timeout, that correspond to the number
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of instants the corresponding sub-formulas should be solved for the whole formula to hold. That is the
case for existential temporal quantifiers like those in an until or an eventually operator. For universal
temporal quantifiers like those in an always operator the timeout corresponds to the number of instants
the sub-formula should hold. We believe this kind of timeouts leads to natural properties and allows
the programmer to express stricter properties that are easy to understand. We consider that it is very
important to facilitate expressing strict properties with a definite result, as in the past quantifiers in PBT
systems have been abandoned in practice by the development community, as it happened for example
with the existential quantifier in ScalaCheck [22, 30]. We have formalized these ideas in a novel discrete
time linear temporal logic for finite words. As we will see later on, an additional benefit of the use of
timeouts is that it leads to a very simple evaluation mechanism. We have also developed higher order
random data generators for temporal operators, because when using temporal formulas as properties, the
need to specify inputs with a temporal behavior arises naturally. By using temporal logic not only for
the formulas but also for the data generators, we obtain a simple setting that is easy to grasp for average
programmers.

We have implemented our logic as a library extending ScalaCheck [22] for testing Spark Streaming
programs [34] written in Scala [23]. We have chosen ScalaCheck because it is the de facto standard
implementation of PBT for Scala. We also use specs2 [29], a general purpose testing library easily
extensible and with a good integration with ScalaCheck. We have used Scala because Spark [33] is
written in Scala, and new features and first released in its Scala API. Moreover, PBT is more accepted
in the Scala community than in the Python or Java communities, for which Spark Streaming exposes an
API. We have chosen Spark Streaming as the stream processing platform for our first prototype because,
as we will see below, it is based on micro batches that define a discrete time, and so it is a natural fit to
our discrete time temporal logic. Furthermore, Spark is rooted on functional programming and is native
to Scala, for which PBT is quite popular, as we have just seen. Finally, Spark is a popular tool and its
acceptance has increased quickly in the last years.

Let us conclude this section with a quick preview of our system. The function below defines a property
that checks whether its argument testSubject is a function that transforms a stream of batches of
doubles—i.e. a series of multisets of doubles—into a series of batches of a single element containing the
number of elements in the input batch at that specific time. To do that we define a simple generator
gen that produces random batches of 50 elements during 20 instants. The temporal formula defined in
formula then states that for all the instants, the output batch should contain a single element, and that
this only element should be equal to the number of elements in the input batch at the same instant.

def countForallAlwaysProp(

testSubject : DStream[Double] => DStream[Long]) = {

type U = (RDD[Double], RDD[Long])

val (inBatch, transBatch) = ((_ : U)._1, (_ : U)._2)

val numBatches = 20

val formula : Formula[U] = always { (u : U) =>

transBatch(u).count === 1 and

inBatch(u).count === transBatch(u).first

} during numBatches

val gen = BatchGen.always(BatchGen.ofN(50, arbitrary[Double]),

numBatches)

DStreamProp.forAll(gen)(testSubject)(formula)

}.set(minTestsOk = 20).verbose

If we put this property in the context of the specs2 specification below, we can check that the default
implementation provided by the count method of Spark Streaming’s DStream class is correct, while the
wrong implementation defined in the function faultyCount, which subtracts 1 from the number, fails to
pass the test.

class StreamingFormulaDemo1

extends Specification

with SharedStreamingContextBeforeAfterEach

with ResultMatchers

with ScalaCheck {

// Spark configuration

override def sparkMaster : String = "local[5]"

override def batchDuration = Duration(350)
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Figure 1: Truth tables for the logical connectives in LTL3

override def defaultParallelism = 4

def is = sequential ^ s2"""

Simple demo Specs2 example for ScalaCheck properties with

temporal formulas on Spark Streaming programs

- where a simple property for DStream.count is

a success ${countForallAlwaysProp(_.count)}

- where a faulty implementation of the DStream.count

fails ${countForallAlwaysProp(faultyCount) must beFailing} """

def faultyCount(ds : DStream[Double]) : DStream[Long] =

ds.count.transform(_.map(_ - 1))

The rest of the paper is organized as follows: Section 2 describes our logic for testing Big Data systems,
while Section 3 presents its implementation for Spark. Finally, Section 4 concludes and presents some
subjects of future work.

2 A Temporal Logic for Testing Spark Streaming programs

We present in this section our linear temporal logic for defining properties on stream processing systems.
We first define the basics of the logic and then show some interesting properties to prove formulas in an
efficient way.

2.1 A Linear Temporal Logic with Timeouts for practical specification of
stream processing systems

We present in this section LTLss , a linear temporal logic that specializes LTL3 [3] by allowing timeouts
in temporal connectives. LTL3 is an extension of LTL for runtime verification that takes into account
that only finite executions can be checked, and hence a new value ? (inconclusive) can be returned if a
property cannot be effectively evaluated to either true (>) or false (⊥) in the given execution. These
values form a lattice with ⊥ ≤ ? ≤ >; we remind how the logical connectives work in this case in Figure 1.

LTLss pays closer attention to finite executions by limiting the scope of temporal connectives. This
allows users (i) to obtain either > or ⊥ for any execution given it has a length that can be computed
beforehand and (ii) to define more precise formulas, since it is possible to indicate in an easy way the
period when it is expected to hold. Moreover, as we will see in Section 2.2, an efficient algorithm for
evaluating these formulas can be implemented by taking advantage of its specific structure.

Formulae Syntax In line with [3], assume a finite set of atomic propositions AP . We consider the
alphabet Σ = P(AP ). A finite word over Σ is any u ∈ Σ∗, i.e. any finite sequence of sets of atomic
propositions. We use the notation u = a1 . . . an to denote that u has length n and ai is the letter at
position or time i in u. Each letter ai corresponds to a set of propositions from AP that hold at time
i. Similarly, an infinite word over Σ is any w = a1a2 . . . ∈ Σw, i.e. an infinite sequence of sets of atomic
propositions. LTLss is a variant of propositional lineal temporal logic and formulas ϕ ∈ LTLss are defined
as follows:

ϕ ::= ⊥ | > | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ |
Xϕ | ♦tϕ | �tϕ | ϕ Ut ϕ | ϕ Rt ϕ

for p ∈ AP , and t ∈ N+ ∪ {∞} a timeout. We will use the notation Xnϕ, n ∈ N+, as a shortcut for n
applications of the operator X to ϕ. The intuition underlying these formulas, that are formally defined
below, is:

• Xϕ indicates that ϕ holds in the next state.
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• ♦tϕ, read “eventually ϕ in t,” indicates that ϕ holds in any of the next t states (including the
current one).

• �tϕ, read “always ϕ in t,” indicates that ϕ holds in all of the next t states (including the current
one).

• ϕ1 Ut ϕ2, read “ϕ1 holds until ϕ2 in t,” indicates that ϕ1 holds until ϕ2 holds in the next t states,
including the current one, and ϕ2 must hold. Note that it is enough for ϕ1 to hold until the state
previous to the one where ϕ2 holds.

• ϕ1 Rt ϕ2, read “ϕ2 is released by ϕ1 in t,” indicates that ϕ2 holds until both ϕ1 and ϕ2 hold in
the next t states, including the current one. However, if ϕ1 never holds and ϕ2 always holds the
formula holds as well.

Note that if t =∞ then LTLss corresponds to LTL3. According to Emerson’s classification [11] LTLss

is a propositional, linear, pointwise, discrete, and future tense temporal logic. However, since we can only
generate finite words, we focus on t ∈ N+. As we show later, in this case it is possible to discard the
inconclusive value and obtain only definite values if some constraints hold between the word and the
formula being tested.

Logic for finite words The logic for finite words proves judgements u, i � ϕ : v for u ∈ Σ∗, i ∈ N+,
and v ∈ {>,⊥, ?}.

u, i � Xϕ :

{
? if i = len(u)
v if i < len(u) ∧ u, i+ 1 � ϕ : v

u, i � ♦tϕ :

 > if ∃k ∈ [i,min(i+ (t− 1), len(u))]. u, k � ϕ : ⊥
⊥ if i+ (t− 1) ≤ len(u) ∧ ∀k ∈ [i, i+ (t− 1)]. u, k � ϕ1 : ⊥
? otherwise

u, i � �tϕ :

 > if i+ (t− 1) ≤ len(u) ∧ ∀k ∈ [i, i+ (t− 1)]. u, k � ϕ : >
⊥ if ∃k ∈ [i,min(i+ (t− 1), len(u))]. u, k � ϕ : ⊥
? otherwise

u, i � ϕ1 Ut ϕ2 :



> if ∃k ∈ [i,min(i+ (t− 1), len(u))]. u, k � ϕ2 : > ∧
∀j ∈ [i, k). u, j � ϕ1 : >

⊥ if ∃k ∈ [i,min(i+ (t− 1), len(u))]. u, k � ϕ1 : ⊥ ∧
∀j ∈ [i, k]. u, j � ϕ2 : ⊥

⊥ if i+ (t− 1) ≤ len(u) ∧ ∀k ∈ [i, i+ (t− 1)]. u, k � ϕ1 : > ∧
∀l ∈ [i,min(i+ (t− 1), len(u))]. u, l � ϕ2 : ⊥

? otherwise

u, i � ϕ1 Rt ϕ2 :



> if ∃k ∈ [i,min(i+ (t− 1), len(u))]. u, k � ϕ1 : > ∧
∀j ∈ [i, k]. u, j � ϕ2 : >

> if i+ (t− 1) ≤ len(u) ∧ ∀k ∈ [i, i+ (t− 1)]. u, k � ϕ2 : >
⊥ if ∃k ∈ [i,min(i+ (t− 1), len(u))]. u, k � ϕ2 : ⊥ ∧

∀j ∈ [i, k). u, j � ϕ1 : ⊥
? otherwise

We say u � ϕ iff u, 1 � ϕ : >. The intuition underlying this definition is that, if the word is too
short to check all the steps indicated by a temporal operator and neither > or ⊥ can be obtained before
finishing the word, then ? is obtained. Otherwise, the formula is evaluated to either > or ⊥ just by
checking the appropriate sub-word.

Example 1 Assume the set of atomic propositions AP ≡ {a, b, c} and the word u ≡ {b} {b} {a, b} {a} .
Then we have the following results:

• u � (♦4 c) : ⊥, since c does not hold in the first four states.

• u � (♦5 c) : ?, since we have consumed the word, c did not hold in those states but the timeout has
not expired.

• u � �4 (a ∨ b) : >, since either a or b is found in the first four states.
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• u � �5 (a ∨ b) : ?, since the property holds until the word is consumed, but the user required more
steps.

• u � �5 c : ⊥, since the proposition does not hold in the first state.

• u � (b U2 a) : ⊥, since a holds in the third state, but the user wanted to check just the first two
states.

• u � (b U5 a) : >, since a holds in the third state and, before that, b held in all the states.

• u � (a R2 b) : >, since b holds in all the required states.

• u � (a R4 b) : >, since a and b hold in the third state.

• u � �3(a → Xa) : >, since the formula holds in the first in the first three states (note that the
fourth state is required, since the formula involves the next operator).

• u � �4(a → Xa) : ?, since we do not know what happens in the fifth state, which is required to
check the formula in the fourth state.

• u � �2(b→ ♦2 a) : ⊥, since in the first state we have b but we do not have a until the third state.

• u � b U2 X(a ∧Xa) : >, since X(a ∧Xa) holds in the second state (that is, a ∧Xa holds in the
third state, which can also be understood as a holds in the third and fourth states).

Once the formal definition has been presented, we require a decision procedure for evaluating formulas
in an algorithmic way. Next, we present an algorithm inferred from the logic presented above.

Decision procedure for the logic for finite words Just like ScalaCheck [22] and any other testing
tool of the QuickCheck family [7, 24], this decision procedure does not try to be complete for proving
the veritative value of formulae, but just to be complete for failures. Hence, we can define an abstract
rewriting system for reductions u � ϕ  ∗ v for v in the same domain as above. Given a letter a ∈ Σ, a
word u ∈ Σ∗, a timeout t ∈ N+, and formulas ϕ,ϕ1, ϕ2 ∈ LTLss , we have the following rules:1

1. Rules for u � X ϕ:

1) au � X ϕ  u � ϕ
2) u � X ϕ  ? otherwise

2. Rules for u � ♦t ϕ:

1) ε � ♦t ϕ  ?
2) u � ♦0 ϕ  ⊥
3) u � ♦t ϕ  > if u � ϕ ∗ >
4) au � ♦t ϕ  u � ♦t−1 ϕ if au � ϕ ∗ ⊥
5) u � ♦t ϕ  ? otherwise

3. Rules for u � �t ϕ:

1) ε � �t ϕ  ?
2) u � �0 ϕ  >
3) u � �t ϕ  ⊥ if u � ϕ ∗ ⊥
4) au � �t ϕ  u � �t−1 ϕ if au � ϕ ∗ >
5) u � �t ϕ  ? otherwise

4. Rules for u � ϕ1 Ut ϕ2:

1) ε � ϕ1 Ut ϕ2  ?
2) u � ϕ1 U0 ϕ2  ⊥
3) u � ϕ1 Ut ϕ2  > if u � ϕ2  ∗ >
4) u � ϕ1 Ut ϕ2  ⊥ if u � ϕ1  ∗ ⊥ ∧ u � ϕ2  ∗ ⊥
5) au � ϕ1 Ut ϕ2  u � ϕ1 Ut−1 ϕ2 if au � ϕ1  ∗ > ∧ au � ϕ2  ∗ ⊥
6) u � ϕ1 Ut ϕ2  ? otherwise

1Formulas built with propositional operators just evaluate the sub-formulas and apply the connectives as shown in
Figure 1.
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5. Rules for u � ϕ1 Rt ϕ2:

1) ε � ϕ1 Rt ϕ2  ?
2) u � ϕ1 R0 ϕ2  >
3) u � ϕ1 Rt ϕ2  > if u � ϕ1  ∗ > ∧ u � ϕ2  ∗ >
4) u � ϕ1 Rt ϕ2  ⊥ if u � ϕ2  ∗ ⊥
5) au � ϕ1 Rt ϕ2  u � ϕ1 Rt−1 ϕ2 if au � ϕ1  ∗ ⊥ ∧ au � ϕ2  ∗ >
6) u � ϕ1 Rt ϕ2  ? otherwise

for ε the empty word. These rules follow this schema: (i) an inconclusive value is returned when the empty
word is found; (ii) the formula is appropriately evaluated when the timeout expires; (iii) it evaluates the
subformulas to check whether a value can be obtained; it consumes the current letter and continue the
evaluation; and (iv) inconclusive is returned if the subformulas are evaluated to inconclusive as well, and
hence the previous rules cannot be applied. Hence, note that these rules have conditions that depend on
the future. This happens in rules with a condition involving  ∗ that inspects not only the first letter of
the word, i.e., what it is happening now, but also the subsequent letters, as illustrated by the following
examples:

Example 2 We recall the word u ≡ {b} {b} {a, b} {a} from Example 1 and evaluate the following
formulas:

• {b} {b} {a, b} {a} � �2(b → ♦2 a)  ⊥, because b holds but {b} {b} {a, b} {a} �
♦2 a {b} {a, b} {a} � ♦1 a {a, b} {a} � ♦0 a ⊥.

• {b} {b} {a, b} {a} � b U2 X(a ∧ Xa))  {b} {a, b} {a} � b U1 X(a ∧ Xa)), which
requires to check the second and third states to check that the second formula does not hold. The
we have {b} {a, b} {a} � b U1 X(a ∧Xa)) > after checking the third and fourth states.

To use this procedure as the basis for our implementation we would have to keep a list of suspended
alternatives, that are pending of conditions that will only solve in the future. This is because, although
we had all the batches for a generated test case corresponding to an input stream, the batches for output
streams generated by transforming the input will be only generated after waiting the corresponding
number of instances. This leads to a complex and potentially expensive computation, since many pending
possible alternatives have to be kept open. Instead of using this approach, it would be much more
convenient to define a stepwise method with transition rules that only inspects the first letter of the
input word.

2.2 A transformation for stepwise evaluation

In order to define this stepwise evaluation, it is worth noting that all the properties are finite (that is, all
of them can be proved or disproved after a finite number of steps). It is hence possible to express any
formula only using the temporal operator X, which leads us to the following definition.

Definition 1 (Next form) We say that a formula ψ ∈ LTLss is in next form iff. it is built by using
the following grammar:

ψ ::= ⊥ | > | p | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | ψ → ψ | Xψ

It is possible to obtain the next form of any formula ϕ ∈ LTLss by using the following transformation:

Definition 2 (Next transformation) Given an alphabet Σ and a formula ϕ ∈ LTLss , the function

8



nt(ϕ) computes another formula ϕ′ ∈ LTLss , such that ϕ′ is in next form and ∀u ∈ Σ∗.u � ϕ ⇐⇒ u � ϕ′.

nt(>) = >
nt(⊥) = ⊥
nt(p) = p
nt(¬ϕ) = ¬nt(ϕ)
nt(ϕ1 ∨ ϕ2) = nt(ϕ1) ∨ nt(ϕ2)
nt(ϕ1 ∧ ϕ2) = nt(ϕ1) ∧ nt(ϕ2)
nt(ϕ1 → ϕ2) = nt(ϕ1)→ nt(ϕ2)
nt(Xϕ) = Xnt(ϕ)
nt(♦tϕ) = nt(ϕ) ∨Xnt(ϕ) ∨ . . . ∨Xt−1nt(ϕ)
nt(�tϕ) = nt(ϕ) ∧Xnt(ϕ) ∧ . . . ∧Xt−1nt(ϕ)
nt(ϕ1 Ut ϕ2) = nt(ϕ2) ∨ (nt(ϕ1) ∧Xnt(ϕ2))∨

(nt(ϕ1) ∧Xnt(ϕ1) ∧X2nt(ϕ2)) ∨ . . .∨
(nt(ϕ1) ∧Xnt(ϕ1) ∧ . . . ∧Xt−2nt(ϕ1) ∧Xt−1nt(ϕ2))

nt(ϕ1 Rt ϕ2) = (nt(ϕ2) ∧Xnt(ϕ2) ∧ . . . ∧Xt−1nt(ϕ2))∨
(nt(ϕ1) ∧ nt(ϕ2)) ∨ (nt(ϕ2) ∧X(nt(ϕ1) ∧ nt(ϕ2)))∨
(nt(ϕ2) ∧Xnt(ϕ2) ∧X2(nt(ϕ1) ∧ nt(ϕ2))) ∨ . . .∨
(nt(ϕ2) ∧Xnt(ϕ2) ∧ . . . ∧Xt−2nt(ϕ2) ∧Xt−1(nt(ϕ1) ∧ nt(ϕ2))

for p ∈ AP and ϕ,ϕ1, ϕ2 ∈ LTLss .

It is straightforward to see that the formula obtained by this transformation is in next form, since it
only introduces formulas using the X operator. The equivalence between formulas is stated in Theorem 1:

Lemma 1 Given n ∈ N+, an alphabet Σ and formulas ϕ,ϕ′ ∈ LTLss , if ∀u ∈ Σ∗.u � ϕ ⇐⇒ u � ϕ′

then ∀u,∈ Σ∗.u, n � ϕ ⇐⇒ u, n � ϕ′

Proof. Since u ≡ a1 . . . am, m ∈ N, we distinguish the cases n > m and n ≤ m:

n > m It is easy to see for all possible formulas that only ? can be obtained, so the property trivially
holds.

n ≤ m Then we have u′ ≡ an . . . am and, since we know that u′ � ϕ ⇐⇒ u′ � ϕ′, the property holds.
ut

Theorem 1 Given an alphabet Σ and formulas ϕ,ϕ′ ∈ LTLss , such that ϕ′ ≡ nt(ϕ), we have ∀u ∈
Σ∗.u � ϕ ⇐⇒ u � ϕ′.

Proof. We apply induction on formulas.
Base case. It is straightforward to see that the result holds for the constants > and ⊥ and for an

atomic predicate p.
Induction hypothesis. Given the formulas ϕ1, ϕ2, ϕ

′
1, ϕ
′
2 ∈ sstl, such that ϕ′1 ≡ nt(ϕ1) and ϕ′2 ≡

nt(ϕ2), we have ∀u ∈ Σ∗.u � ϕi ⇐⇒ u � ϕ′i, i ∈ {1, 2}.
Inductive case. We distinguish the different formulas in LTLss :

• For the formulas ⊥,>, p,¬ϕ1, ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2, and ϕ1 → ϕ2, is trivial to see that the result holds,
since we just work in propositional logic.

• Given the formula Xϕ1, we have to prove that ∀u ∈ Σ∗.u � Xϕ1 ⇐⇒ u � Xϕ′1. This expression
can be transformed using the definition for the satisfaction for the next operator into ∀u ∈ Σ∗.u, 2 �
ϕ1 ⇐⇒ u, 2 � ϕ′1, which holds by hypothesis and Lemma 1.

• Given the formula ♦tϕ1, t ∈ N+, we have to prove that ∀u ∈ Σ∗.u � ♦tϕ1 ⇐⇒ u � ϕ′1 ∨Xϕ′1 ∨
. . . ∨Xt−1ϕ′1. We distinguish the possible values for u � ♦tϕ1:

– u � ♦tϕ1 : >. In this case the property holds because there exists i, 1 ≤ i ≤ t such that
u, i � ϕ1 : >. Hence, u � Xi−1ϕ′1 by hypothesis and the definition of the next operator (note
that for i = 1 we just have u � ϕ′).

– u � ♦tϕ1 : ⊥. In this case ∀i, 1 ≤ i ≤ t, u, i � ϕ1 : ⊥, so we have u � Xi−1ϕ′1 : ⊥ for 1 ≤ i ≤ t
and the transformation is also evaluated to ⊥.
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– u � ♦tϕ1 : ?. In this case we have u of length n, n < t, and ∀i, 1 ≤ i ≤ n, u, i � ϕ1 : ⊥. Hence,
we have u � Xi−1ϕ′1 : ⊥ for 1 ≤ i ≤ n and u � Xj−1ϕ′1 : ? for n+ 1 ≤ j ≤ t. Hence, we have
⊥ ∨ . . . ∨ ⊥ ∨ ? ∨ . . . ∨ ? = ? and the property holds.

• The analysis for �tϕ1 is analogous to the one for ♦tϕ1.

• Given the formula ϕ1 Ut ϕ2, t ∈ N+, we have to prove that ∀u ∈ Σ∗.u � ϕ1 Ut ϕ2 ⇐⇒ u �
ϕ′2 ∨ (ϕ′1 ∧Xϕ′2)∨ . . .∨ (ϕ′1 ∧Xϕ′1 ∧ . . .∧Xt−2ϕ′1 ∧Xt−1ϕ′2). We distinguish the possible values for
u � ϕ1 Ut ϕ2:

– u � ϕ1 Ut ϕ2 : >. In this case we have from the definition that ∃i, 1 ≤ i ≤ t such that
u, i � ϕ2 : > and ∀j, 1 ≤ j < i, u, j � ϕ1 : >. Hence, applying the induction hypothesis we
have u � ϕ′1 ∧Xϕ′1 ∧ . . . Xi−2ϕ′1 ∧Xi−1ϕ′2 : >, and hence the property holds.

– u � ϕ1 Ut ϕ2 : ⊥.

∗ Case a) ∀i, 1 ≤ i ≤ t.u, i � ϕ2 : ⊥. In this case we have ∀i, 1 ≤ i ≤ t, u, i � Xi−1ϕ′2 : ⊥,
and hence the complete formula is evaluated to ⊥.

∗ Case b) ∃i, 1 ≤ i ≤ t, ∀j, 1 < j ≤ i.u, j � ϕ1 : >, u, j � ϕ2 : ⊥ u, i � ϕ1 : ⊥, and
u, i � ϕ2 : ⊥. In this case we have ∀k, 0 ≤ k < i, u � Xkϕ′2 : ⊥ and u � Xi−1ϕ′1 : ⊥
by inductive hypothesis. Hence, all the conjunctions are evaluated to ⊥ and the property
holds.

– u � ϕ1 Ut ϕ2 : ?. In this case we have u of length n, n < t, ∀i, 1 ≤ i ≤ n, u, i � ϕ2 : ⊥, and
u, i � ϕ1 : >. Hence, the first i conjunctions in the transformation are evaluated to ⊥ by the
induction hypothesis, while the rest are evaluated to ? by the definition of the next operator
and the property holds.

• The analysis for ϕ1 Rt ϕ2 is analogous to the one for ϕ1 Ut ϕ2, taking into account that formula
also holds if ϕ2 always holds.

ut

Example 3 We present here how to transform some of the formulas from Example 1:

• nt(♦4 c) = c ∨Xc ∨X2c ∨X3c

• nt(�4 (a ∨ b)) = (a ∨ b) ∧X(a ∨ b) ∧X2(a ∨ b) ∧X3(a ∨ b)

• nt(b U2 a) = a ∨ (b ∧Xa)

• nt(a R2 b) = (a ∧ b) ∨ (a ∧X(a ∧ b))

• nt(�3(a→ Xa)) = (a→ Xa) ∧X(a→ Xa) ∧X2(a→ Xa)

• nt(�2(b→ ♦2 a)) = (b→ (a ∨Xa)) ∧X(b→ (a ∨Xa))

• nt(b U2 X(a ∧Xa)) = X(a ∧Xa) ∨ (b ∧X2(a ∧Xa))

Once the next form of a formula has been computed, it is possible to evaluate it for a given word
just by traversing its letters. We just evaluate the atomic formulas in the present moment (that is, those
properties that does not contain the next operator) and remove the next operator otherwise, so these
properties will be evaluated for the next letter. This method is detailed as follows:

Definition 3 (Letter simplification) Given a formula ψ in next form and a letter s ∈ Σ, the function
ls(ψ, s) simplifies ψ with s as follows:

• ls(>, s) = >.

• ls(⊥, s) = ⊥.

• ls(p, s) = p ∈ s.

• ls(¬ψ, s) = ¬ls(ψ).

• ls(ψ1 ∨ ψ2, s) = ls(ψ1) ∨ ls(ψ2).

• ls(ψ1 ∧ ψ2, s) = ls(ψ1) ∧ ls(ψ2).
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• ls(ψ1 → ψ2, s) = ls(ψ1)→ ls(ψ2).

• ls(Xψ, s) = ψ.

Using this function and applying propositional logic when definite values are found it is possible to
evaluate formulas in a step-by-step fashion.2 In this way, we can solve the formulas from the previous
example as follows:

Example 4 We present here the evaluation process for the formulas in Example 2.

• �2(b→ ♦2 a) ≡ (b→ (a ∨Xa)) ∧X(b→ (a ∨Xa)) (from Example 3).

– ls((b→ (a∨Xa))∧X(b→ (a∨Xa)), {b}) = (> → (⊥∨a))∧(b→ (a∨Xa)) ≡ a∧(b→ (a∨Xa)).

– ls(a ∧ (b→ (a ∨Xa)), {b}) = ⊥ ∧ (> → (⊥ ∨ a)) ≡ ⊥.

• b U2 X(a ∧Xa)) ≡ X(a ∧Xa) ∨ (b ∧X2(a ∧Xa)) (from Example 3).

– ls(X(a∧Xa)∨ (b∧X2(a∧Xa)), {b}) = (a∧Xa)∨ (>∧X(a∧Xa)) ≡ (a∧Xa)∨ (X(a∧Xa))

– ls((a ∧Xa) ∨ (X(a ∧Xa)), {b}) = (⊥ ∧ a) ∨ (a ∧Xa) ≡ a ∧Xa.

– ls(a ∧Xa, {a, b}) = > ∧ a ≡ a.

– ls(a, {a}) = >.

The next transformation gives also the intuition that inconclusive values can be avoided if we use a
word as long as the number of next operators nested in the transformation plus 1.3 We define this safe
word length as follows:

Definition 4 (Safe word length) Given a formula ϕ ∈ LTLss , its longest required check swl(ϕ) ∈ N
is the maximum word length of a word u such that we have u � ϕ ∈ {>,⊥}. It is defined as follows:

swl(>) = 1
swl(⊥) = 1
swl(p) = 1
swl(¬ϕ) = swl(ϕ)
swl(ϕ1 ∨ ϕ2) = max (swl(ϕ1), swl(ϕ2))
swl(ϕ1 ∧ ϕ2) = max (swl(ϕ1), swl(ϕ2))
swl(ϕ1 → ϕ2) = max (swl(ϕ1), swl(ϕ2))
swl(Xϕ) = swl(ϕ) + 1
swl(♦tϕ) = swl(ϕ) + (t− 1)
swl(�tϕ) = swl(ϕ) + (t− 1)
swl(ϕ1 Ut ϕ2) = max (swl(ϕ1), swl(ϕ2)) + (t− 1)
swl(ϕ1 Rt ϕ2) = max (swl(ϕ1), swl(ϕ2)) + (t− 1)

Example 5 We present here the safe word length for some of the formulas in Example 1:

• swl(♦4 c) = 4.

• swl(�4 (a ∨ b)) = 4.

• swl(b U2 a) = 2.

• swl(a R2 b) = 2.

• swl(�3(a→ Xa)) = 4.

• swl(�2(b→ ♦2 a)) = 3.

• swl(b U2 X(a ∧Xa)) = 4.

2Note that the value ? is only reached when the word is consumed and this simplification cannot be applied.
3Note that it is possible to avoid an inconclusive value with shorter words, so this is a sufficient condition.
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3 Temporal Logic for Property-based testing of Spark Stream-
ing programs

In this section we present our prototype, which extends ScalaCheck to allow formulas in our temporal
logic for testing Spark Streaming programs. The current implementation uses Spark’s local mode to mock
a cluster, thus executing all the tests locally, so it is limited by the computing power of a single machine.
Nevertheless, our system is able to test programs without any modification, and local execution allows for a
trivial integration of our system in a continuous integration pipeline: in fact we do just that with Travis CI
to automate the execution of our internal tests https://travis-ci.org/juanrh/sscheck. The system is
available for download at https://github.com/juanrh/sscheck/releases/tag/codeFreezeFlops16.

3.1 Spark and Spark Streaming

With the boom of stream processing systems, a plethora of new systems have arisen, with proposals
like Samza [?], Flink [?], Akka Streams [15] and Spark Streaming [34]. As our main goal is facilitating
the adoption of temporal logic as a tool for test driven development of stream processing programs,
we are interested in developing a prototype that runs the tests against actual programs in a concrete
SPS, running in an execution environment as similar as possible to the production environment. This
implies we have to choose a concrete SPS. There are to main families of SPS: one-at-a-time and micro
batch systems [18]. Their main difference is that systems in the former category process each input record
individually, while those in the latter category group several records into small batches that are generated
at a fixed rate, and then processed together. Apart from the implications on latency and performance,
micro batch systems fit naturally with a discrete time temporal logic like ours, by identifying each batch
with a time instant.

Among them Spark Streaming [34] stands out as particularly attractive option for the functional
programmer, not only because it is developed in the functional language Scala, but also because the
abstractions it defines are fundamentally functional. Spark Streaming is a library for stream processing
that extends the Spark distributed batch computing framework [33], that is based on manipulating
distributed collections called RDDs—that stands for Resilient Distributed Datasets—, that correspond
to distributed lists, which are a fundamental data structure in functional programming. We can define
transformations on RDDs, that must be deterministic and free of side effects, as the fault tolerance
mechanism of Spark is based on its capability for recomputing any fragment (partition) of an RDD when
it is needed. Hence Spark programmers are encouraged to define RDD transformations that are pure
functions from RDD to RDD, and a set of predefined transformation on RDD is available that includes
typical higher order functions from functional programming like map, filter, etc., as well as aggregations
by key for RDDs of key-value pairs. We can also use Spark actions, that allow us to collect results
into the master computation node (program driver), or store them into an external data store. Spark
actions are impure, but idempotent actions are recommended in order to ensure a deterministic behavior
even in the presence of recomputations triggered by the fault tolerance or speculative task execution
mechanisms. These notions of transformations and actions are extended in Spark Streaming from RDDs
to DStreams, which stands for Discretized Streams, which are nothing but series of RDDs corresponding
to micro batches. This batches are generated at a fixed rate according to the configured batch interval.
Spark Streaming in synchronous in the sense that given a collection of input and transformed DStreams,
all the batches for each DStream are generated at the same time when the batch interval is met. Actions
on DStreams are also periodic and are executed synchronously for each micro batch. Besides, Spark is a
very active project that has grown very quickly, and that it starting to reach maturity, but it is still open
to experimentation. For all these reasons we have developed our first prototype for Spark Streaming.

3.2 System Description

We briefly discuss in this section the main points of our tool.

3.2.1 Mapping Spark Streaming programs into LTLss .

Instead of using actual clock time, like it is done for example in the future matchers in specs2 [29], we
consider the logical time defined by the batch interval. Each discrete time instant corresponds to the
time from the start and the end of a batch interval, where for each DStream we can see the RDD at that
instant, as it was computed instantaneously. In practice that computation is not instantaneous, but the
synchronization performed by Spark Streaming makes it seem like that, at least when enough computing
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resources are available, and task scheduling is not delayed too much. On top of that we define our
atomic propositions as assertions over the RDDs that correspond to the current batch for each DStream
at the present time. Technically we have defined an algebraic data type as a Scala trait Formula, that
is parameterized on a universe type for the alphabet. In Spark Streaming the universe will be a tuple
of RDDs with one component for each DStream. We can see it in the example at the end of Sect. 1
where we consider the universe defined by the alias type U = (RDD[Double], RDD[Long]), as we are
dealing with an input DStream of doubles and an output DStream of longs. Note that implies we could
use Formula not only for Spark Streaming but also for any system that generates series of elements.
Formula has a child case class for each of the constructions in LTLss , with a couple of exceptions. ⊥,
>, and atomic propositions are all represented by the case class Now, which is basically a wrapper for
a function from the universe into a ScalaCheck Prop.Status value, that represents a truth value. We
need a function because we have to apply it several times, to each of the batches that are generated for
each DStream. We provide suitable Scala implicit conversions for defining these functions more easily,
using specs2 matchers: for example, at the end of Sect. 1, the argument of the always used to define the
value formula is implicitly converted into a Now object. The other exception is Solved, that is used to
represented formulas that have been evaluated completely.

Even though LTLss is a propositional temporal logic, in our prototype we add an additional outer
universal quantifier on the test cases, as usual in PBT, so the test passes iff none of the generated test
cases is able to refute the formula. Note we treat ? like a success, thus understanding PBT as a sound
but not complete refutation resolution procedure. This should be configurable in future versions of the
system. Also, currently we do not support nesting of first order ScalaCheck quantifiers like forall or
exists inside LTLss formulas.

3.2.2 Generating streams with temporal formulas.

As mentioned before, we have also implemented higher order random data generators corresponding
to temporal operators, to cope with the need to specify inputs with a temporal behavior that arises
naturally when writing temporal properties. Each test case corresponding to a prefix of a DStream[A] is
represented as an objects of type Seq[Seq[A]], where the outer sequence corresponds to the simulated
DStream prefix, and the inner sequence to each of the batches. We use the custom classes Batch[A] and
PDStream[A]—that stands for prefix DStream—extending Seq[A] and Seq[Batch[A]], so we can add
additional operations like batch-wise union of PDStream, which are useful for defining generators. These
sequences are later parallelized using the Spark context in a custom InputDStream, that is basically a
modification of the standard QueueInputDStream, that now allows changing dynamically the sequence
of batches to be generated.

These generators produce finite words from a subset of the language generated by a LTLss formula ϕ,
defined as the set of finite words u such that u, 1 � ϕ : >. It is only a subset, because the generated words
are minimal in the sense that they contain the minimum letters to satisfy ϕ: for example for ϕ1 Ut ϕ2

no additional letter will be generated after a letter that satisfies ϕ2. We have not yet developed a formal
characterization of that property, but we think this goes in the line of the notion of good prefixes from
[16].

3.2.3 Evaluating temporal properties.

Our system provides a function DStreamProp.forAll that can be used for specifying properties of func-
tions that transforms DStreams using the logic LTLss . As seen in the example in Sect. 1 this function
takes a generator of type Gen[Seq[Seq[E1]]], a test subject of type (DStream[E1]) => DStream[E2],
and a LTLss formula as a Formula[(RDD[E1], RDD[E2])] object, and returns a ScalaCheck property
that is successful iff all the generated test cases fulfill the formula. For evaluating formulas, Formula has
a method nextFormula that returns its next form as an object of type NextFormula, which is a subtype
of Formula that provides a method consume that takes a value of the type of the universe and performs a
step in the letter simplification process from Def. 3, implementing the truth tables from Figure 1. When
the property is executed, we use our custom InputDStream to create an input DStream, and apply the
test subject to create a derived DStream. We register a foreachRDD action on the input DStream that
updates a Formula object for each new generated batch. We then start Spark streaming context to start
the computation, and then run a standard ScalaCheck forall property to generate the test cases. For
each test case we start from a fresh copy of the next form of the input formula, and set our custom
InputDStream to use the test case. As soon as a Solved formula with failing status is reached, we stop
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the streaming context and return a failing property, and so ScalaCheck reports the current test case as
a counterexample for the formula.

The resulting system has a reasonable performance, and tests can be executed faster in more powerful
machines by setting more cores or a shorter batch interval by overriding sparkMaster and batchDuration.
When the machine is too slow and then Spark Streaming starts throwing exceptions due to task not being
able to be completed on time. This can be checked in the Spark GUI, and the batchDuration can be
adjusted to a bigger value so slower machines have more time to compute the batches. As usual in PBT,
in our system we focus on functional testing, setting aside performance aspects of the test subject.

3.3 Case study

We simulate a simple malicious users detection system to illustrate the power of our tool. We have,
for each batch, the set of active users as input and the set of banned users as output. We create the
class StreamingFormulaDemo using ScalaCheck to implement this system and check it. We define user
identifiers are just Long values:

class StreamingFormulaDemo with ScalaCheck {

type UserId = Long

We consider a stream of pairs with the user identifier and a Boolean value indicating whether they
have a correct behavior. The system must include malicious users (those with false in the second element
of the pair) into the banned set when detected and keep them for the whole computation, so they cannot
use any service later on. However, a dummy implementation of this behavior that just keeps the first
element of the pair fails to achieve this goal:

def statelessListBannedUsers(ds : DStream[(UserId, Boolean)]) :

DStream[UserId] = ds.map(_._1)

We implement the property checkExtractBannedUsersList to check it as follows. We first decide
to fix the batch size to 20 and the id 15L as the identifier of a malicious user; the rest of identifiers are
generated values in the range 1L to 50L:

def checkExtractBannedUsersList(testSubject : DStream[(UserId, Boolean)]

=> DStream[UserId]) = {

val batchSize = 20

val (badId, ids) = (15L, Gen.choose(1L, 50L))

val goodBatch = BatchGen.ofN(batchSize, ids.map((_, true)))

val badBatch = goodBatch + BatchGen.ofN(1, (badId, false))

Then, we define some constants for the generators and the LTLss formula. We want to generate good
inputs for some time headTimeout, then generate the bad input (so we check we can detect it), and then
generate some more inputs for a time tailTimeout (in order to check that the id is kept as malicious).
Using these values we create a generator that introduces good inputs until the bad one is found, and
then some more inputs are included by using always:

val (headTimeout, tailTimeout, nestedTimeout) = (10, 10, 5)

val gen = BatchGen.until(goodBatch, badBatch, headTimeout) ++

BatchGen.always(Gen.oneOf(goodBatch, badBatch), tailTimeout)

We indicate now the type U for the data in the formula and distinguish between the input and output
batches. Given the properties allGoodInputs, which indicates that all the inputs thus far are good,
badInput, which indicates that the malicious user has been found in the input, and badIdBanned, which
indicates that the malicious id is banned, we want to prove that good inputs are introduced until the bad
one is found (that is, allGoodInputs Ut1 badInput) and, once it is found, it is always banned (that is,
�t2(badInput→ �t3badIdBanned)). This is the formula written below, using the constants used above
for the generator and an extra constant indicating for how long must hold inner formula:

type U = (RDD[(UserId, Boolean)], RDD[UserId])

val (inBatch, outBatch) = ((_ : U)._1, (_ : U)._2)

val formula : Formula[U] = {

val allGoodInputs : Formula[U] = at(inBatch)(_ should
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Figure 2: Performance for the malicious detection system

foreachRecord(_._2 == true))

val badInput : Formula[U] = at(inBatch)(_ should

existsRecord(_ == (badId, false)))

val badIdBanned : Formula[U] = at(outBatch)(_ should

existsRecord(_ == badId))

( allGoodInputs until badInput on headTimeout ) and

( always { badInput ==> (always(badIdBanned) during

nestedTimeout) } during tailTimeout )

}

Finally, we put all together and check the property, which fails as expected.

DStreamProp.forAll(gen)(testSubject)(formula)

}.set(minTestsOk = 10).verbose

The tool shows a good performance, as shown in Figure 2, which is automatically computed by Spark.4

Once the function is fixed it passes all the test, as can be seen in the repository at the beginning of the
section.

4 Conclusions and Ongoing Work

In this paper we have explored the idea of extending property-based testing with temporal logic and its
application to testing programs developed with a stream processing system. Instead of developing an
abstract model of stream processing systems that could be applied to any particular implementation and
performing testing against a translation of actual programs into that model, we have decided to work
with a concrete system, Spark Streaming, in our prototype. In this way the tests are executed against
the actual test subject and in a context closer to the production environment where programs will be
executed. We think this could help with the adoption of the system by professional programmers, as it
integrates more naturally with the tool set employed in disciplines like test driven development. For this
same reason we have used specs2, a mature tool for behavior driven development, for dealing with the
difficulties integrating of our logic with Spark and ScalaCheck. Along the way we have devised a the novel
finite word discrete time linear temporal logic LTLss , in the line of other temporal logics used in runtime
verification, that we think it allows to easily write expressive and strict properties about temporal aspects
of the programs. Regarding testing tools for Spark, the most clear precedent is [?], which also integrates
ScalaCheck for Spark but only for Spark core. To the best of out knowledge, there is no previous library
supporting property-based testing for Spark Streaming.

Our final goal is facilitating the adoption of temporal logic as an every day tool for the development
of stream processing programs, and so our next movement will be showing the systems to programmers,
and draw conclusions from their opinions and impressions. There are many open lines of future work.
On the practical side our prototype still needs some work to get a robust system. Also, adding support
for arbitrary nesting of ScalaCheck forall and exists quantifiers inside LTLss formula would be an
interesting extension. We also consider developing versions for other languages with Spark API, in
particular Python, or supporting other SPS, like Apache Flink. We have not explored the use of our
system with a cluster, but apart from the generators, which are created at the driver and then parallelized,
there is nothing in particular in its design that would prevent using it with a cluster. In fact our custom
specs2 matchers for RDDs are evaluated at the slave nodes, and the sparkMaster configuration setting
could be employed for configuring the cluster execution. Finally, we plan to explore whether the execution

4On a computer with an Intel Core i5 2.5 GHz processor.
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of several test cases in parallel minimize the test suite execution time. In the theoretical side, we should
give a formal characterization of the language generated by our generators for temporal operators. Finally,
we also intend to explore other formalisms for expressing temporal and cyclic behaviors [?, ?].
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