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José Alberto Verdejo López
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José Alberto Verdejo López
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Bea. I also want to thank two of my professors during this period: Joaqúın and Antonio.
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parte de una peña de dos personas con Jorge; cuando no estamos jugando a la play,
corriendo, comiendo (estamos especialmente orgullosos de nuestras torrijas) o leyendo,
interactuamos con el resto del mundo, siendo en este caso el resto del mundo Mario, el
Rober, Sonia, Alberto, Alfon, el Chini, el Muñeco y el Matis.
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Edu, Adam, Luis, Lucas, Raúl y Bea. Por último, también quiero nombrar aqúı a dos
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Abstract

Declarative debugging is a semi-automatic technique that starts from an incorrect
computation and locates a program fragment responsible for the error. We can distinguish
two phases in this scheme: in the first one the computation is represented as a debugging
tree, while in the second one the debugger traverses this tree until the error is found
by asking questions related to the adequacy of the judgments stored in the nodes to an
external oracle, usually the user, following a navigation strategy. This debugging technique
can be used to debug two different kinds of errors: wrong answers, that is applied when
an erroneous result is obtained from an initial value, and missing answers, applied when
a result is incomplete.

The first part of this thesis applies these ideas to build a declarative debugger for
rewriting logic specifications in Maude. It shows how we have adapted the standard
calculus of rewriting logic to debug wrong answers, while we debug missing answers with
a new calculus that extends the one for wrong answers with judgments to infer, given
a term, its normal form, its least sort, and the set of reachable terms given a pattern,
a condition, and a bound in the number of steps. With this calculus we can detect
errors due to wrong and missing statements (equation, membership axioms, and rules)
and to wrong search conditions. We have proved that this technique is sound (the error
attributed by the debugger is in fact an error) and complete (we can always find the error)
if some requirements are fulfilled, namely the specification being debugged is an executable
Maude module and the information introduced by the user is correct. Finally, the use of
the debugger has been illustrated with several examples.

Formal systems like Maude provide several mechanisms to perform different analyses,
but it is unlikely that a single system will ever supply tools for every possible analysis a
programmer could require. Moreover, it is natural, when facing large systems, to specify
different parts in different ways. For these reason heterogeneous specifications, which allow
the programmer to use different formalisms, are becoming more and more important,
especially in safety-critical areas where one cannot take the risk of malfunction. One
of such systems is the Heterogeneous Tool Set (Hets), a formal integration tool that
provides parsing, static analysis, and proof management for heterogeneous specifications
by combining several individual specifications languages.

The second part of this thesis describes how to integrate Maude into Hets, in such
a way that the tools already integrated in the system can be used to analyze Maude
specifications. To achieve it we had to (i) define an institution for Maude, so the Maude
logic can be integrated into Hets, (ii) define a comorphism from this institution to the one
of Casl, the central logic of Hets, which combines higher-order logic and induction and
that has defined comorphisms to the rest of logic integrated in the system, which allows
to translate Maude to these logics, and (iii) translate Maude’s structuring mechanisms
to development graphs, the method used by Hets to represent structured specifications
and ease proof management. In our case, Maude modules and theories are represented as
nodes, importations as edges, and views as edges with associated proof obligations.



Resumen

La depuración declarativa es un método semi-automático de depuración que, empezan-
do por un cómputo erróneo, localiza la causa del error. Esta técnica consta de dos fases,
en la primera el cómputo se representa como un árbol de depuración, mientras que en
la segunda el depurador gúıa al usuario a través del árbol, haciéndole preguntas sobre la
adecuación de los resultados almacenados en los nodos respecto a su interpretación pre-
tendida, hasta que se encuentra el error. Este estilo de depuración se puede utilizar para
depurar los dos tipos de errores que pueden encontrarse al programar: respuestas erróneas,
que se dan cuando se obtiene un resultado equivocado, y respuestas perdidas, que se dan
cuando se obtiene un resultado incompleto.

En la primera parte de esta tesis se aplican estas ideas para construir un depurador
declarativo para Maude, que representa especificaciones en lógica de reescritura. En ellos
se muestra cómo hemos adaptado el cálculo habitual para lógica de reescritura para depu-
rar respuestas erróneas, mientras que para depurar respuestas perdidas hemos extendido
dicho cálculo con juicios que permiten calcular, dado un término, su forma normal, su tipo
mı́nimo y el conjunto de términos alcanzables desde él dadas una cota en el número de
pasos y una condición que debe ser satisfecha por dichos términos. Con este cálculo somos
capaces de detectar errores debidos a ecuaciones, axiomas de pertenencia o reglas erróneas
y omitidas y a errores en las condiciones impuestas sobre los términos alcanzables. Además,
hemos demostrado que este método es correcto y completo, es decir, siempre es capaz de
detectar la causa del error y dicha causa es una de las descritas anteriormente, siempre y
cuando se satisfagan ciertas premisas: las especificaciones cumplen los requisitos de ejecu-
tabilidad de Maude y la información introducida por el usuario es correcta. Finalmente,
también presentamos una demostración del sistema con sus principales caracteŕısticas.

Los sistemas formales como Maude facilitan al usuario mecanismos para realizar ciertos
análisis, pero es poco probable que un único sistema pueda proporcionar alguna vez todas
las posibles herramientas de análisis que un programador pueda necesitar. Para solucionar
este problema se utilizan especificaciones heterogéneas, que permiten al programador espe-
cificar usando diferentes formalismos. Uno de estos sistemas es el conjunto heterogéneo de
herramientas (Hets por sus siglas en inglés), una herramienta de integración formal que
proporciona parsing, análisis estático y herramientas de demostración para especificaciones
heterogéneas al combinar varios lenguajes de especificación individuales.

En la segunda parte de esta tesis se presenta cómo integrar Maude en Hets, de manera
que las herramientas ya integradas en el sistema puedan utilizarse para analizar especifi-
caciones de Maude. Para ello ha sido preciso: (i) definir una institución para Maude, de
tal manera que Maude puede ser añadido como lógica en Hets, (ii) definir un comorfismo
entre la institución previamente descrita para Maude y la institución de Casl, la lógica
central de Hets, que combina lógica de primer orden e inducción y que cuenta con co-
morfismos al resto de lógicas integradas en el sistema, lo que permite traducir Maude a
dichas lógicas, y (iii) representar los mecanismos de estructuración de Maude como grafos
de desarrollo, el modo de representación usado por Hets, en el que los módulos y teoŕıas
se representan como nodos, las importaciones como aristas y las vistas como aristas que
conllevan demostraciones. Tras explicar como hemos llevado a cabo estos pasos, ilustramos
el uso de la integración con ejemplos.
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Chapter 1

Introduction

This thesis began in Illinois around four years ago, although we did not know it at
the time, when, while writing some chapters of the Maude book, Narciso Mart́ı, Francisco
Durán, and Santiago Escobar inadvertently introduced an error in the specification of the
well-known Fibonacci function:

fib(0) = 0
fib(1) = 1
fib(n) = fib(n− 1) + fib(n− 2) if n > 1

Instead of defining this function as shown above, the addition in the third case of the
definition was unwittingly written as a multiplication, making the whole specification
wrong. Although insignificant, this error took a long time until it was fixed, thus resulting
in the project of developing a declarative debugger for Maude specifications.

In fact, programming is a process that usually leads to errors that need to be fixed in
order to obtain the behavior intended by the user. For this reason, several mechanisms
have been developed to find the errors introduced by the programmer, giving rise to a
process called debugging.1 Assume we implement the Fibonacci function above in Maude,
reproducing as well the error indicated before:2

op fib : Nat -> Nat .
eq fib(0) = 0 .
eq fib(1) = 1 .
ceq fib(n) = fib(n - 1) * fib(n - 2) if n > 1 .

The best known debugging technique is the declaration of breakpoints. A breakpoint
simply indicates a pause in the execution of a program when a point, previously indicated
by the programmer, is reached. In our program above, we could set a breakpoint in the
last equation and then continue the execution of the program step-by-step to check the
values of n - 1, n - 2, the application of fib to the corresponding results, and the result
returned by the function. In this way, we would obtain the values of the recursive calls and
the result of the function and could compare them with the ones we expected. Following
this step-by-step strategy, several programming languages also provide traces as a mean
to debug programs. This approach shows each step to the user (where the step depends
on the programming language and can usually be customized) and its result.

Note that, since the most used programming paradigm thus far has been the imperative
one, these approaches are specially well suited for languages of this kind, because they

1It seems that the etymology of the word comes from real bugs ruining mechanical systems.
2Although the Maude syntax has not been introduced yet, I consider this definition is self-explanatory.

1
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2 > 1
2 - 1→ 1 fib(1)→ 1

fib(2 - 1)→ 1
2 - 2→ 0 fib(0)→ 0

fib(2 - 2)→ 0 1 * 0→ 0
fib(2)→ 0

Figure 1.1: Execution tree for the Fibonacci example

execute each statement in an order previously defined by the programmer (control com-
mands such as conditionals or loops can easily be followed once the values of the variables
are known), but these premises do not hold for declarative languages. The traditional sep-
aration between the problem logic (defining what is expected to be computed) and control
(how computations are carried out actually) is a major advantage of these languages, but
it also becomes a severe complication when considering the task of debugging erroneous
computations. Indeed, the involved execution mechanisms associated to the control make
it difficult to apply the typical techniques based on step-by-step trace debuggers employed
in imperative languages.

Declarative debugging (also known as abstract diagnosis or algorithmic debugging) is
a debugging technique that abstracts the execution details and focuses on the results,
thus being well suited to debug declarative languages. Note that the word declarative
in declarative debugging stands for this abstraction of the computation details (as said
above, what is computed) and not for its application to declarative languages, that is,
declarative debugging can be (and has been, as we will see in Chapter 3) applied to
imperative languages. This technique consists of two different phases: in the first one,
a data structure representing the computation—the debugging tree—is built, where the
result in each node must follow from the ones in its children nodes. This tree is usually
built following a formal calculus which allows the designer to prove the soundness and
completeness of the technique. In the second phase this structure is traversed following a
navigation strategy and by asking questions to an external oracle (usually the user) until
the error is found.

Recalling our Fibonacci example, assume that we evaluate fib(2). The result returned
by our function would be 0, because the condition holds (2 is greater than 1), 2 - 1 is 1,
fib(1) is evaluated to 1, 2 - 2 is 0, fib(0) is evaluated to 0 (these results are expected)
and the product of these results is 0. That is, the debugging tree should have the form
shown in Figure 1.1, where the main idea is that the results in each node must follow from
the results in its children. Declarative debugging would proceed now by asking to the
oracle (the programmer in this case, although sometimes other oracles, such as a correct
specification, are used) about the correction of the nodes with respect to the behavior
the programmer had in mind while implementing the system, the intended semantics of
the system. The aim of this navigation is to find an incorrect node (w.r.t. this intended
semantics) with all its children correct (w.r.t. this intended semantics): the buggy node,
that in this case is the root of the tree. In general, the nodes in the tree will be labeled to
allow the user to identify the error; this labeling depends on the programming language
and on the calculus used to generate the debugging tree; in Maude we can distinguish
each equation by means of labels, and thus in this case the debugger would point to the
last equation as buggy (in Figure 1.1 the inferences in all nodes except for the root are
correct, which intuitively is associated to this last equation).

As we have seen, the debugging process is started by an initial symptom that reveals
that the program is incorrect, such as the evaluation of fib(2) returning 0 above. We
distinguish two different kinds of answers (or results) obtained by the system giving rise
to these initial symptoms: wrong answers, which are erroneous results obtained from a
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valid input (e.g. the example above); and missing answers, which are incomplete results
obtained from a valid input (e.g. fib(2) being evaluated to 1 + fib(0), which is correct
but it is not the expected final result). Although both kinds of errors can be debugged by
using declarative debugging, debugging of missing answers has been less studied because
the calculus involved is much more complex in general than the one used for wrong answers,
and it has been related in general to nondeterministic systems, a feature usually associated
to declarative languages.

1.1 Declarative debugging for Maude

In this thesis we present a declarative debugger for Maude specifications. Maude [20]
is a declarative language based on both equational and rewriting logic for the specification
and implementation of a whole range of models and systems. Maude functional modules
are specifications in membership equational logic, and allow the user to define data types
and operations on them by means of membership equational logic theories that support
multiple sorts, subsort relations, equations, and assertions of membership in a sort. Maude
system modules are specifications in rewriting logic that, in addition to the elements
present in functional modules, allow the definition of rewrite rules, representing transitions
between states. For the time being we are only interested in the fact that equations
and memberships are expected to be terminating and confluent, while rules can be both
nonterminating and nonconfluent. In the following, we will call reduction to the evaluation
of a term by using equations, and rewrite to the evaluation of a term by using rules and
equations (possibly none).

That is, roughly speaking, Maude specifications are composed of equations t1 = t2,
that are understood as t1 and t2 are equal, membership axioms t : s, stating that t has sort
s, and rewrite rules t1 ⇒ t2, indicating that t1 is rewritten to t2. With these premises, we
can easily identify what kinds of wrong answers can arise in Maude: t2 is obtained from t1
by using equations or rules but t2 should not be obtained from t1, and the sort s is inferred
for t but the term does not have this sort. It is slightly more complex to establish missing
answers: given the fact that equations are expected to be terminating and confluent, the
user expects to obtain, from an initial term, a single term where equations cannot be
further applied (i.e., a normal form); thus, if he obtains a term which is right but not in
normal form (such as 1 + fib(0)), then it is a missing answer. Moreover, sorts in Maude
can be ordered (by a subset relation), and thus the user expects terms to have a unique
least sort; a missing answer is that which infers as the least sort of a term a sort which
is correct but not the least one. Finally, missing answers in system modules are easier
to characterize: since rules are not expected to be confluent, a term can in general be
rewritten to a set of terms; if we get a set smaller than the one expected by the user, then
we have a missing answer.

To debug these errors we have developed a formal calculus which allows to infer all the
symptoms described above, namely reductions, membership inferences, rewrites, normal
forms, least sorts, and sets of reachable terms given certain conditions, which correspond
to the ones required by Maude. Using this calculus we are able to build proof trees,
that can be used as debugging trees for the declarative debugging process. With these
trees we are able to detect several causes that may generate the errors: wrong equations,
memberships, rules, and conditions (used to compute the set of reachable terms), and
missing equations, membership axioms, and rules (that is, statements that should be part
of the specification but are not). Although these proof trees would allow the user to
debug his specifications, we have developed a “pruning” technique that shortens and eases
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the questions asked to the oracle, dealing in this way with one of the main problems of
declarative debugging: the number and the complexity of the questions. Moreover, this
technique allows the user to build different debugging trees depending on the complexity
of the specification or his knowledge about it, which is an original feature of our approach.
This technique, that we call APT (from Abbreviated Proof Tree), discards nodes whose
correctness can be inferred from the correctness of their children, and modifies some other
nodes in order to ask questions that simulate the behavior of Maude and should be more
easily answered by the user. In addition to this technique to improve the proof tree, we
also allow the user to use trusting mechanisms to prevent the debugger from asking about
certain statements, terms, or modules. Finally, we also provide a graphical user interface
to ease the interaction between the users and the tool.

This declarative debugger has been developed in several steps, starting with the min-
imal functionality and progressively adding more features. This development is reflected
by our publications on this subject:

We started dealing with wrong answers (which, as said above, have an associated
calculus simpler than missing answers) in functional modules (which are a “subset”
of system modules). The APT function applied to the proof trees obtained by the
calculus in this initial stage generated a single debugging tree, where some nodes were
removed while some others were modified in order to ease their associated questions.
This version also allowed the user to trust statements, to trust complete modules,
and even to use a correct module as oracle. This work was presented in [13, 14].

The natural extension to this system is the capability to debug wrong answers in
system modules. In addition to defining a new calculus and extending the existing
features such as trusting to this kind of debugging, the APT transformation for this
version of the debugger allowed the user to generate two different debugging trees,
depending on the complexity of the application. This work was presented in [86].

A description of the complete system for debugging wrong answers in Maude speci-
fications was presented in [90].

With the debugging of wrong answers completed, the next “natural” step was to
debug missing answers in functional modules. The calculus involved in this kind
of debugging extended the previous one but was much more complex: while the
previous one only pointed out what was happening, this new calculus also indicated
what was not happening. We called these kinds of information positive and negative
respectively. In addition to this new calculus, we added a new trusting mechanism,
allowing the user to point out normal forms. This work was published in [88].

Improving the tool, we developed a debugger for both wrong and missing answers
for Maude specifications. The calculus for this extension of the tool followed the
ideas already stated for debugging missing answers in functional modules: we took
into account both positive and negative information. The APT transformation also
allowed the user to build two new kinds of tree (which are orthogonal to the other
types of tree, being the number of possible combinations four) and a new trusting
mechanism was implemented: stating of final sorts and operators. This work was
presented in [87].

A description of the tool, focusing on the features not described in [90], was presented
in [89].
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A complete and integrated description of the system, including all the theorems and
proofs, was published in [91].

1.2 Integrating Maude into Hets for proving our specifica-
tions correct

We have now fixed all the errors we found in our programs, does it mean they are
correct? The best answer we can usually give is they are correct until the next problem is
found. However, this is not a very satisfactory answer; we would like to prove that our
programs fulfill some properties such as liveness or satisfaction of some first-order formulas.
Formal systems like Maude provide some features that allow the user to perform certain
analyses, such as the linear temporal logic model checker or checking of invariants through
search, but it is unlikely that a single system will ever supply tools for every possible
analysis a programmer could require. Moreover, it is natural, when facing large systems,
to specify different parts in different ways. An interesting question arising in such systems
is: how do these parts interact with each other?

To solve all these problems we use heterogeneous specifications, that allow the pro-
grammer to use different formalisms and that are becoming more and more important,
especially in safety-critical areas where one cannot take the risk of malfunction. Some of
the current heterogeneous approaches deliberately stay informal, like UML. Current ap-
proaches have the drawbacks that either they are not formal or they are uni-lateral in the
sense that typically there is one logic (and one theorem prover) which serves as the central
integration device, even if this central logic may not be needed or desired in particular
applications.

The Heterogeneous Tool Set (Hets) [61, 64, 65] is a flexible, multi-lateral, and for-
mal (i.e. based on a mathematical semantics) integration tool, providing parsing, static
analysis, and proof management for heterogeneous multi-logic specifications by combining
various tools for individual specification languages.

Hets is based on a graph of logics and languages, their tools, and their translations.
This provides a clean semantics of heterogeneous specifications, as well as a corresponding
proof calculus. For proof management it uses the calculus of development graphs [62].
This calculus, known from other large-scale proof management systems like MAYA [5],
represents the specifications by using nodes for each programming unit (e.g. modules)
and links for the relations between them (e.g. importation relations and proof obliga-
tions), providing an overview of the (heterogeneous) specification module hierarchy and
the current proof state, and thus may be used for monitoring the overall correctness of
a heterogeneous development. To ease heterogeneous specifications Hets provides the
heterogeneous specifications language HetCasl. This language is based on Casl [66],
the Common Algebraic Specification Language, a language based on first-order logic that
works as the central logic in Hets.

In this thesis we describe how we have integrated Maude into Hets, which allows us
to use the tools already integrated in Hets (and specially its provers) with Maude speci-
fications. To achieve it we had to (i) define an institution for Maude, and a comorphism
from this institution to the Casl one (we will explain institutions and comorphisms in
Chapter 2; for the time being, consider an institution as a way of formalizing a logic and a
comorphism as a translation between institutions), (ii) define how Maude specifications are
translated into development graphs, and (iii) implement mechanisms (at the Casl level,
that is, available to all the logics connected to Casl) to deal with freeness constraints, the
restrictions imposed by Maude when dealing with a specific importation mechanism that
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will be explained in the next chapter. This work has been published in [24], while more
details can be found in [23].

1.3 Summary

This thesis is divided into three parts: this part summarizes the results presented in
this thesis. More concretely:

Chapter 2 introduces the basic notions required to understand the rest of the thesis.
We first introduce rewriting logic and Maude in Section 2.1 and then we introduce
institutions and comorphisms in Section 2.2.

Chapter 3 presents the declarative debugger. We show the unified calculus that
allows us to debug both wrong and missing answers, the APT function, and the
trusting mechanisms. Finally, we briefly show how to use the graphical user interface.

Chapter 4 illustrates how to achieve heterogeneous verification. We present Hets,
its mechanisms to represent structured specifications (the development graphs), and
its techniques to work with different logics, allowing the user to prove properties
about Maude specifications with other tools.

Chapter 5 concludes and outlines some future work.

Part II presents the summary of the research in Spanish, following the same structure
as this part. Finally, Part III presents the publications relevant to this thesis as they were
originally published.



Chapter 2

Preliminaries

2.1 Maude

As said in the introduction, Maude is a declarative language based on both membership
equational logic and rewriting logic. In this section we explain these logics and the Maude
modules used to represent them. Much more information can be found in the Maude
book [20].

2.1.1 Membership equational logic

A signature in membership equational logic is a triple (K, Σ, S) (just Σ in the fol-
lowing), with K a set of kinds, Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K a many-kinded signature,
and S = {Sk}k∈K a pairwise disjoint K-kinded family of sets of sorts. The kind of
a sort s is denoted by [s]. We write TΣ,k and TΣ,k(X) to denote respectively the set
of ground Σ-terms with kind k and of Σ-terms with kind k over variables in X, where
X = {x1 : k1, . . . , xn : kn} is a set of K-kinded variables. Intuitively, terms with a kind
but without a sort represent undefined or error elements.

The atomic formulas of membership equational logic are equations t = t′, where t and
t′ are Σ-terms of the same kind, and membership axioms of the form t : s, where the term
t has kind k and s ∈ Sk. Sentences are universally-quantified Horn clauses of the form
(∀X) A0 ⇐ A1 ∧ · · · ∧ An, where each Ai is either an equation or a membership axiom,
and X is a set of K-kinded variables containing all the variables in the Ai. A specification
is a pair (Σ, E), where E is a set of sentences in membership equational logic over the
signature Σ.

Models of membership equational logic specifications are Σ-algebras A consisting of a
set Ak for each kind k ∈ K, a function Af : Ak1 × · · · × Akn −→ Ak for each operator
f ∈ Σk1...kn,k, and a subset As ⊆ Ak for each sort s ∈ Sk. Given a Σ-algebra A and a
valuation σ : X −→ A mapping variables to values in the algebra, the meaning [[t]]σA of a
term t is inductively defined as usual. Then, an algebra A satisfies, under a valuation σ,

an equation t = t′, denoted A, σ |= t = t′, if and only if both terms have the same
meaning: [[t]]σA = [[t′]]σA; we also say that the equation holds in the algebra under the
valuation.

a membership t : s, denoted A, σ |= t : s, if and only if [[t]]σA ∈ As.

Satisfaction of Horn clauses is defined in the standard way. When a formula φ is satisfied
by all valuations, we write A |= φ and say that A is a model of φ. Finally, when terms are
ground, valuations play no role and thus can be omitted. A membership equational logic

7
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specification (Σ, E) has an initial model TΣ/E whose elements are E-equivalence classes of
ground terms [t]E , and where an equation or membership is satisfied if and only if it can
be deduced from E by means of a sound and complete set of deduction rules [8, 57].

2.1.2 Maude functional modules

Maude functional modules [20, Chapter 4], introduced with syntax fmod ... endfm,
are executable membership equational logic specifications and their semantics is given by
the corresponding initial algebra in the class of algebras satisfying the specification.

In a functional module we can declare sorts (by means of the keyword sort); subsort
relations between sorts (subsort); operators (op) for building values of these sorts, giving
the sorts of their arguments and result, and which may have attributes such as being
associative (assoc) or commutative (comm), for example; memberships (mb) asserting that
a term has a sort; and equations (eq) identifying terms. Both memberships and equations
can be conditional (cmb and ceq). Conditions, in addition to memberships and equations,
can also be matching equations t := t′, whose mathematical meaning is the same as that
of an ordinary equation t = t′ but that operationally are solved by matching the righthand
side t′ against the pattern t in the lefthand side, thus instantiating possibly new variables
in t.

Maude does automatic kind inference from the sorts declared by the user and their
subsort relations. Kinds are not declared explicitly and correspond to the connected
components of the subsort relation. The kind corresponding to a sort s is denoted [s].
For example, if we have sorts Nat for natural numbers and NzNat for nonzero natural
numbers with a subsort NzNat < Nat, then [NzNat] = [Nat]. An operator declaration
like

op _div_ : Nat NzNat -> Nat .

is logically understood as a declaration at the kind level

op _div_ : [Nat] [Nat] -> [Nat] .

together with the conditional membership axiom

cmb N div M : Nat if N : Nat and M : NzNat .

A subsort declaration NzNat < Nat is logically understood as the conditional membership
axiom

cmb N : Nat if N : NzNat .

Functional modules are assumed to satisfy the executability requirements of confluence,
termination, and sort-decreasingness [20]. In this context, their equations t = t′ can be
oriented from left to right, t → t′ and equational conditions u = v can be checked by
finding a common term t such that u → t and v → t; the notation we will use in the
inference rules and debugging trees studied in Section 3.2 for this situation is u ↓ v.



2.1. Maude 9

2.1.3 Rewriting logic

Rewriting logic extends equational logic by introducing the notion of rewrites corre-
sponding to transitions between states; that is, while equations are interpreted as equalities
and therefore they are symmetric, rewrites denote changes which can be irreversible.

A rewriting logic specification, or rewrite theory, has the form R = (Σ, E, R),1 where
(Σ, E) is an equational specification and R is a set of labeled rules as described below.
From this definition, one can see that rewriting logic is built on top of equational logic,
so that rewriting logic is parameterized with respect to the version of the underlying
equational logic; in our case, Maude uses membership equational logic, as described in the
previous sections. A rule q in R has the general conditional form2

q : (∀X) t ⇒ t′ ⇐
n∧

i=1

ui = u′i ∧
m∧

j=1

vj : sj ∧
l∧

k=1

wk ⇒ w′
k

where q is the rule label, the head is a rewrite and the conditions can be equations,
memberships, and rewrites; both sides of a rewrite must have the same kind. From these
rewrite rules, one can deduce rewrites of the form t ⇒ t′ by means of general deduction
rules introduced in [56] (see also [10]).

Models of rewrite theories are called R-systems in [56]. Such systems are defined as
categories that possess a (Σ, E)-algebra structure, together with a natural transformation
for each rule in the set R. More intuitively, the idea is that we have a (Σ, E)-algebra, as
described in Section 2.1.1, with transitions between the elements in each set Ak; moreover,
these transitions must satisfy several additional requirements, including that there are
identity transitions for each element, that transitions can be sequentially composed, that
the operations in the signature Σ are also appropriately defined for the transitions, and
that we have enough transitions corresponding to the rules in R. The rewriting logic
deduction rules introduced in [56] are sound and complete with respect to this notion
of model. Moreover, they can be used to build initial models. Given a rewrite theory
R = (Σ, E, R), the initial model TΣ/E,R for R has an underlying (Σ, E)-algebra TΣ/E

whose elements are equivalence classes [t]E of ground Σ-terms modulo E, and there is a
transition from [t]E to [t′]E when there exist terms t1 and t2 such that t =E t1 ⇒∗

R t2 =E t′,
where t1 ⇒∗

R t2 means that the term t1 can be rewritten into t2 in zero or more rewrite
steps applying rules in R, also denoted [t]E ⇒∗

R/E [t′]E when rewriting is considered on
equivalence classes [56, 27].

2.1.4 Maude system modules

Maude system modules [20, Chapter 6], introduced with syntax mod ... endm, are
executable rewrite theories and their semantics is given by the initial system in the class
of systems corresponding to the rewrite theory. A system module can contain all the decla-
rations of a functional module and, in addition, declarations for rules (rl) and conditional
rules (crl), whose conditions can be equations, matching equations, memberships, and
rewrites.

The executability requirements for equations and memberships in a system module
are the same as those of functional modules. With respect to rules, the satisfaction of all

1We do not discuss here the more complex formulation of rewriting logic containing frozen information;
for more information see [20].

2There is no need for the condition listing first equations, then memberships, and then rewrites; this is
just a notational abbreviation, since they can be listed in any order. Also note that we use t⇒ t′ instead of
the more standard notation t→ t′ because we are using the latter for reductions with oriented equations.
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the conditions in a conditional rewrite rule is attempted sequentially from left to right,
solving rewrite conditions by means of search; for this reason, we can have new variables in
such conditions but they must become instantiated along this process of solving from left
to right (see [20] for details). Furthermore, the strategy followed by Maude in rewriting
with rules is to compute the normal form of a term with respect to the equations before
applying a rule. This strategy is guaranteed not to miss any rewrites when the rules are
coherent with respect to the equations [101, 20]. In a way quite analogous to confluence,
this coherence requirement means that, given a term t, for each rewrite of it using a rule
in R to some term t′, if u is the normal form of t with respect to the equations and
memberships in E, then there is a rewrite of u with some rules in R to a term u′ such that
u′ =E t′.

2.1.5 Advanced features

In addition to the modules considered thus far, we present here some other Maude
features that will be used throughout this work.

Importation modes

Maude modules can import other modules in three different modes:

The protecting mode (abbreviated as pr) indicates that no junk and no confusion
can be added to the imported module, where junk refers to new terms in canonical
form while confusion implies that different canonical terms in the initial module are
made equal by equations in the imported module.

The extending mode (abbreviated as ex) indicates that junk is allowed but confusion
is forbidden.

The including mode (abbreviated as inc) allows both junk and confusion.

Theories

Theories are used to declare module interfaces, namely the syntactic and semantic
properties to be satisfied by the actual parameter modules used in an instantiation. As for
modules, Maude supports two different types of theories: functional theories and system
theories, with the same structure of their module counterparts, but with loose semantics
(while modules have initial semantics). Functional theories are declared with the keywords
fth ... endfth, and system theories with the keywords th ... endth. Both of them can
have sorts, subsort relationships, operators, variables, membership axioms, and equations,
and can import other theories or modules. System theories can also have rules. Unlike
modules, theories need not satisfy any of the executability requirements.

Views

We use views to specify how a particular target module or theory satisfies a source
theory. In general, there may be several ways in which such requirements might be satisfied
by the target module or theory; that is, there can be many different views, each specifying
a particular interpretation of the source theory in the target. In the definition of a view we
have to indicate its name, the source theory, the target module or theory, and the mapping
of each sort and operator in the source theory. The source and target of a view can be
any module expression, with the source module expression evaluating to a theory and
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the target module expression evaluating to a module or a theory. Each view declaration
has an associated set of proof obligations, namely, for each axiom in the source theory it
should be the case that the axiom’s translation by the view holds true in the target. Since
the target can be a module interpreted initially, verifying such proof obligations may in
general require inductive proof techniques. Such proof obligations are not discharged or
checked by the system. An important fact about views is that they cannot map labels,
and thus we cannot identify the statements in the theory with those in the target module.

Parameterized modules

Maude modules can be parameterized. A parameterized system module has syntax

mod M{X1 :: T1, . . . , Xn :: Tn} is ... endm

with n ≥ 1. Parameterized functional modules have completely analogous syntax.
The {X1 :: T1, . . . , Xn :: Tn} part is called the interface, where each pair Xi :: Ti is a

parameter, each Xi is an identifier—the parameter name or parameter label—, and each
Ti is an expression that yields a theory—the parameter theory. Each parameter name in
an interface must be unique, although there is no uniqueness restriction on the parameter
theories of a module. The parameter theories of a functional module must be functional
theories.

In a parameterized module M , all the sorts and statement labels coming from theories
in its interface must be qualified by their names. Thus, given a parameter Xi :: Ti, each
sort S in Ti must be qualified as Xi$S, and each label l of a statement occurring in Ti

must be qualified as Xi$l. In fact, the parameterized module M is flattened as follows.
For each parameter Xi :: Ti, a renamed copy of the theory Ti, called Xi :: Ti, is included.
The renaming maps each sort S to Xi$S, and each label l of a statement occurring in
Ti to Xi$l. The renaming percolates down through nested inclusions of theories, but has
no effect on importations of modules [20]. Thus, if Ti includes a theory T ′, when the
renamed theory Xi :: Ti is created and included into M , the renamed theory Xi :: T ′

will also be created and included into Xi :: Ti. However, the renaming will have no effect
on modules imported by either the Ti or T ′; for example, if BOOL is imported by one of
these theories, it is not renamed, but imported in the same way into M . Moreover, sorts
declared in parameterized modules can also be parameterized, and these may duplicate,
omit, or reorder parameters.

The parameters in parameterized modules are bound to the formal parameters by
instantiation. The instantiation requires a view from each formal parameter to its cor-
responding actual parameter. Each such view is then used to bind the names of sorts,
operators, etc., in the formal parameters to the corresponding sorts, operators (or expres-
sions), etc., in the actual target. The instantiation of a parameterized module must be
made with views defined previously.

2.1.6 Conditions and substitutions

Throughout this thesis, and specially in the calculus in Section 3.2, we only consider
a special kind of conditions and substitutions that operate over them, called admissible,
and which correspond to the ones used by Maude. They are defined as follows:

Definition 1 A condition C ≡ C1 ∧ · · · ∧ Cn is admissible if, for 1 ≤ i ≤ n,
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Ci is an equation ui = u′i or a membership ui : s and

vars(Ci) ⊆
i−1⋃
j=1

vars(Cj), or

Ci is a matching condition ui := u′i, ui is a pattern and

vars(u′i) ⊆
i−1⋃
j=1

vars(Cj), or

Ci is a rewrite condition ui ⇒ u′i, u′i is a pattern and

vars(ui) ⊆
i−1⋃
j=1

vars(Cj).

Definition 2 A condition C ≡ P := ~∧C1 ∧ · · · ∧Cn, where ~ denotes a special variable
not occurring in the rest of the condition, is admissible if P := t∧C1∧· · ·∧Cn is admissible
for t any ground term.

Definition 3 A kind-substitution, denoted by κ, is a mapping from variables to terms of
the form v1 7→ t1; . . . ; vn 7→ tn such that ∀1≤i≤n . kind(vi) = kind(ti), that is, each variable
has the same kind as the associated term.

Definition 4 A substitution, denoted by θ, is a mapping from variables to terms of the
form v1 7→ t1; . . . ; vn 7→ tn such that ∀1≤i≤n . sort(vi) ≥ ls(ti), that is, the sort of each
variable is greater than or equal to the least sort of the associated term. Note that a
substitution is a special type of kind-substitution where each term has the sort appropriate
to its variable.3

Definition 5 Given an atomic condition C, we say that a substitution θ is admissible for
C if

C is an equation u = u′ or a membership u : s and vars(C) ⊆ dom(θ), or

C is a matching condition u := u′ and vars(u′) ⊆ dom(θ), or

C is a rewrite condition u ⇒ u′ and vars(u) ⊆ dom(θ).

2.1.7 A Maude example: A sale

We illustrate in this section the features explained before by means of an example.4

Note that the modules, theories, and views shown below are enclosed in parentheses; this
notation is used because they are introduced in Full Maude, an extension of Maude used
by the debugger that includes features for parsing, evaluating, and pretty-printing terms,
improving the input/output interaction. First, we specify ordered lists5 in a parameterized
module. This module uses the theory ORD, that requires a sort Elt and an operator _<_
over its elements fulfilling the properties of a strict total order:

3Kind-substitutions and substitutions are different from other substitutions defined in the literature,
like the ones in [8]. There, only kinds are taken into account for substitutions, while here every variable
has an associated sort, although some properties are checked at the kind level.

4Caution! Although the modules below are syntactically correct, we have intentionally committed one
error. We will see how to fix this error in the next chapter.

5We prefer “ordered lists” over “sorted lists” because “sort” is already used to refer to types in this
context.
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(fth ORD is
pr BOOL .

sort Elt .
op _<_ : Elt Elt -> Bool .

vars X Y Z : Elt .
eq [irreflexive] : X < X = false [nonexec] .
ceq [transitive] : X < Z = true if X < Y = true /\ Y < Z = true [nonexec] .
ceq [antisymmetric] : X = Y if X < Y = true /\ Y < X = true [nonexec] .
ceq [total] : X = Y if X < Y = false /\ Y < X = false [nonexec] .

endfth)

where the nonexec attribute indicates that these equation will not be used to reduce terms.
Once this theory is specified, we use it in the OLIST module to create generic ordered lists.
The sort List{X} stands for arbitrary lists, whereas OList{X} refers to ordered lists. Since
ordered lists are a particular case of lists, we use a subsort declaration to indicate it:

(fmod OLIST{X :: ORD} is
sorts List{X} OList{X} .
subsort OList{X} < List{X} .

We declare now the constructors of these sorts: the empty list, which is also an ordered
list, is represented with the operator nil, while longer lists are created by means of the
juxtaposition operator by adding an element in front of a list:

op nil : -> OList{X} [ctor] .
op __ : X$Elt List{X} -> List{X} [ctor] .

We define when a non-empty list is ordered with a membership axiom indicating that
the first element of the list must be smaller than or equal to the one coming after it, and
the rest of the list must also be ordered. Note how the operator _<_ from the theory is
used to compare the elements:

vars E E’ : X$Elt .
var OL : OList{X} .
vars L L’ : List{X} .

cmb [ol1] : E (E’ OL) : OList{X}
if E < E’ or E == E’ /\

E’ OL : OList{X} .

We need another axiom to state that a singleton list is ordered:

mb [ol2] : E nil : OList{X} .

The function ordIns orders a list by inserting its elements in an ordered fashion in a
new list, with the auxiliary function insertOrd:

op ordIns : List{X} -> OList{X} .
eq [oi1] : ordIns(nil) = nil .
eq [oi2] : ordIns(E OL) = insertOrd(ordIns(OL), E) .

The insertOrd function inserts the element in the appropriate position. When it is
smaller than the first one it is placed in that position; otherwise, we continue the traversal
of the list:
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op insertOrd : OList{X} X$Elt -> OList{X} .
eq [io1] : insertOrd(nil, E) = E nil .
ceq [io2] : insertOrd(E L, E’) = E’ (E L)
if E’ < E .
eq [io3] : insertOrd(E L, E’) = E insertOrd(L, E) [owise] .
endfm)

where the owise attribute stands for “otherwise,” that is, this equation is only applied
when no other can.

In our implementation we are interested in using lists of persons, that are defined in the
PERSON module below. A person, of sort Person, is composed of a string standing for the
name, a natural number indicating the amount of money, and another string indicating
the items he is carrying:

(fmod PERSON is
pr STRING .

sort Person .

op [_,_,_] : String Nat String -> Person [ctor] .

Moreover, since we want to instantiate the ORD theory with persons, we have to specify
a binary Boolean function over them to fulfill the _<_ requirement. We implement a
function in such a way that, given two persons, the smallest one is the one with more
money. We specify the function in this way to consider the richest persons in the list in
the first place:

vars NAME1 NAME2 B1 B2 : String .
vars M1 M2 : Nat .

op _<_ : Person Person -> Bool .
eq [NAME1, M1, B1] < [NAME2, M2, B2] = M1 > M2 .

endfm)

The theory and the module are related by means of the view PersonOrd, that maps
the sort Elt in the theory to the sort Person in the module. Note that it is not necessary
to specify the mapping for the _<_ operation because it has the same name in both the
theory and the module:

(view PersonOrd from ORD to PERSON is
sort Elt to Person .

endv)

The module SALE specifies a shop and a list of persons waiting to enter and buy items.
This module instantiates the module OLIST with the view above, and renames the lists
from OList{PersonOrd} to OList to ease its use:

(mod SALE is
pr OLIST{PersonOrd} * (sort OList{PersonOrd} to OList) .

Items to be sold are identified by a string with the name and a natural number with
their price:

sort Item .
op <_‘,_> : String Nat -> Item [ctor] .
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A Shop is just a commutative and associative “soup” where persons and items are put
together. Thus, both Person and Item are declared as subsorts of Shop. The operator
empty stands for the empty shop, while bigger shops are built with the juxtaposition
operator, which is associative and commutative, and has empty as identity:

sort Shop .
subsorts Item Person < Shop .
op empty : -> Shop [ctor] .
op __ : Shop Shop -> Shop [ctor assoc comm id: empty] .

A Sale is built with a shop enclosed in square brackets and an ordered list of persons
“outside” this shop:

sort Sale .
op [_]_ : Shop OList -> Sale [ctor] .

We specify with rules the behavior of people and items. Rule in is in charge of moving
people inside the shop:

var SH : Shop .
var P : Person .
var OL : OList .
vars TN PN B : String .
vars C M : Nat .
var S : Sale .

rl [in] : [ SH ] P OL
=> [ SH P ] OL .

Rule buy removes an item from the soup and adds it to a person’s purchases, decreasing
his money (assuming he has enough):

crl [buy] : [ SH < TN, C > [PN, M, B] ] OL
=> [ SH [PN, sd(M, C), B + " " + TN] ] OL
if M >= C .

where sd is the symmetrical difference. We also define a function that checks whether a
given person has bought the specified object in a sale:

op _buys_in_ : String String Sale -> Bool .
eq [buy1] : PN buys TN in [ [PN, M, B] SH ] OL = find(B, TN, 0) =/= notFound .
eq [buy2] : PN buys TN in S = false [owise] .

where find is a predefined function that looks for the substring TN in B, starting in the
position 0.

We specify now some constants that will be used to test the specification. We use the
persons adri and his evil twin, et, and a lettuce l and a videogame v as items:

ops adri et : -> Person .
eq adri = ["adri", 15, ""] .
eq et = ["et", 16, ""] .

ops l v : -> Item .
eq l = < "lettuce", 6 > .
eq v = < "videogame", 10 > .

endm)
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Now, we can use the search command, which performs a breadth-first search, to find
the different paths where adri buys the videogame:

Maude> (search [l v] ordIns(et (adri nil)) =>* S:Sale
s.t. "adri" buys "videogame" in S:Sale .)

search in SALE :[l v]ordIns(et adri nil) =>* S:Sale .

No solution.

We find out that it is impossible for adri to buy it! Since we know that he should be
able to buy the videogame, we conclude that the specification contains an error. We will
show in Section 3.4 how to debug it.

2.2 Institutions and comorphisms

We describe in this section some notions that will be used in Chapter 4. Before
describing institutions we recall the notions of category, dual category, small category,
functor, and natural transformation [80].

Definition 6 A category C consists of:

a class |C| of objects;

a class hom(C) of morphisms (also known as arrows), between the objects;

operations assigning to each morphism f an object dom(f), its domain, and an
object cod(f), its codomain (we write f : A → B to indicate that dom(f) = A and
cod(f) = B);

a composition operator assigning to each pair of morphisms f and g, with cod(f) =
dom(g), a composite morphism g ◦ f : dom(f) → cod(g), satisfying the associative
law: for any morphisms f : A → B, g : B → C, and h : C → D, h◦(g◦f) = (h◦g)◦f ;
and

for each object A, an identity morphism idA : A → A satisfying the identity law: for
any morphism f : A → B, idB ◦ f = f and f ◦ idA = f .

Definition 7 For each category C, its dual category Cop is the category that has the
same objects as C and whose arrows are the opposites of the arrows in C, that is, if
f : A → B in C, then f : B → A in Cop. Composite and identity arrows are defined in
the obvious way.

Definition 8 A category C is called small if both |C| and hom(C) are sets and not proper
classes.

Definition 9 Let C and D be categories. A functor F : C → D is a map taking each
C-object A to a D-object F(A) and each C-morphism f : A → B to a D-morphism
F(f) : F(A) → F(B), such that for all C-objects A and composable C-morphisms f and
g:

F(idA) = idF(A),

F(g ◦ f) = F(g) ◦ F(f).
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Definition 10 A natural transformation η : F → G between functors F,G : A → B
associates to each X ∈ |A| a morphism ηX : F(X) → G(X) in D called the component
of η at X, such that for every morphism f : X → Y ∈ A we have ηY ◦F(f) = G(f) ◦ ηX .

It is worth mentioning two interesting categories: Set, the category whose objects are
sets and whose morphisms between sets A and B are all functions from A to B; and Cat,
the category whose objects are all small categories and whose morphisms are functors
between them.

Now we are ready to introduce institutions and comorphisms [39, 38]:

Definition 11 An institution consists of:

a category Sign of signatures;

a functor Sen : Sign → Set assigning a set Sen(Σ) of Σ-sentences to each signature
Σ ∈ |Sign|;

a functor Mod : Signop → Cat, assigning a category Mod(Σ) of Σ-models to each
signature Σ ∈ |Sign|; and

for each signature Σ ∈ |Sign|, a satisfaction relation |=Σ⊆ |Mod(Σ)| × Sen(Σ)
between models and sentences such that for any signature morphism σ : Σ → Σ′,
Σ-sentence ϕ ∈ Sen(Σ) and Σ′-model M ′ ∈ |Mod(Σ′)|:

M ′ |=Σ′ Sen(σ)(ϕ) ⇐⇒ Mod(σ)(M ′) |=Σ ϕ,

which is called the satisfaction condition.

Definition 12 Given two institutions I = (Sign,Mod,Sen, |=) and I ′ = (Sign′,Mod′,Sen′, |=′ ),
an institution comorphism from I to I ′ consists of a functor Φ : Sign → Sign′, a natural
transformation α : Sen ⇒ Φ;Sen′, and a natural transformation β : Φ;Mod′ ⇒ Mod
(where F;G stands for functor composition in the diagrammatic order) such that the
following satisfaction condition holds for each Σ ∈ |Sign|, ϕ ∈ |Sen(Σ′)|, and M ′ ∈
|Mod′(Φ(Σ))|:

βΣ(M ′) |=Σ ϕ ⇐⇒ M ′ |=′
Φ(Σ) αΣ(ϕ).

Note that several other morphisms between institutions have been defined in the lit-
erature [38], but we are only interested in comorphisms for our purposes in this work.
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Chapter 3

Declarative Debugging

3.1 State of the art

As said in the introduction, declarative debugging [68] is a debugging technique that,
in contrast to traditional debugging techniques such as breakpoints, abstracts away the
execution details, which may be hard to follow in general in declarative languages, to focus
on results. We distinguish between two different kinds of declarative debugging: debugging
of wrong answers, that is applied when a wrong result is obtained from an initial value
and has been widely employed in the logic [98, 52], functional [71, 82, 72], multi-paradigm
[11, 54, 15], and object-oriented [12, 44] programming languages; and debugging of missing
answers [67, 98, 52, 16, 3], applied when a result is incomplete, which has been less studied
because the calculus involved is more complex than in the case of wrong answers.

Declarative debugging is a two-phase process: it first computes a tree, the so called
debugging tree, where each node represents a computation step and each result (that is,
the effect of each of these computation steps) must follow from the results in the children
nodes of the node it is in; and a second phase where this tree is traversed following a
navigation strategy and asking each time to an external oracle about the correction of
the results in the nodes. This correction relies on the existence of an intended semantics
of the program, that corresponds to the behavior the user has in mind and it is used to
traverse the tree until an incorrect node with all its children correct, the buggy node, is
found. This buggy node is assumed to be labeled in order to identify the error in the
original program.

We present in this chapter Maude DDebugger, a declarative debugger for Maude spec-
ifications. The Maude system provides different mechanisms to debug specifications:

It can color terms, which consists in printing with different colors the operators used
to build a term that does not fully reduce. It eases the task of distinguishing the
different functions that should be reduced in a term but it does not help the user to
find the reasons they were not reduced.

It has a tracer, that allows the user to follow the execution of a specification, that is,
the sequence of applications of statements that take place. This tracer is highly cus-
tomizable, providing options to select how the statements, conditions, substitutions,
and terms are shown. The same ideas have been applied to the functional paradigm
by the tracer Hat [18], where a graph constructed by graph rewriting is proposed as
a suitable trace structure.

It can invoke an internal debugger, that allows the user to define breakpoints by
selecting some operators or statements. When a breakpoint is found the debugger is

19
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entered. There, we can see the current term and execute the next step with tracing
turned on.

Maude also provides a printing attribute that allows to print the values of the vari-
ables when a statement with such an attribute is executed. Although this attribute
has not been specifically developed for debugging purposes, it can be used for this
aim in a similar way to the trace: suspicious statements can be printed showing the
values of its variables each time they are executed.

The tracer, the internal debugger, and the print facilities (when used for debugging)
present the same drawbacks: they follow the execution of the program, which is not known
a priori by the user, thus forgetting one of the main points of declarative programs: the
abstraction from the execution details; moreover, since they are based on the trace they
require the user to traverse it all checking every step, because they cannot guide the
process. Our declarative debugger overcomes these problems, allowing the user to debug
all kinds of Maude specifications in an easy and natural way.

One of the strong points of our approach is that, unlike other proposals like [16], it
combines the treatment of wrong and missing answers and thus it is able to detect miss-
ing answers due to both wrong and missing statements. The state of the art can be
found in [94], which contains a comparison among the algorithmic debuggers B.i.O. [9]
(Believe in Oracles), a debugger integrated in the Curry compiler KICS; Buddha [81, 82],
a debugger for Haskell 98; DDT [15], a debugger for TOY; Freja [71], a debugger for
Haskell; Hat-Delta [25], part of a set of tools to debug Haskell programs; Mercury’s Algo-
rithmic Debugger [54], a debugger integrated into the Mercury compiler; Münster Curry
Debugger [53], a debugger integrated into the Münster Curry compiler; and Nude [69], the
NU-Prolog Debugging Environment. We extend this comparison by taking into account
the features in the latest updates of the debuggers and adding two new ones: DDJ [44], a
debugger for Java programs, and our own debugger, Maude DDebugger. This comparison
is summarized in Tables 3.1 and 3.2, where each column shows a declarative debugger and
each row a feature. More specifically:

The implementation language indicates the language used to implement the debug-
ger. In some cases front- and back-ends are shown: they refer, respectively, to the
language used to obtain the information needed to compute the debugging tree and
the language used to interact with the user.

The target language states the language debugged by the tool.

The strategies row indicates the different navigation strategies implemented by the
debuggers. TD stands for top-down, that starts from the root and selects a wrong
child to continue with the navigation until all the children are correct; DQ for divide
and query, that selects in each case a node rooting a subtree with half the size of
the whole tree; SS for single stepping, that performs a post-order traversal of the
execution tree; HF for heaviest first, a modification of top-down that selects the child
with the biggest subtree; MRF for more rules first, another variant of top-down that
selects the child with the biggest number of different statements in its subtree; DRQ
for divide by rules and query, an improvement of divide and query that selects the
node whose subtree has half the number of associated statements of the whole tree;
MD for the divide and query strategy implemented by the Mercury Debugger; SD
for subterm dependency, a strategy that allows to track specific subterms that the
user has pointed out as erroneous; and HD for the Hat-Delta heuristics.
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Database indicates whether the tool keeps a database of answers to be used in future
debugging sessions, while memoization indicates whether this database is available
for the current session.

The front-end indicates whether it is integrated into the compiler or it is standalone.

Interface shows the interface between the front-end and the back-end. Here, APT
stands for the Abbreviated Proof Tree generated by Maude; ART for Augmented
Redex Trail, the tree generated by Hat-Delta; ET is an abbreviation of Execution
Tree; and step count refers to a specific method of the B.i.O. debugger that keeps
the information used thus far into a text file.

Debugging tree presents how the debugging trees are managed.

The missing answers row indicates whether the tool can debug missing answers.

Accepted answers: the different answers that can be introduced into the debugger.
yes; no; dk (don’t know); tr (trust); in (inadmissible), used to indicate that some
arguments should not have been computed; and my and mn (maybe yes and maybe
no), that behave as yes and no although the questions can be repeated if needed.
More details about these debugging techniques can be found in [94, 95].

Tracing subexpressions means that the user is able to point out a subterm as erro-
neous.

ET exploration indicates whether the debugging tree can be freely traversed.

Whether the debugging tree can be built following different strategies depending on
the specific situation is shown in the Different trees? row.

Tree compression indicates whether the tool implements tree compression [25], a
technique to remove redundant nodes from the execution tree.

Undo states whether the tool provides an undo command.

Trusting lists the trusting options provided by each debugger. MO stands for trusting
modules; FU for functions (statements); AR for arguments; and FN for final forms.

GUI shows whether the tool provides a graphical user interface.

Version displays the version of the tool used for the comparison.

The results shown in these tables can be interpreted as follows:

Navigation strategies. Several navigation strategies have been proposed for declarative
debugging [94]. However, most of the debuggers (including Maude DDebugger) only
implement the basic top-down and divide and query techniques. On the other hand,
DDJ implements most of the known navigation techniques (some of them also devel-
oped by the same researchers), including an adaptation of the navigation techniques
developed for Hat-Delta. Among the basic techniques, only DDJ, DDT, and Maude
DDebugger provide the most efficient divide and query strategy, Hirunkitti’s divide
and query [94].
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Available answers. The declarative debugging scheme relies on an external oracle an-
swering the questions asked by the tool, and thus the bigger the set of available
answers the easier the interaction. The minimum set of answers accepted by all the
debuggers is composed of the answers yes and no; Hat-Delta, the Münster Curry
Debugger, and Nude do not accept any more answers, but the remaining debuggers
allow some others. Other well-known answers are don’t know and trust ; the for-
mer, that can introduce incompleteness, allows the user to skip the current question
and is implemented by B.i.O., DDJ, DDT, Buddha, Mercury, and Maude DDebug-
ger, while the latter prevents the debugger from asking questions related to the
current statement and is accepted by DDJ, DDT, Buddha, the Mercury debugger,
and Maude DDebugger. Buddha and the Mercury debugger have developed an an-
swer inadmissible to indicate that some arguments should not have been computed,
redirecting the debugging process in this direction; our debugger accepts a similar
mechanism when debugging missing answers in system modules with the answer the
term n is not a solution/reachable, which indicates that a term in a set is not a
solution/reachable, leading the process in this direction. Finally, Freja accepts the
answers maybe yes and maybe not, that the debugger uses as yes and not, although
it will return to these questions if the bug is not found.

Database. A common feature in declarative debugging is the use of a database to prevent
the tool from asking the same question twice, which is implemented by DDJ, DDT,
Hat-Delta, Buddha, the Mercury debugger, Nude, and Maude DDebugger. Nude
has improved this technique by allowing this database to be used during the next
sessions, which has also been adopted by DDJ.

Memory. The debuggers allocate the debugging tree in different ways. The Hat-Delta
tree is stored in the file system, DDJ uses a database, and the rest of the debug-
gers (including ours) keep it in main memory. Most debuggers improve memory
management by building the tree on demand, as B.i.O., Buddha, DDJ, the Mercury
debugger, Nude, and Maude DDebugger.

Tracing subexpressions. The Mercury debugger is the only one able to indicate that a
specific subexpression, and not the whole term, is wrong, improving both the answers
no and inadmissible with precise information about the subexpression. With this
technique the navigation strategy can focus on some nodes of the tree, enhancing
the debugging process.

Construction strategies. A novelty of our approach is the possibility of building differ-
ent trees depending on the complexity of the specification and the experience of the
user: the trees for both wrong and missing answers can be built following either a
one-step or a many-step strategy (giving rise to four combinations). While with the
one-step strategy the tool asks more questions in general, these questions are easier
to answer than the ones presented with the many-steps strategy. An improvement
of this technique has been applied in DDJ in [45], allowing the system to balance
the debugging trees by combining so called chains, that is, sequences of statements
where the final data of each step is the initial data of the following one.

Tree compression. The Hat-Delta debugger has developed a new technique to remove
redundant nodes from the execution tree, called tree compression [25]. Roughly
speaking, it consists in removing (in some cases) from the debugging tree the children
of nodes that are related to the same error as the father, in such a way that the father
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will provide debugging information for both itself and these children. This technique
is very similar to the balancing technique implemented for DDJ in [45].

Tree exploration. Most of the debuggers allow the user to freely navigate the debugging
tree, including ours when using the graphical user interface. Only the Münster Curry
Debugger and Nude do not implement this feature.

Trusting. Although all the debuggers provide some trusting mechanisms, they differ on
the target: all the debuggers except Hat-Delta have mechanisms to trust specific
statements, and all the debuggers except DDJ, DDT, and Nude can trust complete
modules. An original approach is to allow the user to trust some arguments, which
currently is only supported by B.i.O. In our case, and since we are able to debug
missing answers, a novel trusting mechanism has been developed: the user can iden-
tify some sorts and some operators as final, that is, they cannot be further rewritten;
with this method all nodes referring to “finalness” of these terms are removed from
the debugging tree. Finally, a method similar to trusting consists in using a correct
specification as an oracle to answer the questions; this approach is followed by B.i.O.
and Maude DDebugger.

Undo command. In a technique that relies on the user as oracle, it is usual to commit
an error and thus an undo command can be very useful. However, not all the
debuggers have this command, with B.i.O., DDJ, Freja, the Mercury debugger, and
Maude DDebugger being the only ones implementing this feature.

Graphical interface. A graphical user interface eases the interaction between the user
and the tool, allowing him to freely navigate the debugging tree and showing all
the features in a friendly way. In [94], only one declarative debugger—DDT—
implemented such an interface, while nowadays four tools—DDT, DDJ, Münster
Curry Debugger,1 and Maude DDebugger—have this feature.

Errors detected. It is worth noticing that only DDT and Maude DDebugger can debug
missing answers, while all the other debuggers are devoted exclusively to wrong
answers. However, DDT only debugs missing answers due to nondeterminism, while
our approach uses this technique to debug erroneous normal forms and least sorts.

Other remarks. An important subject in declarative debugging is scalability. The devel-
opment of DDJ has taken special care of this subject by using a complex architecture
that manages the available memory and uses a database to store the parts of the
tree that do not fit in main memory. Moreover, the navigation strategies have been
modified to work with incomplete trees. Regarding reusability, the latest version
of B.i.O. provides a generic interface that allows other tools implementing it to use
its debugging features. Finally, the DDT debugger has been improved to deal with
constraints.

It is important to point out that there are other approaches for debugging wrong
and missing answers. An interesting approach is the abstract diagnosis introduced in [3].
There, the authors present a framework to debug this same problem where, given a spec-
ification of the system, the tool is able to identify both wrong and missing statements by
using abstract interpretation and without requiring an initial symptom. In a more recent
work [2], this system has been improved, being now able to correct wrong implementations.

1Only available for Mac OS X.
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With respect to other approaches, such as the Maude sufficient completeness checker [20,
Chap. 21] or the sets of descendants [37], our tool provides a wider approach since we
handle conditional statements and our equations are not required to be left-linear.

3.2 A calculus for debugging

We describe in this section how the debugging trees used by our tool are obtained
from a formal calculus, which allows us to prove the soundness and completeness of the
technique.

The calculus to debug wrong answers allows us to infer reductions t → t′, memberships
t : s, and rewrites t ⇒ t′. Its inference rules, shown in Figure 3.1, are an adaptation of
the rules presented in [8, 57] for membership equational logic and in [56, 10] for rewriting
logic.2

This calculus is now extended to infer, from an initial term, its normal form, its least
sort, and the set of reachable terms given a bound in the number of steps and a condition
to be fulfilled. An interesting point of this calculus is that it provides two different kinds
of information: why things happen (that is, why the normal form is reached, why the least
sort is inferred, and why the terms are included in the set) but also why other things do not
happen (that is, why the term is not further reduced, why a lesser sort cannot be inferred,
and why no more terms are included into the set). We call the first kind of information,
that was also computed by the inference rules in Figure 3.1, positive information, while
the second kind of information, novel with respect to the previous rules, is called negative
information. We present in Figures 3.2 and 3.3 the main inference rules of the extended
calculus, while more details can be found in [87, 88]. First, we introduce the intuitive
ideas of the judgments used in the inference rules. See [91] for their formal definition and
the correctness proof of the calculus.

Given an admissible substitution θ for an atomic condition C, [C, θ] ; Θ indicates
that Θ is the set of substitutions that fulfill the atomic condition C and extend θ by
binding the new variables appearing in C.

Given a set of admissible substitutions Θ for an atomic condition C, 〈C,Θ〉 ; Θ′

indicates that Θ′ is the set of substitutions that fulfill the condition C and extend
any of the admissible substitutions in Θ.

disabled(a, t) means that the equation or membership a cannot be applied to t at
the top.

t →red t′ declares that the term t is either reduced one step at the top or reduced
by substituting a subterm by its normal form.

t →norm t′ is used to show that t′ is in normal form with respect to the equations.

Given an admissible condition C ≡ P := ~ ∧ C1 ∧ · · · ∧ Cn, fulfilled(C, t) indicates
that C holds when ~ is substituted by t.

Given an admissible condition C as before, fails(C, t) denotes that C does not hold
when ~ is substituted by t.

t :ls s is used to show that t : s and moreover s is the least sort with this property.
2This adaptation consists basically in orienting equations from left to right instead of considering them

equalities.
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(Reflexivity)

t ⇒ t
Rf⇒

t → t
Rf→

(Transitivity)

t1 ⇒ t′ t′ ⇒ t2
t1 ⇒ t2

Tr⇒
t1 → t′ t′ → t2

t1 → t2
Tr→

(Congruence)

t1 ⇒ t′1 . . . tn ⇒ t′n
f(t1, . . . , tn) ⇒ f(t′1, . . . , t′n)

Cong⇒
t1 → t′1 . . . tn → t′n

f(t1, . . . , tn) → f(t′1, . . . , t′n)
Cong→

(Replacement)

{θ(ui) ↓ θ(u′i)}n
i=1 {θ(vj) : sj}m

j=1 {θ(wk) ⇒ θ(w′k)}l
k=1

θ(t) ⇒ θ(t′)
Rep⇒

if t ⇒ t′ ⇐
∧n

i=1 ui = u′i ∧
∧m

j=1 vj : sj ∧
∧l

k=1 wk ⇒ w′k

{θ(ui) ↓ θ(u′i)}n
i=1 {θ(vj) : sj}m

j=1

θ(t) → θ(t′)
Rep→

if t → t′ ⇐
∧n

i=1 ui = u′i ∧
∧m

j=1 vj : sj

(Equivalence Class) (Subject Reduction)

t → t′ t′ ⇒ t′′ t′′ → t′′′

t ⇒ t′′′
EC

t → t′ t′ : s
t : s

SRed

(Membership)

{θ(ui) ↓ θ(u′i)}n
i=1 {θ(vj) : sj}m

j=1

θ(t) : s
Mb

if t : s ⇐
∧n

i=1 ui = u′i ∧
∧m

j=1 vj : sj

Figure 3.1: Semantic calculus for Maude modules
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t ⇒top S means that the set S is formed by all the reachable terms (modulo equa-
tions) from t by exactly one rewrite at the top.

t ⇒q S shows that the set S is the set of reachable terms (modulo equations) obtained
from t with one application of the rule q at the top.

t ⇒1 S denotes that the set S is constituted by all the reachable terms (modulo
equations) from t in exactly one step, where the rewrite step can take place anywhere
in t (that is, not necessarily at the top).

t ;C
n S indicates that S is the set of all the terms (modulo equations) that satisfy

the admissible condition C and are reachable from t in at most n steps. Similarly,
t ;+C

nS is used when at least one step must be used and t ;!CnS when only final
terms are wanted.

The main rules of the calculus to infer normal forms and least sorts are shown in
Figure 3.2, with the following meaning:

Rule Norm shows that a term is in normal form when no equations can be applied
to it at the top, which is indicated by the disabled judgments, and its subterms are
also in normal form. Regarding the negative information explained before, this rule
uses negative information by means of the disabled judgments, that witness that
the term cannot be further reduced. Note that we only check the equations whose
lefthand side, when considered with the variables at the kind level, match the current
expression, which is indicated by the expression e �top

K f(t1, . . . , tn); in this way we
prevent the calculus from generating trivial subtrees that will not be useful during
the debugging process.

Rule Rdc1 reduces a term by applying one equation when it checks that the condi-
tions can be satisfied, where the matching conditions are included in the equality
conditions.

Rule Rdc2 reduces a term by reducing one of its subterm to normal form, checking
that the subterm was not already in normal form.

Rule NTr describes the transitivity for →norm , which shows that to reach the normal
form of a term it is necessary to apply at least one equation to it (possibly in its
subterms) and then compute the normal form from the term thus obtained. In this
case, the inference rule uses positive information provided by the t →red t1 judgment.

Rule Ls is used to infer the least sort of a term. It first computes the normal form
of the term, and then it infers a sort for this term such that no lesser sorts can
be obtained. In order to prevent the debugger from checking membership axioms
that can never infer a sort for the term we restrict the statements to those whose
lefthand side matches the term at the kind level. Similarly to the rule Norm above,
the disabled judgments provide negative information while the membership inference
provides the positive one.

We present in Figure 3.3 the main inference rules used to deduce sets of reachable
terms:

Rule Rf1 indicates that the singleton set with the term is inferred if no more steps
can be applied and the term fulfills the condition; similarly, the empty set is returned
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disabled(e1, f(t1, . . . , tn)) . . . disabled(el, f(t1, . . . , tn)) t1 →norm t1 . . . tn →norm tn

f(t1, . . . , tn) →norm f(t1, . . . , tn)
Norm

if {e1, . . . , el} = {e ∈ E | e �top
K f(t1, . . . , tn)}

{θ(ui) ↓ θ(u′i)}n
i=1 {θ(vj) : sj}m

j=1

θ(l) →red θ(r)
Rdc1 if l→r⇐

Vn
i=1 ui=u′i∧

Vm
j=1 vj :sj∈E

t →norm t′

f(t1, . . . , t, . . . , tn) →red f(t1, . . . , t′, . . . , tn)
Rdc2 if t6≡At′

t →red t1 t1 →norm t′

t →norm t′
NTr

t →norm t′ t′ : s disabled(m1, t
′) . . . disabled(ml, t

′)
t :ls s

Ls

if {m1, . . . ,ml} = {m ∈ E | m �top
K t′ ∧ sort(m) < s}

Figure 3.2: Calculus for normal forms and least sorts

when the condition fails, which is shown by rule Rf2. The first rule provides positive
information indicating why the term is included into the set, while the second one
provides negative information proving that the term must not be added.

Rule Tr1 applies when at least one more step can be taken. It first checks that the
term fulfills the condition. Then, the set of reachable terms in exactly one step is
computed, and the set of reachable terms from each of these terms is computed by
using the same condition and the bound decreased one step. The result is the union
of the sets thus obtained and the initial term. Rule Tr2 covers the case when the
condition does not hold for the initial term; in that case, the computed set does not
include it.

Rule Stp returns the set of reachable terms in exactly one step. It computes, on
the one hand, the set of reachable terms by applying one rule at the top and, on
the other hand, the set of reachable terms for each of the subterms of the original
term. The final set is composed of the reachable terms by rewriting at the top and
the substitutions of the terms obtained for the subterms in the appropriate position
(applying only one substitution each time).

Rule Top is in charge of computing the set of reachable terms by applying one rule
at the top. Since each rule can produce different terms due to different matchings,
each application generates a set of terms. These terms are gathered to obtain the
final set. Note that, in order to avoid trivial information of the form t ⇒q ∅, we
only use rules whose lefthand side matches the term at the kind level. This inference
rule provides both positive and negative information, depending on the result of the
judgments in the premises: the empty set provides negative information, while in
other case the information is positive. This information is later propagated by the
rules by means of the judgment t ⇒1 S.

Rule Rl returns the set of terms obtained by applying a single rule. First, the set of
substitutions obtained from matching with the lefthand side of the rule is computed,
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fulfilled(C, t)

t ;C
0 {t}

Rf1
fails(C, t)

t ;C
0 ∅

Rf2

fulfilled(C, t) t ⇒1 {t1, . . . , tk} t1 ;C
n S1 . . . tk ;C

n Sk

t ;C
n+1

k⋃
i=1

Si ∪ {t}

Tr1

fails(C, t) t ⇒1 {t1, . . . , tk} t1 ;C
n S1 . . . tk ;C

n Sk

t ;C
n+1

k⋃
i=1

Si

Tr2

f(t1, . . . , tm) ⇒top St t1 ⇒1 S1 · · · tm ⇒1 Sm

f(t1, . . . , tm) ⇒1 St ∪
⋃m

i=1{f(t1, . . . , ui, . . . , tm) | ui ∈ Si}
Stp

t ⇒q1 Sq1 · · · t ⇒ql Sql

t ⇒top

l⋃
i=1

Sqi

Top if {q1, . . . , ql} = {q ∈ R | q �top
K t}

[l := t, ∅] ; Θ0 〈C1,Θ0〉 ; Θ1 · · · 〈Ck,Θk−1〉 ; Θk

t ⇒q
⋃

θ∈Θk

{θ(r)}
Rl if q : l ⇒ r ⇐ C1 ∧ . . . ∧ Ck ∈ R

t →norm t1 t1 ;C
n {t2} ∪ S t2 →norm t′

t ;C
n {t′} ∪ S

Red1

Figure 3.3: Calculus for missing answers

and then it is used to find the set of substitutions that satisfy the condition. This final
set is used to instantiate the righthand side of the rule to obtain the set of reachable
terms. The kind of information provided by this rule corresponds to the information
provided by the substitutions; if the empty set of substitutions is obtained (negative
information) then the rule computes the empty set of terms, which also corresponds
with negative information proving that no terms can be obtained with this rewrite
rule; analogously when the set of substitutions is nonempty (positive information).
This information is propagated through the rest of inference rules justifying why
some terms are reachable while others are not.

Rule Red1 mimics the operational behavior of Maude. It allows the user, to obtain
the set of reachable terms from t, to reduce t to its normal form, search the set of
reachable terms from the term thus obtained and then reduce these terms to their
normal form.

Once this calculus has been introduced, we can build a proof tree for the search shown
in Section 2.1.7. We recall that, starting from an initial configuration with two persons
waiting on a queue, adri and et, we tried to find a configuration where adri had bought
a videogame, but such configuration did not exist:

Maude> (search [l v] ordIns(adri et nil) =>* S:Sale
s.t. "adri" buys "videogame" in S:Sale .)

search in SALE :[l v] ordIns(adri et nil) =>* S:Sale .
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No solution.

The proof tree for this computation is depicted in Figure 3.4. The inference starts
in Figure 3.4(a); to build this tree we need a bound in the number of steps given by the
search,3 which is 5 in this case. In this tree, oi stands for ordIns, C for the condition (ex-
tended with matching) (S := ~) /\ "adri" buys "videogame" in S, and the subtrees
5’s for straightforward proofs that will not be explained in depth. Note that we have
added to the inference rules Rdc1 and Rl the name of the statement being applied (or ⊥
when it does not have a label) and the operator at the top in the rule Top, and that we
have omitted nil in some terms (and the proofs related to it) for the sake of conciseness.
The leftmost child of the root, T1, is in charge of computing the reduction of the initial
term to its normal form Sn, which stands for [l v]et et , where l is < "lettuce", 6 >,
v is < "videogame", 10 >, and et is ["et", 16, ""], and the rightmost child (†) con-
tinues with the search from this term. The leftmost child of this node, T2, is shown in
Figure 3.4(b). It proves that the initial term does not satisfy the condition by matching
the term with the pattern, applying the substitution thus obtained, and then reducing the
obtained term with the equation buy2. The tree to the right of T2 shows how we obtain
the singleton set containing S1, which stands for [l v et]et , by evolving one step Sn. The
tree shows that, although the subterms cannot be rewritten, the term can be rewritten at
the top with the rule in, thus introducing the first et into the shop. Finally, the rightmost
child continues the search with the bound decreased by one step; this tree is very similar
to (†) and will not be further explained.

The tree T1 is shown in Figure 3.5 and, since it contains the buggy node, it deserves a
closer examination. Figure 3.5(a) starts the computation of the normal form of the initial
term; its left child reduces the term oi(adri et) to its normal form et et , while the right
one reduces the terms l and v and checks that the terms thus obtained are in normal
form. We will focus on the left child, since it contains the buggy node and, moreover,
the nodes in the right child are very similar to the nodes in the left child. As mentioned
before, the left child of the tree reduces oi(adri et) to its normal form; to do so, we first
obtain the normal form of adri—adri , which stands for ["adri", 15, ""]—by applying
the corresponding (unlabeled) equation and then checking it is already in normal form by
checking that its arguments are in normal form.4 The reduction continues with T3, which
is shown in Figure 3.5(b), where the left child reduces et to its normal form et , while
the right child starts the reduction of the function ordIns by applying the equation oi2,
which returns io(oi(et), adri). Figure 3.5(c) presents the tree T4, which reduces oi(et)
to its normal form et by applying the equations oi2, oi1, and io1. Once this result is
obtained, the reduction is finished by the tree T5 in Figure 3.5(d). There, the equation
io3 is applied in node (?), where, from the term io(et, adri) the term et io(nil, et)
is reached, which is clearly wrong because adri has disappeared. Since this node has no
children and it is erroneous, it is a buggy node and it is associated to a erroneous piece of
code: the equation io3. The rest of the tree propagates this error until the normal form
is obtained. We will show in Section 3.4 how the tool traverses the tree to find the error
in the specification.

3This value is automatically computed by Maude DDebugger.
4The subtree 5 indicates that more steps are required: since the term 15 is an abbreviation of

s(s(...s(0))), it requires fifteen steps until the base case is reached.
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3.3 Debugging trees

By using the proof trees computed with the calculus of the previous section as debug-
ging trees we are able to locate wrong statements, missing statements, and wrong search
conditions, that are intuitively defined as follows:5

A specification has a wrong statement (where a statement is an equation, a member-
ship axiom, or a rule) if there exists a term such that the user expects the statement
to be applied to this term (that is, the user expects the conditions to be fulfilled)
but the result of this application is erroneous.

For a rule l ⇒ r ⇐ C1 ∧ · · · ∧Cn, a specification has a wrong rule if the user expects
the judgments [l := t, ∅] ; Θ0, [C1,Θ0] ; Θ1, . . ., [Cn,Θn−1] ; Θn to happen but
the application of Θn to r does not provide the set of results expected for this rule.

A specification has a wrong condition C ≡ l := ~ ∧ C1 ∧ · · · ∧ Cn if there exists a
term t such that, when the ~ is substituted by t, either the condition holds but it is
not expected to hold or it does not hold but it is expected to.

A specification has a missing equation if there exists a term t such that it is not
expected to be in normal form and none of the equations in the specification are
expected to be applied to it.

A specification has a missing membership if there exists a term t in normal form such
that the computed least sort of t is not the expected one and none of the membership
axioms in the specification are expected to be applied to it.

A specification has a missing rule if there exists a term t such that all the rules
applied to t at the top lead to judgments t ⇒qi Sqi expected by the user but their
union

⋃
Sqi does not contain all the expected reachable terms from t by using rewrites

at the top.

The trees obtained with this calculus could be used as debugging trees, although they
present the problems of (i) having several nodes whose correctness does not depend on the
specification and (ii) containing some nodes with judgments that, once they are translated
to questions to the user, are very difficult to answer. For these reasons we have developed
a technique that eases and shortens the debugging process while keeping its soundness and
completeness. For each proof tree T , we will use a function APT (T ) (from Abbreviated
Proof Tree), or simply APT when the tree T is clear from the context, to debug Maude
specifications. These APT rules, described in [91], provide the following advantages:

They remove from the tree the nodes whose correctness can be inferred from the cor-
rectness of its children, that is, the nodes that do not contain debugging information.
For example, the information related to reflexivity is removed from the tree.

Their use allows the tool to choose between different types of tree, depending on
the complexity of the specification and the expertise of the user in charge of the
debugging process: the one-step tree, which only contains rewrites in one step, and
the many-steps tree, which can contain rewrites in one or more steps; the latter
nodes are placed in such a way that the tree becomes more balanced, and thus
the navigation strategies require less questions in general to find the buggy node,

5See [91] for the proof and the formal definitions.
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although these questions can be more complex than the ones found in one-step trees.6

For example, rule (APTo
8) builds the one-step tree for wrong answers by removing

the transitivity inferences, while rule (APTm
8 ) builds the many-steps tree by keeping

them. We present here the more general function APT ′, that returns sets of trees
instead of one tree, and that is used as auxiliary function to compute the APT :

(APTo
8) APT ′

(
T1 T2

t1 ⇒ t2
Tr⇒

)
= APT ′(T1)

⋃
APT ′(T2)

(APTm
8 ) APT ′

(
T1 T2

t1 ⇒ t2
Tr⇒

)
=

{
APT ′(T1) APT ′(T2)

t1 ⇒ t2
Tr⇒

}
They simplify the questions asked to the user because they reproduce more closely
Maude’s expected behavior (e.g. questions related to reductions skip the intermediate
states and always ask about normal forms, while rewrites are applied once the normal
form of the term has been reached). For example, rule (APT3) associates the
debugging information in Rdc1, an inference rule in charge of applying an equation,
to the transitivity below it:

(APT3) APT ′

 T1 . . . Tn

t → t′′
Rdc1 T ′

t → t′
NTr

 =

{
APT ′ (T1) . . . APT ′ (Tn) APT ′ (T ′)

t → t′
Rdc1

}
They remove the questions difficult to ask and associate the debugging information
to nodes related to easier questions. For example, questions related to rewrites at
the top are replaced by rewrites in one step by rule (APT4):

(APT4) APT ′

 T1 . . . Tn

t ⇒ top S′
Top T ′1...T ′m

t ⇒1 S
Stp

 =

{
APT ′ (T1) . . . APT ′ (Tn) APT ′ (T ′1) . . . APT ′ (T ′m)

t ⇒1 S
Top

}
They are applied without computing the associated proof tree, so they reduce the
time and space needed to build the tree.

Given a proof tree T representing an erroneous inference in the calculus presented in
Section 3.2, we proved in [91] that:

APT (T ) contains at least one buggy node (completeness).

Any buggy node in APT (T ) has an associated wrong statement, missing statement,
or wrong condition (correctness).

6Of course, both trees are sound and complete.



36 Chapter 3. Declarative Debugging

We show in Figure 3.6 the many-steps abbreviated proof tree obtained by applying
the function APT to the tree in Figure 3.4. The trees 5′’s stand for the abbreviation of
the 5’s in the previous figures. Figure 3.6(a) shows the start of the computation, while
Figure 3.6(b) stands for T ′1, Figure 3.6(c) for T ′2, and Figure 3.6(d) for T ′3. We can quickly
appreciate two advantages of the abbreviation: (i) the number of nodes has been reduced
from 67 to 31, so the obtained tree has approximately half the size of the original tree;
and (ii) the buggy node, marked with (?) in Figure 3.6(b) has changed (by using the rule
(APT3) described above) and gives rise to an easier question.

Although the tree has been greatly reduced, it can be further reduced by using the
trusting techniques provided by the debugger:

Only labeled statements are taken into account when computing the debugging tree.
Moreover, modules and statements can be trusted once the module is introduced
in the debugger, and statements can even be trusted on the fly. Thus, reductions
performed by statements without label in Figure 3.6, that we have annotated with
⊥, will be removed from the tree. These nodes have been marked with (♦).

A correct module can be introduced as oracle. In this way, correct nodes can be
removed from the tree without asking the user.

We can indicate that some constructed terms (terms built only with operators defined
with the ctor attribute) are final, that is, they cannot be further rewritten, by
pointing out some sorts or operators. In this way, if a judgment indicates that the
set of reachable terms in one step is empty, it will be considered correct and removed
from the tree. In our example we can consider as final the sorts Nat, Bool, Shop,
and OList, and thus terms of theses sorts (and their corresponding subsorts, such
as Person and Item for Shop) will be removed from the tree. We have marked these
nodes in Figure 3.6 with (♥).

Moreover, we consider that these constructed terms are in normal form and hence
nodes stating this are automatically removed from the tree. The nodes marked with
(♠) in Figure 3.6 fulfill this condition and will be removed from the tree.

3.4 Using the debugger

We present in this section how to use the debugger by means of the sale example from
Section 2.1.7. Note that the following requirements are necessary for the debugger to
work properly: the specification must be executable (see Section 2.1) and the information
introduced by the user must be accurate, which includes his answers and the trusting
information. Besides all the information given here, several other commands and options
are described in [85].

As explained in the previous section, the trusting mechanisms can dramatically reduce
the size of the debugging tree. Thus, we state before starting the debugging process that
some of the sorts are final with the commands:

Maude> (set final select on .)

Final select is on.

Maude> (final select Nat Bool Shop OList .)

Sorts Bool Nat OList Shop are now final.
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Since we have closely inspected the specification and can be considered to be experts
in the subject, we select the many-steps debugging tree:

Maude> (many-steps missing tree .)

Many-steps tree selected when debugging missing answers.

Finally, we select the top-down navigation strategy, that presents the questions associ-
ated to all the children of the root node and asks the user to select one of them as incorrect
or to indicate that all of them are correct:

Maude> (top-down strategy .)

Top-down strategy selected.

We can now start the debugging process by introducing the command:

Maude> (missing [l v] ordIns(et adri nil) =>* S:Sale
s.t. "adri" buys "videogame" in S:Sale .)

The debugger builds the tree shown in Figure 3.8, that corresponds to the Figure 3.6
with all the nodes related to trusting information removed. The first series of questions is
related to the children of the root:

Question 1 :
Is this reduction (associated with the equation oi2) correct?

ordIns(["adri",15,""]["et",16,""]nil) -> ["et",16,""]["et",16,""]nil

Question 2 :
Did you expect [< "lettuce",6 > < "videogame",10 >]

["et",16,""]["et",16,""]nil not to be a solution?

Question 3 :
Are the following terms all the reachable terms from
[< "lettuce",6 > < "videogame",10 >]["et",16,""]["et",16,""]nil in one step?

1 [< "lettuce",6 > < "videogame",10 >["et",16,""]]["et",16,""]nil

Question 4 :
Did you expect that no solutions can be obtained from
[< "lettuce",6 > < "videogame",10 >["et",16,""]]["et",16,""]nil ?

Maude> (1 : no .)

We notice that the first reduction ((℘) in Figure 3.7) is incorrect, while the rest of the
questions are correct. Thus, we indicate it by typing (1 : no .) and this subtree, which
is shown in Figure 3.8 (and that corresponds to the leftmost premise of the root of the
tree in Figure 3.7), is selected as the current debugging tree.7 Thus, the next series of
questions will be related to the children of this node:

7We could also answer yes to any of the other questions, which would be removed but the debugging
process would not advance. For this reason, this answer is only recommended, when using the top-down
navigation strategy, to simplify the presentation of the questions when several options are shown.
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oi(nil)→norm nil
Rdc1oi1

io(nil, et)→norm et
Rdc1io1

(§) oi(et)→norm et
Rdc1oi2

io(nil, et)→norm et
Rdc1io1

io(et, adri)→norm et et
Rdc1io3

oi(adri et)→norm et et
Rdc1oi2

Figure 3.8: Debugging tree after one answer

io(nil, et)→norm et
Rdc1io1

(¶) io(et, adri)→norm et et
Rdc1io3

oi(adri et)→norm et et
Rdc1oi2

io(nil, et)→norm et
Rdc1io1

io(et, adri)→norm et et
Rdc1io3

Figure 3.9: Debugging tree after two (a) and three answers (b)

Question 1 :
Is this reduction (associated with the equation oi2) correct?

ordIns(["et",16,""]nil) -> ["et",16,""]nil

Question 2 :
Is this reduction (associated with the equation io3) correct?

insertOrd(["et",16,""]nil,["adri",15,""]) -> ["et",16,""]["et",16,""]nil

Now, instead of answering any of these questions, we can switch to the other navigation
strategy—divide and query—with the command:

Maude> (divide-query strategy .)

Divide & Query strategy selected.

Is this reduction (associated with the equation oi2) correct?

ordIns(["et",16,""]nil) -> ["et",16,""]nil

Maude> (yes .)

In this case the debugger has selected the node whose size is the closest one to half the
size of the tree, which is the node marked with (§) in Figure 3.8. This inference is correct,
and thus the subtree rooted at this node is removed and the tree is updated to the one
shown in Figure 3.9(a). The following question, associated to the node (¶), is shown:

Is this reduction (associated with the equation io3) correct?

insertOrd(["et",16,""]nil,["adri",15,""]) -> ["et",16,""]["et",16,""]nil

Maude> (no .)

The answer is (no .), and thus the tree is reduced to the tree in Figure 3.9(b). Since
the debugger knows the root is erroneous (because it was pointed out by the user in the
previous answer) the current question is related to the child of the root:

Is this reduction (associated with the equation io1) correct?
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Figure 3.10: Debugging with the graphical user interface

insertOrd(nil,["et",16,""]) -> ["et",16,""]nil

Maude> (yes .)

With this information the root of the tree in Figure 3.9(b) contains incorrect informa-
tion but all its children are correct, and thus it is the buggy node.8 The debugger prints
the following information:

The buggy node is:
insertOrd(["et",16,""]nil,["adri",15,""]) -> ["et",16,""]["et",16,""]nil
with the associated equation: io3

Thus, the buggy equation is io3, that was specified in Section 2.1.7 as follows:

eq [io3] : insertOrd(E L, E’) = E insertOrd(L, E) [owise] .

that is, we forgot about E’ in the recursive call. The correct code for the function is:

eq [io3] : insertOrd(E L, E’) = E insertOrd(L, E’) [owise] .

We show in Figure 3.10 how this example can also be debugged with the graphical
user interface. In addition to the navigation strategies implemented by the tool, when

8This node is the one marked with (?) in Figure 3.6, indicating that it was the buggy node.
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Figure 3.11: Graphical user interface after one answer

Figure 3.12: Information provided by the graphical user interface

using the interface it is also possible to freely navigate the debugging tree and select the
different nodes to see the associated question. In this case we have selected a node that
corresponds to the root of the tree in Figure 3.8 and whose associated reduction is not
correct. By using the Wrong button we obtain the tree shown in Figure 3.11, where only
the information relevant to the debugging process is shown9 and where we have selected
another wrong node; once we point it as wrong and its child as correct the interface detects
it is a buggy node, showing the information in Figure 3.12.

3.5 Contributions

In this chapter we have presented a declarative debugger for Maude specifications. The
main contributions of this work are the following:

Debugging of wrong answers. The tool is able to debug wrong answers in both func-
tional (wrong reductions and membership inferences) and system (wrong rewrites)
modules, where all kinds of Maude features, such as equational attributes, frozen,
and otherwise can be used. It points out the wrong statement responsible for the
error in the specification.

9Another behavior is also available when debugging with the GUI: It keeps all the nodes, associating
to each of them a color indicating its status: correct, wrong, don’t know, and not answered.
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Debugging of missing answers. The tool can also debug missing answers in both func-
tional (not completely reduced normal forms and least sorts bigger than the expected
ones) and system (incomplete sets of reachable terms given a condition and a bound
in the number of steps) modules. The detected causes in this kind of debugging are
wrong statements and search conditions, and missing statements; when a missing
statement is the cause of the error, the debugger is able to identify the operator at
the top in the lefthand side of the missing statement.

Formal calculus. Since the trees used in the debugging process are obtained using a
formal calculus, we have been able to prove the completeness and correctness of the
technique.

Features. The debugger incorporates most of the features already present in other declar-
ative debuggers:

Techniques to shorten and improve the debugging tree, that we have called APT.

Different navigation strategies: top-down and divide and query.

Several different answers: in addition to the usual answers yes and no we
provide an undo command to return to the previous state, don’t know to skip
the current question, and the term n is not a solution/reachable to point out
that a term in a set is not a solution or reachable, instructing the tool to lead
the process in this direction.

Trusting mechanisms for statements (before starting the debugging process and
on the fly), modules, normal forms, and final sorts (also before starting the
process and on the fly).

A graphical user interface, that eases the debugging process by showing the
debugging tree and allowing the user to navigate it freely.

Novel features. We have developed an original feature: different debugging trees can be
built depending on different factors. This idea has been reused to balance debugging
trees in different ways in [45]—with the participation of the author—, and is currently
used in the DDJ debugger.
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Chapter 4

Heterogeneous Verification

4.1 State of the art

As pointed out in the introduction, complex systems usually require different for-
malisms to define its parts. For example, it is usual to apply different approaches to
deal with the specification of the system, the databases, or the proofs about its expected
behavior. Since a single system providing all the necessary features for all the possi-
ble requirements is unlikely, heterogeneous systems, that provide several formalisms and
combinations between them, are of growing importance nowadays, because they allow to
use the appropriate formalism for each part of the system and to combine them to build
up the complete structure. Several tools have been proposed to deal with heterogeneous
specification and verification:

UML Probably, the best known is the Unified Modeling Language (UML) [6], a language
designed to ease the software development process. However, UML intentionally
lacks a formal semantics and thus it is not a formal tool.

OMDoc A more formal approach is the one of OMDoc [48], an ontology language
for mathematics. This language allows to represent objects such as formulas in a
language extending XML called OpenMath, statements such as definitions or proofs,
and theories and morphisms between them.

IMPS The Interactive Mathematical Proof System (IMPS) [34] is oriented towards math-
ematical reasoning. It provides a database of mathematics (represented as a network
of axiomatic theories linked by theory morphisms) and a set of tools to relate and
modify them.

SpecWare Specware [47] is a tool to facilitate the development of software that allows
the user to formally specify the requirements and generate provably correct code for
them. It can be used as a design tool, to describe complex systems; as a logic, to
formally describe the requirements; and as a programming language, to implement
the programs.

Prosper The Prosper toolkit [26], based on the theorem prover HOL98 [74], provides
several decision procedures and model checkers, available in a language-independet
way by means of libraries. Currently, libraries for Java, C, and ML are available.

Twelf Twelf [79] is a research project concerned with the design, implementation, and
application of logical frameworks. It provides the LF logical framework [41], used

45
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to describe logics, the Elf constraint logic programming language, and an Emacs
interface. An inductive meta-theorem prover for LF is currently under development.

Delphin Delphin [83] is a functional language organized in two levels: a data level, where
deduction systems can be specified; and the computation level, where these systems
are manipulated.

Hets The Heterogeneous tool set, Hets [64, 63, 66, 7], incorporates in a common frame-
work several provers and specification languages, and provides mechanisms to relate
all of them. In Hets each logic is represented as an institution and translations are
represented as institution comorphisms (see Section 2.2).

For our purposes in this thesis we are interested in Hets for a number of reasons:

It is formal, so it allows the user to reason about the mathematical properties of his
specifications, unlike other approaches such as UML or OMDoc, that only formalize
some features (if any) of their approaches.

While several approaches are unilateral, in the sense that only one logic (and one
theorem prover) can be used to encode the problem (this is the case of the Pros-
per toolkit and OMDoc), specifications can be introduced in Hets in any of the
supported logics.

It focuses on codings between logics, unlike other approaches such as OMDoc,
SpecWare, or IMPS, that focus on codings between theories. The former allows
to reason about different elements in different logics, while the latter only about
different elements in the same logic.

A current limitation of Hets is that it allows the users to use the implemented
logics, but not to add new logics to the system, nor reason directly about them or
about their translations, as is the case of Delphin, a logical framework where the
syntax and the semantics of different logics can be represented, allowing the user to
reason about them. For this reason, the ongoing project LATIN (Logic Atlas and
Integrator) [49] intends to integrate these two different approaches, being the first
step of the integration of LF with Hets, thus allowing the user to work with the
logics integrated into Hets as usual data.

The general schema for Hets is presented in Figure 4.1. It requires parsing and static
analysis for each specific tool to work with them in a common framework, where each tool
can be related to the others. The relations between them are specified in the logic graph,
that has as the central logic the Common Algebraic Specification Language (Casl), a
language whose development was proposed by the Common Framework Initiative for alge-
braic specification and development, CoFI [40], that wanted to unify the different algebraic
languages available, incorporating the main features of all these languages and fixing its
syntax and semantics. The aim of the initiative was to create a language for specification
of functional requirements; formal development of software; relation of specifications to
informal requirements and implemented code; prototyping, theorem-proving, and formal
testing; and tool interoperability. Following these ideas Casl was designed as a language
based on first-order logic and induction by means of constructor constraints.

However, Casl was not thought as a standalone language, but as the heart of a
family of languages, some of them obtained by restricting Casl and some other obtained
by extending it. Hence, Hets is the result of broadening this idea by relating other
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Figure 4.1: Architecture of Hets

languages independent from Casl with it; in this way it is be possible to use other tools
(and hence other logics) with Casl specifications and vice versa. The logics that are
currently connected with Casl, and thus supported by Hets, are:

General purpose logics: propositional logic, Casl and HetCasl (first-order logic), QBF
(Quantified Boolean Formulas), and TPLP/SoftFOL (softly typed first-order logic).
See [7] for more details on these languages.

Logical frameworks: LF [41], a framework to define logics; and DFOL [96], a sublogic
of LF for First-Order Logic with Dependent Types.

Ontologies and constraint languages: OWL [55], the web ontology language; Com-
mon Logic [46], a framework to ease the transmission of information in computer
systems; RelScheme [51], a language for relational database schemes; and Con-
straintCasl, an extension of Casl with support for constraints [63].

Reactive systems: CspCasl [92], an extension of Casl that supports the process alge-
bra CSP; CoCasl [93], a coalgebraic extension of Casl; and ModalCasl [60], that
extends Casl with modal operators. See [63] for details.

Programming languages: Haskell [78], a lazy functional language.

Logics of specific tools: Reduce [42], an interactive system for general algebraic com-
putations, and DMU [43], a dummy logic to read output of “Computer Aided Three-
dimensional Interactive Application” (CATIA).

Provers: the interactive higher-order prover Isabelle [73]; the interactive prover for dy-
namic logic VSE [4]; an Isabelle-based prover for CspCasl [75]; the SAT solvers
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zChaff [58] and MiniSat [33]; the first-order automated provers SPASS [102], Vam-
pire [100], Darwin [35], KRHyper [103], and MathServe [104]; and the description
logic tableau provers Pellet [19] and FaCT++ [99].

From the point of view of Hets, the integration of Maude as a new logic provides
several advantages: it will be the first dedicated rewriting engine (currently, only Isabelle’s
engine is available, which is specialized towards higher-order proofs), allowing to execute
specifications implemented in other languages, and supporting model checking of linear
temporal logic formulas.

From the Maude point of view, an integration into Hets is very interesting because it
allows the user to check properties of the specifications by using the provers listed above.
The Maude system has been involved in different approaches to theorem proving:

Different theorem provers and checkers have been implemented for Maude in Maude
itself, taking advantage of its metalevel capabilities, including: the Inductive Theo-
rem Prover, ITP [22], whose last version supports several combinations of equational
axioms and induction over constructors, although it only allows proofs in Church-
Rosser equational theories; the termination checker [30]; the coherence checker [32];
and the Church-Rosser checker [31].

A mapping between the logic of HOL [74], a proof system based on higher-order
logic, and the logic of Nuprl [1], used to develop software systems and formal theories
of computational mathematics, was implemented in Maude [70] following a formal
approach.

Currently, we have been informed that a new project is devoted to translate Maude
specifications to the PVS theorem prover [76]. The transformation, written in Maude
itself, has been driven by examples from security systems specifications, and there-
fore only the elements appearing in them (a subset of functional modules) are trans-
formed. However, the system is still in development and more features are expected
in the future.

The main drawback of all these approaches is that, as for some other tools listed above,
they focus on the Maude system. Our integration would “upgrade” them by allowing
specifications written in other logics to use them.

4.2 Integrating Maude into Casl

The work that needs to be done for such an integration is to prepare both Maude and
the logic underlying it so that it can act as an expansion card for Hets. On the side of the
semantics, this means that the logic needs to be organized as an institution [39, 97]. An
institution for rewriting logic was already studied in [77], but it presented the drawback
of using a discrete category of signatures, that is, the only morphisms were the identity
morphisms. However, we need these morphisms to work with renamings, views, and
parameterized modules, and thus this institution is not adequate for our purposes. On the
side of the tool, we must provide a parser and static analysis mechanisms for it, in such a
way that its specifications can be translated into a common framework, which in our case
consists of development graphs, a graphical representation of structured specifications.

Before trying to describe another institution for the logic underlying Maude, we realized
that two logics have been studied in the literature for the transition system used in Maude
system modules: rewriting logic [56] and preordered algebra [36, 56]. They essentially differ
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in the treatment of rewrites: whereas in rewriting logic rewrites are named and different
rewrites between two given states (terms) can be distinguished (which corresponds to
equipping each carrier set with a category of rewrites), in preordered algebra only the
existence of a rewrite matters (which corresponds to equipping each carrier set with a
preorder of rewritability).

After a careful look at Maude and rewriting logic, we found out that the current Maude
implementation differs from rewriting logic as defined in [56]. The reasons are:

1. In Maude, labels of rewrites cannot (and need not) be translated along signature
morphisms. This means that Maude views do not lead to theory morphisms in
rewriting logic!

2. Although labels of rewrites are used in traces of counterexamples, they play a sub-
sidiary role; for example, they cannot be used in the linear temporal logic of the
Maude model checker.

3. Kinds cannot be explicitly declared in Maude, and thus it is impossible to have a
kind without sorts.

For these reasons it is not necessary, for the time being, to define an institution for rewriting
logic to integrate Maude into Hets, and thus we will use preordered algebra [36, 56]. In
this logic, rewrites are neither labeled nor distinguished, only their existence is important,
which implies that Maude views lead to theory morphisms in the institution of preordered
algebras. We present in the following sections an institution for Maude specifications
based on preordered algebras and a comorphism from this institution to the one of Casl,
the central logic of Hets. More details are presented in [24, 23].

4.2.1 An institution for Maude

The institution we are going to define for Maude, that we will denote Maudepre , is
very similar to the one defined in the context of CafeOBJ [36, 28] for preordered algebra
(the differences are mainly limited to the discussion about operation profiles below, but
this is only a matter of representation). Signatures of Maudepre are tuples (K, F, kind :
(S,≤) → K), where K is a set of kinds, kind is a function assigning a kind to each sort
in the poset (S,≤), and F is a set of function symbols of the form F = {Fk1...kn→k |
ki, k ∈ K} ∪ {Fs1...sn→s | si, s ∈ S} such that if f ∈ Fs1...sn→s, there is a symbol f ∈
Fkind(s1)...kind(sn)→kind(s). Notice that there is no essential difference between our putting
operation profiles on sorts into the signatures and Meseguer’s original formulation putting
them into the sentences.

Given two signatures Σi = (Ki, Fi, kind i), i ∈ {1, 2}, a signature morphism φ : Σ1 →
Σ2 consists of a function φkind : K1 → K2, a function between the sorts φsort : S1 →
S2 such that φsort ; kind2 = kind1;φkind and the subsorts are preserved, and a function
φop : F1 → F2 which maps operation symbols compatibly with the types. Moreover, the
overloading of symbol names must be preserved, i.e. the name of φop(σ) must be the same
both when mapping the operation symbol σ on sorts and on kinds. With composition
defined component-wise, we get the category of signatures.

For a signature Σ, a model M interprets each kind k as a preorder (Mk,≤), each sort
s as a subset Ms of Mkind(s) that is equipped with the induced preorder, with Ms a subset
of Ms′ if s < s′, each operation symbol f ∈ Fk1...kn,k as a function Mf : Mk1× . . .×Mkn →
Mk which has to be monotonic and such that for each function symbol f on sorts, its
interpretation must be a restriction of the interpretation of the corresponding function on
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kinds. For two Σ-models A and B, a homomorphism of models is a family {hk : Ak →
Bk}k∈K of preorder-preserving functions which is also an algebra homomorphism and such
that hkind(s)(As) ⊆ Bs for each sort s.

The sentences of a signature Σ are Horn clauses of the form ∀X .A ⇐ A1 ∧ · · · ∧ An,
where the set of variables X used for quantification is K-sorted, built with three types of
atoms: equational atoms t = t′, membership atoms t : s, and rewrite atoms t ⇒ t′, where
t, t′ are Σ-terms and s is a sort in S.1

Given a Σ-model M and a valuation η = {ηk}k∈K , i.e., a K-sorted family of functions
assigning elements in M to variables, Mη

t is inductively defined as usual. An equational
atom t = t′ holds in M if Mη

t = Mη
t′ , a membership atom t : s holds when Mη

t is an
element of Ms, and a rewrite atom t ⇒ t′ holds when Mη

t ≤ Mη
t′ . Satisfaction of atoms

is extended to satisfaction of sentences in the obvious way. Finally, we use M,η |= A to
indicate that the model M satisfies the sentence A under the valuation η.

We prove that the satisfaction condition holds for atoms, and then the extension to
Horn clauses is straightforward. To do so, we will use the following lemma:

Lemma 1 Given a signature morphism σ : Σ → Σ′, inducing the function σ : Sen(Σ) →
Sen(Σ′) and the functor |σ : Mod(Σ′) → Mod(Σ), a Σ′-model M , the sets of variables
X = {x1 : k1, . . . , xl : kl} and X ′ = {x1 : σ(k1), . . . , xl : σ(kl)}, with ki ∈ K, 1 ≤ i ≤ l, a
valuation η : X → M |σ, which induces a valuation η′ : X ′ → M with η′(x) = η(x), and a
Σ-term t with variables in X, we have Mη′

σ(t) = (M |σ)η
t .

Proof. By structural induction on t. For t = x a variable on kinds it is trivial because
σ(x) = x and η(x) = η′(x). Similarly, for t = c a constant it is trivial by applying the
definition of morphism to operators. If t = f(t1, . . . , tn), then we have Mη′

σ(ti)
= (M |σ)η

ti
,

1 ≤ i ≤ n, by induction hypothesis, and

Mη′

σ(f(t1,...,tn)) = Mη′

σ(f)(σ(t1),...,σ(tn)) (by definition of σ on terms)

= Mσ(f)(M
η′

σ(t1), . . . ,M
η′

σ(tn)) (meaning of the term in the model)
= Mσ(f)((M |σ)η

t1
, . . . , (M |σ)η

tn) (by induction hypothesis)
= (M |σ)f ((M |σ)η

t1
, . . . , (M |σ)η

tn) (by definition of σ on models)
= (M |σ)η

f(t1,...,tn). (meaning of the term in the model)

ut

We can use this result, combined with the bijective correspondence between η and η′,
to check the satisfaction condition for a Σ-equation t = t′:

M |=Σ′ σ(t = t′) ⇐⇒ M |=Σ′ σ(t) = σ(t′)
⇐⇒ M,η′ |=Σ′ σ(t) = σ(t′) for all η′

⇐⇒ Mη′

σ(t) = Mη′

σ(t′) for all η′

⇐⇒ (M |σ)η
t = (M |σ)η

t′ for all η
⇐⇒ M |σ, η |=Σ t = t′ for all η
⇐⇒ M |σ |=Σ t = t′

and similarly for memberships and rules.

1Note that this is slightly more general than Maude’s version, because rewrite conditions are allowed
in equations and membership axioms.
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4.2.2 A comorphism from Maude to Casl

We now present an encoding of Maude into Casl, which will be formalized as an
institution comorphism. The idea of the encoding of Maudepre into Casl is that we
represent rewriting as a binary predicate and we axiomatize it as a preorder compatible
with operations.

First of all, we need to know the Casl institution in order to define the comorphism.
We show here the main features of this institution, while more details can be found in [59,
66]. It is introduced in two steps: first, many-sorted partial first-order logic with sort
generation constraints and equality (PCFOL=) is introduced, and then, subsorted partial
first-order logic with sort generation constraints and equality (SubPCFOL=) is described
in terms of PCFOL= [59]. Basically this institution is composed of:

A subsorted signature Σ = (S,TF ,PF , P,≤S), where S is a set of sorts, TF and PF
are two S∗×S-sorted families TF = (TFw,s)w∈S∗,s∈S and PF = (PFw,s)w∈S∗,s∈S of
total function symbols and partial function symbols, respectively, such that TFw,s∩
PFw,s = ∅, for each (w, s) ∈ S∗×S, P = (Pw)w∈S∗ a family of predicate symbols, and
≤S is a reflexive and transitive subsort relation on the set S. Given two signatures
Σ = (S,TF ,PF , P ) and Σ′ = (S′,TF ′,PF ′, P ′), a signature morphism σ : Σ → Σ′

consists of:

– a map σS : S → S′ preserving the subsort relation,

– a map σF
w,s : TFw,s∪PFw,s → TFσS∗ (w),σS(s)∪PF ′

σS∗ (w),σS(s)
preserving totality

(i.e., total function symbols must be mapped into total function symbols and
partial function symbols must be mapped into partial function symbols), for
each w ∈ S∗, s ∈ S, and

– a map σP
w : Pw → P ′

σS∗ (w)
for each w ∈ S∗.

Identities and composition are defined in the obvious way.

With each subsorted signature Σ = (S,TF ,PF , P,≤S) we associate a many-sorted
signature Σ̂, which is the extension of (S,TF ,PF , P ), the underlying many-sorted
signature, with:

– an overloaded total injection function symbol inj : s → s′, for each pair of sorts
s ≤S s′,

– an overloaded partial projection function symbol pr : s′ →? s, for each pair of
sorts s ≤S s′, and

– an overloaded unary membership predicate symbol ∈s: s′, for each pair of sorts
s ≤S s′.

Signature morphisms σ : Σ → Σ′ are extended to signature morphisms σ̂ : Σ̂ → Σ̂′ by
just mapping the injections, projections, and memberships in Σ̂ to the corresponding
injections, projections, and memberships in Σ̂′.

For a subsorted signature Σ = (S,TF ,PF , P,≤S), we define overloading relations
(also called monotonicity orderings), ∼F and∼P , for function and predicate symbols,
respectively:

Let f : w1 → s1, f : w2 → s2 ∈ TF ∪ PF , then f : w1 → s1 ∼F f : w2 → s2 iff there
exist w ∈ S∗ with w ≤S∗ w1 and w ≤S∗ w2 and s ∈ S with s1 ≤S s and s2 ≤S s.

Let p : w1, p : w2 ∈ P , then p : w1 ∼P p : w2 iff there exists w ∈ S∗ with w ≤S∗ w1

and w ≤S∗ w2.
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A set of subsorted Σ-sentences, that correspond to ordinary Σ̂-many-sorted sen-
tences, that is, closed many-sorted first-order Σ̂-formulas or sort generation con-
straints (a special formula stating which operators are used as constructors) over
Σ. Sentence translation along a subsorted signature morphism σ is just sentence
translation along the many-sorted signature morphism σ̂.

Subsorted Σ-models M are ordinary many-sorted Σ̂-models, which are composed of:

– a non-empty carrier set Ms for each sort s ∈ S,

– a partial function fM from Mw to Ms for each function symbol f ∈ TFw,s ∪
PFw,s, w ∈ S∗, s ∈ S, the function being total if f ∈ TFw,s, and

– a predicate pM ⊆ Mw for each predicate symbol p ∈ Pw, w ∈ S∗,

satisfying the following set of axioms Ĵ(Σ):

– inj (s,s)(x) e= x (identity), where e= stands for existential equation.

– inj (s,s′)(x) e= inj (s,s′)(x) =⇒ x
e= y for s ≤S s′ (embedding-injectivity),

– inj (s′,s′′)(inj s,s′(x)) e= inj (s,s′′)(x) for s ≤S s′ ≤S s′′ (transitivity),

– pr (s′,s)(inj (s,s′)(x)) e= x for s ≤S s′ (projection),

– pr (s′,s)(x) e= pr (s′,s)(y) =⇒ x
e= y for s ≤S s′ (projection-injectivity),

– ∈s
s′ (x) ⇐⇒ pr (s′,s)(x) for s ≤S s′ (membership),

– inj (s′,s)(fw′,s′(inj s1,s′1
(x1), . . . , inj sn,s′n

(xn))) =
inj (s′′,s)(fw′′,s′′(inj (s1,s′′1 )(x1), . . . , inj (sn,s′′n)(xn))) for fw′,s′ ∼F fw′′,s′′ , where w ≤
w′, w′′, s′, s′′ ≤ s, w = s1, . . . , sn, w′ = s′1, . . . , s

′
n, and w′′ = s′′1, . . . , s

′′
n

(function-monotonicity), and

– pw′(inj (s1,s′1)(x1), . . . , inj (sn,s′n)(xn)) ⇐⇒ pw′′(inj (s1,s′′1 )(x1), . . . , inj (sn,s′′n)(xn))
for pw′ ∼P pw′′ , where w ≤ w′, w′′, w = s1 . . . sn, w′ = s′1 . . . s′n, and w′′ =
s′′1 . . . s′′n (predicate-monotonicity).

Satisfaction and the satisfaction condition are inherited from the many-sorted in-
stitution. Roughly speaking, a formula ϕ is satisfied in a model M iff it is satisfied
w.r.t. all variable valuations into M .

Now, we can define the comorphism. Every Maude signature (K, F, kind : (S,≤) → K)
is translated to the Casl theory ((S′,≤′, F, P ), E), where S′ is the disjoint union of K
and S, ≤′ extends the relation ≤ on sorts with pairs (s, kind(s)) for each s ∈ S, rew ∈ Ps,s

for any s ∈ S′ is a binary predicate and E contains axioms stating that for any kind
k, rew ∈ Pk,k is a preorder compatible with the operations. The latter means that for
any f ∈ Fs1...sn,s and any xi, yi of sort si ∈ S′, i = 1, . . . , n, if rew(xi, yi) holds, then
rew(f(x1, . . . , xn), f(y1, . . . , yn)) also holds.

Let Σi, i ∈ {1, 2} be two Maude signatures and let ϕ : Σ1 → Σ2 be a Maude signature
morphism. Then its translation Φ(ϕ) : Φ(Σ1) → Φ(Σ2), denoted φ, is defined as follows:

for each s ∈ S, φ(s) = ϕsort(s) and for each k ∈ K, φ(k) = ϕkind (k).

the subsort preservation condition of φ follows from the similar condition for ϕ.

for each operation symbol σ, φ(σ) = ϕop(σ).

rew is mapped to itself.
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The sentence translation map for each signature is obtained in two steps. While the
equational atoms are translated as themselves, membership atoms t : s are translated to
Casl memberships t in s and rewrite atoms of the form t ⇒ t′ are translated as rew(t, t′).
Then, any sentence in Maude of the form (∀xi : ki)H =⇒ C,2 where H is a conjunction
of Maude atoms and C is an atom, is translated as (∀xi : ki)H ′ =⇒ C ′, where H ′ and
C ′ are obtained by mapping all the Maude atoms as described before.

Given a Maude signature Σ, a model M ′ of its translated theory (Σ′, E) is mapped to
a Σ-model denoted M where:

for each kind k, define Mk = M ′
k and the preorder relation on Mk is rew ;

for each sort s, define Ms to be the image of M ′
s under the injection inj s,kind(s)

generated by the subsort relation;

for each f on kinds, let Mf (x1, . . . , xn) = M ′
f (x1, . . . , xn) and for each f on sorts

of result sort s, let Mf (x1, . . . , xn) = inj s,kind(s)(M ′
f (x1, . . . , xn)). Mf is monotone

because axioms ensure that M ′
f is compatible with rew .

The reduct of model homomorphisms is the expected one.
Let Σ be a Maude signature, M ′, N ′ be two Φ(Σ)-models (in Casl) and let h′ : M ′ →

N ′ be a model homomorphism. Let us denote M = βΣ(M ′), N = βΣ(N ′) and let us define
h : M → N as follows: for any kind k of Σ, hk = h′k (this is correct because the domain
and the codomain match, by definition of M and N). We need to show that h is indeed
a Maude model homomorphism. For this, we need to show three things:

1. hk is preorder preserving for any kind k.

Assume x ≤M
k y. By definition, the preorder on Mk is the one given by rew ,

so this means Mrew (x, y) holds. By the homomorphism condition for h′ we have
Nrew (h′(x), h′(y)) holds, which means by definition of the preorder on N that h′(x) ≤N

k

h′(y).

2. h is an algebra homomorphism.

This follows directly from the definition of Mf where f is an operation symbol and
from the homomorphism condition for operation symbols for h′.

3. for any sort s, hkind(s)(Ms) ⊆ Ns.

By definition, Ms = inj s,kind(s)(M ′
s). By the homomorphism condition for inj s,kind(s),

which is an explicit operation symbol in Casl, we have that

hkind(s)(Ms) = hkind(s)(inj s,kind(s)(M
′
s)) = inj s,kind(s)(hs(M ′

s)).

Since hs(M ′
s) ⊆ N ′

s by definition, we have that inj s,kind(s)(hs(M ′
s)) ⊆ inj s,kind(s)(N ′

s),
which by definition is Ns.

4.3 Development graphs

For proof management, Hets uses development graphs [62]. They can be defined over
an arbitrary institution and are used to encode structured specifications in various phases

2The declaration of any variable x of sort s is substituted by a variable x of kind kind(s) and a
membership axiom x : s.
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of the development. Roughly speaking, each node of the graph represents a theory, while
links define how theories can make use of other theories. In this way, we represent complex
specifications by representing each component (e.g. each module) as a node in the devel-
opment graph and the relation between them (e.g. importations and proof obligations) as
links. We give in this section the intuitions behind development graphs, while the formal
definitions can be found in [24].

Definition 13 A development graph is an acyclic, directed graph DG = 〈N ,L〉.
N is a set of nodes. Each node N ∈ N is a pair (ΣN ,ΦN ) such that ΣN is a signature

and ΦN ⊆ Sen(ΣN ) is the set of local axioms of N , (e.g. in the Maude case these
sentences are the equations, membership axioms, and rules declared—not imported—in
the module represented in the node).

L is a set of directed links, so-called definition links, between elements of N . We
are interested in two kinds of links from a node M to a node N :

global (denoted M
σ +3 N), that indicate that the sentences in M are included,

renamed by σ, into the theory in N (since all the nodes contain a signature, the
renaming σ must make the signature in M equal to the corresponding (sub)signature
in N).

free (denoted M
σ

free
+3 N), that indicate that the signature in M is freely included,

under the renaming σ, into the theory in N .

In addition to these links we add a new one, denoted M
σ

n.p.free
+3 N, that stands for non-

persistent free links and will be used when dealing with protecting importations in
Maude modules. However, these links are only used for Maude specifications and thus are
nonstandard; we will show in the next section how these links and the associated nodes
are transformed into a new graph that only uses standard constructions. Intuitively, these
links indicate that no new elements can be added to the sorts, although they can be added
to the kind.

Complementary to definition links, which define the theories of related nodes, we intro-
duce the notion of a theorem link with the help of which we are able to postulate relations
between different theories. Theorem links are the central data structure to represent proof
obligations arising in formal developments. The idea is that a theorem link between the
nodes M and N , denoted M

σ +3___ ___ N, includes all the sentences in M , under a renaming
σ, as proof obligations in N .

4.3.1 Freeness constraints

Maude uses initial and free semantics intensively. However, its semantics of freeness is
different from the one used in Casl in that the free extensions of models are required to
be persistent only on sorts and new error elements can be added on the interpretation of
kinds. Attempts to design the translation to Casl in such a way that Maude free links
would be translated to usual free definition links in Casl have been unsuccessful, and thus
we decided to introduce the non-persistent free definitions links mentioned in the previous
section. In order not to break the development graph calculus, we normalize them by
replacing them with a semantically equivalent development graph in Casl. The main idea
is to make a free extension persistent by duplicating parameter sorts appropriately, such
that the parameter is always explicitly included in the free extension. The transformation
from Maude non-persistent free links to Casl free links is illustrated in Figure 4.2:
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M
n.p.free

σ +3

��

N

��

M ′

ιN
��

M ′′
free

σ#
+3 K

hide

ιN +3 N ′

Figure 4.2: Normalization of Maude free links

M ′ and N ′ stand for the translation from Maude to Casl of M and N along the
comorphism in Section 4.2.

M ′′ is an extension (the morphism ι is a renaming to make the signature distinct
from M) of M ′ where the signature has been extended with sorts [s] for each sort
s ∈ ΣM , such that s ≤ [s] and [s] ≤ [s′] if s ≤ s′; function symbols have been
extended with f : [w] → [s] for each f : w → s ∈ ΣM ; and new rew predicates have
been added for these sorts.

The node K has a signature ΣK that consists of the signature ΣM disjointly united
with the copy of ΣM generated in the previous step by ι, denoted ι(ΣM ) (let us
denote with ι(x) the corresponding symbol in this copy for each symbol x from the
signature ΣM ) and augmented with new operations h : ι(s) →? s, for any sort s of
ΣM (→? indicating it is a partial function) and makes : s → ι(s), for any sort s of the
source signature Σ of the morphism σ labelling the free definition link. The axioms
for these new function symbols, generated following the guidelines given in [61], are
beyond the scope of this chapter and are presented in depth in [24].

A (Casl) free link joins M ′′ with K, labeled with a morphism σ# that extends σ
with [s] 7→ [σ(s)] for each s ∈ ΣM .

Finally, a hiding link (basically, a link where the morphism is applied in the opposite
direction of the link—from N ′ to K in this case—and where some symbols, consid-
ered hidden, are not included in the target) working as an inclusion connects K and
N ′.

The generic treatment of freeness constraints in Casl specifications is contained in
the axioms of the node K. The generation of these axioms has been implemented while
integrating Maude and Hets, so the integration has as side effect the possibility of proving
freeness constraints in Casl and all the formalisms connected with it.

4.3.2 Development graph: An example

We show in this section how Maude specifications are translated to development graphs
by means of an example, while more details can be found in [23]. To show that development
graphs can deal with large specifications, we present the development graph for the Maude
prelude in Figure 4.3. Since the graph is too big to distinguish any details, it is worth
to zoom in some areas and study them carefully. We focus on lists of natural numbers,
as shown in Figure 4.4. The ingredients here are: (i) the modules BOOL and NAT for
Boolean and natural numbers; (ii) the theory TRIV requiring the existence of a sort Elt;
(iii) the parameterized module LIST defining generic lists over the elements defined in
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Figure 4.3: Development graph for the Maude prelude
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Figure 4.4: Development graph for the predefined lists of natural numbers

TRIV; (iv) two more theories STRICT-TOTAL-ORDER and TOTAL-ORDER, that import some
other theories, requiring that elements of sort Elt are a strict total order and a total
order, respectively; (v) three views Nat, Nat<, and Nat<= stating that we satisfy the
theories above by mapping the sort Elt to the sort Nat of the natural numbers; and (vi)
an instantiation of the module LIST with the view Nat. The development graph has:

One node for each Maude theory (like TOTAL-ORDER or STRICT-TOTAL-ORDER) con-
taining its corresponding theory (signature and sentences).

Two nodes for each module. One contains the complete theory and stands for the
usual loose semantics, and another one, linked to the first one with a free definition
link, contains the same signature but no local axioms and stands for the free model
of the theory. We identify the former with the name of the module (like nodes NAT
or LIST), while the latter is named with this identifier primed (NAT’ and LIST’).
We have omitted the subgraph for BOOL to simplify the graph.

A global definition link for including importations, like TRIV being imported by
STRICT-WEAK-ORDER, which is itself imported by STRICT-TOTAL-ORDER.

A global definition link when a theory is used in a formal parameter, as LIST, that is
parameterized by a parameter of the form X :: TRIV. This link is labeled, as shown
in Figure 4.5, with the morphism Elt 7→ X$Elt (moreover, since the sort Elt is
declared a subsort of List{X}, the kind of Elt is mapped to the kind of List{X}),
which qualifies the sort with the parameter name.

A theorem link for each view. These theorem links have as source the node standing
for the theory used as source of the view and as target the node standing for the
free model of the target module. For example, the view Nat, that has TRIV as source
and NAT as target, generates the theorem link between TRIV and NAT’.

A new node for each instantiation. This node is the target of several global definition
links, one from the parameterized module and another one from the node standing
for the free model of the target of each view used as parameter. For example,
LIST{Nat} instantiates the module LIST with the view Nat. It is interesting to see
that the link from LIST to LIST{Nat} is labeled, as shown in Figure 4.6, with the
morphism X$Elt 7→ Nat, List{X} 7→ List{Nat}, NeList{X} 7→ NeList{Nat}, which
indicates that the sort X$Elt has been mapped to Nat and the parameter has been
instantiated with the view Nat.

The main point of using development graphs, in addition to graphically represent
Maude specifications, is to ease heterogeneous verification. A calculus of development
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Figure 4.5: Morphism from TRIV to LIST

graphs is integrated into Hets in such a way that development graphs are transformed to
deal with proof obligations. In the current case, we are interested in the Automatic trans-
formation available in the Edit/Proofs menu: among other transformations, it “pushes”
the proof obligations in theorem links to the target nodes, in order to prove them there.
The result of applying this command to the previous development graph is shown in Fig-
ure 4.7, where the node NAT’, displayed in red by Hets, indicates that it has pending proof
obligations. We can use the Prove option available in the node menu, that opens the win-
dow in Figure 4.8, where the different axioms (either in the theory or to be proved) can
be displayed, and the theorem provers can be selected. In our case, the axioms are related
to those equations stating that natural numbers conform a strict total order (transitive,
irreflexive, incomparability-transitive, and total properties) and a total order (reflexive,
transitive, total, and antisymmetric properties). These properties can be automatically
proved with SPASS, which allows Hets to turn the NAT’ node from red to green, shown in
Figure 4.9, which indicates that all proof obligations have been discarded. Actually, note
that these properties cannot be directly proved over the Maude natural numbers, because
all the operations are implemented in C++ and thus the module NAT lacks equations. The
proofs have been performed by using a Casl library that defines some of the Maude pre-
defined modules similarly to the expected Maude specifications,3 which is automatically
loaded when these modules are used. For example, the definition of the operator _<=_ in
this library is:

forall m,n : Nat
. 0 <= n = maudeTrue %(leq_def1_Nat)%
. suc(n) <= 0 = maudeFalse %(leq_def2_Nat)%
. suc(m) <= suc(n) = m <= n %(leq_def3_Nat)%

where the maudeTrue, maudeFalse values stand for a renaming of the Maude values true
and false in order to prevent clashes with the Casl constants with the same name, and
the strings on the right are just labels for the equations. Of course, this proof works

3An example of heterogeneous system! It combines the implementation of Hets in Haskell, a parser
for Maude specifications written in Maude itself, and Casl libraries.
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Figure 4.6: Morphism from LIST to LIST{Nat}

Figure 4.7: Development graph after using Automatic

in the same way if we define the corresponding equations in Maude and prove the proof
obligations in the node generated by that module.

Unfortunately, not all the proof obligations required by Maude specifications can be
automatically discharged. In [24] we proved that reversing a list twice returns the original
list. To do it we used the freeness transformations sketched in Section 4.3.1 to normal-
ize the development graph and then we applied the standard transformations over it to
discharge the proof obligations.

4.4 Implementation

We briefly describe here the implementation steps required to integrate Maude into
Hets:

Abstract syntax. First, the abstract syntax for Maude specifications must be defined
in Haskell. This abstract syntax is based on the Maude grammar presented in [20,
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Figure 4.8: Window for proving proof obligations

Chapter 24].

Maude parsing. We must also describe how the Maude specifications introduced in
Hets are parsed in order to obtain a term following the abstract syntax above.
We are able to implement this parsing in Maude itself thanks to Maude’s metalevel
[20, Chapter 14], a module that allows the programmer to use Maude entities such as
modules, equations, or rules as usual data by efficiently implementing the reflective
capabilities of rewriting logic [21].

By using this feature we have developed a function that receives a module and returns
a list of quoted identifiers standing for an object following the abstract syntax, that
can be read by Haskell because the data types derive the class Read.

Logic. Once the Maude modules have been translated into their abstract syntax, we
must implement the Haskell type classes Language and Logic provided by Hets,
that define the types needed to represent each logic as an institution and the comor-
phisms between them. To do so, we relate each element in these classes (signature,
sentences, morphisms, and so on) with the corresponding element in the abstract
syntax, following the theory described in the previous sections. More details about
this step can also be found in [50], whose main focus is the implementation of this
step.

Development graph. Given the options received from the command line and the path of
the Maude file to be parsed we must compute in Haskell the associated development
graph. In fact, we build two different development graphs, the first one containing
the modules used in the Maude prelude and another one with the user specification,
following in both cases the ideas described in the previous sections.

Comorphism. Given a Maude signature and a list of Maude sentences, we must im-
plement in Haskell the translation to the corresponding Casl signature and Casl
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Figure 4.9: Development graph after discarding the proof obligations

sentences.

Freeness constraints. Finally, we have implemented in Haskell how, given a Casl signa-
ture and a set of Casl sentences, the freeness constraints described in Section 4.3.1
are generated.

4.5 Contributions

In this chapter we have presented an integration of Maude into Hets. The main
contributions of this work are:

Institution and comorphism. An institution for Maude has been defined. This insti-
tution is based on preordered algebras, since an institution for rewriting logic is not
necessary for Maude for the time being, and uses as sentences equations, member-
ships, and rules, differently from the proposal in [17] that only used (unconditional)
rules, and allows nontrivial signature morphisms, unlike the institution in [77], which
used a discrete category of signatures. We have also defined a comorphism from this
institution to the institution of Casl, the central logic of Hets, which combines
first-order logic and induction.

Development graph. The modules, theories, views, and structuring mechanisms of
Maude have been incorporated to development graphs. In this way, we can now
represent Maude specifications as development graphs, where modules and theories
are represented as nodes and importations and views as links between these nodes.

Freeness constraints. We have developed, at the Casl level, a transformation that
allows us to prove freeness constraints for those specifications that use the standard
freeness links available in Hets and have a translation to Casl. However, this is not
the case of Maude, which requires a specific treatment of freeness. For this reason,
a new kind of link has been introduced in the calculus of development graphs, that
is later normalized into the usual freeness link in order to use the transformation
explained before.

Proofs. As a “corollary” of the contributions above, Maude has been integrated into
Hets, which allows to prove properties over Maude specifications with the provers
already integrated within Hets.
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Chapter 5

Concluding Remarks and Future
Work

The contributions of this thesis are:

We have presented a state-of-the-art declarative debugger for Maude specifications.
This debugger allows the user to debug both wrong and missing answers caused by
wrong and missing statements and wrong search conditions. A great effort has been
devoted to improving the usability of this tool, providing techniques to shorten and
improve the debugging tree, different navigation strategies, several different answers,
trusting mechanisms, a graphical user interface, and an original feature: different
debugging trees can be built depending on the complexity of the specification and
the knowledge of the user. Finally, since the debugging trees are built following a
formal calculus, we have proved the soundness and completeness of the technique.

We have integrated Maude into Hets, which allows to use Hets tools, and par-
ticularly its theorem provers, with Maude specifications. This integration has been
achieved by (i) defining an institution for Maude and (ii) translating the structuring
mechanisms of Maude into development graphs. Moreover, we have also implemented
a transformation that allows the user to prove freeness constraints in general theories
(not necessarily in Maude specifications).

The work presented in this thesis offers a good basis for potential extensions and
enrichment that can improve its usability and generality. As future work for our debugger,
we plan to add new navigation strategies like the ones shown in [94] that take into account
the number of different potential errors in the subtrees, instead of their size. Moreover,
the current version of the tool allows the user to introduce a correct but maybe incomplete
module in order to shorten the debugging session. We intend to add a new command to
introduce complete modules (that is, we would let the system know that all the correct
inferences that can be done in the specification being debugged can also be done in this
complete module), which would greatly reduce the number of questions asked to the user.

We are currently working on a test generator for Maude specifications that, combined
with the debugger, will allow the user to test and debug specifications with the same
tool. A first step in this project has been the development of a test-case generator for
Maude functional modules [84], which is able to generate test cases for these modules and
check their correctness with respect to a given specification or select a subset of these test
cases to be checked by the user by using different strategies; since these processes are very
expensive we also present different trusting techniques to ease them. We are currently
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working to improve the performance of this test-case generator, applying techniques as
narrowing and using distributed architectures, and to extend it to test Maude system
modules; since these modules are not required to be either terminating or confluent, the
test cases generated for this kind of modules are completely different from the ones for
functional modules.

On the Hets side, since interactive proofs are not easy to conduct, future work will
move in the direction of making proving more efficient by adopting automated induction
strategies like rippling [29]. Moreover, we intend to use the automatic first-order prover
SPASS for induction proofs by integrating special induction strategies directly into Hets.

We are also studying the possible comorphisms from Casl to Maude. We distinguish
whether the formulas in the source theory are confluent and terminating or not. In the first
case, that we plan to check with the Maude termination [30] and confluence [31] checkers,
we map formulas to equations, whose execution in Maude is more efficient, while in the
second case we map formulas to rules.

Finally, we also plan to relate Hets’ Modal Logic and Maude models in order to use
the Maude model checker [20, Chapter 13] for linear temporal logic.
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Caṕıtulo 6

Introducción

Esta tesis empezó en Illinois hace alrededor de cuatro años, aunque nosotros aún no
lo supiésemos, cuando Narciso Mart́ı, Francisco Durán y Santiago Escobar introdujeron
inadvertidamente un error en la especificación de la función de Fibonacci mientras escrib́ıan
un caṕıtulo del libro de Maude:

fib(0) = 0
fib(1) = 1
fib(n) = fib(n− 1) + fib(n− 2) si n > 1

En vez de definir la función como se muestra arriba, la suma del tercer caso fue escrita
como una multiplicación, haciendo que la especificación fuese incorrecta. Por insignificante
que parezca, llevó mucho tiempo solucionar este error, lo que resultó en un proyecto para
desarrollar un depurador declarativo para especificaciones en Maude.

En efecto, programar es un proceso en el que suelen aparecer errores que necesitan ser
corregidos para obtener el comportamiento pretendido por el usuario. Por esta razón se han
desarrollado diversos mecanismos para encontrar los errores introducidos por el progra-
mador, dando lugar a una técnica llamada depuración. Supongamos que implementamos
la función de Fibonacci en Maude, incluyendo el error antes mencionado:1

op fib : Nat -> Nat .
eq fib(0) = 0 .
eq fib(1) = 1 .
ceq fib(n) = fib(n - 1) * fib(n - 2) if n > 1 .

La técnica de depuración mejor conocida es el uso de puntos de ruptura. Un punto de
ruptura simplemente indica una pausa en la ejecución de un programa cuando se alcanza
cierto punto previamente indicado por el programador. En el programa anterior podŕıamos
colocar un punto de ruptura en la última ecuación y, una vez alcanzado este, continuar con
la ejecución del programa paso a paso para comprobar el resultado de n - 1, de n - 2, de
la aplicación de fib a los correspondientes resultados, y el resultado final de la función. De
esta manera obtendŕıamos los valores de las llamadas recursivas y el resultado de la función
y podŕıamos compararlos con los esperados. Siguiendo esta estrategia, muchos lenguajes
de programación también proporcionan trazas como medio para depurar programas. Este
método muestra cada paso al usuario (donde la definición de paso depende del lenguaje
de programación y normalmente puede ser personalizado por el usuario) y su resultado.

1Aunque no hayamos explicado aún la sintaxis de Maude, consideramos que esta definición puede
entenderse fácilmente.

67
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2 > 1
2 - 1→ 1 fib(1)→ 1

fib(2 - 1)→ 1
2 - 2→ 0 fib(0)→ 0

fib(2 - 2)→ 0 1 * 0→ 0
fib(2)→ 0

Figura 6.1: Árbol de ejecución para el ejemplo de Fibonacci

No es casualidad que, dado que el paradigma de programación más usado es el impe-
rativo, estas técnicas estén especialmente diseñadas para programas de este tipo, ya que
en ellas cada instrucción se ejecuta en un orden previamente fijado por el usuario (las ins-
trucciones de control como los condicionales o los bucles se pueden seguir fácilmente una
vez se saben los valores de las variables), pero estas premisas no se dan en los lenguajes
declarativos. La separación entre la lógica (qué se espera que el programa calcule) y el
control (cómo se espera que los cálculos se lleven a cabo) es una de las principales venta-
jas de estos lenguajes, pero también supone una complicación cuando se trata de depurar
resultados erróneos. De hecho, la complejidad de los mecanismos de control dificulta la
aplicación de las técnicas de depuración paso a paso utilizadas en lenguajes imperativos.

La depuración declarativa (también conocida como depuración algoŕıtmica o diagnosis
abstracta) es una técnica de depuración que abstrae los detalles de ejecución y se centra
en los resultados, lo que resulta muy adecuado para depurar lenguajes declarativos. Es
importante notar que la palabra declarativa en “depuración declarativa” se refiere a esta
abstracción de los detalles de ejecución (como dećıamos antes, qué se computa) y no a su
aplicación a lenguajes declarativos, es decir, la depuración declarativa puede ser aplicada (y
lo ha sido, como veremos en el caṕıtulo 8) a lenguajes imperativos. Este tipo de depuración
consta de dos fases: en la primera, se construye una estructura de datos representando el
cómputo (el árbol de depuración), donde el resultado concluido en cada nodo debe ser
consecuencia de los resultados en los nodos hijos. Este árbol se suele construir usando un
cálculo formal que permite al diseñador probar la corrección y la completitud de la técnica.
En la segunda fase se recorre esta estructura siguiendo una estrategia de navegación y
haciendo preguntas a un oráculo (normalmente el usuario) hasta que se encuentra el error.

Volviendo al ejemplo de Fibonacci, supongamos que evaluamos fib(2). El resultado
devuelto por nuestra función debeŕıa ser 0, porque la condición se cumple (2 es mayor
que 1), 2 - 1 es 1, fib(1) se evalúa a 1, 2 - 2 es 0, fib(0) se evalúa a 0 (y estos
resultados son los esperados) y el producto de estos resultados es 0. Es decir, el árbol de
depuración debeŕıa tener la forma mostrada en la figura 6.1, donde la idea básica es que
los resultados en cada nodo son consecuencia de los resultados en sus hijos. La depuración
declarativa procedeŕıa ahora preguntando a un oráculo (el programador en este caso,
aunque algunas veces se pueden usar otros, como una especificación correcta) sobre la
corrección de los nodos con respecto al comportamiento que el programador teńıa en mente
mientras implementaba el sistema, la semántica pretendida del sistema. El objetivo de la
navegación es encontrar un nodo incorrecto (con respecto a esta semántica pretendida) con
todos sus hijos correctos (con respecto a esta semántica pretendida): el nodo defectuoso
(buggy node en inglés), que en este caso es la ráız del árbol. En general, los nodos del árbol
están etiquetados para permitir al usuario identificar el error; este etiquetado depende
del lenguaje de programación y del cálculo utilizado para crear el árbol de depuración.
En el caso de Maude distinguimos cada ecuación por medio de etiquetas, y por tanto en
este caso el depurador señalaŕıa a la última ecuación como defectuosa (en la figura 6.1 las
inferencias en todos los nodos excepto en la ráız, que intuitivamente está asociada a la
última ecuación, son correctas).

Como hemos visto, el proceso de depuración empieza con un śıntoma inicial que revela
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que el programa es incorrecto, como la evaluación de fib(2) a 0 en el ejemplo anterior.
En nuestro esquema distinguimos dos tipos de respuestas (o resultados) obtenidos por el
sistema dando lugar a estos śıntomas iniciales: respuestas erróneas, que son resultados
incorrectos obtenidos a partir de un valor de entrada válida (como en el ejemplo anterior);
y respuestas perdidas, que son resultados incompletos obtenidos a partir de un valor de en-
trada válida (por ejemplo, obtener 1 + fib(0) al evaluar fib(2), lo cual es correcto pero
no es el resultado final esperado). Aunque ambos tipos de errores pueden ser depurados
usando depuración declarativa, la depuración de respuestas perdidas ha sido mucho menos
estudiada porque el cálculo utilizado es mucho más complejo en general que el usado para
respuestas erróneas y, además, suele relacionarse en general con sistemas no deterministas,
una caracteŕıstica asociada a los lenguajes declarativos.

6.1 Depuración declarativa para Maude

En esta tesis presentamos un depurador declarativo para especificaciones en Maude.
Maude [20] es un lenguaje declarativo basado en lógica ecuacional y lógica de reescritura
para la especificación e implementación de una amplia gama de modelos y sistemas. Los
módulos funcionales de Maude son especificaciones en lógica ecuacional de pertenencia, y
permiten al usuario definir tipos de datos y operaciones sobre ellos mediante teoŕıas en
esta lógica que proporcionan múltiples tipos (sorts en inglés), relaciones de subtipado,
ecuaciones y aserciones de pertenencia a un tipo. Los módulos de sistema de Maude son
especificaciones en lógica de reescritura que, además de los elementos presentes en los
módulos funcionales, permiten definir reglas de reescritura que representan transiciones
entre estados. Por el momento solo estamos interesados en el hecho de que las ecuaciones
y los axiomas de pertenencia deben ser terminantes y confluentes, mientras que las reglas
pueden ser no terminantes y no confluentes. De ahora en adelante, llamaremos reducción a
la evaluación de un término usando ecuaciones y reescritura a la evaluación de un término
usando reglas y ecuaciones (quizás ninguna).

Es decir, las especificaciones en Maude se componen de ecuaciones t1 = t2, que se
deben entender como t1 y t2 son iguales, axiomas de pertenencia t : s, estableciendo que t
tiene tipo s, y reglas de reescritura t1 ⇒ t2, que indican que t1 se reescribe a t2. Con estas
premisas, podemos identificar fácilmente qué tipo de respuestas erróneas pueden aparecer
en Maude: t2 se obtiene a partir de t1 usando ecuaciones o reglas pero t2 no debeŕıa ser
alcanzable desde t1, y el tipo s ha sido inferido para t pero el término no tiene ese tipo.
Es un poco más complicado definir las respuestas perdidas: dado que las ecuaciones deben
ser terminantes y confluentes, el usuario espera obtener, dado un término inicial, un único
término al cual no se le pueden aplicar más ecuaciones (es decir, una forma normal); por
tanto, si obtiene un término alcanzable pero que no está en forma normal (como 1+fib(0)),
entonces es una respuesta perdida. Además, los tipos en Maude están ordenados (por
una relación de subconjunto) y por tanto el usuario espera que los términos tengan un
tipo mı́nimo único; una respuesta perdida es aquella que infiere como tipo mı́nimo de un
término un tipo correcto pero que no es el menor. Por último, las respuestas perdidas en
módulos de sistema son más fáciles de caracterizar: dado que las reglas no se espera que
sean confluentes, un término puede reescribirse en general a un conjunto de términos; si
este conjunto es menor que el esperado por el usuario, entonces hemos encontrado una
respuesta perdida.

Para depurar estos errores hemos desarrollado un cálculo que nos permite inferir to-
dos los śıntomas descritos, es decir, reducciones, inferencias de tipos, reescrituras, formas
normales, tipos mı́nimos y conjuntos de términos alcanzables dadas ciertas condiciones,
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las cuales se corresponden con las impuestas por Maude en su comando search. Usando
este cálculo podemos construir árboles de prueba que pueden ser usados como árboles de
depuración para el proceso de depuración declarativa. Usando estos árboles somos capaces
de detectar diversas causas que pueden provocar los errores: ecuaciones, axiomas de per-
tenencia, reglas y condiciones (usadas para calcular el conjunto de términos alcanzables)
erróneas, y ecuaciones, axiomas de pertenencia y reglas perdidas (es decir, sentencias—
statement en inglés—que debeŕıan ser parte de la especificación y que sin embargo no
lo son). Aunque estos árboles permitiŕıan al usuario depurar sus especificaciones, hemos
desarrollado una técnica de poda que reduce y simplifica las preguntas hechas al oráculo,
tratando de esta manera los principales problemas de la depuración declarativa: el núme-
ro y la complejidad de las preguntas. Además, esta técnica permite al usuario construir
diferentes árboles de depuración dependiendo de la complejidad de la especificación y de
su conocimiento sobre ella, lo que constituye una aportación original de este trabajo. Esta
técnica, que hemos llamado Árbol de Prueba Abreviado (APT por sus siglas en inglés),
descarta aquellos nodos cuya corrección se pueda inferir de la corrección de sus hijos, y
modifica otros para realizar preguntas que simulan el comportamiento de Maude y que,
por tanto, debeŕıan ser más fáciles de contestar. Además de esta técnica para mejorar los
árboles de prueba, también permitimos al usuario confiar en algunas sentencias, términos
y módulos. Por último, proporcionamos una interfaz gráfica de usuario para facilitar la
interacción entre los usuarios y la herramienta.

Este depurador declarativo se ha desarrollado en varios pasos, empezando con la funcio-
nalidad mı́nima y añadiendo progresivamente más funciones. Este desarrollo se ve reflejado
en nuestras publicaciones en esta materia:

Empezamos tratando respuestas erróneas (que, como hemos comentado anteriormen-
te, tienen un cálculo asociado más sencillo que las respuestas perdidas) en módulos
funcionales (los cuales son un subconjunto de los módulos de sistema). La función
APT aplicada a los árboles calculados en esta fase inicial generaba un único árbol
de depuración, en el cual se hab́ıan podado ciertos nodos mientras otros se hab́ıan
modificado para simplificar las preguntas asociadas. Esta versión ya permit́ıa con-
fiar en sentencias y en módulos completos, e incluso usar un módulo correcto como
oráculo. Este trabajo se presentó en [13, 14].

La extensión natural de esta herramienta consist́ıa en añadir la capacidad de depurar
respuestas erróneas en módulos de sistema. Además de definir un nuevo cálculo y
adaptar las funcionalidades ya existentes a este tipo de depuración, la transformación
APT para esta versión del depurador permit́ıa al usuario generar dos árboles de
depuración diferentes, dependiendo de la complejidad de la aplicación. Este trabajo
fue presentado en [86].

Una descripción del sistema completo para depurar respuestas erróneas en cualquier
especificación en Maude se presentó en [90].

Una vez completada la depuración de respuestas erróneas, el siguiente paso “natural”
era depurar respuestas perdidas en módulos funcionales. El cálculo usado en este tipo
de depuración extend́ıa el cálculo anterior, aunque era mucho más complejo: mientras
el anterior solo indicaba qué estaba ocurriendo, este nuevo cálculo también indicaba
qué no estaba ocurriendo. Llamamos a estos tipos de información, respectivamente,
información positiva y negativa. Además de este nuevo cálculo, añadimos un nuevo
mecanismo de confianza, permitiendo al usuario indicar las formas normales. Este
trabajo se publicó en [88].
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Mejorando la herramienta, desarrollamos un depurador de respuestas tanto erróneas
como perdidas para cualquier especificación en Maude. El cálculo en esta fase usaba
las ideas ya presentadas para depurar respuestas perdidas en módulos funcionales:
teńıamos en cuenta información positiva y negativa. La función APT permit́ıa al
usuario construir dos nuevos tipos de árboles (los cuales son independientes de los
otros tipos de árboles, siendo cuatro el número de posibles combinaciones) y se
añadió un nuevo mecanismo de confianza: selección de tipos y operadores finales.
Este trabajo se presentó en [87].

Una descripción de la herramienta, centrándose en las funciones que no se describie-
ron en [90], se presentó en [89].

Una descripción completa e integrada del sistema, incluyendo todos los teoremas y
sus demostraciones, fue publicada en [91].

6.2 Integrando Maude en Hets para demostrar la corrección
de nuestras especificaciones

Una vez hemos arreglado todos los errores encontrados en nuestros programas, ¿po-
demos afirmar que son correctos? La mejor respuesta que podemos dar es son correctos
mientras no encontremos nuevos problemas. No obstante, esta no es una respuesta muy
satisfactoria; lo que querŕıamos es demostrar que nuestros programas cumplen ciertas pro-
piedades como vivacidad (liveness en inglés) o que satisfacen ciertas fórmulas de primer
orden. Los sistemas formales como Maude proporcionan ciertos métodos que permiten
al usuario realizar algunos análisis, como el comprobador de modelos para lógica lineal
temporal o la comprobación de invariantes mediante búsqueda, pero es improbable que un
solo sistema puede proporcionar alguna vez todas las herramientas necesarias para cada
posible análisis que puede precisar un programador. Además es natural, cuando se diseñan
sistemas grandes, especificar cada una de sus partes de diferentes formas. Una pregunta
interesante que surge en estos sistemas es: ¿cómo interactúan estas distintas partes entre
si?

Para solucionar todos estos problemas se emplean especificaciones heterogéneas, que
permiten al programador usar diferentes formalismos y que están ganando importancia en
la actualidad, especialmente en áreas donde la seguridad es cŕıtica y no se puede correr el
riesgo de sufrir un error. Algunas de las aproximaciones heterogéneas actuales se mantienen
deliberadamente informales, como UML. En general, muchos de estos sistemas tienen la
desventaja de no ser formales o de ser unilaterales, en el sentido de proporcionar solo
una lógica (y un único demostrador de teoremas) el cual sirve como dispositivo central
de integración, incluso aunque esta lógica central pueda no necesitarse o desearse para
aplicaciones particulares.

El Conjunto Heterogéneo de Herramientas (Hets por sus siglas en inglés) [61, 64, 65]
es una herramienta de integración flexible, formal (es decir, basada en una semántica ma-
temática) y multilateral que proporciona análisis sintáctico y estático y herramientas de
demostración para especificaciones heterogéneas al combinar varios lenguajes de especifi-
cación individuales.

Hets está basado en un grafo de lógicas y lenguajes, sus herramientas y sus tra-
ducciones. Esto proporciona una semántica clara para las especificaciones heterogéneas
y el correspondiente cálculo de demostraciones. Para gestionar las demostraciones utiliza
el cálculo de los grafos de desarrollo [62]. Este cálculo, conocido por otros sistemas de
gestión de demostraciones a gran escala como MAYA [5], representa las especificaciones
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usando nodos para cada unidad del programa (por ejemplo módulos) y aristas para las
relaciones entre ellos (por ejemplo relaciones de importación y obligaciones de prueba),
proporcionando una visión de conjunto de la jerarqúıa de módulos de la especificación
heterogénea y del estado actual de las demostraciones, y puede por tanto ser usado para
monitorizar la corrección del sistema. Para facilitar la especificación heterogénea Hets
proporciona el lenguaje de especificación heterogéneo HetCasl. Este lenguaje está basado
en el Lenguaje Común de Especificación Algebraica (Casl por sus siglas en inglés) [66],
un lenguaje basado en lógica de primer orden que funciona como lógica central de Hets.

En esta tesis se describe cómo hemos integrado Maude en Hets, lo que permite usar las
herramientas ya integradas en Hets (especialmente sus demostradores de teoremas) con
especificaciones en Maude. Para lograr esta integración hemos tenido que (i) definir una
institución para Maude, y un comorfismo desde esta institución a la de Casl (explicaremos
qué son las instituciones y los comorfismos en el caṕıtulo 7; por ahora, consideremos sim-
plemente que una institución es una manera de formalizar una lógica y un comorfismo una
traducción entre instituciones), (ii) definir cómo las especificaciones en Maude se traducen
a grafos de desarrollo y (iii) implementar mecanismos (al nivel de Casl, es decir, accesibles
a todas las lógicas conectadas con Casl) para manejar restricciones de extensiones libres
(freeness constraints en inglés), que aparecen al usar un tipo concreto de importación en
Maude que se explicará en el próximo caṕıtulo. Este trabajo se publicó en [24]; información
más detallada se puede encontrar en [23].

6.3 Resumen

Esta tesis se divide en tres partes. Esta parte presenta el resumen de la investigación
en español, siguiendo el siguiente esquema:

El caṕıtulo 7 introduce las nociones básicas necesarias para comprender el resto de
la tesis: la sección 7.1 presenta la lógica de reescritura y Maude, mientras que la
sección 7.2 introduce las instituciones y los comorfismos.

El caṕıtulo 8 presenta el depurador declarativo. Mostramos el cálculo unificado que
permite depurar tanto respuestas erróneas como perdidas, la función APT y los
mecanismos de confianza. Por último, presentamos brevemente cómo usar la interfaz
gráfica.

El caṕıtulo 9 muestra cómo verificar especificaciones heterogéneas. Se presenta Hets,
sus mecanismos de representación de especificaciones estructuradas (los grafos de
desarrollo) y sus técnicas para trabajar con diferentes lógicas, permitiendo al usuario
demostrar propiedades de especificaciones en Maude con otras herramientas.

El caṕıtulo 10 concluye y presenta futuras ĺıneas de investigación.

La parte I presenta el resumen de la investigación en inglés, siguiendo la misma estruc-
tura que esta parte. Por último, la parte III presenta las publicaciones relacionadas con la
tesis como fueron originalmente publicadas.



Caṕıtulo 7

Preliminares

7.1 Maude

Como se dijo en la introducción, Maude es un lenguaje declarativo basado tanto en
lógica ecuacional de pertenecia como en lógica de reescritura. En esta sección explicamos
estas lógicas y los módulos de Maude usados para representarlas. Mucha más información
se puede encontrar en el libro de Maude [20].

7.1.1 Lógica ecuacional de pertenencia

Una signatura en lógica ecuacional de pertenencia es una terna (K,Σ, S) (Σ de ahora en
adelante), con K un conjunto de familias (kind en inglés), Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K

una signatura heterogénea (many-kinded en inglés) y S = {Sk}k∈K una colección de
conjuntos de tipos, disjuntos dos a dos, indexados por K. La familia de un tipo s se
denota como [s]. Escribimos TΣ,k y TΣ,k(X) para referirnos, respectivamente, al conjunto
de Σ-términos cerrados (ground en inglés) con familia k y de Σ-términos con familia
k con variables en X, donde X = {x1 : k1, . . . , xn : kn} es un conjunto de variables
sobre K. Intuitivamente, los términos con una familia pero sin tipo representan elementos
indefinidos o de error.

Las fórmulas atómicas de la lógica ecuacional de pertenencia son ecuaciones t = t′,
donde t y t′ son Σ-términos con la misma familia, y sentencias de pertenencia de la forma
t : s, donde el término t tiene familia k y s ∈ Sk. Las sentencias (sentence en inglés)
son cláusulas de Horn universalmente cuantificadas de la forma (∀X) A0 ⇐ A1 ∧ · · · ∧An,
donde cada Ai puede ser tanto una ecuación como una sentencia de pertenencia, y X
es un conjunto de variables sobre la familia K que contiene todas las variables en los
correspondientes Ai. Una especificación es un par (Σ, E), donde E es un conjunto de
sentencias en lógica ecuacional de pertenencia sobre la signatura Σ.

Los modelos de la lógica ecuacional de pertenencia son Σ-álgebras A compuestas por
un conjunto soporte Ak para cada familia k ∈ K, una función Af : Ak1 ×· · ·×Akn −→ Ak

para cada operador f ∈ Σk1...kn,k y un subconjunto As ⊆ Ak para cada tipo s ∈ Sk.
Dada un Σ-álgebra A y una valuación σ : X −→ A asignando valores en el álgebra a las
variables, el significado [[t]]σA de un término t se define de forma inductiva de la manera
habitual. De esta manera, un álgebra A satisface, dada una valuación σ,

una ecuación t = t′, escrito A, σ |= t = t′, si y solo si ambos términos tienen el mismo
significado: [[t]]σA = [[t′]]σA; también se dice que la ecuación se cumple en el álgebra
bajo la valuación.

una sentencia de pertenencia t : s, escrito A, σ |= t : s, si y solo si [[t]]σA ∈ As.

73
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La satisfacción de cláusulas de Horn se define de la manera estándar. Cuando una
fórmula φ es satisfecha por todas las valuaciones, escribimos A |= φ y decimos que A es
un modelo de φ. Por último, cuando los términos son cerrados, las valuaciones no juegan
ningún papel y se pueden omitir. Una especificación en lógica ecuacional de pertenencia
(Σ, E) tiene un modelo inicial TΣ/E cuyos elementos son clases de equivalencia sobre E de
términos cerrados [t]E , y donde una ecuación o una sentencia de pertenencia se satisfacen
si y solo si se pueden deducir en E mediante un conjunto correcto y completo de reglas de
deducción [8, 57].

7.1.2 Módulos funcionales de Maude

Los módulos funcionales de Maude [20, caṕıtulo 4], con sintaxis fmod ... endfm, son
especificaciones ejecutables en lógica ecuacional de pertenencia y su semántica viene dada
por la correspondiente álgebra inicial en la clase de álgebras que satisfacen la especificación.

En un módulo funcional podemos declarar tipos (usando la palabra clave sort); rela-
ciones de subtipado entre tipos (subsort); operadores (op) para construir valores de estos
tipos, dados los tipos de sus argumentos y del resultado, y que pueden tener atributos co-
mo, por ejemplo, ser asociativo (assoc) o conmutativo (comm); sentencias de pertenencia
(mb) declarando que un término tiene un tipo; y ecuaciones (eq) identificando términos.
Tanto las sentencias de pertenencia como las ecuaciones pueden ser condicionales (cmb
y ceq). Las condiciones, además de condiciones de pertenencia y ecuaciones, pueden ser
ecuaciones de ajuste de patrones t := t′, cuyo significado matemático es el mismo que el
de una ecuación ordinaria t = t′ pero que operacionalmente se resuelven ajustando el lado
derecho t′ con el patrón en el lado izquierdo t, instanciando de esta manera las variables
nuevas en t.

Maude realiza inferencia de tipos de manera automática para los tipos declarados
por el usuario y sus correspondientes relaciones de subtipado. Por tanto, las familias no
se declaran expĺıcitamente, sino que se corresponden con las componentes conexas de la
relación de subtipado. La familia asociada a un tipo s se denota con [s]. Por ejemplo,
si tenemos los tipos Nat para los números naturales y NzNat para los naturales distintos
de cero con la relación NzNat < Nat, entonces [NzNat] = [Nat]. Una declaración de
operadores como

op _div_ : Nat NzNat -> Nat .

se entiende como una declaración al nivel de la familia

op _div_ : [Nat] [Nat] -> [Nat] .

junto a la correspondiente sentencia de pertenencia

cmb N div M : Nat if N : Nat and M : NzNat .

Una declaración de subtipado NzNat < Nat se entiende como una sentencia de pertenencia
condicional

cmb N : Nat if N : NzNat .

Los módulos funcionales deben satisfacer los requisitos de ejecutabilidad de ser con-
fluentes, terminantes y con tipos decrecientes [20]. En este contexto, las ecuaciones t = t′

se pueden orientar de izquierda a derecha, t → t′, y las condiciones ecuacionales u = v
pueden comprobarse encontrando un término común t tal que u → t y v → t; la notación
que usaremos en las reglas de inferencia y en los árboles de depuración de la sección 8.2
para esta situación es u ↓ v.
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7.1.3 Lógica de reescritura

La lógica de reescritura extiende la lógica ecuacional introduciendo la noción de re-
escrituras, que se corresponden con transiciones entre estados; es decir, mientras que las
ecuaciones se interpretan como igualdades y por tanto son simétricas, las reescrituras
denotan cambios que pueden ser irreversibles.

Una especificación en lógica de reescritura, o teoŕıa de reescritura, tiene la forma
R = (Σ, E, R),1 donde (Σ, E) es una especificación ecuacional y R es un conjunto de
reglas etiquetadas de la manera que describimos a continuación. Con esta definición se
muestra que la lógica de reescritura se construye sobre la lógica ecuacional, y por tanto la
lógica de reescritura está parametrizada con respecto a la version de esta lógica ecuacional
subyacente; en nuestro caso, Maude usa lógica ecuacional de pertenencia, descrita en las
secciones anteriores. Una regla condicional q en R tiene la forma2

q : (∀X) t ⇒ t′ ⇐
n∧

i=1

ui = u′i ∧
m∧

j=1

vj : sj ∧
l∧

k=1

wk ⇒ w′
k

donde q es la etiqueta de la regla, la cabecera es una reescritura y las condiciones pueden ser
ecuaciones, condiciones de pertenencia y reescrituras; ambos lados de la reescritura deben
tener la misma familia. Con estas reglas de reescritura se pueden deducir reescrituras de
la forma t ⇒ t′ usando las reglas de deducción presentadas en [56] (para más información
remitimos a [10]).

Los modelos de las teoŕıas de reescritura son llamados R-sistemas en [56]. Estos siste-
mas se definen como categoŕıas con una estructura de (Σ, E)-álgebra, junto a una trans-
formación natural para cada regla del conjunto R. De manera intuitiva, la idea es que
tenemos una (Σ, E)-álgebra, como las descritas en la sección 7.1.1, con transiciones entre
los elementos de cada conjunto Ak; además, estas transiciones deben satisfacer ciertos
requisitos: deben existir transiciones identidad para cada elemento, las transiciones se de-
ben poder componer secuencialmente, las operaciones en la signatura Σ están definidas
apropiadamente para las transiciones y tenemos suficientes transiciones correspondientes
a con las reglas en R. Las reglas de deducción de la lógica de reescritura propuestas en [56]
son correctas y completas con respecto a esta noción de modelo. Además, se pueden usar
para construir modelos iniciales. Dada una teoŕıa de reescritura R = (Σ, E, R), el modelo
inicial TΣ/E,R para R tiene una (Σ, E)-álgebra subyacente TΣ/E cuyos elementos son cla-
ses de equivalencia [t]E de Σ-términos cerrados módulo E, y hay una transición de [t]E
a [t′]E si existen términos t1 y t2 tales que t =E t1 ⇒∗

R t2 =E t′, donde t1 ⇒∗
R t2 signi-

fica que el término t1 puede reescribirse a t2 en cero o más pasos aplicándole reglas en
R, también escrito como [t]E ⇒∗

R/E [t′]E cuando la reescritura se considera en clases de
equivalencia [56, 27].

7.1.4 Módulos de sistema en Maude

Los módulos de sistema en Maude [20, caṕıtulo 6], con sintaxis mod ... endm, son
teoŕıas de reescritura ejecutables y su semántica viene dada por el correspondiente siste-
ma inicial en la clase de sistemas correspondiente a la teoŕıa de reescritura. Un módulo de

1No tratamos aqúı la formulación más compleja de lógica de reescritura con argumentos congelados;
para más información nos remitimos a [20].

2No es necesario que la condición use en primer lugar ecuaciones, después sentencias de pertenencia y
por último reescrituras; aunque usemos esta notación para abreviar la definición, las condiciones pueden
aparecer en cualquier orden.
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sistema puede tener todas las declaraciones de un módulo funcional y, además, declarar re-
glas (rl) y reglas condicionales (crl), cuyas condiciones pueden ser ecuaciones, ecuaciones
de ajuste de patrones, condiciones de pertenencia y reescrituras.

Los requisitos de ejecutabilidad de las ecuaciones y las sentencias de pertenencia en un
módulo de sistema son los mismos que en los módulos funcionales. Con respecto a las reglas,
la satisfacción de las condiciones en una regla de reescritura se intenta secuencialmente de
izquierda a derecha, resolviendo las condiciones de reescritura por medio de búsquedas;
por esta razón, podemos tener nuevas variables en estas condiciones, que se instanciarán
a lo largo del proceso de resolución (más detalles están disponibles en [20]). Además, la
estrategia seguida por Maude al reescribir mediante reglas es calcular la forma normal del
término con respecto a las ecuaciones antes de aplicar una regla. Está garantizado que
esta estrategia no omite ninguna posible reescritura cuando las reglas son coherentes con
respecto a las ecuaciones [101, 20]. De una manera similar a la confluencia, la coherencia
requiere que, dado un término t, para cada reescritura de t usando una regla en R a algún
término t′, si u es la forma normal de t con respecto a la parte ecuacional E, entonces hay
una reescritura de u con ciertas reglas en R a un término u′ tal que u′ =E t′.

7.1.5 Caracteŕısticas avanzadas

Además de los módulos considerados hasta ahora, presentamos algunas otras carac-
teŕısticas de Maude que se usarán a lo largo de este trabajo.

Modos de importación

Los módulos de Maude pueden importar otros módulos en tres modos diferentes:

El modo protecting (pr de manera abreviada) indica que no se puede añadir basura
ni confusión a los tipos importados, es decir, que no se introduzcan nuevos elementos
ni se identifiquen elementos que en el módulo importado eran diferentes.

El modo extending (ex de manera abreviada) indica que se pueden añadir nuevos
elementos pero no identificar elementos diferentes.

El modo including (inc de manera abreviada) permite tanto añadir nuevos ele-
mentos como identificar elementos diferentes.

Teoŕıas

Las teoŕıas se usan para declarar interfaces, es decir, las propiedades tanto sintácticas
como semánticas que deben ser satisfechas por los módulos usados para instanciar los
parámetros. Análogamente a los módulos, Maude proporciona dos tipos de teoŕıas: teoŕıas
funcionales y teoŕıas de sistema, con la misma estructura que los módulos homólogos,
pero con semántica laxa (a diferencia de los módulos, que tienen semántica inicial). Las
teoŕıas funcionales se declaran con las palabras clave fth ... endfth, mientras que las
teoŕıas de sistema usan th ... endth. Ambas pueden tener tipos, relaciones de subtipado,
operadores, variables, sentencias de pertenencia y ecuaciones, y pueden importar otras
teoŕıas y módulos. Las teoŕıas de sistema también pueden tener reglas. A diferencia de los
módulos, las teoŕıas no necesitan satisfacer ningún requisito de ejecutabilidad.
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Vistas

Usamos vistas para especificar cómo un módulo o teoŕıa destino satisface una cierta
teoŕıa fuente. En general, puede haber muchas maneras en las que los requisitos se ven
satisfechos por el módulo o teoŕıa destino; es decir, puede haber muchas vistas, cada una
especificando una interpretación particular de la teoŕıa fuente en el destino. En la definición
de una vista debemos indicar su nombre, la teoŕıa fuente, el módulo o teoŕıa destino, y
cómo asociar cada tipo y cada operador en la fuente con los correspondientes en el destino.
Tanto la fuente como el destino de una vista puede ser cualquier expresión de módulos,
con la expresión de módulo fuente evaluándose a una teoŕıa y la destino tanto a una teoŕıa
como a un módulo. Cada declaración de vista tiene asociada un conjunto de obligaciones
de prueba, esto es, por cada axioma en la teoŕıa fuente se debe cumplir que la traducción
del axioma por la vista sigue siendo cierto en el destino. Dado que el destino puede ser
un módulo interpretado con semántica inicial, verificar estas obligaciones de prueba puede
necesitar en general pruebas por inducción. Estas obligaciones no son descartadas por el
sistema. Un hecho importante sobre las vistas es que no pueden asociar etiquetas, y por
tanto no podemos identificar sentencias en la fuente con las correspondientes sentencias
en el destino.

Módulos parametrizados

Los módulos de Maude pueden estar parametrizados. Un módulo parametrizado tiene
la siguiente sintaxis:

mod M{X1 :: T1, . . . , Xn :: Tn} is ... endm

donde n ≥ 1. Los módulos funcionales parametrizados tienen una sintaxis análoga.
Llamamos interfaz a la parte {X1 :: T1, . . . , Xn :: Tn}, donde cada par Xi :: Ti es

un parámetro, cada Xi es un identificador (el nombre o etiqueta del parámetro) y cada
Ti es una expresión que identifica a una teoŕıa (la teoŕıa parámetro). El nombre de cada
parámetro en un interfaz debe ser único, aunque no hay restricciones de unicidad en las
teoŕıas parámetro de un módulo. Las teoŕıas parámetro de un módulo funcional deben ser
teoŕıas funcionales.

En un módulo parametrizado M , todos los tipos y las etiquetas que vengan de teoŕıas
en el interfaz se cualifican con sus nombres. Por tanto, dado un parámetro Xi :: Ti, cada
tipo S en Ti debe cualificarse como Xi$S, y cada etiqueta l en Ti se debe cualificar como
Xi$l. De hecho, el módulo parametrizado M se aplana de la siguiente manera. Para cada
parámetro Xi :: Ti se incluye una copia renombrada de la teoŕıa Ti, llamada Xi :: Ti. El
renombramiento lleva cada tipo S a Xi$S y cada etiqueta l a Xi$l. El renombramiento
se propaga por inclusiones anidadas de teoŕıas, pero no afecta a las importaciones de
módulos [20]. Aśı, si Ti incluye una teoŕıa T ′, cuando la teoŕıa renombrada Xi :: Ti se
crea y se incluye en M , la teoŕıa renombrada Xi :: T ′ también se creará y se añadirá en
Xi :: Ti. Sin embargo, el renombramiento no tendrá efecto en modulos importados por Ti o
T ′; por ejemplo, si BOOL es importado por alguna de estas teoŕıas no será renombrado, sino
importado sin cambios en M . Además, los tipos declarados en los módulos parametrizados
pueden estar también parametrizados, duplicando, omitiendo o reordenando parámetros.

Los argumentos de los módulos parametrizados se ligan a los parámetros formales me-
diante una instanciación. La instanciación requiere una vista por cada parámetro formal
al correspondiente argumento. Cada una de estas vistas se usa para ligar los nombres de
tipos, operadores, etc., en los parámetros formales a los correspondientes tipos, operadores
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(o expresiones), etc., en el argumento destino. La instanciación de un módulo parametri-
zado debe hacerse con vistas definidas previamente.

7.1.6 Condiciones y sustituciones

A lo largo de esta tesis, y especialmente al usar el cálculo de la Sección 8.2, solo vamos a
considerar un tipo especial de condiciones y sustituciones que operan sobre ellas, llamadas
admisibles, y que se corresponden con las usadas por Maude. Se definen de la siguiente
manera:

Definición 1 Una condición C ≡ C1 ∧ · · · ∧ Cn es admisible si, para 1 ≤ i ≤ n,

Ci es una ecuación ui = u′i o una condición de pertenencia ui : s y

vars(Ci) ⊆
i−1⋃
j=1

vars(Cj), o

Ci es una condición de ajuste de patrones ui := u′i, ui es un patrón y

vars(u′i) ⊆
i−1⋃
j=1

vars(Cj), o

Ci es una condición de reescritura ui ⇒ u′i, u′i es un patrón y

vars(ui) ⊆
i−1⋃
j=1

vars(Cj).

Definición 2 Una condición C ≡ P := ~∧C1∧· · ·∧Cn, donde ~ representa una variable
especial que no aparece en el resto de la condición, es admisible si P := t ∧ C1 ∧ · · · ∧ Cn

es admisible para cualquier término cerrado t.

Definición 3 Una sustitución familiar, denotada por κ, es una función de la forma v1 7→
t1; . . . ; vn 7→ tn que asigna términos a las variables de tal manera que ∀1≤i≤n . kind(vi) =
kind(ti), es decir, cada variable tiene la misma familia que el término asociado.

Definición 4 Una sustitución, denotada por θ, es una función de variables a términos
de la forma v1 7→ t1; . . . ; vn 7→ tn tal que ∀1≤i≤n . sort(vi) ≥ ls(ti), es decir, el tipo de
cada variable es mayor o igual que el tipo mı́nimo del término asociado. Nótese que una
sustitución es un tipo especial de sustitución familiar en la que cada término tiene el tipo
apropiado a su variable.3

Definición 5 Dada una condición atómica C, decimos que una sustitución θ es admisible
para C si

C es una ecuación u = u′ o una condición de pertenencia u : s y vars(C) ⊆ dom(θ),
o

C es una condición de ajuste de patrones u := u′ y vars(u′) ⊆ dom(θ), o

C es una condición de reescritura u ⇒ u′ y vars(u) ⊆ dom(θ).
3Las sustituciones familiares y las sustituciones son diferentes de las sustituciones definidas en otros

art́ıculos como [8]. En ellos, solo las familias se tienen en cuenta en las sustituciones, mientras que aqúı cada
variable tiene un tipo asociado, aunque algunas propiedades solo se comprueben a nivel de familias.
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7.1.7 Un ejemplo de Maude: Unas rebajas

Ilustramos en esta sección la funcionalidad explicada anteriormente con un ejemplo.4

Nótese que los módulos, teoŕıas y vistas a continuación están escritos entre paréntesis;
usamos esta notación porque los estamos introduciendo en Full Maude, una extensión de
Maude usada por el depurador que incluye funcionalidad para analizar sintácticamente,
evaluar e imprimir de manera amigable términos y para mejorar la entrada/salida. Prime-
ro, vamos a especificar listas ordenadas con un módulo parametrizado. Este módulo usa
la teoŕıa ORD, que precisa un tipo Elt y un operador _<_ definido sobre los elementos de
este tipo que cumpla las propiedades de los órdenes estrictos totales:

(fth ORD is
pr BOOL .

sort Elt .
op _<_ : Elt Elt -> Bool .

vars X Y Z : Elt .
eq [irreflexive] : X < X = false [nonexec] .
ceq [transitive] : X < Z = true if X < Y = true /\ Y < Z = true [nonexec] .
ceq [antisymmetric] : X = Y if X < Y = true /\ Y < X = true [nonexec] .
ceq [total] : X = Y if X < Y = false /\ Y < X = false [nonexec] .

endfth)

donde el atributo nonexec indica que estas ecuaciones no puede ser usadas para reducir
términos. Una vez esta teoŕıa está especificada, podemos usarla en el módulo OLIST para
crear listas ordenadas genéricas. El tipo List{X} representa listas cualesquiera, mientras
OList{X} se refiere a listas ordenadas. Dado que las listas ordenadas son un caso particular
de lista, usamos una declaración de subtipo para indicarlo:

(fmod OLIST{X :: ORD} is
sorts List{X} OList{X} .
subsort OList{X} < List{X} .

La lista vaćıa, que también es una lista ordenada, se representa con el operador nil,
mientras que listas mayores se construyen con el operador de yuxtaposición añadiendo un
elemento al principio de la lista:

op nil : -> OList{X} [ctor] .
op __ : X$Elt List{X} -> List{X} [ctor] .

Usamos sentencias de pertenencia para definir cuándo una lista no vaćıa está ordenada.
Primero, indicamos que el primer elemento de la lista debe ser menor o igual que el que
va después que él y que el resto de la lista debe estar ordenada. Es interesante ver cómo
se usa el operador _<_ de la teoŕıa para comparar elementos:

vars E E’ : X$Elt .
var OL : OList{X} .
vars L L’ : List{X} .

cmb [ol1] : E (E’ OL) : OList{X}
if E < E’ or E == E’ /\

E’ OL : OList{X} .

4¡Atención! Aunque los módulos a continuación son sintácticamente correctos, hemos cometido un
error intencionadamente. En el siguiente caṕıtulo veremos cómo encontrarlo.
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También debemos indicar que las listas unitarias están ordenadas:

mb [ol2] : E nil : OList{X} .

La función ordIns ordena una lista a base de insertar sus elementos de manera orde-
nada en una nueva lista, usando para ello la función auxiliar insertOrd:

op ordIns : List{X} -> OList{X} .
eq [oi1] : ordIns(nil) = nil .
eq [oi2] : ordIns(E OL) = insertOrd(ordIns(OL), E) .

Esta función inserta el elemento en la posición apropiada. Cuando es menor que el
primer elemento de la lista lo coloca en esta posición; en otro caso, continúa el recorrido
de la lista:

op insertOrd : OList{X} X$Elt -> OList{X} .
eq [io1] : insertOrd(nil, E) = E nil .
ceq [io2] : insertOrd(E L, E’) = E’ (E L)
if E’ < E .
eq [io3] : insertOrd(E L, E’) = E insertOrd(L, E) [owise] .
endfm)

donde el atributo owise indica que la ecuación se aplica en otro caso (otherwise en inglés),
es decir, esta ecuación solo se aplica si ninguna otra puede aplicarse.

En nuestra implementación estamos interesados en usar listas de personas, que se
definen en el módulo PERSON a continuación. Una persona, de tipo Person, se construye
con una cadena para su nombre, un número natural indicando cuánto dinero tiene y otra
cadena que representa los art́ıculos que lleva:

(fmod PERSON is
pr STRING .

sort Person .

op [_,_,_] : String Nat String -> Person [ctor] .

Además, dado que queremos instanciar la teoŕıa ORD con personas, tenemos que espe-
cificar una función booleana sobre personas que satisfaga los requisitos para _<_. Hemos
implementado esta función de tal manera que, dadas dos personas, la menor de ellas es
la que tiene más dinero. De esta manera, conseguiremos que la lista ordenada tenga a las
personas con más dinero en primer lugar:

vars NAME1 NAME2 B1 B2 : String .
vars M1 M2 : Nat .

op _<_ : Person Person -> Bool .
eq [NAME1, M1, B1] < [NAME2, M2, B2] = M1 > M2 .

endfm)

La teoŕıa y el módulo se relacionan por medio de la vista PersonOrd, que asigna al tipo
Elt de la teoŕıa el tipo Person en el módulo. Dado que la operación _<_ tiene el mismo
nombre en la teoŕıa y en el módulo, no es necesario hacer expĺıcita esa correspondencia:
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(view PersonOrd from ORD to PERSON is
sort Elt to Person .

endv)

El módulo SALE especifica una tienda y una lista de personas esperando para entrar y
comprar art́ıculos. Este módulo instancia el módulo OLIST con la vista anterior y renombra
las listas de OList{PersonOrd} a OList para facilitar su uso:

(mod SALE is
pr OLIST{PersonOrd} * (sort OList{PersonOrd} to OList) .

Los art́ıculos a la venta se identifican mediante una cadena con el nombre y un número
natural con su precio:

sort Item .
op <_‘,_> : String Nat -> Item [ctor] .

Un elemento de tipo Shop es simplemente una “sopa” asociativa y conmutativa de
personas y art́ıculos. Por ello, tanto el tipo Person como Item se declaran subtipos de
Shop. El operador empty representa la tienda vaćıa, mientras que tiendas mayores se
construyen con el operador de yuxtaposición, el cual es asociativo y conmutativo y tiene
empty como elemento identidad:

sort Shop .
subsorts Item Person < Shop .
op empty : -> Shop [ctor] .
op __ : Shop Shop -> Shop [ctor assoc comm id: empty] .

Los elementos de tipo Sale se construyen con una tienda limitada por corchetes y una
lista ordenada de personas fuera de la tienda:

sort Sale .
op [_]_ : Shop OList -> Sale [ctor] .

Ahora debemos especificar las reglas que describen el comportamiento de las personas
y de los art́ıculos. La regla in se encarga de hacer entrar a la gente en la tienda:

var SH : Shop .
var P : Person .
var OL : OList .
vars TN PN B : String .
vars C M : Nat .
var S : Sale .

rl [in] : [ SH ] P OL
=> [ SH P ] OL .

La regla buy elimina un art́ıculo de la sopa y lo añade a las pertenencias de una persona,
decrementando su dinero (suponiendo que tenga bastante):

crl [buy] : [ SH < TN, C > [PN, M, B] ] OL
=> [ SH [PN, sd(M, C), B + " " + TN] ] OL
if M >= C .
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donde sd es la diferencia simétrica. También definimos una función que comprueba si una
cierta persona ha comprado un art́ıculo concreto:

op _buys_in_ : String String Sale -> Bool .
eq [buy1] : PN buys TN in [ [PN, M, B] SH ] OL = find(B, TN, 0) =/= notFound .
eq [buy2] : PN buys TN in S = false [owise] .

donde find es una función predefinida que busca la subcadena TN en B, empezando en la
posición 0.

Además, definimos algunas constantes que nos servirán para probar el funcionamiento
de la especificación. Usamos dos personas, adri y su gemelo maligno, et, y una lechuga l
y un videojuego v como art́ıculos:

ops adri et : -> Person .
eq adri = ["adri", 15, ""] .
eq et = ["et", 16, ""] .

ops l v : -> Item .
eq l = < "lettuce", 6 > .
eq v = < "videogame", 10 > .

endm)

Ahora podemos usar el comando search, que realiza una búsqueda en anchura, para
encontrar las distintas maneras en las que adri puede comprar el videojuego:

Maude> (search [l v] ordIns(et (adri nil)) =>* S:Sale
s.t. "adri" buys "videogame" in S:Sale .)

search in SALE :[l v]ordIns(et adri nil) =>* S:Sale .

No solution.

Al ejecutar la búsqueda descubrimos que es imposible para adri comprarlo. Dado que
sabemos que debeŕıa ser capaz de comprar el videojuego de alguna manera, llegamos a la
conclusión de que la especificación contiene un error. En la sección 8.4 explicaremos cómo
encontrarlo.

7.2 Instituciones y comorfismos

En este sección presentamos varias nociones que serán necesarias en el caṕıtulo 9.
Antes de describir las instituciones, recordamos las nociones de categoŕıa, categoŕıa dual,
categoŕıa pequeña, funtor y transformación natural [80].

Definición 6 Una categoŕıa C se compone de:

una clase |C| de objetos;

una clase hom(C) de morfismos (también llamados flechas), entre los objetos;

operaciones asignando a cada morfismo f un objeto dom(f), su dominio, y un objeto
cod(f), su codominio (escribimos f : A → B para indicar que dom(f) = A y
cod(f) = B);
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un operador de composición asignando a cada par de morfismos f y g, con cod(f) =
dom(g), un morfismo compuesto g ◦ f : dom(f) → cod(g), que sea asociativo: para
cualesquiera morfismos f : A → B, g : B → C, y h : C → D, h◦ (g ◦ f) = (h◦ g)◦ f ;
y

para cada objeto A, un morfismo identidad idA : A → A que satisfaga la identidad:
para cualquier morfismo f : A → B, idB ◦ f = f y f ◦ idA = f .

Definición 7 Para cada categoŕıa C, su categoŕıa dual Cop es la categoŕıa que tiene los
mismos objetos que C y cuyos morfismos son los opuestos a los morfismos en C, es decir,
si f : A → B en C, entonces f : B → A en Cop. Los morfismos identidad y compuestos
se definen de manera obvia.

Definición 8 Una categoŕıa C se llama pequeña si tanto |C| como hom(C) son conjuntos
y no clases propias.

Definición 9 Sean C y D categoŕıas. Un funtor F : C → D es una función que asigna
a cada objecto A en C un objecto F(A) en D y a cada morfismo f : A → B en C un
morfismo F(f) : F(A) → F(B) en D tal que, para todo objeto A en C y cualesquiera
morfismos componibles f y g en C:

F(idA) = idF(A),

F(g ◦ f) = F(g) ◦ F(f).

Definición 10 Una transformación natural η : F → G entre los funtores F,G : A → B
asocia a cada X ∈ |A| un morfismo ηX : F(X) → G(X) en D llamado la componente de
η en X, tal que para cada morfismo f : X → Y ∈ A tenemos ηY ◦ F(f) = G(f) ◦ ηX .

Merece la pena mencionar dos categoŕıas especialmente interesantes: Set, la categoŕıa
cuyos objetos son conjuntos y cuyos morfismos entre los conjuntos A y B son todas las
funciones entre A y B; y Cat, la categoŕıa cuyos objetos son todas las categoŕıas pequeñas
y cuyos morfismos son los funtores entre ellas.

Ahora estamos preparados para introducir las instituciones y los comorfismos [39, 38]:

Definición 11 Una institución está compuesta por:

una categoŕıa Sign de signaturas;

un funtor Sen : Sign → Set que asigna un conjunto Sen(Σ) de sentencias en Σ a
cada signatura Σ ∈ |Sign|;

un funtor Mod : Signop → Cat, asignando una categoŕıa Mod(Σ) de modelos en
Σ a cada signatura Σ ∈ |Sign|; y

para cada signatura Σ ∈ |Sign|, una relación de satisfacción |=Σ⊆ |Mod(Σ)| ×
Sen(Σ) entre modelos y sentencias tal que para cada morfismo de signaturas σ :
Σ → Σ′, Σ-sentencia ϕ ∈ Sen(Σ) y Σ′-modelo M ′ ∈ |Mod(Σ)|:

M ′ |=Σ′ Sen(σ)(ϕ) ⇐⇒ Mod(σ)(M ′) |=Σ ϕ,

conocida como condición de satisfacción.
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Definición 12 Dadas dos instituciones I = (Sign,Mod,Sen, |=) e I ′ = (Sign′,Mod′,
Sen′, |=′ ), un comorfismo entre instituciones de I a I ′ consiste en un funtor Φ : Sign →
Sign′, una transformación natural α : Sen ⇒ Φ;Sen′ y una transformación natural
β : Φ;Mod′ ⇒ Mod (donde F;G denota la composición de funtores en el orden dia-
gramático) tal que la siguiente condición de satisfacción se cumple para cada Σ ∈ |Sign|,
ϕ ∈ |Sen(Σ′)| y M ′ ∈ |Mod′(Φ(Σ))|:

βΣ(M ′) |=Σ ϕ ⇐⇒ M ′ |=′
Φ(Σ) αΣ(ϕ).

Pese a que existen muchos otros posibles morfismos entre instituciones [38], solo esta-
mos interesados en los comorfismos para nuestros propósitos en esta tesis.



Caṕıtulo 8

Depuración Declarativa

8.1 Estado del arte

Como se adelantó en la introducción, la depuración declarativa [68] es una técnica de
depuración que, a diferencia de las técnicas de depuración tradicionales como los puntos
de ruptura, abstrae los detalles de ejecución, que pueden ser dif́ıciles de seguir en ge-
neral en los lenguajes declarativos, para centrarse en los resultados. Podemos distinguir
dos tipos diferentes de depuración declarativa: depuración de respuestas erróneas, que se
aplica cuando un resultado incorrecto se obtiene a partir de un valor inicial y que ha
sido ampliamente utilizada en programación lógica [98, 52], funcional [71, 82, 72], multi-
paradigma [11, 54, 15] y en la orientada a objetos [12, 44]; y depuración de respuestas
perdidas [67, 98, 52, 16, 3], que se aplica cuando un resultado es incompleto, lo que ha
sido menos estudiado porque el cálculo necesario es mucho más complejo que en el caso
de respuestas erróneas.

La depuración declarativa es un proceso en dos fases: en la primera se calcula un árbol,
el llamado árbol de depuración, en el que cada nodo representa un paso de cómputo y cada
resultado (es decir, el efecto de cada uno de estos pasos de cómputo) debe ser consecuencia
de los resultados en los nodos hijos del nodo en el que se encuentra; en la segunda fase este
árbol se recorre siguiendo una estrategia de navegación y preguntando en cada momento
a un oráculo externo sobre la corrección de los resultados en los nodos. Esta corrección
depende de la existencia de una semántica pretendida del programa, que se corresponde
con el comportamiento que el usuario teńıa en mente y que se usa para recorrer el árbol
hasta que se encuentra un nodo incorrecto con todos los hijos correctos, el nodo defectuoso.
Este nodo defectuoso debe estar etiquetado para poder identificar el error en el programa
original.

En este caṕıtulo presentamos Maude DDebugger, un depurador declarativo para espe-
cificaciones en Maude. Maude proporciona diversos mecanismos para depurar especifica-
ciones:

Permite colorear términos, lo que consiste en imprimir con diferentes colores los ope-
radores utilizados para construir un término que no se ha reducido completamente.
Esto facilita reconocer las diferentes funciones que debeŕıan haberse reducido en un
término pero no ayuda al usuario a encontrar las razones por las que no se redujeron.

Permite visualizar la traza, lo que posibilita al usuario seguir la ejecución de la
especificación, es decir, la secuencia de aplicaciones de sentencias que ha tenido lugar.
La traza es muy personalizable, teniendo opciones para seleccionar qué sentencias,
condiciones, sustituciones y términos se muestran. Estas ideas se han aplicado en

85
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el paradigma funcional en el depurador mediante trazas Hat [18], donde la traza
inicial del sistema se modifica mediante reescritura de grafos para adecuarla a las
necesidades del usuario.

Permite invocar un depurador interno. A él se accede colocando puntos de ruptura en
ciertos operadores y sentencias; cuando se alcanza alguno de estos puntos de ruptura
se entra en el depurador, en el cual el usuario puede ver el término actual y ejecutar
el siguiente paso con la traza activada.

Maude también proporciona un atributo para imprimir que muestra los valores de
las variables cuando se aplica una sentencia que tenga este atributo. Aunque no
esté especificamente diseñado para depurar, puede ser utilizado con esta intención
de una manera similar a la traza: las sentencias sospechosas se pueden mostrar con
todas sus variables cada vez que se ejecuten.

La traza, el depurador interno y el atributo de impresión (cuando se usa para depurar)
tienen el mismo problema: siguen la ejecución del programa, que no es conocida a priori por
el usuario, y por tanto deja de lado uno de los puntos fuertes de los programas declarativos:
la abstracción de los detalles de ejecución; además, dado que están basados en la traza, se
necesita recorrerla entera y comprobar cada paso, ya que estos procesos no proporcionan
ningún tipo de gúıa. Nuestro depurador declarativo soluciona estos problemas permitiendo
al usuario depurar cualquier tipo de especificación en Maude de una manera sencilla y
natural.

Uno de los puntos fuertes de nuestra aproximación es que, a diferencia de otras pro-
puestas como [16], combina el tratamiento de respuestas erróneas y perdidas y por tanto es
capaz de detectar respuestas perdidas debidas a sentencias tanto erróneas como perdidas.
El estado del arte de la depuración declarativa puede encontrarse en [94], que contiene
una comparación entre los depuradores declarativos B.i.O. (Believe in Oracles) [9], un de-
purador integrado en el compilador de Curry KICS; Buddha [81, 82], un depurador para
Haskell 98; DDT [15], un depurador para TOY; Freja [71], un depurador para Haskell;
Hat-Delta [25], que forma parte de un conjunto de herramientas para depurar programas
en Haskell; el Depurador Algoŕıtmico de Mercury [54], un depurador integrado en el com-
pilador de Mercury; el depurador de Curry de Münster [53], un depurador integrado en
la distribución del compilador de Curry desarrollado en Münster; y Nude [69], el entorno
de depuración de NU-Prolog. Extendemos ahora esta comparación teniendo en cuenta la
nueva funcionalidad en las últimas versiones de estos depuradores y añadiendo dos nue-
vos: DDJ [44], un depurador para programas en Java, y nuestro propio depurador, Maude
DDebugger. Esta comparación se resume en las tablas 8.1 y 8.2, donde cada columna
muestra un depurador declarativo y cada fila una caracteŕıstica. Más concretamente:

El lenguaje de implementación indica el lenguaje utilizado para implementar el de-
purador. En ciertos casos se muestra el frontal y la parte posterior (front-end y
back-end en inglés, respectivamente): se refieren, respectivamente, al lenguaje usa-
do para obtener la información necesaria para calcular el árbol de depuración y al
lenguaje usado para interactuar con el usuario.

El lenguaje objetivo indica el lenguaje depurado por la herramienta.

La fila de estrategias indica las diferentes estrategias de navegación implementadas
por los depuradores. Usamos AA para arriba-abajo (top-down en inglés), que empieza
desde la ráız y selecciona un hijo incorrecto para continuar con la navegación hasta
que todos los hijos son correctos; DP para divide y pregunta (divide and query en
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inglés), que elige en cada caso un nodo que sea ráız de un subárbol cuyo tamaño
sea el más próximo a la mitad del tamaño del árbol completo; PP para paso a
paso (single stepping en inglés), que recorre el árbol en postorden; MPP para el
más pesado primero (heaviest first en inglés), una modificación de arriba-abajo que
recorre los hijos en orden decreciente de tamaño; MRP para más reglas primero
(more rules first en inglés), otra variante de arriba-abajo que recorre los hijos en
orden decreciente de número de reglas en el subárbol; DRP para divide por reglas y
pregunta (divide by rules and query en inglés), una optimización de divide y pregunta
que selecciona el nodo cuyo subárbol tiene una cantidad de sentencias más cercana
a la mitad del número de sentencias distintas en el árbol; DPM para la estrategia
divide y pregunta implementada por el depurador de Mercury; DS para dependencia
de subtérminos (subterm dependency en inglés), una estrategia que permite rastrear
subtérminos espećıficos previamente señalados como erróneos por el usuario; y HD
para las estrategias de Hat-Delta.

La base de datos indica si la herramienta almacena una base de datos con las res-
puestas dadas por el usario para futuras sesiones de depuración, mientras que me-
morización indica si esta base de datos está disponible para la sesión actual.

El frontal indica si el depurador está integrado en el compilador o es independiente.

La interfaz muestra la interfaz entre el frontal y la parte posterior. Aqúı, APT
se refiere a los árboles de prueba abreviados generados por Maude; RAR a Ruta
Aumentada del Redex (Augmented Redex Trail en inglés), el árbol generado por Hat-
Delta; AE abrevia Árbol de Ejecución; y Cuenta de Pasos (Step Count en inglés)
es el nombre del método usado por el depurador B.i.O., que guarda la información
usada hasta el momento en un fichero de texto.

Árbol de depuración muestra cómo se gestiona el árbol de depuración.

La fila de respuestas perdidas indica si la herramienta puede depurar respuestas
perdidas.

Las respuestas permitidas son: sı́; no; ns (no sabe); co (conf́ıa); in (inadmisible),
usado para indicar que algunos de los argumentos no debeŕıan haberse calculado;
y qs y qn (quizás śı y quizás no), que se comportan como sı́ y no aunque las
preguntas asociadas se pueden repetir más tarde si es necesario. Más detalles sobre
estas técnicas de depuración se puede encontrar en [94, 95].

Traza subexpresiones indica si el usario puede señalar a un subtérmino como erróneo.

Exploración AD indica si el árbol de depuración se puede navegar libremente.

En la fila ¿Árboles diferentes? se muestra si es posible construir diferentes árboles
de depuración dependiendo de la situación.

Compresión de árboles indica si la herramienta implementa compresión de árbo-
les [25], una técnica que elimina los nodos redundantes de un árbol de prueba.

Deshacer informa si la herramienta tiene un comando deshacer.

Confianza enumera las opciones para confiar disponibles en cada depurador: MO
indica que se puede confiar en módulos; FU en funciones; AR en argumentos; y FF
en formas finales.



88 Caṕıtulo 8. Depuración Declarativa

IGU muestra si la herramienta cuenta con una interfaz gráfica de usuario.

Versión indica la versión de la herramienta usada en la comparación.

Los resultados en estas tablas se pueden interpretar como sigue:

Estrategias de navegación. Muchas estrategias de navegación han sido propuestas pa-
ra depuración declarativa [94]. Sin embargo, muchos de los depuradores (incluyendo
a Maude DDebugger) solo implementan las técnicas básicas arriba-abajo y divide y
pregunta. Por otro lado, DDJ implementa la mayoŕıa de los métodos de navegación
conocidos (algunos de ellos desarrollados por los mismos investigadores), incluyendo
una adaptación de las técnicas de navegación desarrolladas para Hat-Delta. Entre
las técnicas básicas, solo DDJ, DDT y Maude DDebugger implementan el algoritmo
más eficiente de la estrategia divide y pregunta, desarrollada por Hirunkitti [94].

Respuestas disponibles. La depuración declarativa depende de un oráculo externo que
responda a las preguntas hechas por la herramienta, y por tanto cuanto mayor sea la
cantidad de respuestas disponibles más fácil será la interacción. El conjunto mı́nimo
de respuestas aceptadas por todos los depurados se compone de las respuestas śı y
no; Hat-Delta, el depurador de Curry de Münster y Nude no admiten más respuestas,
mientras todos los demás aceptan algunas otras. Otras respuestas bien conocidas son
no sabe y conf́ıa; la primera, que puede introducir incompletitud, permite al usuario
saltarse la pregunta actual y es implementada por B.i.O., DDJ, DDT, Buddha,
Mercury y Maude DDebugger, mientras que la segunda evita que el depurador haga
preguntas relacionadas con la sentencia actual y es implementada por DDJ, DDT,
Buddha, el depurador de Mercury y Maude DDebugger. Buddha y el depurador de
Mercury implementan la respuesta inadmisible, que indica que algunos argumentos
no debeŕıan haberse calculado, redirigiendo el proceso de búsqueda en esta dirección;
nuestro depurador facilita un mecanismo similar al depurar respuestas perdidas en
módulos de sistema con la respuesta el término n no es una solución/alcanzable, que
indica que un término en un conjunto no es una solución o no es alcanzable, dirigiendo
el proceso en esa dirección. Por último, Freja permite las respuestas quizás śı y quizás
no, que el depurador usa como śı y no, aunque puede repetir estas preguntas si el
error no se encuentra.

Base de datos. Una caracteŕıstica habitual en depuración declarativa es el uso de una
base de datos para evitar que la herramienta haga dos veces la misma pregunta, lo
cual es implementado por DDJ, DDT, Hat-Delta, Buddha, el depurador de Mercury,
Nude y Maude DDebugger. Nude ha mejorado esta técnica permitiendo que la base
de datos se use en las sesiones siguientes, lo que ha sido también adoptado por DDJ.

Memoria. Los depuradores guardan los árboles de depuración en memoria de diferentes
maneras. El árbol de Hat-Delta se guarda en un sistema de ficheros, DDJ usa una
base de datos y el resto de depuradores (incluyendo el nuestro) lo almacenan en
memoria principal. Además, los depuradores B.i.O., Buddha, DDJ, el depurador de
Mercury, Nude y Maude DDebugger optimizan el consumo de memoria construyendo
el árbol bajo demanda.

Trazado de subexpresiones. El depurador de Mercury es el único capaz de indicar
que una subexpresión en concreto, y no el término completo, es erróneo, mejorando
de esta manera las respuestas no e inadmisible con información precisa sobre la
subexpresión. Con esta técnica la estrategia de navegación se puede concentrar en
ciertos nodos del árbol, optimizando el proceso de depuración.
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SÍ

N
O

A
D

?
¿Á
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Estrategias de construcción. Una novedad de nuestro método es la posibilidad de
construir diferentes árboles dependiendo de la complejidad de la especificación y
de la experiencia del usuario: los árboles para respuestas tanto erróneas como perdi-
das se pueden construir siguiendo bien una estrategia de un paso, bien una de varios
pasos (dando lugar a cuatro combinaciones). Mientras que la estrategia en un paso
hace en general más preguntas, estas son más fáciles de responder que las hechas
por la estrategia de varios pasos. Una mejora de esta técnica se ha aplicado a DDJ
en [45], permitiendo al sistema equilibrar los árboles de depuración combinando una
estructuras llamadas cadenas, esto es, secuencias de sentencias donde el resultado
final de cada paso son los datos iniciales del siguiente.

Compresión de árboles. El depurador Hat-Delta ha desarrollado una nueva técnica pa-
ra eliminar nodos redundantes del árbol de ejecución llamada compresión de árbo-
les [25]. Básicamente, esta técnica consiste en eliminar del árbol de depuración, en
ciertos casos, los nodos relacionados con el mismo error que su padre, de tal manera
que el padre proporciona la información de depuración tanto para él como para sus
hijos. Esta técnica es muy similar al equilibrado implementado para DDJ en [45].

Exploración del árbol. La mayoŕıa de los depuradores permiten al usuario navegar li-
bremente el árbol de depuración, incluyendo el nuestro cuando se usa la interfaz
gráfica de usuario. Solo el depurador de Curry de Münster y Nude no implementan
esta función.

Confianza. Aunque todos los depuradores usan algún mecanismo de confianza, difieren
en el objetivo: todos los depuradores excepto Hat-Delta tienen mecanismos para
confiar en sentencias concretas, y todos los depuradores excepto DDJ, DDT y Nude
pueden confiar en módulos completos. Una funcionalidad novedosa es permitir al
usuario confiar en algunos argumentos, lo cual solo está permitido en la actualidad
por B.i.O. En nuestro caso, y dado que podemos depurar respuestas perdidas, hemos
desarrollado un mecanismo original de confianza: el usuario puede indicar que ciertos
tipos y operadores son finales, es decir, no se pueden reescribir más; con este método
todos los nodos que se refieran a términos finales desde el punto de vista de las
reglas son eliminados del árbol de depuración. Por último, un método similar a la
confianza consiste en usar una especificación correcta como oráculo para contestar a
las preguntas; esta técnica se usa en B.i.O. y en Maude DDebugger.

Comando deshacer. En un método que depende del usuario como oráculo, es normal
que se cometan errores y por tanto un comando para deshacer puede ser muy útil.
Sin embargo, no todos los depuradores tienen este comando, siendo B.i.O., DDJ,
Freja, el depurador de Mercury y Maude DDebugger los únicos que lo implementan.

Interfaz gráfica. Una interfaz gráfica facilita la interacción entre el usuario y la herra-
mienta, permitiendo al usuario navegar libremente por el árbol de depuración y
mostrando todas las funciones de manera más amigable. En [94], solo un depurador
declarativo (DDT) teńıa una interfaz de este tipo, mientras que en la actualidad
cuatro herramientas (DDT, DDJ, el depurador de Münster1 y Maude DDebugger)
ofrecen esta posibilidad.

Errores detectados. Merece la pena señalar que solo DDT y Maude DDebugger pueden
depurar respuestas perdidas, mientras todos los demás depuradores se dedican exclu-
sivamente a respuestas erróneas. Sin embargo, DDT solo depura respuestas perdidas

1Solo disponible para Mac OS X.
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debidas a no determinismo, mientras nuestra técnica también es capaz de depurar
formas normales y tipos mı́nimos erróneos.

Apuntes finales. Una caracteŕıstica importante de la depuración declarativa es la esca-
labilidad. El desarrollo de DDJ ha prestado especial atención a esta caracteŕıstica,
y por ello usa una arquitectura compleja que gestiona la memoria disponible y ha-
ce uso de una base de datos para almacenar las partes del árbol que no se pueden
guardar en memoria principal. Además, las estrategias de navegación han sido modi-
ficadas para funcionar con árboles incompletos. Respecto a la reusabilidad, la última
versión de B.i.O. implementa una interfaz genérica que permite a otras herramien-
tas que también la implementen usar sus funciones de depuración. Por último, el
depurador DDT ha sido actualizado para trabajar con restricciones.

Es importante señalar que hay algunos otros enfoques para depurar respuestas erróneas
y perdidas. Un planteamiento interesante es la diagnosis abstracta presentada en [3]. En
este art́ıculo los autores describen un marco de depuración donde, dada una especificación
del sistema, la herramienta es capaz de identificar respuestas tanto erróneas como perdidas
usando interpretación abstracta y sin necesidad de un śıntoma inicial. En un trabajo más
reciente [2] el sistema ha sido mejorado, siendo ahora capaz de corregir ciertas especifica-
ciones erróneas. Con respecto a otras técnicas, como el comprobador de la propiedad de
ser suficientemente completo de Maude [20, Chap. 21] o los conjuntos de descendientes
(descendants en inglés) [37], nuestra herramienta proporciona una técnica más general
dado que permite usar sentencias condicionales y nuestras ecuaciones no es necesario que
sean lineales por la izquierda.

8.2 Un cálculo de depuración

En esta sección describimos cómo se obtienen los árboles de depuración utilizados por
nuestra herramienta gracias a un cálculo formal, el cual nos permite probar la corrección
y completitud de nuestra técnica.

El cálculo para depurar respuestas erróneas nos permite inferir reducciones t → t′,
inferencias de tipo t : s y reescrituras t ⇒ t′. Sus reglas de inferencia, que se muestran en
la figura 8.1, son una adaptación de las reglas presentadas en [8, 57] para lógica ecuacional
de pertenencia y en [56, 10] para lógica de reescritura.2

Este cálculo ha sido extendido para inferir, dado un término inicial, su forma normal,
su tipo mı́nimo y el conjunto de términos alcanzables desde él dada una cota en el número
de pasos y una condición a ser satisfecha. Un aspecto importante del cálculo es que pro-
porciona dos tipos diferentes de información: por qué ciertas cosas ocurren (es decir, por
qué se alcanza la forma normal, por qué se infiere el tipo mı́nimo y por qué los términos
se incluyen en el conjunto) pero también por qué otras cosas no ocurren (esto es, por
qué el término no se reduce más, por qué no se puede obtener un tipo menor y por qué no
se incluyen más términos en el conjunto). Llamamos al primer tipo de información, que
también se calculaba con las reglas de inferencia en 8.1, información positiva, mientras que
al segundo tipo de información, novedosa con respecto a las reglas anteriores, lo llamamos
información negativa. En las figuras 8.2 y 8.3 mostramos las principales reglas de inferen-
cia de este cálculo extendido, y remitimos para más detalles a [87, 88]. En primer lugar,
vamos a explicar la intuición tras las juicios usados en las reglas de inferencia. En [91] se
presenta su definición formal y se demuestra la corrección del cálculo.

2Esta adaptación consiste básicamente en orientar de izquierda a derecha las ecuaciones, en lugar de
considerarlas igualdades.
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(Reflexividad)

t ⇒ t
Rf⇒

t → t
Rf→

(Transitividad)

t1 ⇒ t′ t′ ⇒ t2
t1 ⇒ t2

Tr⇒
t1 → t′ t′ → t2

t1 → t2
Tr→

(Congruencia)

t1 ⇒ t′1 . . . tn ⇒ t′n
f(t1, . . . , tn) ⇒ f(t′1, . . . , t′n)

Cong⇒
t1 → t′1 . . . tn → t′n

f(t1, . . . , tn) → f(t′1, . . . , t′n)
Cong→

(Remplazamiento)

{θ(ui) ↓ θ(u′i)}n
i=1 {θ(vj) : sj}m

j=1 {θ(wk) ⇒ θ(w′k)}l
k=1

θ(t) ⇒ θ(t′)
Rep⇒

if t ⇒ t′ ⇐
∧n

i=1 ui = u′i ∧
∧m

j=1 vj : sj ∧
∧l

k=1 wk ⇒ w′k

{θ(ui) ↓ θ(u′i)}n
i=1 {θ(vj) : sj}m

j=1

θ(t) → θ(t′)
Rep→

if t → t′ ⇐
∧n

i=1 ui = u′i ∧
∧m

j=1 vj : sj

(Clase de Equivalencia) (Reducción de Sujeto)

t → t′ t′ ⇒ t′′ t′′ → t′′′

t ⇒ t′′′
EC

t → t′ t′ : s
t : s

SRed

(Pertenencia)

{θ(ui) ↓ θ(u′i)}n
i=1 {θ(vj) : sj}m

j=1

θ(t) : s
Mb

if t : s ⇐
∧n

i=1 ui = u′i ∧
∧m

j=1 vj : sj

Figura 8.1: Cálculo semántico para módulos de Maude
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Dada una sustitución admisible θ para una condición atómica C, [C, θ] ; Θ indi-
ca que Θ es el conjunto de sustituciones que satisfacen la condición atómica C y
extienden θ ligando las variables que aparecen en C.

Dado un conjunto de sustituciones admisibles Θ para una condición atómica C,
〈C,Θ〉 ; Θ′ indica que Θ′ es el conjunto de sustituciones que satisfacen la condición
C y extienden alguna de las sustituciones admisibles en Θ.

disabled(a, t) significa que la ecuación o axioma de pertenencia a no puede ser apli-
cado en la ráız del término t (at the top en inglés).

t →red t′ indica que o bien el término t es reducido en la ráız en un paso o bien un
subtérmino de t es sustituido por su forma normal.

t →norm t′ denota que t′ es la forma normal de t con respecto a las ecuaciones.

Dada una condición admisible C ≡ P := ~ ∧ C1 ∧ · · · ∧ Cn, fulfilled(C, t) indica que
C se cumple cuando ~ se sustituye por t.

Dada una condición admisible C como en el caso anterior, fails(C, t) denota que C
no se cumple cuando ~ se sustituye por t.

t :ls s indica que t : s y además s es el tipo mı́nimo con esta propiedad.

t ⇒top S significa que el conjunto S está formado por todos los términos alcanzables
(módulo ecuaciones) desde t en exactamente un paso de reescritura en la ráız de t.

t ⇒q S denota que el conjunto S es el conjunto de términos alcanzables (módulo
ecuaciones) desde t con exactamente una aplicación de la regla q en la ráız del
término.

t ⇒1 S muestra que el conjunto S está formado por todos los términos alcanzables
(módulo ecuaciones) desde t en exactamente un paso, donde el paso de reescritura
puede aplicarse en cualquier parte en t (esto es, no necesariamente en la ráız del
término).

t ;C
n S indica que S es el conjunto de todos los términos (módulo ecuaciones) que

satisfacen la condición admisible C y son alcanzables desde t en como mucho n pasos.
De manera similar, t ;+C

nS se usa cuando al menos se debe dar un paso y t ;!CnS
cuando solo se buscan términos finales.

Las principales reglas del cálculo para inferir formas normales y tipos mı́nimos se
muestran en la figura 8.2, con el siguiente significado.

La regla Norm muestra que un término está en forma normal cuando no se le pueden
aplicar más ecuaciones en la ráız del término, lo cual se indica con los juicios disabled,
y además sus subtérminos están en forma normal. Respecto a la información negativa
a la que nos referimos antes, esta regla usa información negativa por medio de los
juicios disabled, que prueban que el término no se puede reducir más. Nótese que
solo comprobamos las ecuaciones cuyo lado izquierdo, en el cual consideramos las
variables a nivel de familias, se ajusta al término actual, lo cual se expresa con e �top

K

f(t1, . . . , tn); de esta manera evitamos que el cálculo genere subárboles triviales que
no seŕıan útiles durante el proceso de depuración.
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disabled(e1, f(t1, . . . , tn)) . . . disabled(el, f(t1, . . . , tn)) t1 →norm t1 . . . tn →norm tn

f(t1, . . . , tn) →norm f(t1, . . . , tn)
Norm

if {e1, . . . , el} = {e ∈ E | e �top
K f(t1, . . . , tn)}

{θ(ui) ↓ θ(u′i)}n
i=1 {θ(vj) : sj}m

j=1

θ(l) →red θ(r)
Rdc1 if l→r⇐

Vn
i=1 ui=u′i∧

Vm
j=1 vj :sj∈E

t →norm t′

f(t1, . . . , t, . . . , tn) →red f(t1, . . . , t′, . . . , tn)
Rdc2 if t6≡At′

t →red t1 t1 →norm t′

t →norm t′
NTr

t →norm t′ t′ : s disabled(m1, t
′) . . . disabled(ml, t

′)
t :ls s

Ls

if {m1, . . . ,ml} = {m ∈ E | m �top
K t′ ∧ sort(m) < s}

Figura 8.2: Cálculo para formas normales y tipos mı́nimos

La regla Rdc1 reduce un término aplicándole una ecuación cuando comprueba que las
condiciones se satisfacen, donde las condiciones de ajuste de patrones están incluidas
en las condiciones ecuacionales.

La regla Rdc2 reduce un término a base de reducir uno de sus subtérminos a forma
normal, comprobando que dicho subtérmino no estaba ya en forma normal.

La regla NTr describe la transitividad para →norm , que indica que para alcanzar la
forma normal de un término es necesario aplicarle al menos una ecuación (quizás en
sus subtérminos) y entonces calcular la forma normal del término obtenido de esta
manera. En este caso, la regla de inferencia usa información positiva facilitada por
el juicio t →red t1.

La regla Ls se usa para inferir el tipo mı́nimo de un término. En primer lugar cal-
cula la forma normal del término, y entonces infiere un tipo para este término de
tal manera que no se puedan obtener tipos menores. Para evitar que el depurador
compruebe axiomas de pertenencia que nunca podŕıan inferir un tipo para el térmi-
no, nos limitamos a las sentencias cuyo lado izquierdo se ajusta al término al nivel
de familias. De manera similar a la regla Norm, los juicios disabled proporcionan la
información negativa, mientras t′ : s proporciona la positiva.

En la figura 8.3 se muestran las principales reglas de inferencia usadas para deducir
conjuntos de términos alcanzables:

La regla Rf1 indica que el conjunto que únicamente contiene al término inicial se
infiere si no se pueden usar más pasos y el término satisface la condición; de manera
análoga, se devuelve el conjunto vaćıo cuando la condición falla, como muestra la
regla Rf2. La primera regla proporciona información positiva indicando por qué se
incluye el término en el conjunto, mientras que la segunda proporciona información
negativa probando que el término no debe ser añadido.

La regla Tr1 se aplica cuando al menos un paso más puede ser aplicado. En primer
lugar se comprueba que el término satisface la condición. Entonces, se calcula el
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conjunto de términos alcanzables en exactamente un paso, y el conjunto de términos
alcanzables desde cada uno de dichos términos dada la misma condición y la cota
decrementada en uno. El resultado es la unión de los conjuntos obtenidos de esta
manera y del término inicial. La regla Tr2 se encarga del caso en el que la condición
no se cumple para el término inicial; en tal caso, el conjunto resultado no lo incluye.

La regla Stp devuelve el conjunto de términos alcanzables en exactamente un paso.
Para ello calcula, por un lado, el conjunto de términos alcanzables al aplicar exacta-
mente una regla en la ráız del término y, por otro, el conjunto de términos alcanzables
para cada uno de los subtérminos del término original. El conjunto final se compone
de los términos alcanzables reescribiendo en la ráız del término y la sustitución de
los términos obtenidos para los subtérminos en la posición adecuada (aplicando una
única sustitución cada vez).

La regla Top se encarga de calcular el conjunto de términos alcanzables al aplicar
una única regla en la ráız. Dado que cada regla puede producir diferentes términos
debido a los distintos ajustes, cada aplicación genera un conjunto de términos. Para
evitar información trivial de la forma t ⇒q ∅ solo usamos reglas cuyos lados izquier-
dos se ajusten al término al nivel de familias. Esta regla de inferencia proporciona
información tanto positiva como negativa, dependiendo del resultado de los juicios
en las premisas: el conjunto vaćıo proporciona información negativa, mientras que
en otro caso la información es positiva. Esta información es después propagada por
el resto de reglas con el juicio t ⇒1 S.

La regla Rl devuelve el conjunto de términos obtenidos al aplicar una única regla.
Primero se obtiene el conjunto de sustituciones debido al ajuste con el lado izquierdo
de la regla, y entonces se usa para encontrar el conjunto de sustituciones que satisfa-
cen la condición. Este conjunto final se usa para instanciar el lado derecho de la regla
y obtener el conjunto de términos alcanzables. El tipo de información proporcionada
por esta regla se corresponde con la información proporcionada por las sustitucio-
nes: si se obtiene el conjunto vaćıo (información negativa) entonces la regla calcula
el conjunto vaćıo de términos, lo que se corresponde con la información negativa que
demuestra que no se pueden obtener términos con esa regla; razonamos de mane-
ra análoga cuando el conjunto de sustituciones no es vaćıo (información positiva).
Esta información se propaga por el resto de las reglas de inferencia justificando por
qué algunos términos son alcanzables mientras otros no lo son.

La regla Red1 nos permite simular el comportamiento de Maude. Esta regla permite
al usuario, a la hora de calcular el conjunto de términos alcanzables desde un término
t, reducir t a su forma normal, calcular el conjunto de términos alcanzables desde
dicha forma normal y, finalmente, calcular la forma normal de los términos en el
conjunto.

Una vez hemos introducido el cálculo, podemos construir un árbol de prueba para la
búsqueda mostrada en la sección 7.1.7. Recordemos que, partiendo de una configuración
inicial con dos personas esperando en una cola, adri y et, intentamos encontrar una
configuración en la que adri ha comprado videogame, pero dicha configuración no existe:

Maude> (search [l v] ordIns(adri et nil) =>* S:Sale
s.t. "adri" buys "videogame" in S:Sale .)

search in SALE :[l v] ordIns(adri et nil) =>* S:Sale .

No solution.



8.2. Un cálculo de depuración 97

fulfilled(C, t)

t ;C
0 {t}

Rf1
fails(C, t)

t ;C
0 ∅

Rf2

fulfilled(C, t) t ⇒1 {t1, . . . , tk} t1 ;C
n S1 . . . tk ;C

n Sk

t ;C
n+1

k⋃
i=1

Si ∪ {t}

Tr1

fails(C, t) t ⇒1 {t1, . . . , tk} t1 ;C
n S1 . . . tk ;C

n Sk

t ;C
n+1

k⋃
i=1

Si

Tr2

f(t1, . . . , tm) ⇒top St t1 ⇒1 S1 · · · tm ⇒1 Sm

f(t1, . . . , tm) ⇒1 St ∪
⋃m

i=1{f(t1, . . . , ui, . . . , tm) | ui ∈ Si}
Stp

t ⇒q1 Sq1 · · · t ⇒ql Sql

t ⇒top

l⋃
i=1

Sqi

Top if {q1, . . . , ql} = {q ∈ R | q �top
K t}

[l := t, ∅] ; Θ0 〈C1,Θ0〉 ; Θ1 · · · 〈Ck,Θk−1〉 ; Θk

t ⇒q
⋃

θ∈Θk

{θ(r)}
Rl if q : l ⇒ r ⇐ C1 ∧ . . . ∧ Ck ∈ R

t →norm t1 t1 ;C
n {t2} ∪ S t2 →norm t′

t ;C
n {t′} ∪ S

Red1

Figura 8.3: Cálculo para respuestas perdidas
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El árbol de prueba para este cómputo se muestra en la figura 8.4. La inferencia comien-
za en la figura 8.4(a); para construir este árbol necesitamos una cota del número de pasos
dados en la búsqueda,3 que en este caso es 5. En este árbol oi abrevia ordIns, C la condi-
ción (extendida con el ajuste de patrones) (S := ~) /\ "adri" buys "videogame" in S
y los subárboles 5 demostraciones más sencillas que no explicaremos en profundidad. Es
importante notar que hemos añadido a las reglas de inferencia Rdc1 y Rl el nombre de
la sentencia que se usa (o ⊥ cuando no está etiquetado) y el operador en la ráız en la
regla Top, y que hemos omitido nil en algunos términos (y las demostraciones relacio-
nadas con él) para mejorar la legibilidad. El hijo de la ráız situado más a la izquierda,
T1, está a cargo de calcular la reducción del término inicial a su forma normal Sn, que
abrevia [l v]et et , donde l es < "lettuce", 6 >, v es < "videogame", 10 > y et es
["et", 16, ""], mientras el hijo más a la derecha (†) continúa con la búsqueda desde
Sn. El hijo más a la derecha de este último nodo, T2, se muestra en la figura 8.4(b). Este
nodo demuestra que el término inicial no satisface la condición ajustando el término al
patrón, aplicando la sustitución obtenida de esta manera, y entonces reduciendo el término
obtenido con la ecuación buy2. El árbol a la derecha de T2 describe cómo obtener el con-
junto unitario que contiene a S1, lo cual abrevia [l v et]et , mediante la aplicación de un
paso a Sn. El árbol muestra que, aunque los subtérminos no se pueden reescribir, se puede
reescribir el término en la ráız con la regla in, introduciendo el primer et en la tienda. Por
último, el hijo más a la derecha continúa con la búsqueda con la cota decrementada en un
paso; este árbol es muy similar a (†) y por tanto no entraremos en detalles sobre él.

El árbol T1 se muestra en la figura 8.5 y, dado que contiene el nodo defectuoso, requiere
un examen en profundidad. La figura 8.5(a) comienza el cómputo de la forma normal
del término inicial; su hijo izquierdo reduce el término oi(adri et) a su forma normal
et et , mientras que el derecho reduce los términos l y v y comprueba que los términos
obtenidos de esta manera están en forma normal. Nos centraremos en el hijo izquerdo,
dado que contiene el nodo defectuoso y, además, porque los nodos en el hijo derecho
son muy parecidos a los que aparecen en el hijo izquierdo. Como mencionamos antes,
el hijo izquierdo reduce oi(adri et) a su forma normal; para ello, primero obtiene la
forma normal de adri, adri , que abrevia ["adri", 15, ""], aplicando la correspondiente
ecuación (sin etiqueta) y comprobando después que está en forma normal porque sus
subtérminos lo están.4 La reducción continúa con T3, mostrado en la figura 8.5(b), en la
que el hijo izquierdo reduce et a su forma normal et , mientras el hijo derecho comienza la
reducción de la función ordIns aplicando la ecuación oi2, que devuelve io(oi(et), adri).
La figura 8.5(c) presenta el árbol T4, que reduce oi(et) a su forma normal et aplicando
las ecuaciones oi2, oi1 y io1. Una vez obtenido el resultado, la reducción la finaliza el
árbol T5 en la figura 8.5(d). En ella, la ecuación io3 se aplica en el nodo (?), donde se
alcanza el término et io(nil, et) a partir de io(et, adri), lo que es evidentemente
erróneo porque adri ha desaparecido. Puesto que este nodo no tiene hijos y es erróneo, es
el nodo defectuoso y tiene asociado una fragmento incorrecto de código: la ecuación io3.
El resto del árbol propaga este error hasta que se obtiene la forma normal. Mostraremos
en la sección 8.4 cómo usar la herramienta para recorrer el árbol y encontrar el error en
la especificación.

3Este valor lo calcula automáticamente Maude DDebugger.
4El subárbol 5 indica que se necesitan más pasos: dado que el término 15 es de hecho una abreviatura

de s(s(...s(0))), necesita quince pasos para alcanzar el caso base.
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Á

rb
ol

pr
in

ci
pa

l
(a

)
y

T
2

(b
)
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8.3 Árboles de depuración

Usando los árboles de prueba obtenidos con el cálculo de la sección anterior como árbo-
les de depuración somos capaces de localizar sentencias erróneas y perdidas y condiciones
de búsqueda erróneas, que intuitivamente se definen como sigue:5

Una especificación tiene una sentencia errónea (donde una sentencia es tanto una
ecuación como un axioma de pertenencia o una regla) si existe un término tal que
el usuario espera que la sentencia se aplique al término (esto es, el usuario espera
que el término se ajuste al lado izquierdo de la sentencia y la condición se satisfaga)
pero el resultado de dicha aplicación es erróneo.

Dada una regla l ⇒ r ⇐ C1∧· · ·∧Cn, una especificación tiene una regla errónea si el
usuario espera que los juicios [l := t, ∅] ; Θ0, [C1,Θ0] ; Θ1, . . ., [Cn,Θn−1] ; Θn

se den pero la aplicación de Θn a r no proporciona el conjunto de términos esperado
para la regla.

Una especificación tiene una condición errónea C ≡ l := ~ ∧ C1 ∧ · · · ∧ Cn si existe
un término t tal que, cuando ~ se sustituye por t, o bien la condición se cumple pero
el usuario esperaba que no se cumpliese, o la condición no se cumple pero el usuario
esperaba que lo hiciese.

Una especificación tiene una ecuación perdida si existe un término t tal que no
se espera que esté en forma normal pero tampoco se espera que ninguna de las
ecuaciones en la especificación se le aplique.

Una especificación tiene un axioma de pertenencia perdido si existe un término t en
forma normal tal que el tipo mı́nimo calculado para t no es el esperado pero no se
espera que ninguno de los axiomas de pertenencia de la especificación se le aplique.

Una especificación tiene una regla perdida si existe un término t tal que todas las
reglas aplicadas en la ráız del término llevan a juicios t ⇒qi Sqi esperados por el
usuario pero su unión

⋃
Sqi no contiene todos los términos que el usuario esperaba

alcanzar mediante reescrituras en la ráız del término.

Los árboles obtenidos con este cálculo se pueden usar como árboles de depuración,
pero presentan los problemas de (i) tener muchos nodos cuya corrección no depende de la
especificación y (ii) contener algunos nodos cuyos juicios, una vez traducidos a preguntas
al usuario, son muy dif́ıciles de contestar. Por estas razones hemos desarrollado una técnica
que facilita y acorta el proceso de depuración manteniendo su completitud y corrección.
Para cada árbol de prueba T , aplicamos una función APT (T ) (de Abbreviated Proof Tree,
Árbol de Prueba Abreviado), o simplemente APT cuando el árbol T puede deducirse
del contexto, para depurar especificaciones en Maude. Las reglas APT , descritas en [91],
proporcionan las siguientes ventajas:

Eliminan del árbol aquellos nodos cuya corrección puede inferirse de la corrección
de sus hijos, es decir, los nodos que no contienen información de depuración. Por
ejemplo, la información asociada a usos de la reflexividad es eliminada del árbol.

Su uso permite a la herramienta elegir entre diferentes tipos de árbol, dependiendo
de la complejidad de la especificación y de la experiencia del usuario a cargo del

5Remitimos a [91] para la demostración y las definiciones formales.
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proceso de depuración: el árbol de un paso, que solo contiene reescrituras en un
paso, y el árbol de varios pasos, que puede contener reescrituras en uno o más pasos;
en el segundo los nodos se colocan de tal manera que el árbol se equilibra, y por tanto
las estrategias de navegación precisan menos preguntas en general para encontrar el
nodo defectuoso, aunque estas preguntas pueden ser más complejas que las hechas
en árboles de un paso.6 Por ejemplo, la regla (APTo

8) construye el árbol de un paso
para respuestas erróneas eliminando las inferencias por transitividad, mientras la
regla (APTm

8 ) construye el árbol de varios pasos conservándolas. En esta sección
presentamos una función más general APT ′, que devuelve conjuntos de árboles en
lugar de árboles, y que es usada como función auxiliar para calcular APT :

(APTo
8) APT ′

(
T1 T2

t1 ⇒ t2
Tr⇒

)
= APT ′(T1)

⋃
APT ′(T2)

(APTm
8 ) APT ′

(
T1 T2

t1 ⇒ t2
Tr⇒

)
=

{
APT ′(T1) APT ′(T2)

t1 ⇒ t2
Tr⇒

}
Simplifican las preguntas hechas al usuario, reproduciendo el comportamiento espe-
rado de Maude (es decir, preguntas relacionadas con reducciones evitan los estados
intermedios y siempre preguntan sobre formas normales, mientras que las reescritu-
ras se aplican una vez la forma normal del término se ha alcanzado). Por ejemplo, la
regla (APT3) asocia la información de depuración en Rdc1, una regla de inferencia
a cargo de aplicar una ecuación, con la transitividad bajo ella:

(APT3) APT ′

 T1 . . . Tn

t → t′′
Rdc1 T ′

t → t′
NTr

 =

{
APT ′ (T1) . . . APT ′ (Tn) APT ′ (T ′)

t → t′
Rdc1

}
Eliminan las preguntas dif́ıciles de contestar y asocian la información de depuración
a nodos con preguntas más fáciles. Por ejemplo, las preguntas relacionadas con re-
escrituras en la ráız se reemplazan con preguntas sobre reescrituras en un paso con
la regla (APT4):

(APT4) APT ′

 T1 . . . Tn

t ⇒top S′
Top T ′1...T ′m

t ⇒1 S
Stp

 =

{
APT ′ (T1) . . . APT ′ (Tn) APT ′ (T ′1) . . . APT ′ (T ′m)

t ⇒1 S
Top

}
Se aplican sin necesidad de calcular el árbol de prueba asociado, con lo que reducen
el tiempo y el espacio necesarios para construir el árbol.

Dado un árbol de prueba T representando una inferencia errónea en el cálculo presen-
tado en la sección 8.2, demostramos en [91] que:

6Por supuesto, ambos árboles son completos y correctos.
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APT (T ) contiene al menos un nodo defectuoso (completitud).

Cualquier nodo defectuoso en APT (T ) tiene asociada una sentencia errónea o per-
dida o una condición errónea (corrección).

En la figura 8.6 presentamos el árbol de prueba abreviado de varios pasos obtenido al
aplicar la función APT al árbol en la figura 8.4. Los árboles 5′ representan la abreviación
de los 5 en las figuras anteriores. La figura 8.6(a) muestra el inicio del cómputo, mientras
que la figura 8.6(b) muestra T ′1, la figura 8.6(c) T ′2 y la figura 8.6(d) T ′3. A primera vista
observamos dos ventajas de la abreviación: (i) el número de nodos se ha reducido de
67 a 31, esto es, el nuevo árbol tiene aproximadamente la mitad de tamaño que el árbol
original, y (ii) el nodo erróneo, marcado con (?) en la figura 8.6(b), ha cambiado (mediante
la aplicación de la regla (APT3)) para dar lugar a una pregunta más sencilla.

A pesar de haberse conseguido ya una gran reducción del árbol, aún podemos usar las
técnicas de confianza proporcionadas por el depurador:

Solo las sentencias etiquetadas son tenidas en cuenta al calcular el árbol de depu-
ración. Además, se puede confiar tanto en módulos como en sentencias antes de
empezar el proceso de depuración, y en estos últimos se puede confiar también sobre
la marcha. Por esta razón las reducciones llevadas a cabo por sentencias sin etiquetar
en la figura 8.6, que hemos denotado con ⊥, se eliminarán del árbol. Estos nodos se
han marcado con (♦).

Se puede seleccionar un módulo correcto como oráculo. De esta manera, los nodos
correctos se eliminan del árbol sin necesidad de preguntar al usuario.

Podemos indicar que ciertos términos construidos (términos compuestos solamente
por operadores definidos con el atributo ctor) son finales, es decir, no se les pueden
aplicar reglas. Para ello, basta señalar qué tipos y qué operadores son finales. De esta
manera, si un juicio indica que el conjunto de términos alcanzables en un paso es
vaćıo se considerará correcto y se eliminará del árbol. En nuestro ejemplo podemos
considerar como finales los tipos Nat, Bool, Shop y OList, y por tanto los términos
que tengan estos tipos (y los correspondientes subtipos, como Item y Person para
Shop) se eliminarán del árbol. Hemos marcado estos nodos en la figura 8.6 con (♥).

Además, consideramos que dichos términos construidos están en forma normal y por
tanto los nodos que declaran esto se eliminan automáticamente del árbol. Los nodos
señalados con (♠) en la figura 8.6 cumplen esta condición y se eliminan del árbol.

8.4 Usando el depurador

En esta sección mostramos cómo usar el depurador mediante el ejemplo de las rebajas
de la sección 7.1.7. Nótese que es necesario que se satisfagan los siguientes requisitos para
que el depurador funcione adecuadamente: la especificación debe ser ejecutable (véase la
sección 7.1) y la información introducida por el usuario debe ser exacta, lo que incluye
tanto sus respuestas como la información de confianza. Además de la información de esta
sección, muchos otros comandos y opciones se describen en [85].

Como se explicó en la sección anterior, los mecanismos de confianza pueden reducir
radicalmente el tamaño del árbol de depuración. Por ello, antes de empezar el proceso de
depuración indicamos que ciertos tipos son finales con los comandos:
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Maude> (set final select on .)

Final select is on.

Maude> (final select Nat Bool Shop OList .)

Sorts Bool Nat OList Shop are now final.

Dado que hemos inspeccionado exhaustivamente la especificación y podemos conside-
rarnos expertos en la materia, seleccionamos el árbol de depuración de varios pasos:

Maude> (many-steps missing tree .)

Many-steps tree selected when debugging missing answers.

Por último, seleccionamos la estrategia de navegación arriba-abajo, que muestra las
preguntas asociadas a todos los hijos de la ráız y solicita al usuario seleccionar uno de
ellos como incorrecto o indicar que todos ellos son correctos:

Maude> (top-down strategy .)

Top-down strategy selected.

El proceso de depuración comienza con el comando:

Maude> (missing [l v] ordIns(et adri nil) =>* S:Sale
s.t. "adri" buys "videogame" in S:Sale .)

El depurador construye el árbol mostrado en la figura 8.7, que se corresponde con el
árbol en la figura figura 8.6 tras eliminar todos los nodos relacionados con información de
confianza. La primera serie de preguntas se refiere a los hijos de la ráız:

Question 1 :
Is this reduction (associated with the equation oi2) correct?

ordIns(["adri",15,""]["et",16,""]nil) -> ["et",16,""]["et",16,""]nil

Question 2 :
Did you expect [< "lettuce",6 > < "videogame",10 >]

["et",16,""]["et",16,""]nil not to be a solution?

Question 3 :
Are the following terms all the reachable terms from
[< "lettuce",6 > < "videogame",10 >]["et",16,""]["et",16,""]nil in one step?

1 [< "lettuce",6 > < "videogame",10 >["et",16,""]]["et",16,""]nil

Question 4 :
Did you expect that no solutions can be obtained from
[< "lettuce",6 > < "videogame",10 >["et",16,""]]["et",16,""]nil ?

Maude> (1 : no .)

Al estudiar las preguntas, nos damos cuenta de que la primera (que se corresponde con
el nodo (℘) en la figura 8.7) es incorrecta, mientras que todas las demás son correctas. Por
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oi(nil)→norm nil
Rdc1oi1

io(nil, et)→norm et
Rdc1io1

(§) oi(et)→norm et
Rdc1oi2

io(nil, et)→norm et
Rdc1io1

io(et, adri)→norm et et
Rdc1io3

oi(adri et)→norm et et
Rdc1oi2

Figura 8.8: Árbol de depuración tras una respuesta

io(nil, et)→norm et
Rdc1io1

(¶) io(et, adri)→norm et et
Rdc1io3

oi(adri et)→norm et et
Rdc1oi2

io(nil, et)→norm et
Rdc1io1

io(et, adri)→norm et et
Rdc1io3

Figura 8.9: Árbol de depuración tras dos (a) y tres respuestas (b)

tanto, lo indicamos escribiendo (1 : no .) y su subárbol, que se muestra en la figura 8.8
(y que se corresponde con la premisa izquierda de la ráız del árbol en la figura 8.7) es
seleccionado como árbol actual de depuración.7 Tras esta respuesta, la siguiente serie de
preguntas está relacionada con los hijos de este nodo:

Question 1 :
Is this reduction (associated with the equation oi2) correct?

ordIns(["et",16,""]nil) -> ["et",16,""]nil

Question 2 :
Is this reduction (associated with the equation io3) correct?

insertOrd(["et",16,""]nil,["adri",15,""]) -> ["et",16,""]["et",16,""]nil

En vez de contestar cualquiera de estas preguntas, podemos cambiar a la otra estrategia
de navegación, divide y pregunta, con el comando:

Maude> (divide-query strategy .)

Divide & Query strategy selected.

Is this reduction (associated with the equation oi2) correct?

ordIns(["et",16,""]nil) -> ["et",16,""]nil

Maude> (yes .)

En este caso el depurador ha seleccionado el nodo cuyo tamaño es el más cercano a
la mitad del tamaño del árbol completo, que en este caso es el nodo marcado con (§) en
la figura 8.8. Esta inferencia es correcta, y por tanto el subárbol que tiene como ráız este
nodo se puede eliminar, actualizando el árbol mostrado en la figura 8.9(a). La siguiente
pregunta, asociada al nodo(¶), es:

Is this reduction (associated with the equation io3) correct?

7También podŕıamos haber contestado yes a cualquier otra pregunta, lo que habŕıa borrado dicho
subárbol pero no haŕıa avanzar el proceso de depuración. Por esta razón esta respuesta solo se recomienda,
usando la estrategia arriba-abajo, para simplificar la presentación de las preguntas si se listan demasiadas.
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insertOrd(["et",16,""]nil,["adri",15,""]) -> ["et",16,""]["et",16,""]nil

Maude> (no .)

La respuesta es (no .), y por tanto el árbol se reduce al árbol mostrado en la figu-
ra 8.9(b). Dado que el depurador sabe que la ráız es errónea (porque el usuario lo señaló en
la respuesta anterior) la pregunta está relacionada con el hijo de la ráız:

Is this reduction (associated with the equation io1) correct?

insertOrd(nil,["et",16,""]) -> ["et",16,""]nil

Maude> (yes .)

Con esta información sabemos que la ráız del árbol en la figura 8.9(b) contiene infor-
mación errónea pero que todos sus hijos son correctos, y por tanto es el nodo defectuoso.8

El depurador muestra la siguiente información:

The buggy node is:
insertOrd(["et",16,""]nil,["adri",15,""]) -> ["et",16,""]["et",16,""]nil
with the associated equation: io3

Por tanto, la ecuación errónea es io3, que se especificó en la sección 7.1.7 como:

eq [io3] : insertOrd(E L, E’) = E insertOrd(L, E) [owise] .

es decir, nos olvidamos de E’ en la llamada recursiva. El código correcto para esta función
es:

eq [io3] : insertOrd(E L, E’) = E insertOrd(L, E’) [owise] .

En la figura 8.10 mostramos cómo depurar este mismo ejemplo usando la interfaz gráfi-
ca de usuario. Además de las estrategias de navegación implementadas por la herramienta,
la interfaz permite navegar libremente por el árbol y elegir diferentes nodos para ver las
preguntas asociadas. En este caso hemos elegido un nodo que se corresponde con la ráız
del árbol en la figura 8.8 y cuya reducción asociada es incorrecta. Usando el botón Wrong
obtenemos el árbol mostrado en la figura 8.11, donde solo se muestra la información re-
levante para el proceso de depuración9 y donde hemos seleccionado otro nodo incorrecto;
una vez indicamos que es incorrecto y que sus hijos son incorrectos la interfaz detecta que
es un nodo defectuoso, mostrando la información en la figura 8.12.

8.5 Contribuciones

En este caṕıtulo hemos presentado un depurador declarativo para especificaciones en
Maude. Las principales contribuciones de este trabajo son:

8Este nodo es el marcado con (?) en la figura 8.6, indicando que era el nodo defectuoso.
9Hay otro comportamiento disponible al depurar con la interfaz: conservar todos los nodos, asociando

a cada uno de ellos un color que indique su estado: correcto, erróneo, no sabe y no contestado.
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Figura 8.10: Depuración con la interfaz gráfica de usuario

Depuración de respuestas erróneas. La herramienta es capaz de depurar respuestas
erróneas en módulos tanto funcionales (reducciones e inferencias de tipo erróneas)
como de sistema (reescrituras erróneas), donde todas las caracteŕısticas de Maude,
incluyendo atributos ecuacionales, frozen y otherwise se pueden utilizar en di-
chas especificaciones. El depurador indica la sentencia responsable del error en la
especificación.

Depuración de respuestas perdidas. La herramienta puede también depurar respues-
tas perdidas en módulos funcionales (formas normales no totalmente reducidas y ti-
pos mı́nimos mayores de lo esperado) y de sistema (conjuntos incompletos de térmi-
nos alcanzables dada una condición y una cota en el número de pasos). Las causas
detectadas en este tipo de depuración son sentencias erróneas y perdidas y condi-
ciones de búsqueda erróneas; cuando una sentencia perdida es la causa del error el
depurador es capaz de identificar el operador más externo que debe estar en el lado
izquierdo de dicha sentencia.

Cálculo formal. Dado que los árboles usados en el proceso de depuración se obtienen
usando un cálculo formal, somos capaces de probar la completitud y la corrección
de la técnica.

Funcionalidad. El depurador incorpora muchas de las caracteŕısticas presentes en otros
depuradores declarativos:

Técnicas que acortan y mejoran el árbol de depuración, que nosotros hemos
llamado APT.
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Figura 8.11: Interfaz gráfica de usuario tras una respuesta

Figura 8.12: Información proporcionada por la interfaz gráfica de usuario

Diferentes estrategias de navegación: arriba-abajo y divide y pregunta.

Múltiples respuestas: además de las respuestas estándar śı y no permitimos
un comando deshacer para volver al estado anterior, no sabe para saltarse la
pregunta actual, y el término n no es una solución/alcanzable para indicar que
un término en un conjunto no es una solución o no es alcanzable, haciendo que
la herramienta dirija el proceso en esa dirección.

Mecanismos de confianza para sentencias (antes de empezar la depuración y
sobre la marcha), módulos, formas normales y tipos finales (esto último antes
de empezar la depuración y sobre la marcha).

Una interfaz gráfica de usuario, que facilita el proceso de depuración, mostrando
el árbol de depuración y permitiendo al usuario navegarlo libremente.

Caracteŕısticas originales. Hemos desarrollado una nueva caracteŕıstica: distintos ti-
pos de árboles se pueden construir dependiendo de diferentes factores. Esta idea se
ha usado para equilibrar árboles de depuración de distintas maneras en [45] (con la
participación del autor de esta tesis), y se usa actualmente en el depurador DDJ.
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Verificación Heterogénea

9.1 Estado del arte

Como se mencionó en la introducción, un sistema complejo normalmente requiere di-
ferentes formalismos para definir sus partes. Por ejemplo, es habitual aplicar diferentes
técnicas para especificar un sistema, sus bases de datos y las demostraciones sobre su
comportamiento esperado. Dado que suponer que un único sistema proporcione todas las
caracteŕısticas necesarias para todos los posibles requisitos que puede necesitar un usua-
rio es poco realista, los sistemas heterogéneos, que proporcionan diversos formalismos y
combinaciones entre ellos, están ganando importancia en la actualidad, dado que permiten
usar la herramienta adecuada para cada parte del sistema y combinarlas para construir la
estructura completa. Muchas herramientas se han propuesto para tratar la especificación
y verificación heterogénea:

UML Probablemente, el sistema mejor conocido es el Lenguaje Unificado de Modelado
(UML por sus siglas en inglés) [6], un lenguaje diseñado para facilitar el proce-
so de desarrollo de software. Sin embargo, UML carece intencionadamente de una
semántica formal y por tanto no es una herramienta formal.

OMDoc Una herramienta más formal es OMDoc [48], un lenguaje ontológico para ma-
temáticas. Este lenguaje permite representar objetos como fórmulas en un lenguaje
que extiende XML llamado OpenMath, sentencias como definiciones o demostracio-
nes, y teoŕıas y morfismos entre ellas.

IMPS El Sistema Interactivo de Demostración Matemática (IMPS por sus siglas en in-
glés) [34] está orientado a razonamiento matemático. Proporciona una base de datos
de matemáticas (representada como una red de teoŕıas axiomáticas unidas por mor-
fismos de teoŕıas) y un conjunto de herramientas para relacionarlas y modificarlas.

SpecWare Specware [47] es una herramienta para facilitar el desarrollo de software que
permite al usuario especificar formalmente los requisitos y generar código para ellos,
de tal manera que se demuestra que dicho código es correcto. Se puede usar como
herramienta de diseño, para describir sistemas complejos; como una lógica, para
describir formalmente los requisitos; y como un lenguaje de programación, para
implementar los programas.

Prosper Prosper [26], que está basado en el demostrador de teoremas HOL98 [74], es
una herramienta que proporciona distintos procedimientos de decisión y comproba-
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dores de modelos, disponibles de una manera independiente del lenguaje por medio
de bibliotecas. En la actualidad, están disponibles las bibliotecas para Java, C y ML.

Twelf Twelf [79] es un proyecto de investigación para el diseño, implementación y apli-
cación de marcos lógicos. Twelf proporciona el marco lógico LF [41], usado para
describir lógicas, el lenguaje lógico con restricciones Elf y una interfaz en Emacs. Un
demostrador inductivo de metateoremas está actualmente en desarrollo.

Delphin Delphin [83] es un lenguaje funcional organizado en dos niveles: el nivel de datos,
en el que se pueden especificar sistemas de deducción; y el nivel computacional, donde
dichos sistemas se manipulan.

Hets El Conjunto Heterogéneo de Herramientas (Hets por sus siglas en inglés) [64, 63,
66, 7], incorpora en un marco común varios demostradores y lenguajes de especifica-
ción y proporciona mecanismos para establecer relaciones entre ellos. En Hets cada
lógica se representa como una institución y las traducciones se representan como
comorfismos entre instituciones (véase la sección 7.2).

Para los objetivos de esta tesis estamos interesados en Hets por las siguientes razones:

Es formal, por lo que permite al usuario razonar sobre las propiedades matemáticas
de sus especificaciones, a diferencia de otras herramientas como UML u OMDoc,
que solo formalizan algunas funciones (o ninguna).

Mientras muchos enfoques son unilaterales, en el sentido de usar solo una lógica (y un
solo demostrador de teoremas) para codificar el problema (como en el caso de Pros-
per y OMDoc), las especificaciones se pueden introducir en Hets en cualquiera de
las lógicas integradas.

Se centra en codificaciones entre lógicas, a diferencia de los enfoques de OMDoc,
SpecWare o IMPS, que se centran en codificaciones entre teoŕıas. Mientras lo pri-
mero permite razonar sobre distintos elementos en distintas lógicas, lo segundo solo
permite razonar sobre elementos en la misma lógica.

Una importante desventaja de Hets es que permite a los usuarios utilizar las lógicas
implementadas, pero no añadir nuevas lógicas al sistema, ni razonar directamente
sobre ellas o sus traducciones, como es el caso de Delphin, un marco lógico donde
la sintaxis y la semántica de diferentes lógicas se puede representar, permitiendo al
usuario razonar sobre ellas. Por esta razón, el proyecto Atlas Lógico e Integrador
(LATIN por sus siglas en inglés) [49] pretende integrar estos dos enfoques, siendo
el primer paso de este proyecto integrar LF y Hets, lo que permitirá al usuario
trabajar con las lógicas integradas en Hets como datos normales.

El esquema general de Hets se presenta en la figura 9.1. Hets necesita, para cada
herramienta que se quiera integrar, métodos de análisis sintáctico y estático que permitan
traducir las especificaciones en cada herramienta a un marco común donde puedan interac-
tuar entre ellas. Las relaciones entre herramientas se especifican en el grafo de lógicas, que
tienen como lógica central el Lenguaje Común de Especificación Algebraica (Casl por sus
siglas en inglés), un lenguaje cuyo desarrollo fue propuesto por la Iniciativa para un Marco
Común para especificación y desarrollo algebraico (CoFI por sus siglas en inglés) [40], que
persegúıa unificar los diferentes lenguajes algebraicos disponibles, incorporando las prin-
cipales caracteŕısticas de cada uno de ellos y fijando la sintaxis y la semántica. El objetivo
de esta iniciativa era crear un lenguaje para la especificación de requisitos funcionales;
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Figura 9.1: Arquitectura de Hets

el desarrollo formal de software; la relación entre especificaciones y requisitos informales
y código implementado; el prototipado, la demostración de teoremas y la generación de
casos de prueba de manera formal; y la interoperabilidad de herramientas. Siguiendo estas
ideas Casl se diseñó como un lenguaje basado en lógica de primer orden e inducción por
medio de restricciones sobre las constructoras.

Sin embargo, Casl no se pensó como un lenguaje autónomo, sino como el núcleo de
una familia de lenguajes, algunos de los cuales se obtienen imponiendo ciertas restricciones
a Casl mientras que otros se obtienen extendiéndolo. Por tanto, Hets es el resultado de
ampliar esta idea para relacionar lenguajes independientes con Casl; de este manera es
posible usar otras herramientas (y por tanto otras lógicas) con especificaciones en Casl
y viceversa. Las lógicas actualmente conectadas con Casl, y por tanto soportadas por
Hets, son:

Lógicas de propósito general: lógica proposicional, Casl y HetCasl (lógica de primer
orden), QBF (Fórmulas Booleanas Cuantificadas) y TPLP/SoftFOL (lógica de pri-
mer orden con tipos blandos—softly typed first-order logic en inglés—). Más detalles
sobre estos lenguajes están disponibles en [7].

Marcos lógicos: LF [41], un marco lógico para definir lógicas, y DFOL [96], una sublógica
de LF para lógica de primer orden con tipos dependientes.

Ontoloǵıas y lenguajes con restricciones: OWL [55], el lenguaje de ontoloǵıas web;
Common Logic [46], un marco para facilitar el intercambio de información; RelSche-
me [51], un lenguaje para bases de datos relacionales; y ConstraintCasl [63], una
extensión de Casl con restricciones.

Sistemas reactivos: CspCasl [92], una extensión de Casl para el álgebra de procesos
CSP; CoCasl [93], una extensión coalgebraica de Casl; y ModalCasl [60], que
extiende Casl con operadores modales. Más detalles se pueden encontrar en [63].
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Lenguajes de programación: Haskell [78], un lenguaje funcional perezoso.

Lógicas de herramientas espećıficas: Reduce [42], un sistema interactivo para cómpu-
tos algebraicos genéricos y DMU [43], una lógica “de fogueo” (dummy logic en inglés)
para leer la salida de aplicaciones gráficas.

Demostradores: el demostrador interactivo de lógica de orden superior Isabelle [73];
el demostrador interactivo de lógica dinámica VSE [4]; un demostrador basado en
Isabelle para CspCasl [75]; los resolutores de SAT zChaff [58] y MiniSat [33]; los de-
mostradores automáticos de primer orden SPASS [102], Vampire [100], Darwin [35],
KRHyper [103] y MathServe [104]; y los demostradores por tableau de lógicas des-
criptivas Pellet [19] y FaCT++ [99].

Desde el punto de vista de Hets, la integración de Maude como una nueva lógica
presenta varias ventajas: seŕıa el primer motor de reescritura integrado (en la actualidad,
solo el motor de Isabelle está disponible, y está muy especializado en demostraciones
en orden superior), permitiendo la ejecución de especificaciones implementadas en otros
lenguajes, y permitiendo comprobación de modelos en lógica lineal temporal.

Desde el punto de vista de Maude, una integración en Hets es interesante porque per-
mitiŕıa al usuario demostrar propiedades de las especifiaciones usando los demostradores
enumerados anteriormente. Varios enfoques dedicados a la demostración de teoremas han
estado relacionados con Maude:

Varios demostradores de teoremas y comprobadores se han implementado para Mau-
de usando el propio Maude, usando sus capacidades de metaprogramación, entre
ellas el Demostrador Inductivo de Teoremas (ITP por sus siglas en inglés) [22], cuya
última versión permite diversas combinaciones de axiomas ecuacionales e inducción
sobre constructoras, aunque solo permite pruebas en teoŕıas Church-Rosser; el com-
probador de terminación [30]; el comprobador de coherencia [32]; y el comprobador
de la propiedad de Church-Rosser [31].

Una traducción entre la lógica de HOL [74], un sistema de demostración basado en
lógica de orden superior, y la lógica de Nuprl [1], un sistema para desarrollar sistemas
software y teoŕıas formales para matemáticas, se implementó en Maude [70] siguiendo
un enfoque formal.

En la actualidad, nos han informado de que un nuevo proyecto está dedicado a
traducir especificaciones en Maude al demostrador PVS [76]. La transformación, im-
plementada en Maude, está dirigida por ejemplos sobre especificaciones en sistemas
de seguridad, y por tanto solo los elementos que aparecen en dichos ejemplos (un
subconjunto de los módulos funcionales) son traducidos. Sin embargo, el sistema
está aún en desarrollo y es de prever que nueva funcionalidad se añada en el futuro.

El principal inconveniente de estos enfoques es que, igual que en algunas herramientas
enumeradas anteriormente, se concentran en Maude. Nuestra integración pretende mejorar
estas propuestas permitiendo que especificaciones escritas en otras lógicas la usen.

9.2 Integrando Maude en Casl

El trabajo que es necesario llevar a cabo para conseguir esta integración es prepa-
rar Maude y su lógica subyacente para que pueda actuar como una expansión de Hets.
Por parte de la semántica, esto significa que la lógica se tiene que formalizar como una
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institución [39, 97]. Una institución para lógica de reescritura ya fue estudiada en [77],
pero presentaba el problema de usar la categoŕıa discreta de signaturas, esto es, los únicos
morfismos admitidos eran los morfismos identidad. Sin embargo, necesitamos los morfis-
mos para trabajar con renombramientos, vistas y módulos parametrizados, y por tanto
esta institución no es adecuada para nuestros propósitos. Por parte de la herramienta,
debemos proporcionar mecanismos de análisis sintáctico y estático, de tal manera que las
especificaciones se puedan traducir a un marco común, que en nuestro caso son los grafos
de desarrollo, una representación gráfica de especificaciones estructuradas.

Antes de tratar de describir otra institución para la lógica subyacente a Maude, es-
tudiamos las dos lógicas mejor conocidas para el sistema de transiciones que aparece en
los módulos de sistema de Maude: la lógica de reescritura [56] y las álgebras preorde-
nadas [36, 56]. Estos sistemas se distinguen principalmente en el tratamiento que hacen
de las reescrituras: mientras que en la lógica de reescritura las reescrituras están etique-
tadas y diferentes reescrituras entre dos estados (términos) se pueden distinguir (lo que
corresponde a equipar cada conjunto soporte con una categoŕıa de reescrituras), en las
álgebras preordenadas lo único que importa es la existencia de una reescritura (lo que se
corresponde con equipar cada conjunto soporte con un preorden de reescrituras).

Tras estudiar detenidamente Maude y la lógica de reescritura, decidimos que la imple-
mentación actual de Maude difiere de la lógica de reescritura definida en [56]. Las razones
son:

1. En Maude, las etiquetas de las reglas no pueden ser (y no es necesario que sean)
traducidas en los morfismos de signaturas. Esto significa que las vistas de Maude no
conllevan morfismos de teoŕıas en lógica de reescritura.

2. Aunque las etiquetas de las reglas se usan en las trazas de los contraejemplos, juegan
un papel subsidiario; por ejemplo, no se pueden usar en la lógica lineal temporal del
comprobador de modelos de Maude.

3. Las familias no se pueden declarar expĺıcitamente en Maude, y por tanto es imposible
tener una familia sin tipos.

Por estas razones no es necesario, en este momento, definir una institución para lógica
de reescritura para integrar Maude en Hets, y por tanto usaremos álgebras preordena-
das [36, 56]. En esta lógica, las reescrituras no se etiquetan ni se distinguen, sino que solo
importa su existencia, lo que implica que las vistas de Maude no generan morfismos de
teoŕıas en la institución de las álgebras preordenadas. En las próximas secciones presen-
tamos una institución para especificaciones en Maude basada en álgebras preordenadas y
un comorfismo desde dicha institución a la institución de Casl, la lógica central de Hets.
Más detalles se pueden encontrar en [24, 23].

9.2.1 Una institución para Maude

La institución que vamos a definir para Maude, que denotaremos como Maudepre , es
muy similar a la definida en el contexto de CafeOBJ [36, 28] para álgebras preordenadas
(las diferencias están básicamente limitadas a los perfiles de los operadores que discutire-
mos después, lo cual es simplemente una cuestión de notación). Las signaturas de Maudepre

son tuplas (K, F, kind : (S,≤) → K), donde K es un conjunto de familias, kind es una fun-
ción que asigna una familia a cada tipo en el conjunto parcialmente ordenado (S,≤), y F es
un conjunto de śımbolos de función de la forma F = {Fk1...kn→k | ki, k ∈ K}∪{Fs1...sn→s |
si, s ∈ S} tal que si f ∈ Fs1...sn→s, entonces hay un śımbolo f ∈ Fkind(s1)...kind(sn)→kind(s).
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Nótese que no hay diferencias entre poner los perfiles de las operaciones con tipos en la
signatura y la formulación original de Meseguer poniéndolo en las sentencias.

Dadas dos signaturas Σi = (Ki, Fi, kind i), i ∈ {1, 2}, un morfismo de signaturas φ :
Σ1 → Σ2 es una función φkind : K1 → K2, una función entre tipos φsort : S1 → S2 tal que
φsort ; kind2 = kind1;φkind y se preservan los subtipos, y una función φop : F1 → F2 que
asocia śımbolos de función de manera compatible con los tipos. Además la sobrecarga de
śımbolos de función se debe preservar, es decir, el identificador φop(σ) debe ser el mismo
cuando se renombra el śımbolo σ para tipos y para familias. Con la composición definida
componente a componente, obtenemos la categoŕıa de las signaturas.

Dada una signatura Σ, un modelo M interpreta cada familia k como un preorden
(Mk,≤), cada tipo s como un subconjunto Ms de Mkind(s) que está equipado con el
preorden inducido, con Ms un subconjunto de Ms′ si s < s′, cada śımbolo de función
f ∈ Fk1...kn,k como una función Mf : Mk1 × . . . ×Mkn → Mk que tiene que ser monóto-
na y tal que para cada śımbolo de función f definido para tipos, su interpretación debe
ser una restricción de la interpretación de la correspondiente función para familias. Da-
dos dos Σ-modelos A y B, un homomorfismo de modelos es una familia de funciones
{hk : Ak → Bk}k∈K que preserva el preorden, que es también un homomorfismo de álge-
bras y tal que hkind(s)(As) ⊆ Bs para cada tipo s.

Las sentencias de una signatura Σ son cláusulas de Horn construidas con tres tipos de
átomos: átomos ecuacionales t = t′, átomos de pertenencia t : s y átomos de reescritura
t ⇒ t′, donde t, t′ son Σ-términos y s es un tipo en S.1

Dado un Σ-modelo M y una valuación η = {ηk}k∈K , es decir, una familia de funciones
con tipos en K que asignan elementos en M a variables, Mη

t se define inductivamente de
la manera habitual. Un átomo ecuacional t = t′ se satisface en M si Mη

t = Mη
t′ , un átomo

de pertenencia se satisface cuando Mη
t es un elemento de Ms y un átomo de reescritura

t ⇒ t′ se satisface cuando Mη
t ≤ Mη

t′ . La satisfacción de átomos se extiende a satisfacción
de sentencias de la manera obvia. Por último, usamos M,η |= A para indicar que el modelo
M satisface la sentencia A bajo la valuación η.

A continuación probamos que la condición de satisfacción se cumple para átomos,
siendo la extensión a cláusulas de Horn inmediata. Para hacerlo, usaremos el siguiente
lema:

Lema 1 Dado un morfismo de signaturas σ : Σ → Σ′, el cual induce la función σ :
Sen(Σ) → Sen(Σ′) y el funtor |σ : Mod(Σ′) → Mod(Σ), un Σ′-modelo M , los conjuntos
de variables X = {x1 : k1, . . . , xl : kl} y X ′ = {x1 : σ(k1), . . . , xl : σ(kl)}, con ki ∈ K,
1 ≤ i ≤ l, una valuación η : X → M |σ, la cual induce una valuación η′ : X ′ → M , con
η′(x) = η(x), y un Σ-término con variables en X, tenemos Mη′

σ(t) = (M |σ)η
t .

Demostración. Por inducción estructural sobre t. Para t = x una variable con familia es
trivial porque σ(x) = x y η(x) = η′(x). De manera análoga, para t = c una constante
es trivial aplicando la definición de morfismo a operadores. Si t = f(t1, . . . , tn), entonces
tenemos, por hipótesis de inducción, Mη′

σ(ti)
= (M |σ)η

ti
, para 1 ≤ i ≤ n, y

Mη′

σ(f(t1,...,tn)) = Mη′

σ(f)(σ(t1),...,σ(tn)) (por definición de σ sobre términos)

= Mσ(f)(M
η′

σ(t1), . . . ,M
η′

σ(tn)) (significado del término en el modelo)
= Mσ(f)((M |σ)η

t1
, . . . , (M |σ)η

tn) (por hipótesis de inducción)
= (M |σ)f ((M |σ)η

t1
, . . . , (M |σ)η

tn) (por definición de σ sobre modelos)
= (M |σ)η

f(t1,...,tn). (significado del término en el modelo)

1Nótese que esta definición es ligeramente más general que la de Maude, dado que las condiciones de
reescritura están permitidas para ecuaciones y axiomas de pertenencia.
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ut

Podemos usar este resultado, combinado con la correspondencia biyectiva entre η y η′,
para comprobar la condición de satisfacción para una Σ-ecuación t = t′:

M |=Σ′ σ(t = t′) ⇐⇒ M |=Σ′ σ(t) = σ(t′)
⇐⇒ M,η′ |=Σ′ σ(t) = σ(t′) para todo η′

⇐⇒ Mη′

σ(t) = Mη′

σ(t′) para todo η′

⇐⇒ (M |σ)η
t = (M |σ)η

t′ para todo η
⇐⇒ M |σ, η |=Σ t = t′ para todo η
⇐⇒ M |σ |=Σ t = t′

y de manera similar para asertos de pertenencia y reglas.

9.2.2 Un comorfismo de Maude a Casl

Presentamos ahora cómo codificar Maude en Casl, lo que se formalizará como un
comorfismo entre instituciones. La idea principal en esta codificación es representar las
reglas con un predicado binario y axiomatizarlo como un preorden compatible con las
operaciones.

Para empezar, para definir el comorfismo necesitamos conocer la institución de Casl.
A continuación describimos las principales caracteŕısticas de dicha institución; más deta-
lles están disponibles en [59, 66]. La institución se define en dos pasos: en primer lugar se
introduce la lógica de primer orden heterogénea con funciones parciales, restricciones de
generación de tipos e igualdad (PCFOL=), y entonces la lógica de primer orden con subti-
pado, funciones parciales y restricciones de generación de tipos e igualdad (SubPCFOL=)
se describe en términos de PCFOL= [59]. Esta institución se compone de:

Una signatura con subtipado Σ = (S,TF ,PF , P,≤S), donde S es un conjunto de
tipos, TF y PF son dos familias, con tipos en S∗ × S, TF = (TFw,s)w∈S∗,s∈S y
PF = (PFw,s)w∈S∗,s∈S de śımbolos de función totales y parciales, respectivamente,
tal que TFw,s ∩PFw,s = ∅, para cada (w, s) ∈ S∗× S, P = (Pw)w∈S∗ es una familia
de śımbolos de predicado, y ≤S una relación reflexiva y transitiva de subtipado en
el conjunto S. Dadas dos signaturas Σ = (S,TF ,PF , P ) y Σ′ = (S′,TF ′,PF ′, P ′),
un morfismo de signaturas σ : Σ → Σ′ está compuesto por:

– una función σS : S → S′ que preserva la relación de subtipado,

– una función σF
w,s : TFw,s ∪PFw,s → TFσS∗ (w),σS(s) ∪PF ′

σS∗ (w),σS(s)
que asocia

śımbolos de función total con śımbolos de función total y śımbolos de función
parcial con śımbolos de función parcial, para cada w ∈ S∗, s ∈ S, y

– una función σP
w : Pw → P ′

σS∗ (w)
para cada w ∈ S∗.

Las identidades y la composición se definen de manera directa.

A cada signatura con subtipado Σ = (S,TF ,PF , P,≤S) le asociamos una signatura
heterogénea Σ̂, extensión de (S,TF ,PF , P ), la signatura heterogénea subyacente,
con:

– un śımbolo sobrecargado injection de función total inj : s → s′, para cada par
de tipos s ≤S s′,

– un śımbolo sobrecargado projection de función parcial pr : s′ →? s, para cada
par de tipos s ≤S s′, y



118 Caṕıtulo 9. Verificación Heterogénea

– un śımbolo sobrecargado de aridad 1 membership de predicado ∈s: s′, para cada
par de tipos s ≤S s′.

Los morfismos de signaturas σ : Σ → Σ′ se extienden a morfismos de signaturas
σ̂ : Σ̂ → Σ̂′ simplemente asociando las funciones y el predicado anteriores a sus
homólogos en Σ̂′.

Dada una signatura con subtipado Σ = (S,TF ,PF , P,≤S), definimos relaciones
de sobrecarga (también llamados órdenes monótonos), ∼F y ∼P , para śımbolos de
función y de predicado, respectivamente:

Sean f : w1 → s1, f : w2 → s2 ∈ TF ∪ PF ; entonces f : w1 → s1 ∼F f : w2 → s2 si
y solo si existe w ∈ S∗ con w ≤S∗ w1 y w ≤S∗ w2 y s ∈ S con s1 ≤S s y s2 ≤S s.

Sean p : w1, p : w2 ∈ P , entonces p : w1 ∼P p : w2 si y solo si existe w ∈ S∗ con
w ≤S∗ w1 y w ≤S∗ w2.

Un conjunto de sentencias subtipadas en Σ, que se corresponde con sentencias he-
terogéneas en Σ̂, esto es, fórmulas en lógica de primer orden cerradas heterogéneas
en Σ̂ o restricciones de generación de tipos (un tipo especial de fórmula que permite
establecer cuáles son los śımbolos de función usados como constructoras) en Σ. La
traducción de sentencias por un morfismo de signatura subtipada es simplemente la
traducción de la sentencia por un morfismo heterogéneo de signaturas en σ̂.

Modelos M subtipados en Σ son simplemente modelos heterogéneos en Σ̂, compuestos
por:

– un conjunto soporte no vaćıo Ms para cada tipo s ∈ S,

– una función parcial fM de Mw a Ms para cada śımbolo de función f ∈ TFw,s∪
PFw,s, w ∈ S∗, s ∈ S, siendo total la función si f ∈ TFw,s, y

– un predicado pM ⊆ Mw para cada śımbolo de predicado p ∈ Pw, w ∈ S∗,

satisfaciendo el siguiente conjunto de axiomas Ĵ(Σ):

– inj (s,s)(x) e= x (identidad), donde e= denota una ecuación existencial,

– inj (s,s′)(x) e= inj (s,s′)(x) =⇒ x
e= y para s ≤S s′ (inyectividad de la inmer-

sión—embedding-injectivity en inglés—),

– inj (s′,s′′)(inj s,s′(x)) e= inj (s,s′′)(x) para s ≤S s′ ≤S s′′ (transitividad),

– pr (s′,s)(inj (s,s′)(x)) e= x para s ≤S s′ (proyección),

– pr (s′,s)(x) e= pr (s′,s)(y) =⇒ x
e= y para s ≤S s′ (inyectividad de la proyección—

projection-injectivity en inglés—),

– ∈s
s′ (x) ⇐⇒ pr (s′,s)(x) para s ≤S s′ (pertenencia),

– inj (s′,s)(fw′,s′(inj s1,s′1
(x1), . . . , inj sn,s′n

(xn))) =
inj (s′′,s)(fw′′,s′′(inj (s1,s′′1 )(x1), . . . , inj (sn,s′′n)(xn))) for fw′,s′ ∼F fw′′,s′′ , donde w ≤
w′, w′′, s′, s′′ ≤ s, w = s1, . . . , sn, w′ = s′1, . . . , s

′
n, y w′′ = s′′1, . . . , s

′′
n (monotońıa

de la función—function-monotonicity en inglés—), y

– pw′(inj (s1,s′1)(x1), . . . , inj (sn,s′n)(xn)) ⇐⇒ pw′′(inj (s1,s′′1 )(x1), . . . , inj (sn,s′′n)(xn))
para pw′ ∼P pw′′ , donde w ≤ w′, w′′, w = s1 . . . sn, w′ = s′1 . . . s′n, y w′′ =
s′′1 . . . s′′n (monotońıa del predicado—predicate-monotonicity en inglés—).
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La satisfacción y la condición de satisfacción se heredan de la institución hete-
rogénea. Básicamente, una fórmula ϕ se satisface en un modelo M si y solo si se
satisface con respecto a todas las valuaciones de variables en M .

Con esta institución definida, podemos describir el comorfismo. Cada signatura de
Maude (K, F, kind : (S,≤) → K) se traduce a una teoŕıa de Casl ((S′,≤′, F, P ), E), donde
S′ es la unión disjunta de K y S, ≤′ extiende la relación ≤ para tipos con pares (s, kind(s))
para cada s ∈ S, rew ∈ Ps,s para todo s ∈ S′ es un predicado binario y E contiene
axiomas estableciendo que para cada familia k, rew ∈ Pk,k es un preorden compatible con
las operaciones. Esto último significa que para cada f ∈ Fs1...sn,s y cada xi, yi de tipo
si ∈ S′, i = 1, . . . , n, si rew(xi, yi) se cumple, entonces rew(f(x1, . . . , xn), f(y1, . . . , yn))
también se cumple.

Sean Σi, i ∈ {1, 2} dos signaturas de Maude y sea ϕ : Σ1 → Σ2 un morfismo de
signaturas de Maude. Entonces su traducción Φ(ϕ) : Φ(Σ1) → Φ(Σ2), denotada por φ, se
define como sigue:

para cada s ∈ S, φ(s) = ϕsort(s) y para cada k ∈ K, φ(k) = ϕkind (k).

la condición de preservación del subtipado de φ se sigue de la condición análoga para
ϕ.

para cada śımbolo de función σ, φ(σ) = ϕop(σ).

rew permanece invariable.

La función de traducción de sentencias se obtiene en dos pasos. Mientras que los átomos
ecuacionales no se modifican, los átomos de pertenencia t : s se traducen a la notación de
Casl t in s y los átomos de reescritura de la forma t ⇒ t′ se traducen a rew(t, t′). Por
tanto, para cada sentencia en Maude de la forma (∀xi : ki)H =⇒ C,2 donde H es una
conjunción de átomos de Maude y C es un átomo, se traduce como (∀xi : ki)H ′ =⇒ C ′,
donde H ′ y C ′ se obtienen traduciendo todos los átomos de Maude como describimos
anteriormente.

Dada una signatura de Maude Σ, un modelo M ′ de su teoŕıa traducida (Σ′, E) es
asignado a un modelo M en Σ, donde:

para cada familia k, se define Mk = M ′
k y la relación de preorden en Mk es rew ;

para cada tipo s, se define Ms para ser la imagen de M ′
s bajo la inyección inj s,kind(s)

generada por la relación de subtipado;

para cada f definida sobre familias, sea Mf (x1, . . . , xn) = M ′
f (x1, . . . , xn) y pa-

ra cada f definida sobre tipos con s el tipo del resultado, sea Mf (x1, . . . , xn) =
inj s,kind(s)(M ′

f (x1, . . . , xn)). Mf es monótona porque los axiomas aseguran que M ′
f

es compatible con rew .

El reducto del homomorfismo de modelos es el esperado.
Sean Σ una signatura de Maude, M ′, N ′ dos modelos en Φ(Σ) (en Casl) y sea h′ :

M ′ → N ′ un homomorfismo de modelos. Denotamos M = βΣ(M ′) y N = βΣ(N ′) y
definimos h : M → N como sigue: para toda familia k de Σ, hk = h′k (lo cual es correcto
porque el dominio y el codominio encajan, por definición de M y N). Necesitamos mostrar
que h es en efecto un homomorfismo de modelos de Maude. Para ello, debemos probar
tres cosas:

2La declaración de cualquier variable x con tipo s se sustituye por una variable x con familia kind(s) y
un axioma de pertenencia x : s.
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1. hk preserva el preorden para toda familia k.

Asumamos x ≤M
k y. Por definición, el preorden en Mk es el dado por rew , lo que sig-

nifica que Mrew (x, y) se cumple. Por la condición de homomorfismo para h′ tenemos
que Nrew (h′(x), h′(y)) se cumple, lo que significa por definición del preorden sobre
N que h′(x) ≤N

k h′(y).

2. h es un homomorfismo de álgebras.

Esto se obtiene directamente de la definición de Mf donde f es un śımbolo de función
y de la condición de homomorfismo para śımbolos de función para h′.

3. para cualquier tipo s, hkind(s)(Ms) ⊆ Ns.

Por definición, Ms = inj s,kind(s)(M ′
s). Por la condición de homomorfismo para inj s,kind(s),

que es un śımbolo expĺıcito de función en Casl, tenemos que

hkind(s)(Ms) = hkind(s)(inj s,kind(s)(M
′
s)) = inj s,kind(s)(hs(M ′

s)).

Dado que hs(M ′
s) ⊆ N ′

s por definición, tenemos que inj s,kind(s)(hs(M ′
s)) ⊆ inj s,kind(s)(N ′

s),
lo que por definición es Ns.

9.3 Grafos de desarrollo

Para gestionar demostraciones, Hets usa grafos de desarrollo [62]. Estos grafos se
pueden definir para cualquier institución y se usan para codificar especificaciones estruc-
turadas en varias fases de su desarrollo. Básicamente, cada nodo del grafo representa una
teoŕıa, mientras que las aristas definen cómo hace uso cada teoŕıa de las restantes. De esta
manera, podemos representar especificaciones complejas representando cada componente
(es decir, cada módulo) como un nodo del grafo de desarrollo y las relaciones entre ellos
(es decir, importaciones y obligaciones de prueba) como aristas. En esta sección vamos a
presentar las intuiciones tras los grafos de desarrollo, mientras que las definiciones formales
se pueden encontrar en [24].

Definición 13 Un grafo de desarrollo es un grafo dirigido y aćıclico DG = 〈N ,L〉.
N es un conjunto de nodos. Cada nodo N ∈ N es un par (ΣN ,ΦN ) tal que ΣN es

una signatura y ΦN ⊆ Sen(ΣN ) es un conjunto de axiomas locales de N , (es decir,
en el caso de Maude estos axiomas son las ecuaciones, axiomas de pertenencia y reglas
declaradas—no importadas—en el módulo representado por el nodo).

L es un conjunto de enlaces dirigidos, los llamados enlaces de definición, entre
elementos de N . Estamos interesados en dos tipos de enlaces desde un nodo M a un nodo
N :

global (denotado M
σ +3 N), que indica que las sentencias en M son incluidas,

renombrando con σ, en la teoŕıa en N (dado que todos los nodos tienen una signa-
tura, el renombramiento σ debe hacer la signatura en M igual a la correspondiente
(sub)signatura en N).

libres (denotado M
σ

free
+3 N), que indica que la signatura en M es libremente in-

cluida, con el renombramiento σ, en la teoŕıa en N .
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Además de estos enlaces hemos definido uno nuevo, denotado M
σ

n.p.free
+3 N, que representa

enlaces libres no persistentes y que será usado al tratar el modo de importación protecting
de módulos de Maude. Sin embargo, estos enlaces solo se usan para especificaciones en
Maude y por tanto no son estándar; en la próxima sección mostraremos cómo transformar
estos enlaces y los nodos asociados en un nuevo grafo que solo usa construcciones estándar.
Intuitivamente, estos enlaces indican que no se pueden añadir nuevos elementos a los tipos,
aunque śı que se pueden añadir a las familias.

De manera complementaria a los enlaces de definición, los cuales definen las teoŕıas
de los nodos relacionados, introducimos la noción de enlaces de teoremas, de los que nos
servimos para postular las relaciones entre las diferentes teoŕıas. Los enlaces de teoremas
son la estructura de datos principal para representar las obligaciones de prueba que apa-
recen en desarrollos formales. La idea es que un enlace de teorema entre los nodos M y
N , denotado M

σ +3___ ___ N, incluye todas las sentencias en M , con un renombramiento σ,
como obligaciones de prueba en N .

9.3.1 Restricciones de extensiones libres

Maude usa semánticas iniciales y libres intensivamente. Sin embargo, su semántica
libre es diferente de la usada en Casl en que las extensiones libres de modelos tienen que
ser persistentes solo en tipos y por tanto nuevos elementos de error se pueden añadir en la
interpretación de familias. Intentos de diseñar una traducción a Casl de tal manera que los
enlaces libres de Maude se tradujesen a los enlaces libres estándar han sido infructuosos, y
por tanto decidimos introducir los enlaces libres no persistentes mencionados en la sección
anterior. Para no romper el cálculo de los grafos de desarrollo, hemos normalizado estos
enlaces reemplazándolos por un grafo de desarrollo semánticamente equivalente en Casl.
La idea principal para hacer una extensión libre persistente es duplicar los tipos parámetros
apropiadamente, de tal manera que el parámetro es siempre expĺıcitamente incluido en la
extensión libre. La transformación de enlaces libres no persistentes en Maude a enlaces
libres persistentes en Casl se ilustra en la figura 9.2:

M ′ and N ′ son las traducciones de Maude a Casl de M y N usando el comorfismo
de la sección 9.2.

M ′′ es una extensión de M ′ (donde el morfismo ι es un renombramiento para hacer
la signatura distinta de M) donde la signatura se ha extendido con tipos [s] para
cada tipo s ∈ ΣM , de tal manera que s ≤ [s] y [s] ≤ [s′] si s ≤ s′; los śımbolos de
función se han extendido con f : [w] → [s] para cada f : w → s ∈ ΣM ; y, por último,
se han añadido nuevos predicados rew para estos tipos.

El nodo K tiene una signatura ΣK que consiste en la signatura ΣM unida de manera
disjunta con una copia de ΣM generada en el paso anterior por ι, denotada ι(ΣM )
(llamaremos ι(x) al correspondiente śımbolo en esta copia para cada śımbolo x de la
signatura ΣM ) y aumentada con nuevas funciones h : ι(s) →? s, para cada tipo s de
ΣM (→? indica que es una función parcial) y makes : s → ι(s), para cada tipo s de
la signatura fuente Σ del morfismo σ que etiqueta el enlace libre. Los axiomas para
estos nuevos śımbolos de función, generados siguiendo las ideas en [61], están fuera
de los objetivos de este caṕıtulo y son presentados en profundidad en [24].

Un enlace libre de Casl une M ′′ con K. Este enlace está etiquetado por un morfismo
σ# que extiende σ con [s] 7→ [σ(s)] para cada s ∈ ΣM .
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M
n.p.free

σ +3

��

N

��

M ′

ιN
��

M ′′
free

σ#
+3 K

hide

ιN +3 N ′

Figura 9.2: Normalización de los enlaces libres de Maude

Por último, un enlace de ocultación (básicamente, un enlace donde el morfismo es
aplicado en la dirección opuesta al enlace—de N ′ a K en este caso—y donde algunos
śımbolos, considerados ocultos, no se incluyen en el destino) funciona como una
inclusión que conecta K y N ′.

El tratamiento genérico de restricciones de extensiones libres en Casl se encuentra en
los axiomas del nodo K. La generación de estos axiomas ha sido implementada durante
la integración de Maude en Hets, y por tanto la integración ofrece como efecto lateral la
posibilidad de probar restricciones de extensiones libres en Casl y en todos los formalismos
conectados.

9.3.2 Grafo de desarrollo: Un ejemplo

En esta sección presentamos cómo se traducen las especificaciones en Maude a grafos
de desarrollo por medio de un ejemplo; más detalles están disponibles en [23]. Para mostrar
que los grafos de desarrollo pueden representar grandes especificaciones, presentamos el
grafo de desarrollo para el preludio de Maude en la figura 9.3. Dado que el grafo es
demasiado grande para distinguir ningún detalle, merece la pena estudiar algunas zonas
concretas más detenidamente. Nos vamos a centrar en las listas de números naturales,
como se ve en la figura 9.4. Los ingredientes usados son: (i) los módulos BOOL y NAT
para booleanos y números naturales; (ii) la teoŕıa TRIV exigiendo la existencia de un tipo
Elt; (iii) el módulo parametrizado LIST, que define listas genéricas de los elementos en
TRIV; (iv) dos teoŕıas STRICT-TOTAL-ORDER y TOTAL-ORDER, que importan algunas otras
teoŕıas y exigen que los elementos de tipo Elt tengan un orden total estricto y un orden
total, respectivamente; (v) tres vistas Nat, Nat< y Nat<= que establecen que las teoŕıas
anteriores se satisfacen asignando el tipo Nat de los números naturales al tipo Elt; y (vi)
una instanciación del módulo LIST con la vista Nat. El grafo de desarrollo se compone de:

Un nodo para cada teoŕıa de Maude (como TOTAL-ORDER o STRICT-TOTAL-ORDER)
que contienen la correspondiente teoŕıa (la signatura y las sentencias).

Dos nodos por cada módulo. Uno contiene la teoŕıa completa y representa la semánti-
ca laxa mientras que el otro, unido al primero con un enlace libre, contiene la misma
signatura pero no tiene axiomas locales, por lo que representa el modelo libre de la
teoŕıa. Identificamos el primero con el nombre del módulo (como los nodos NAT o
LIST), y el segundo con el identificador y un apóstrofo (NAT’ y LIST’). En el ejemplo
hemos omitido el subgrafo de BOOL para simplificar el grafo.

Un enlace de definición para las importaciones en modo including, como TRIV sien-
do importado por STRICT-WEAK-ORDER, el cual es importado por STRICT-TOTAL-ORDER.
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Figura 9.3: Grafo de desarrollo para el preludio de Maude
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Figura 9.4: Grafo de desarrollo para las listas predefinidas de números naturales

Un enlace de definición cuando una teoŕıa se usa como parámetro formal, como
LIST, que está parametrizado por un parámetro de la forma X :: TRIV. Este enlace
está etiquetado, como se ve en la figura 9.5, con el morfismo Elt 7→ X$Elt (además,
dado que el tipo Elt se ha declarado como un subtipo de List{X}, la familia de Elt
se corresponde con la familia de List{X}), que cualifica al tipo con el nombre del
parámetro.

Un enlace de teorema para cada vista. Estos enlaces de teoremas tienen como fuente
el nodo que representa la teoŕıa usada como fuente de la vista y como destino el
nodo que representa el modelo libre del módulo destino. Por ejemplo, la vista Nat,
que tiene TRIV como fuente y NAT como destino, genera un enlace de teorema entre
TRIV y NAT’.

Un nuevo nodo por cada instanciación. Este nodo es el destino de varios enlaces de
definición, uno desde el módulo parametrizado y otro desde el nodo que represen-
ta el modelo libre del destino de cada vista usada como parámetro. Por ejemplo,
LIST{Nat} instancia el módulo LIST con la vista Nat. Es interesante ver que el en-
lace de LIST a LIST{Nat} está etiquetado, como se muestra en la figura 9.6, con
el morfismo X$Elt 7→ Nat, List{X} 7→ List{Nat}, NeList{X} 7→ NeList{Nat}, que
indica que el tipo X$Elt se corresponde con Nat y que el parámetro se ha instanciado
con la vista Nat.

El principal interés de usar grafos de desarrollo, además de representar gráficamente
especificaciones en Maude, es facilitar la verificación heterogénea. Un cálculo de grafos de
desarrollo está integrado en Hets de tal manera que los grafos de desarrollo se transfor-
man para tratar las obligaciones de prueba. En nuestro caso concreto, estamos interesados
en la transformación Automatic disponible en el menú Edit/Proofs: entre otras trans-
formaciones, “empuja” las obligaciones de prueba contenidas en los enlaces de teoremas a
los nodos destino para que sean demostradas ah́ı. El resultado de aplicar este comando al
grafo de desarrollo descrito anteriormente se muestra en la figura 9.7, donde el nodo NAT’,
que Hets muestra en rojo, indica que tiene obligaciones de prueba pendientes. Ahora
podemos usar la opción Prove en el menú del nodo, que abre la ventana mostrada en la
figura 9.8, donde los diferentes axiomas (los de la teoŕıa y los que tienen que ser probados)
se pueden examinar, y donde se pueden seleccionar distintos demostradores de teoremas.
En nuestro caso, estos axiomas se refieren a las ecuaciones que indican que los números
naturales conforman un orden estricto total (cumplen las propiedades de transitividad,
irreflexividad, transitividad de la incomparabilidad y totalidad) y un orden total (pro-
piedades reflexiva, transitiva, total y antisimétrica). Estas propiedades se pueden probar
automáticamente con SPASS, lo que permite a Hets transformar el nodo Nat’ de rojo
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Figura 9.5: Morfismo de TRIV a LIST

a verde, como se muestra en la figura 9.9, lo que indica que todas las obligaciones de
prueba se han demostrado. Es interesante ver que estas propiedades no se han podido
demostrar directamente sobre los números naturales definidos en Maude, porque todas las
operaciones están implementadas en C++ y por tanto el módulo NAT no tiene ecuacio-
nes. Las demostraciones se han llevado a cabo usando una biblioteca de Casl que define
algunos de los módulos predefinidos de Maude de manera análoga a las especificaciones
que esperaŕıamos en Maude,3 que es cargada automáticamente cuando se detectan dichos
módulos. Por ejemplo, la definición del operador _<=_ en la biblioteca es:

forall m,n : Nat
. 0 <= n = maudeTrue %(leq_def1_Nat)%
. suc(n) <= 0 = maudeFalse %(leq_def2_Nat)%
. suc(m) <= suc(n) = m <= n %(leq_def3_Nat)%

donde los valores maudeTrue, maudeFalse son un renombramiento de los valores de Maude
true and false para evitar colisiones con las constantes de Casl del mismo nombre, y
las cadenas en la derecha son las etiquetas de las ecuaciones. Por supuesto, esta prueba
funcionaŕıa igual si definimos las correspondientes ecuaciones en Maude y las usamos para
demostrar las obligaciones de prueba en el nodo generado por el módulo correspondiente.

Desafortunadamente, no todas las obligaciones de prueba que pueden aparecen en una
especificación en Maude se pueden demostrar automáticamente. En [24] probamos que
invertir dos veces una lista da como resultado la lista original. Para ello, necesitamos las
transformaciones para extensiones libres esbozadas en la sección 9.3.1 para normalizar el
grafo de desarrollo y después aplicar las transformaciones estándar en el grafo resultante
para demostrar las obligaciones de prueba.

3¡Esta implementación es un sistema heterogéneo! Combina la implementación de Hets en Haskell, un
analizador sintáctico para especificaciones en Maude escrito en el propio Maude y bibliotecas en Casl.



126 Caṕıtulo 9. Verificación Heterogénea

Figura 9.6: Morfismo de LIST a LIST{Nat}

Figura 9.7: Grafo de desarrollo tras usar Automatic

9.4 Implementación

En esta sección vamos a describir brevemente los pasos de implementación necesarios
para integrar Maude en Hets:

Sintaxis abstracta. En primer lugar, la sintaxis abstracta de las especificaciones en Mau-
de se debe definir en Haskell. Esta sintaxis abstracta se basa en la gramática de
Maude presentada en [20, caṕıtulo 24].

Análisis sintáctico de Maude. También es necesario describir cómo analizar sintácti-
camente las especificaciones en Maude que se introducen en Hets, de forma que
obtengamos un término construido con la sintaxis abstracta definida en el paso an-
terior. Este analizador sintáctico se puede implementar en el propio Maude usando
su metanivel [20, caṕıtulo 14], un módulo que permite al usuario usar entidades de
Maude, como módulos, ecuaciones o reglas, como datos gracias a la eficiente imple-
mentación de las capacidades reflexivas de la lógica de reescritura [21].
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Figura 9.8: Ventana para las obligaciones de prueba

Usando esta caracteŕıstica hemos desarrollado una función que recibe un módulo
y devuelve una lista de identificadores que representan un término en la sintaxis
abstracta, que puede ser léıdo por Haskell gracias a que los tipos de datos derivan
la clase Read.

Lógica. Una vez hemos traducido los módulos de Maude a la sintaxis abstracta, tenemos
que implementar las clases de tipos de Haskell Language y Logic definidas en Hets,
que definen los tipos necesarios para representar cada lógica como una institución y
comorfismos entre ellas. Para hacerlo, debemos relacionar cada elemento en dichas
clases (signaturas, morfismos, sentencias, etc.) con los elementos correspondientes
en la sintaxis abstracta, siguiendo la teoŕıa desarrollada en las secciones anteriores.
Más detalles sobre este paso están disponibles en [50], que está dedicado a este paso.

Grafo de desarrollo. Dadas las opciones recibidas desde la ĺınea de comandos y la ruta
del fichero de Maude que tiene que ser analizado, debemos calcular en Haskell el grafo
de desarrollo asociado. De hecho, construimos dos grafos de desarrollo diferentes, el
primero con la información en el preludio de Maude y otro con la especificación del
usuario, siguiendo en ambos casos las ideas descritas en las secciones anteriores.

Comorfismo. Dada una signatura de Maude y una lista de sentencias de Maude, debemos
implementar en Haskell la traducción a la signatura de Casl y las sentencias de
Casl.

Restricciones de extensiones libres. Por último, hemos implementado en Haskell cómo
se generan, dada una signatura en Casl y un conjunto de sentencias en Casl, las
restricciones de extensiones libres descritas en la sección 9.3.1.
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Figura 9.9: Grafo de desarrollo tras descartar las obligaciones de prueba

9.5 Contribuciones

En este caṕıtulo hemos presentado una integración de Maude en Hets. Las principales
aportaciones de este trabajo son:

Institución y comorfismo. Hemos definido una institución para Maude. Esta institu-
ción está basada en álgebras preordenadas, dado que una institución para la lógica
de reescritura no era necesaria por el momento, y usa como sentencias ecuaciones,
axiomas de pertenencia y reglas, a diferencia de la propuesta en [17], que solo usaba
reglas incondicionales, y permite morfismos de signaturas no triviales, mejorando la
propuesta en [77], que utilizaba una categoŕıa discreta para las signaturas. Hemos
definido también un comorfismo desde esta institución a la institución de Casl, la
lógica central de Hets, que combina lógica de primer orden con inducción.

Grafo de desarrollo. Los módulos, teoŕıas, vistas y mecanismos de estructuración de
Maude se han incorporado a los grafos de desarrollo de Hets. De esta manera,
podemos representar especificaciones en Maude como grafos de desarrollo, donde los
módulos y las teoŕıas se representan como nodos y las importaciones y las vistas
como enlaces entre estos nodos.

Restricciones de extensiones libres. Hemos desarrollado, al nivel de Casl, una trans-
formación que nos permite demostrar restricciones de extensiones libres para aquellas
especificaciones que usan los enlaces libres estándar disponibles en Hets y cuenta
con una traducción a Casl. Sin embargo, este no es el caso de Maude, que requiere
un trato especial en el caso de estas restricciones. Por esta razón, hemos introducido
un nuevo tipo de enlace en el cálculo de los grafos de desarrollo, que es después
normalizado en los enlaces libres habituales para permitir usar la transformación
anteriormente mencionada.

Demostraciones. Como “corolario” de las contribuciones anteriores, hemos integrado
Maude en Hets, lo que permite demostrar propiedades de especificaciones en Maude
con los demostradores ya integrados en Hets.
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Conclusiones y trabajo futuro

Las contribuciones de esta tesis son:

Hemos presentado un depurador declarativo para especificaciones en Maude. Este
depurador permite al usuario depurar respuestas erróneas y perdidas causadas tanto
por sentencias erróneas y perdidas como por condiciones de búsqueda erróneas. En
esta herramienta se ha dedicado un gran esfuerzo a mejorar la usabilidad, proporcio-
nando técnicas para mejorar y acortar el árbol de depuración, diferentes estrategias
de navegación, múltiples respuestas, mecanismos de confianza, una interfaz gráfica
de usuario, y una aportación original: la posibilidad de construir diferentes árboles
de depuración dependiendo de la complejidad de la especificación y el conocimiento
de la misma por parte del usuario. Por último, dado que los árboles de depura-
ción se construyen siguiendo un cálculo formal, hemos demostrado la corrección y
completitud de la técnica.

Hemos integrado Maude en Hets, lo que nos permite usar las herramientas de Hets,
y especialmente sus demostradores de teoremas, con especificaciones en Maude. Esta
integración se ha llevado a cabo (i) definiendo una institución para Maude y (ii) tra-
duciendo los mecanismos de estructuración de Maude a grafos de desarrollo. Además,
también hemos implementado una transformación que permite demostrar restriccio-
nes de extensiones libres en cualequier teoŕıa (no necesariamente en especificaciones
en Maude).

El trabajo presentado en esta tesis nos ofrece una buena base para futuras extensiones
que nos permitan mejorar su usabilidad y generalidad. Como trabajo futuro para nues-
tro depurador, planeamos añadir nuevas estrategias de depuración como las presentadas
en [94], las cuales tienen en cuenta el número de posibles errores distintos en cada subárbol,
en lugar de su tamaño. Además, la versión actual de la herramienta permite al usuario
introducir un módulo correcto pero posiblemente incompleto para acortar la sesión de
depuración. Ahora pretendemos añadir un nuevo comando para introducir módulos com-
pletos (es decir, le haŕıamos saber al sistema que todas las inferencias correctas que se
pueden hacer en la especificación que está siendo depurada se pueden obtener en este
módulo completo), lo que reduciŕıa en gran medida el número de preguntas hechas al
usuario.

Actualmente estamos trabajando en un generador de casos de prueba para especifica-
ciones en Maude que, combinado con el depurador, permitiŕıa al usuario probar y depurar
sus especificaciones con una sola herramienta. El primer paso en el desarrollo de este pro-
yecto ha sido el desarrollo de un generador de casos de prueba para módulos funcionales
de Maude [84], que es capaz de generar casos de prueba para dichas especificaciones y
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comprobar su corrección con respecto a un módulo correcto o de elegir un subconjunto
representativo de dichos casos de prueba, usando distintas estrategias, para que sean com-
probados por el usuario; dado que estos procesos son muy costosos también presentamos
varias técnicas de confianza para mejorarlos. En este momento estamos trabajando para
mejorar el rendimiento de este generador de casos de prueba, aplicando técnicas de es-
trechamiento (narrowing en inglés) y usando arquitecturas distribuidas, y extendiendo la
herramienta para probar módulos de sistema de Maude; dado que estos módulos no tienen
por qué ser terminantes ni confluentes, la generación de casos de prueba para este tipo de
especificaciones es totalmente diferente de la usada para módulos funcionales.

Como trabajo futuro de la integración en Hets, dado que las demostraciones interacti-
vas no son fáciles de realizar, pretendemos mejorarlas adaptando estrategias automáticas
de inducción como la ondulación (rippling en inglés) [29]. Además, pretendemos usar el
demostrador automático de primer orden SPASS para pruebas con inducción integrándole
estrategias directamente en Hets.

También estamos estudiando los posibles comorfismos de Casl a Maude. Para definir-
los, debemos distinguir si las fórmulas en la teoŕıa fuente son confluentes y terminantes
o no. En el primer caso, pretendemos demostrar las propiedades con los comprobadores
de terminación [30] y confluencia [31] de Maude y traducir las fórmulas como ecuaciones,
cuya ejecución en Maude es más eficiente, mientras que en el segundo caso traduciŕıamos
las fórmulas como reglas.

Por último, planeamos relacionar la lógica modal de Hets y los modelos de Maude
para usar el comprobador de modelos para lógica lineal temporal de Maude [20, caṕıtulo
13].
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[83] A. Poswolsky and C. Schürmann. System description: Delphin – a functional programming
language for deductive systems. In A. Abel and C. Urban, editors, Proceedings of the Interna-
tional Workshop on Logical Frameworks and Metalanguages: Theory and Practice, LFMTP
2008, volume 228 of Electronic Notes in Computer Science, pages 113–120. Elsevier, 2009.

[84] A. Riesco. Test-case generation for Maude functional modules. In Proceedings of the 20th
International Workshop on Algebraic Development Techniques, WADT 2010, Lecture Notes
in Computer Science. Springer, 2011. To appear.

[85] A. Riesco, A. Verdejo, R. Caballero, and N. Mart́ı-Oliet. A declarative debugger for Maude
specifications - User guide. Technical Report SIC-7-09, Dpto. Sistemas Informáticos y
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A Declarative Debugger for Maude Functional
Modules

R. Caballero, N. Mart́ı-Oliet, A. Riesco and A. Verdejo

Facultad de Informática, Universidad Complutense de Madrid, Spain

Abstract

A declarative debugger for Maude functional modules, which correspond to executable specifications in
membership equational logic, is presented. Starting from an incorrect computation, declarative debugging
builds a debugging tree as a logical representation of the computation, that then is traversed by asking
questions to an external oracle until the error is found. We summarize the construction of appropriate
debugging trees for oriented equational and membership inferences, where all the nodes whose correctness
does not need any justification have been collapsed. The reflective features of Maude allow us to generate
and navigate the debugging tree of a Maude computation using operations in Maude itself; even the user
interface of the declarative debugger can be specified in this way. We present the debugger’s main features,
such as two different strategies to traverse the debugging tree, use of a correct module to reduce the number
of questions asked to the user, selection of trusted vs. suspicious statements by means of labels, and trusting
of statements “on the fly.”

Keywords: declarative debugging, membership equational logic, Maude, functional modules, metalevel
implementation

1 Introduction

Maude is a high-level language and high-performance system supporting both equa-
tional and rewriting logic [12] computation for a wide range of applications. In
particular, Maude functional modules correspond to specifications in membership
equational logic (MEL) [2,13], which, in addition to equations, allows the statement
of membership assertions characterizing the elements of a sort. In this way, Maude
makes possible the faithful specification of data types (like sorted lists or search
trees) whose data are defined not only by means of constructors, but also by the
satisfaction of additional properties.

The Maude system supports several approaches for debugging Maude programs:
tracing, term coloring, and using an internal debugger [7, Chap. 22]. The tracing
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facilities allow us to follow the execution on a specification, that is, the sequence
of rewrites that take place. Term coloring consists in printing with different colors
the operators used to build a term that does not fully reduce. The Maude debugger
allows the user to define break points in the execution by selecting some operators
or statements. When a break point is found the debugger is entered. There, we can
see the current term and execute the next rewrite with tracing turned on.

The Maude debugger has as a disadvantage that, since it is based on the trace,
it shows to the user every small step obtained by using a single statement. Thus
the user can loose the general view of the proof of the incorrect inference that
produced the wrong result. That is, when the user detects an unexpected statement
application it is difficult to know where the incorrect inference started.

Different debugging approaches based on the language’s semantics have been in-
troduced in the field of declarative languages, such as abstract diagnosis, which for-
mulates a debugging methodology based on abstract interpretation [9,1], or declar-
ative debugging, also known as algorithmic debugging, which was first introduced by
E. Y. Shapiro [19] and that constitutes the framework of this work. Declarative de-
bugging has been widely employed in the logic [10,14,22], functional [21,17,16,18],
and multiparadigm programming [5,3,11] languages. Declarative debugging is a
semi-automatic technique that starts from a computation considered incorrect by
the user (error symptom) and locates a program fragment responsible for the error.
The declarative debugging scheme [15] uses a debugging tree as a logical representa-
tion of the computation. Each node in the tree represents the result of a computation
step, which must follow from the results of its child nodes by some logical inference.
Diagnosis proceeds by traversing the debugging tree, asking questions to an external
oracle (generally the user) until a so-called buggy node is found. A buggy node is
a node containing an erroneous result, but whose children all have correct results.
Hence, a buggy node has produced an erroneous output from correct inputs and
corresponds to an erroneous fragment of code, which is pointed out as an error.

During the debugging process, the user does not need to understand the com-
putation operationally. Any buggy node represents an erroneous computation step,
and the debugger can display the program fragment responsible for it. From an
explanatory point of view, declarative debugging can be described as consisting of
two stages, namely the debugging tree generation and its navigation following some
suitable strategy [20].

Here we present a declarative debugger for Maude functional modules [7, Chap. 4].
The debugging process starts with an incorrect transition from the initial term to
a fully reduced unexpected one. Our debugger, after building a proof tree for that
inference, will present to the user questions of the following form: “Is it correct that
T fully reduces to T ′?”, which in general are easier to answer. Moreover, since the
questions are located in the proof tree, the answer allows the debugger to discard a
subset of the questions, leading and shortening the debugging process.

The current version of the tool has the following characteristics:

• It supports all kinds of functional modules: operators can be declared with any
combination of axiom attributes (except for the attribute strat, that allows to
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specify an evaluation strategy); equations can be defined with the otherwise
attribute; and modules can be parameterized.

• It provides two strategies to traverse the debugging tree: top-down, that traverses
the tree from the root asking each time for the correctness of all the children of
the current node, and then continues with one of the incorrect children; and divide
and query, that each time selects the node whose subtree’s size is the closest one
to half the size of the whole tree, keeping only this subtree if its root is incorrect,
and deleting the whole subtree otherwise.

• Before starting the debugging process, the user can select a module containing
only correct statements. By checking the correctness of the inferences with respect
to this module (i.e., using this module as oracle) the debugger can reduce the
number of questions asked to the user.

• It allows the user to debug Maude functional modules where some equations and
memberships are suspicious and have been labeled (each one with a different
label). Only these labeled statements generate nodes in the proof tree, while
the unlabeled ones are considered correct. The user is in charge of this labeling.
Moreover, the user can answer that he trusts the statement associated with the
currently questioned inference; that is, statements can be trusted “on the fly.”

Exploiting the fact that rewriting logic is reflective [6,8], a key distinguishing
feature of Maude is its systematic and efficient use of reflection through its prede-
fined META-LEVEL module [7, Chap. 14], a feature that makes Maude remarkably
extensible and that allows many advanced metaprogramming and metalanguage
applications. This powerful feature allows access to metalevel entities such as spec-
ifications or computations as usual data. Therefore, we are able to generate and
navigate the debugging tree of a Maude computation using operations in Maude
itself. In addition, the Maude system provides another module, LOOP-MODE [7,
Chap. 17], which can be used to specify input/output interactions with the user.
Thus, our declarative debugger for Maude functional modules, including its user
interactions, is implemented in Maude itself.

Complete explanations about the fundamentals of our declarative debugging
approach, additional examples, and more information about the implementation
can be found in the technical report [4], which, together with the Maude source
files for the debugger, is available from the webpage http://maude.sip.ucm.es/
debugging.

2 Declarative debugging of Maude functional modules

As mentioned in the introduction, Maude uses membership equational logic [2,13],
a very expressive version of equational logic which, in addition to equations, allows
the statement of membership assertions characterizing the elements of a sort. We
present below how its specifications are represented as Maude functional modules
and a brief description of the theoretical basics of our debugger.
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2.1 Membership equational logic

A signature in MEL is a triple (K,Σ, S) (just Σ in the following), with K a set of
kinds, Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K a many-kinded signature, and S = {Sk}k∈K

a pairwise disjoint K-kinded family of sets of sorts. Intuitively, terms with a kind
but without a sort represent undefined or error elements. MEL atomic formulas are
either equations t = t′, where t and t′ are Σ-terms of the same kind, or membership
assertions of the form t : s, where the term t has kind k and s ∈ Sk. Sentences
are universally-quantified Horn clauses of the form (∀X)A0 ⇐ A1 ∧ . . .∧An, where
each Ai is either an equation or a membership assertion. Order-sorted notation
s1 < s2 (with s1, s2 ∈ Sk for some kind k) can be used to abbreviate the conditional
membership (∀x : k)x : s2 ⇐ x : s1. A specification is a pair (Σ, E), where E is a
set of sentences over the signature Σ.

Models of MEL specifications are called algebras. A Σ-algebra A consists of a
set Ak for each kind k ∈ K, a function Af : Ak1 ×· · ·×Akn −→ Ak for each operator
f ∈ Σk1...kn,k, and a subset As ⊆ Ak for each sort s ∈ Sk. The meaning [[t]]A of a
term t in an algebra A is inductively defined as usual. Then, an algebra A satisfies
an equation t = t′ (or the equation holds in the algebra), denoted A |= t = t′, when
both terms have the same meaning: [[t]]A = [[t′]]A. In the same way, satisfaction of
a membership is defined as: A |= t : s when [[t]]A ∈ As. A specification (Σ, E) has
an initial model TΣ/E whose elements are E-equivalence classes of terms [t]. We
refer to [2,13] for a detailed presentation of (Σ, E)-algebras, sound and complete
deduction rules, initial and free algebras, and specification morphisms.

Since the MEL specifications that we consider are assumed to satisfy the ex-
ecutability requirements of confluence, termination, and sort-decreasingness, their
equations t = t′ can be oriented from left to right, t→ t′. Such a statement holds in
an algebra, denoted A |= t → t′, exactly when A |= t = t′, i.e., when [[t]]A = [[t′]]A.
Moreover, under those assumptions an equational condition u = v in a conditional
equation can be checked by finding a common term t such that u → t and v → t,
that is, u ↓ v. This is the notation we will use in the inference rules and debugging
trees studied in Sect. 2.3.

2.2 Representation in Maude

Maude functional modules, introduced with syntax fmod...endfm, are executable
MEL specifications and their semantics is given by the corresponding initial mem-
bership algebra in the class of algebras satisfying the specification.

In a functional module we can declare sorts (by means of keyword sort(s));
subsort relations between sorts (subsort); operators (op) for building values of
these sorts, giving the sorts of their arguments and result, and which may have
attributes such as being associative (assoc) or commutative (comm), for example;
memberships (mb) asserting that a term has a sort; and equations (eq) identifying
terms. Both memberships and equations can be conditional (cmb and ceq).

Maude does automatic kind inference from the sorts declared by the user and
their subsort relations. Kinds are not declared explicitly, and correspond to the
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connected components of the subsort relation. The kind corresponding to a sort s
is denoted [s]. For example, if we have sorts Nat for natural numbers and NzNat
for nonzero natural numbers with a subsort NzNat < Nat, then [NzNat] = [Nat].

An operator declaration like
op _div_ : Nat NzNat -> Nat .

is logically understood as a declaration at the kind level
op _div_ : [Nat] [Nat] -> [Nat] .

together with the conditional membership axiom
cmb N div M : Nat if N : Nat and M : NzNat .

A subsort declaration NzNat < Nat is logically understood as the conditional
membership axiom
cmb N : Nat if N : NzNat .

2.2.1 An example: binary search trees
As an example of Maude functional modules, we show how to specify binary search
trees without repeated elements, whose nodes contain elements that satisfy the
theory STOSET (defining a strict total order on them) [7, Sect. 8.3].
fmod SEARCH-TREE{X :: STOSET} is
sorts NeSearchTree{X} SearchTree{X} Tree{X} .
subsorts NeSearchTree{X} < SearchTree{X} < Tree{X} .
op empty : -> SearchTree{X} [ctor] .
op ___ : Tree{X} X$Elt Tree{X} -> Tree{X} [ctor] .

where the operation for building non-empty search trees uses juxtaposition and
X$Elt denotes the sort Elt from the theory STOSET.

A tree is a search tree when its root is bigger than all the elements in the left
subtree and smaller than all the elements in the right subtree; this requirement is
specified by means of memberships. Assuming that the subtrees are search trees,
instead of comparing with all their elements, it is enough to compare with the
minimum or maximum of the appropriate subtree.

vars E E’ : X$Elt .
vars L R : SearchTree{X} .
vars L’ R’ : NeSearchTree{X} .
mb [leaf] : empty E empty : NeSearchTree{X} .
cmb [1ch1] : L’ E empty : NeSearchTree{X} if max(L’) < E .
cmb [1ch2] : empty E R’ : NeSearchTree{X} if E < min(R’) .
cmb [2ch] : L’ E R’ : NeSearchTree{X}
if max(L’) < E /\ E < max(R’) .

ops min max : NeSearchTree{X} -> X$Elt .
ceq [mn1] : min(empty E R) = E if empty E R : NeSearchTree{X} .
ceq [mn2] : min(L’ E R) = min(L’) if L’ E R : NeSearchTree{X} .
ceq [mx1] : max(L E empty) = E if L E empty : NeSearchTree{X} .
ceq [mx2] : max(L E R’) = max(R’) if L E R’ : NeSearchTree{X} .

The delete operation is specified as usual by structural induction, and in the
non-empty case by comparing the element to be deleted with the root of the tree
and distinguishing the three cases according to whether the former is smaller than,
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equal to, or bigger than the latter.
op delete : SearchTree{X} X$Elt -> SearchTree{X} .
eq [dl1] : delete(empty, E) = empty .
ceq [dl2] : delete(L E R, E’) = delete(L, E’) E R

if E’ < E /\ L E R : NeSearchTree{X} .
ceq [dl3] : delete(L E R, E’) = L E delete(R, E’)

if E < E’ /\ L E R : NeSearchTree{X} .
ceq [dl4] : delete(empty E R, E) = R if empty E R : NeSearchTree{X} .
ceq [dl5] : delete(L E empty, E) = L if L E empty : NeSearchTree{X} .
ceq [dl6] : delete(L’ E R’, E) = L’ E’ delete(R’, E)

if E’ := min(R’) /\ L’ E R’ : NeSearchTree{X} .
endfm

This specification could be completed with other operations for insertion and
look up.

Now we can instantiate this module with the predefined module INT of integer
numbers, and reduce the following term
Maude> red delete((empty 1 empty) 2 ((empty 4 empty) 5 (empty 6 (empty 7 empty))), 5) .
result NeSearchTree{Int}:

(empty 1 empty) 2 ((empty 4 empty) 6 (empty 6 (empty 7 empty)))

We obtain a tree with repetitions. Moreover, Maude infers that it is a search
tree! Did you notice the bugs? We will show in Sect. 3.3 how to use the debugger
to detect them.

2.3 Declarative debugging

The inference rules of the calculus defining the operational semantics can be found
in Fig. 1. They are an adaptation to the case of Maude functional modules of the
deduction rules for MEL presented in [2]. We assume the existence of an intended
interpretation I of the specification, which is a Σ-algebra corresponding to the
model that the user had in mind while writing the statements E. The user expects
that I |= e→ e′, I |= e : s for each reduction e→ e′ and membership e : s computed
w.r.t. the specification (Σ, E).

We will say that e→ e′ (respectively e : s) is valid when it holds in I, and invalid
otherwise. Declarative debuggers rely on some external oracle, normally the user, in
order to obtain information about the validity of some nodes in the debugging tree.
The concept of validity can be extended to distinguish wrong equations and wrong
membership axioms, which are those specification pieces that can deduce something
invalid from valid information.

It will be convenient to represent deductions in the calculus as proof trees, where
the premises are the child nodes of the conclusion at each inference step. In declar-
ative debugging we are specially interested in buggy nodes which are invalid nodes
with all its children valid. Our goal is to find a buggy node in any proof tree T
rooted by the initial error symptom detected by the user. This could be done simply
by asking questions to the user about the validity of the nodes in the tree according
to the following top-down strategy:

Input: A tree T with an invalid root.
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(Reflexivity) e→ e (Rf )

(Transitivity) e1 → e′ e′ → e2
e1 → e2

(Tr)

(Congruence)
e1 → e′1 . . . en → e′n

f(e1, . . . , en) → f(e′1, . . . , e′n)
(Cong)

(Subject Reduction) e→ e′ e′ : s
e : s (SRed)

(Membership)
{θ(ui) ↓ θ(u′i)}1≤i≤n {θ(vj) : sj}1≤j≤m

θ(e) : s
(Mb)

if e : s⇐ u1 = u′1 ∧ · · · ∧ un = u′n ∧ v1 : s1 ∧ · · · ∧ vm : sm

(Replacement)
{θ(ui) ↓ θ(u′i)}1≤i≤n {θ(vj) : sj}1≤j≤m

θ(e) → θ(e′)
(Rep)

if e→ e′ ⇐ u1 = u′1 ∧ · · · ∧ un = u′n ∧ v1 : s1 ∧ · · · ∧ vm : sm

Fig. 1. Semantic calculus for Maude functional modules

Output: A buggy node in T .
Description: Consider the root N of T . There are two possibilities:
• If all the children of N are valid, then finish identifying N as buggy.
• Otherwise, select the subtree rooted by any invalid child and use recursively

the same strategy to find the buggy node.

Proving that this strategy is complete is straightforward by using induction on the
height of T . As a consequence, if T is a proof tree with an invalid root, then there
exists a buggy node N ∈ T such that all the ancestors of N are invalid.

However, we will not use the proof tree T as debugging tree, but a suitable
abbreviation which we denote by APT (T ) (from Abbreviated Proof Tree). In order
to simplify the proof trees we take advantage of a property that every Σ-algebra
A satisfies: if e → e′ (respectively e : s) can be deduced by any of the first four
inference rules of the calculus using premises that hold in A, then A |= e → e′

(respectively A |= e : s). This property cannot be extended to the membership and
replacement inference rules, where the correctness of the conclusion depends not
only on the calculus but also on the associated specification statement, which could
be wrong. Therefore the only inferences that can obtain an invalid conclusion from
valid premises, i.e., the only possible buggy nodes, correspond to the replacement
and membership inferences. The APT (T ) keeps only the nodes corresponding to
these inferences. Fig. 2 shows the definition of APT (T ), where the Ti represent
proof trees corresponding to the premises in some inferences.

The rule APT 1 keeps the root unaltered and employs the auxiliary function
APT ′ to produce the child subtrees. APT ′ is defined in rules APT 2 . . . APT 8. It
takes a proof tree as input parameter and returns a forest {T1, . . . , Tn} of APT s as
result. The rules for APT ′ are assumed to be tried top-down, in particular APT 4

must not be applied if APT3 is also applicable. It is easy to check that every node
N ∈ T conclusion of a replacement or membership inference has its corresponding
node N ′ ∈ APT (T ) labeled with the same abbreviation, and conversely, that for
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(APT1) APT

 
T1 . . . Tn

af
(R)

!
=

APT ′
 

T1 . . . Tn

af
(R)

!

af

(with (R) any inference rule)

(APT2) APT ′
 

e → e
(Rf )

!
= ∅

(APT3) APT ′

0
B@

T1 . . . Tn

e1 → e′
(Rep)

Tn+1

e1 → e2

(Tr)

1
CA =

(
APT ′(T1) . . . APT ′(Tn) APT ′(Tn+1)

e1 → e2
(Rep)

)

(APT4) APT ′
 

T1 T2

e1 → e2
(Tr)

!
= {APT ′(T1), APT ′(T2)}

(APT5) APT ′
 

T1 . . . Tn

e1 → e2
(Cong)

!
= {APT ′(T1), . . . , APT ′(Tn)}

(APT6) APT ′
 

T1 T2

e : s
(SRed)

!
= {APT ′(T1), APT ′(T2)}

(APT7) APT ′
 

T1 . . . Tn

e : s
(Mb)

!
=

(
APT ′(T1) . . . APT ′(Tn)

e : s
(Mb)

)

(APT8) APT ′
 

T1 . . . Tn

e1 → e2
(Rep)

!
=

(
APT ′(T1) . . . APT ′(Tn)

e1 → e2
(Rep)

)

Fig. 2. Transformation rules for obtaining abbreviated proof trees

each N ′ ∈ APT (T ) different from the root, there is a node N ∈ T , which is
the conclusion of a replacement or membership inference. In particular the node
associated to e1 → e2 in the righthand side of APT3 is the node e1 → e′ of the
proof tree T , which is not included in the APT (T ). We have chosen to introduce
e1 → e2 instead of simply e1 → e′ in the APT (T ) as a pragmatic way of simplifying
the structure of the APT s, since e2 is obtained from e′ and hence likely simpler
(the root of the tree Tn+1 in APT3 must be necessarily of the form e′ → e2 by the
structure of the inference rule for transitivity in Fig. 1).

Although APT (T ) is no longer a proof tree we keep the inference labels (Rep)
and (Mb), assuming implicitly that they contain a reference to the equation or
membership axiom used at the corresponding step in the original proof tree. This
information is used by the debugger in order to single out the incorrect fragment of
specification code. The abbreviation of the tree reduces and simplifies the questions
that will be asked to the user while keeping the soundness and completeness of the
technique, as the following theorem (proved in [4]) guarantees:

Theorem 2.1 Let S be a specification, I its intended interpretation, and T a finite
proof tree with invalid root. Then:

• APT (T ) contains at least one buggy node (completeness).
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� 1 � : NeST
leaf

max(� 1 �) → 1
mx1

� 4 � : NeST
leaf

max(� 4 �) → 4
mx1

� 7 � : NeST
leaf

min(� 7 �) → 7
mn1

� 6 (� 7 �) : NeST
1ch2

� 7 � : NeST
leaf

max(� 7 �) → 7
mx1

max(� 6 (� 7 �)) → 7
mx2

(� 4 �) 6 (� 6 (� 7 �)) : NeST (�)
2ch

�
�
�

�
�

�

max((� 4 �) 6 (� 6 (� 7 �))) → 7
mx2

(� 1 �) 2 ((� 4 �) 6 (� 6 (� 7 �))) : NeST
2ch

Fig. 3. Abbreviated proof tree

• Any buggy node in APT (T ) has an associated wrong statement in S (soundness).

The theorem states that we can safely employ the abbreviated proof tree as a
basis for the declarative debugging of Maude functional modules: the technique
will find a buggy node starting from any initial symptom detected by the user. Of
course, these results assume that the user answers correctly all the questions about
the validity of the APT nodes asked by the debugger (see Sect. 3.1).

The APT for the wrong membership inference of Sect. 2.2.1 is shown in Fig. 3,
where � denotes the empty search tree and 	 represents the already depicted proof
subtree with root max(� 6 (� 7 �)) → 7.

3 Using the debugger

Before describing the basics of the user interaction with the debugger, we make ex-
plicit what is assumed about the modules introduced by the user; then we present
the available commands and how to use them to debug the buggy example intro-
duced in Sect. 2.2.1.

3.1 Assumptions

Since we are debugging Maude functional modules, they are expected to satisfy
the appropriate executability requirements, namely, the specifications have to be
terminating, confluent, and sort decreasing.

One interesting feature of our tool is that the user is allowed to trust some
statements, by means of labels applied to the suspicious statements. This means
that the unlabeled statements are assumed to be correct. A trusted statement is
treated in the implementation as the first four rules in Fig. 1 are treated in the APT
transformation; more specifically, an instance of the membership or replacement
inference rules corresponding to a trusted statement is collapsed in the abbreviated
proof tree. In order to obtain a nonempty abbreviated proof tree, the user must have
labeled some statements (all with different labels); otherwise, everything is assumed
to be correct. In particular, the buggy statement must be labeled in order to be
found. When not all the statements are labeled, the correctness and completeness
results shown in Sect. 2.3 are conditioned by the goodness of the labeling for which
the user is responsible.

Although the user can introduce a module importing other modules, the debug-
ging process takes place in the flattened module. However, the debugger allows the

R. Caballero et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 63–81 71



user to trust a whole imported module.
As already mentioned, navigation of the debugging tree takes place by asking

questions to an external oracle, which in our case is either the user or another module
introduced by the user. In both cases the answers are assumed to be correct. If
either the module is not really correct or the user provides an incorrect answer, the
result is unpredictable. Notice that the information provided by the correct module
need not be complete, in the sense that some functions can be only partially defined.

3.2 Commands

The debugger is initiated in Maude by loading the file fdd.maude, which starts an
input/output loop that allows the user to interact with the tool.

As we said in the introduction, the generated proof tree can be navigated by
using two different strategies, namely, top-down and divide and query, being the
latter the default one. The user can switch between them by using the commands
(top-down strategy .) and (divide-query strategy .). If a module with cor-
rect definitions is used to reduce the number of questions, it must be indicated before
starting the debugging with the command (correct module MODULE-NAME .).

The user can choose between using all the labeled statements in the debugging
process (by default) or selecting some of them by means of the command
(set debug select on .)

Once this mode is activated, the user can select and deselect statements by using
(debug select LABELS .)
(debug deselect LABELS .)

where LABELS is a list of labels separated by spaces.
Moreover, all the labels in statements of a flattened module can be selected or

deselected with the following commands:
(debug include MODULES .)
(debug exclude MODULES .)

where MODULES is a list of module names separated by spaces.
Once we have selected the strategy and, optionally, the correct module and

suspicious labels, we start the debugging process with the command 1

(debug [in MODULE-NAME :] INITIAL-TERM -> WRONG-TERM .)

In the same way, we can debug a membership inference with the command
(debug [in MODULE-NAME :] INITIAL-TERM : WRONG-SORT .)

How the process continues depends on the selected strategy. In case the top-
down strategy is selected, several nodes will be displayed in each question. If there is
an invalid node, we must select one of them with the command (node N .), where
N is the identifier of that wrong node. If all the nodes are correct, we type (all
valid .). In the divide and query strategy, each question refers to one inference
that can be either correct or wrong. The different answers are transmitted to the

1 If no module name is given, the current module is used by default.
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� 4 � : NeST
leaf

max(� 4 �) → 4
mx1

� 7 � : NeST
leaf

min(� 7 �) → 7
mn1

� 6 (� 7 �) : NeST
1ch2

� 7 � : NeST
leaf

max(� 7 �) → 7
mx1

max(� 6 (� 7 �)) → 7 (†)
mx2

(� 4 �) 6 (� 6 (� 7 �)) : NeST
2ch

Fig. 4. Abbreviated proof tree after the first answer

� 4 � : NeST
leaf

max(� 4 �) → 4
mx1

(� 4 �) 6 (� 6 (� 7 �)) : NeST
2ch

Fig. 5. Abbreviated proof tree after the second answer

debugger with the commands (yes .) and (no .). Instead of just answering yes,
we can also trust some statements on the fly if, once the process has started, we
decide the bug is not there. To trust the current statement we type the command
(trust .).

Finally, we can return to the previous state in both strategies by using the
command (undo .).

3.3 Binary search trees revisited

We recall from Sect. 2.2.1 that the deletion in our binary search trees specification is
incorrect. In particular Maude assigns the sort NeSearchTree{Int} to a tree with
repetitions. We can debug the inference of this membership with the command
Maude> (debug in SEARCH-TREE-TEST :
(empty 1 empty) 2 ((empty 4 empty) 6 (empty 6 (empty 7 empty))) : NeSearchTree{Int} .)

that generates the debugging tree shown in Fig. 3 by considering all the labeled
statements as suspicious. Since the default navigation strategy is divide and query,
the debugger selects the node marked with � in the figure, and then asks the fol-
lowing question:
Is this membership (associated with the membership 2ch) correct?
(empty 4 empty) 6 (empty 6 (empty 7 empty)) : NeSearchTree{Int}
Maude> (no .)

Since the answer is no, the debugger discards the rest of the tree and focuses in
the subtree with this node as root (see Fig. 4). The next question corresponds to
the node marked with † in the figure.
Is this transition (associated with the equation mx2) correct?
max(empty 6 (empty 7 empty)) -> 7
Maude> (yes .)

When the answer is yes the corresponding subtree is deleted, obtaining in this
case the tree in Fig. 5. The next question is
Is this transition (associated with the equation mx1) correct?
max(empty 4 empty) -> 4
Maude> (trust .)

In the last question, we realized that the equation applied is so simple that we
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�
�
�

�
�

�

(� 1 �) 2 R : NeST
2ch

�
�
�

�
�

�

� 6 (� 7 �) : NeST
1ch2 �

�
�

�
�

�

R : NeST
2ch �

�
�

�
�

�

dl(� 6 (� 7 �), 5) → � 6 (� 7 �)
dl2

dl(R, 5) → (� 4 �) 6 (� 6 (� 7 �))
dl6

dl((� 1 �) 2 R, 5) → (� 1 �) 2 ((� 4 �) 6 (� 6 (� 7 �)))
dl3

Fig. 6. Abbreviated proof tree for the top down strategy

can trust it. This answer has a behavior similar to yes: it deletes all the subtrees
whose root is labeled as the current statement. With these answers, we obtain a
tree with only one node and the debugger is able to conclude which is the buggy
membership.
The buggy node is:
(empty 4 empty) 6 (empty 6 (empty 7 empty)) : NeSearchTree{Int}
With the associated membership: 2ch

In fact, if we check now this membership we notice that it compares the root
with the biggest value of the right subtree, when it should be compared with the
smallest one. After fixing this error, the delete function is still incorrect, so we
debug this function (using the top-down strategy for illustration’s sake) as follows:
Maude> (top-down strategy .)
Top-down strategy selected.
Maude> (set debug select on .)
Debug select is on.
Maude> (debug select leaf 1ch1 1ch2 2ch dl2 dl3 dl4 dl5 dl6 .)
Labels leaf 1ch1 1ch2 2ch dl2 dl3 dl4 dl5 dl6 are now suspicious.
Maude> (debug in SEARCH-TREE-TEST :
delete((empty 1 empty) 2 ((empty 4 empty) 5 (empty 6 (empty 7 empty))), 5)

-> (empty 1 empty) 2 ((empty 4 empty) 6 (empty 6 (empty 7 empty))) .)

where we have decided to mark as suspicious the memberships and the non-trivial
equations of delete. In this case, the debugger builds the proof tree (partially)
shown in Fig. 6 (where R denotes the search tree (� 4 �) 5 (� 6 (� 7 �))), so it
asks the following questions:
Please, choose a wrong node:
Node 0 : (empty 1 empty) 2 ((empty 4 empty) 5 (empty 6 (empty 7 empty))) :

NeSearchTree{Int}
Node 1 : delete((empty 4 empty) 5 (empty 6 (empty 7 empty)), 5) ->

(empty 4 empty) 6 (empty 6 (empty 7 empty))
Maude> (node 1 .)

Please, choose a wrong node:
Node 0 : empty 6 (empty 7 empty) : NeSearchTree{Int}
Node 1 :(empty 4 empty) 5 (empty 6 (empty 7 empty)) : NeSearchTree{Int}
Node 2 : delete(empty 6 (empty 7 empty), 5) -> empty 6 (empty 7 empty)
Maude> (all valid .)

The buggy node is:
delete((empty 4 empty) 5 (empty 6 (empty 7 empty)), 5) ->

(empty 4 empty) 6 (empty 6 (empty 7 empty))
With the associated equation: dl6

The debugger concludes that the problem is within the equation dl6. We leave
to the interested reader the task of fixing it.
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4 Implementation

As we said in the introduction, the reflective power of Maude allows us to gen-
erate and navigate the debugging tree of a computation in Maude itself. Since
navigation is done by asking questions to the user, this stage has to handle the
navigation strategy together with the input/output interaction with the user. In-
deed, this interaction can also be implemented in Maude by using the predefined
module LOOP-MODE [7, Chap. 17], that handles the input/output and maintains the
persistent state of the tool.

Below we show the main functions involved in the implementation; the technical
report [4] provides a full explanation of the complete implementation, including the
user interaction.

4.1 Debugging tree construction

To build the debugging tree we use the facts that the equations defined in Maude
functional modules are both terminating and confluent. Instead of creating the
complete proof tree and then abbreviating it, we build the abbreviated proof tree
directly. The information kept in each node corresponds to an inference, represented
by a statement’s label, its lefthand side (a term), and its righthand side (either a
term or a sort).

The function createTree controls the construction of this tree (it implements
the function APT from Fig. 2). It receives the module where a suspicious inference
took place, a correct module (or the constant maybe when no such module is pro-
vided) to prune the tree, the term initially reduced, the (erroneous) result obtained,
and the set of suspicious statement labels. It keeps the initial reduction as the root
of the tree and uses an auxiliary function createForest (implementing the func-
tion APT ′ from Fig. 2) that, in addition to the arguments received by createTree,
receives the module “cleaned” of suspicious statements (by using transform), and
generates the forest of abbreviated trees corresponding to the reduction between
the two terms given as arguments. This transformed module is used to improve the
efficiency of the tree construction, because we can use it to check if a term reaches
its final form by using only trusted statements, thus avoiding to build a tree that
will be finally empty.

op createTree : Module Maybe{Module} Term Term QidSet -> Tree .
ceq createTree(M, CM, T, T’, QS) = contract(

tree(node(’root : T -> T’, getOffspring*(F) + 1), F))
if M’ := transform(M, QS) /\

F := createForest(M, M’, CM, normal(M, T), normal(M, T’), QS) .

where contract prunes the root of the tree if it is duplicated after the computation
of the tree.

We use the function createForest to create a forest of abbreviated trees. This
function checks if the terms can be reduced by using only trusted statements or
if the correct module can compute this reduction; in such cases, there is no need
to compute the forest. Otherwise, it works with the same innermost strategy as
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the Maude interpreter: It first tries to fully reduce the subterms (by means of
the function reduceSubterms), and once all the subterms have been reduced, if
the result is not the final one, it tries to reduce at the top (by using the function
applyEq), to reach the final result by transitivity.
op createForest : Module Module Maybe{Module} Term Term QidSet -> Forest .
ceq createForest(OM, TM, CM, T, T’, QS) = mtForest
if reduce(TM, T) == T’ or-else reduce(M, T) == reduce(M, T’) .

ceq createForest(OM, TM, CM, T, T’, QS) =
if T’’ == T’ then F
else F applyEq(OM, TM, CM, T’’, T’, QS)
fi

if < T’’, F > := reduceSubterms(OM, TM, CM, T, QS) [owise] .

The reduceSubterms function returns a pair consisting of the term with its
subterms fully reduced (that is, this function mimics a specific behavior of the
congruence rule in Fig. 1) and the forest of abbreviated trees generated by these
reductions.

The function applyEq tries to apply (at the top) one equation, 2 by using the
replacement rule from Fig. 1, with the constraint that we cannot apply equations
with the otherwise attribute while other equations can be applied. To apply an
equation we check if the term we are trying to reduce matches the lefthand side of
the equation and its conditions are fulfilled. If this happens, we obtain a substitution
(from both the matching with the lefthand side and the matching conditions) that
we can apply to the righthand side of the equation. Note that if we can obtain the
transition in the correct module, the forest is not calculated.
op applyEq : Module Module Maybe{Module} Term Term QidSet -> Forest .
op applyEq : Module Module Maybe{Module} Term Term QidSet EquationSet -> Forest .
ceq applyEq(OM, TM, CM, T, T’, QS) = mtForest
if reduce(TM, T) == T’ or-else reduce(CM, T) == T’ .

eq applyEq(OM, TM, CM, T, T’, QS) =
applyEq(OM, TM, CM, T, T’, QS, getEqs(OM)) [owise] .

First, we try to apply the equations without the otherwise attribute. Other-
wise, we check the other equations.
ceq applyEq(OM, TM, CM, T, T’, QS, Eq EqS) =

if in?(AtS, QS)
then tree(node(label(AtS) : T -> T’, getOffspring*(F) + 1), F)
else F
fi

if ceq L = R if C [AtS] . := generalEq(Eq) /\
not owise?(AtS) /\
SB := metaMatch(OM, L, T, C, 0) /\
R’ := normal(OM, substitute(R, SB)) /\
F := conditionForest(substitute(C, SB), OM, TM, CM, QS)

createForest(OM, TM, CM, R’, T’, QS) .

where the function in? checks if the equation Eq is suspicious. If this is the case,
a new node corresponding to the applied equation is generated. The forest for the
conditions is generated by the function conditionForest; since it is used after

2 Since the module is assumed to be confluent, we can choose any equation and the final result should be
the same.
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having checked that the condition is fulfilled (by the function metaMatch above), it
does not check it again. It distinguishes between the different types of conditions.
If the condition is an equation, trees of the reduction of the terms to their normal
forms are generated.

op conditionForest : Condition Module Module Maybe{Module} QidSet -> Forest .
eq conditionForest(T = T’ /\ COND, OM, TM, CM, QS) =

createForest(OM, TM, CM, T, reduce(OM, T), QS)
createForest(OM, TM, CM, T’, reduce(OM, T), QS)
conditionForest(COND, OM, TM, CM, QS) .

The case of the matching conditions is very similar. In the membership case,
we use the version of createForest that builds a forest for a membership inference
where the sort is the least one assignable to the term in the condition.

eq conditionForest(T : S /\ COND, OM, TM, CM, QS) =
createForest(OM, TM, CM, T, type(OM, T), QS)
conditionForest(COND, OM, TM, CM, QS) .

To generate the forest for memberships we use another version of the function
createForest, that mimics the subject reduction rule from Fig. 1 by first computing
the tree for the full reduction of the term (by means of createForest) and then
computing the tree for the membership inference by using an auxiliary version of
createForest that uses the operator declarations and the membership axioms.
Note that if we can infer the type from the correct module, there is no need to
calculate the forest.
op createForest : Module Module Maybe{Module} Term Sort QidSet -> Forest .
op createForest : Module Module Maybe{Module} Term Sort QidSet OpDeclSet

MembAxSet -> Forest .
ceq createForest(OM, TM, CM, T, S, QS) = mtForest
if Ty := type(CM, T) /\ sortLeq(CM, Ty, S) .

ceq createForest(OM, TM, CM, T, S, QS) =
createForest(OM, TM, CM, T, T’, QS)
createForest(OM, TM, CM, T’, S, QS, getOps(OM), getMbs(OM))

if T’ := reduce(OM, T) [owise] .

The auxiliary createForest computes a forest for a membership inference of
the least sort of a term previously fully reduced; this corresponds to a concrete
application of the membership inference rule from Fig. 1. It first checks if the mem-
bership has been inferred by using the operator declarations. If the membership has
not been computed by using these declarations, it checks the membership axioms.

To check the operators we examine that both the arity and co-arity of the term
and the declaration fit (with function checkTypes) and recursively calculate the
forest generated by the subterms (by using createForest*). Notice that we never
generate a new node for the application of an operator, because we always trust the
signature.
op applyOp : Module Module Maybe{Module} Term Sort QidSet OpDeclSet -> Maybe{Forest} .
ceq applyOp(OM, TM, CM, Q[TL], Ty, QS, op Q : TyL -> Ty [AtS] . ODS) =

createForest*(OM, TM, CM, TL, QS)
if checkTypes(TL, TyL, OM) .

ceq applyOp(OM, TM, CM, CONST, S, QS, op Q : nil -> Ty [AtS] . ODS) = mtForest
if getName(CONST) = Q /\ getType(CONST) = Ty .

eq applyOp(OM, TM, CM, T, S, QS, ODS) = noProof [owise] .
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We check the membership axioms in a similar fashion to the equation application,
that is, we only generate a new root below the forest for the conditions if the
membership is suspicious. The unconditional axioms generate leaves of the tree,
while the conditional ones generate nodes with (possibly) non-empty forests.
op applyMb : Module Module Maybe{Module} Term Sort QidSet MembAxSet -> Forest .
ceq applyMb(OM, TM, CM, T’, S, QS, MA MAS) =

if in?(AtS, QS)
then tree(node(label(AtS) : T’ : S, getOffspring*(F) + 1), F)
else F
fi

if cmb T : S if C [AtS] . := generalMb(MA) /\
SB := metaMatch(OM, T, T’, C, 0) /\
F := conditionForest(substitute(C, SB), OM, TM, CM, QS) .

eq applyMb(OM, TM, CM, T, S, QS, MA) = mtForest [owise] .

4.2 Debugging tree navigation

Regarding the navigation of the debugging tree, we have implemented two strategies.
In the top-down strategy the selection of the next node of the debugging tree is
done by the user, thus we do not need any function to compute it. The divide and
query strategy used to traverse the debugging tree selects each time the node whose
subtree’s size is the closest one to half the size of the whole tree, keeping only this
subtree if its root is incorrect, and deleting the whole subtree otherwise.

The function searchBestNode calculates the best node by searching for a subtree
that minimizes the function getDiff, where the first argument is the size of the
whole tree and the second one the size of the subtree.

op getDiff : Nat Nat -> Nat .
eq getDiff(N, N’) = sd(N, 2 * N’) .

Since we use the symmetric difference function, the difference between the size
of the whole tree and the double of the size of the current subtree will initially
decrease (while the double of the size of the subtree is bigger than the size of the
tree) and finally it will increase (when the size of the tree is bigger than the double of
the size of the subtree). Thus, the function searchBestNode keeps the information
about the last difference in order to stop searching in the subtree when the current
difference is bigger than the last one. It uses an auxiliary function that receives the
tree, the total number of nodes in the whole tree, the last and the best difference
so far, the identifier of the best node, and the identifier of the root of the subtree
it is currently traversing. The last and best difference are initialized with a value
big enough (ten times the number of nodes), in order to avoid the selection of the
initial root as the best node.
op searchBestNode : Tree -> NatList .
op searchBestNode : Tree Nat Nat Nat NatList NatList -> NPair .

eq searchBestNode(tree(node(I, NODES), F)) =
first(searchBestNode(tree(node(I, NODES), F), NODES,

10 * NODES, 10 * NODES, nil, nil)) .

ceq searchBestNode(T, NODES, LAST_DIFF, BEST_DIFF, BEST_NODE, NL) =
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< BEST_NODE, BEST_DIFF >
if LAST_DIFF <= getDiff(NODES, getOffspring(T)) .

If the new difference is better than the last one, the function recursively traverses
the forest of the current node with the function searchBestNode*.
ceq searchBestNode(tree(ND, F), NODES, LAST_DIFF, BEST_DIFF, BEST_NODE, NL) =

if NEW_DIFF < BEST_DIFF then
searchBestNode*(F, NODES, NEW_DIFF, NEW_DIFF, NL, NL, 0)

else
searchBestNode*(F, NODES, NEW_DIFF, BEST_DIFF, BEST_NODE, NL, 0)

fi
if NEW_DIFF := getDiff(NODES, offspring(ND)) /\

LAST_DIFF > NEW_DIFF .

5 Conclusions and future work

In this paper we have presented how to use the Maude reflective capabilities to im-
plement a debugger for Maude functional modules. It complements other debugging
techniques for Maude, such as tracing and term coloring, by allowing to debug a
large range of modules (only the strat attribute is forbidden, although we expect
to allow it in a near future). An important advantage of this kind of debuggers
is the help provided in locating the buggy statements, assuming the user answers
correctly the corresponding questions.

From the theoretical point of view, the main novelty of our approach w.r.t.
other proposals for declarative debugging of functional languages such as [21,17,18]
is that our debugging tree (the APT ) is obtained from a proof tree in a suitable
semantic calculus, which allows us to prove the correctness and completeness of
the debugging technique. Furthermore, our debugging of MEL specifications has
required an appropriate treatment of memberships which do not appear in previous
works.

The complexity of the debugging process increases with the size of the proof
tree. In the case of the top-down strategy the number of questions for a tree T is
proportional to depth(T )∗degree(T ). In the case of the divide and query strategy the
number of questions is, on average, proportional to log size(T ). Note that the size
of the tree does not depend on the total number of statements but on the number
of applications of suspicious statements involved in the wrong inference. Moreover,
bugs found when reducing complex initial terms can be, in general, reproduced with
simpler terms which give rise to smaller proof trees.

We can minimize the number of questions by trusting statements or keeping
track of the questions already answered, in order to avoid asking the same question
twice.

Since one of the requirements of this kind of debuggers is the interaction with an
oracle, that typically is the user, one of the principal aspects that must be improved
is the user interface. We plan to provide a complementary graphical interface that
allows the user to navigate the tree with more freedom.

We plan to extend our framework by studying how to debug system modules,
which correspond to rewriting logic specifications and have rules in addition to
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memberships and equations. These rules can be non-terminating and non-confluent,
and thus behave very differently from the statements in the specifications we handle
here. Indeed, if the rules of a system module are confluent and terminating, we can
use the current version of our debugger by first translating the rewrite rules into
equations.

In the context of general system modules, we also plan to study how to debug
missing answers [14] in addition to the wrong answers we have treated thus far.
That is, the non-determinism inherent to a system module implies that a term
can be rewritten in several different ways. If the specification does not fulfill the
intended model, it may be the case that not all the possible solutions are reached.
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Declarative Debugging of Membership Equational Logic
Specifications�
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Abstract. Algorithmic debugging has been applied to many declarative program-
ming paradigms; in this paper, it is applied to the rewriting paradigm embodied in
Maude. We introduce a declarative debugger for executable specifications in mem-
bership equational logic which correspond to Maude functional modules. Declar-
ative debugging is based on the construction and navigation of a debugging tree
which logically represents the computation steps. We describe the construction of
appropriate debugging trees for oriented equational and membership inferences.
These trees are obtained as the result of collapsing in proof trees all those nodes
whose correctness does not need any justification. We use an extended example to
illustrate the use of the declarative debugger and its main features, such as two dif-
ferent strategies to traverse the debugging tree, use of a correct module to reduce
the number of questions asked to the user, and selection of trusted vs. suspicious
statements by means of labels. The reflective features of Maude have been exten-
sively used to develop a prototype implementation of the declarative debugger for
Maude functional modules using Maude itself.

Keywords: declarative debugging, membership equational logic, Maude, func-
tional modules.

1 Introduction

As argued in [23], the application of declarative languages out of the academic world
is inhibited by the lack of convenient auxiliary tools such as debuggers. The traditional
separation between the problem logic (defining what is expected to be computed) and
control (how computations are carried out actually) is a major advantage of these lan-
guages, but it also becomes a severe complication when considering the task of debug-
ging erroneous computations. Indeed, the involved execution mechanisms associated
to the control make it difficult to apply the typical techniques employed in imperative
languages based on step-by-step trace debuggers.

Consequently, new debugging approaches based on the language’s semantics have
been introduced in the field of declarative languages, such as abstract diagnosis, which
formulates a debugging methodology based on abstract interpretation [9,1], or declara-
tive debugging, also known as algorithmic debugging, which was first introduced by E.
Y. Shapiro [19] and that constitutes the framework of this work. Declarative debugging
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has been widely employed in the logic [10,14,22], functional [21,17,16,18], and multi-
paradigm [5,3,11] programming languages. Declarative debugging is a semi-automatic
technique that starts from a computation considered incorrect by the user (error symp-
tom) and locates a program fragment responsible for the error. The declarative debug-
ging scheme [15] uses a debugging tree as a logical representation of the computation.
Each node in the tree represents the result of a computation step, which must follow
from the results of its child nodes by some logical inference. Diagnosis proceeds by tra-
versing the debugging tree, asking questions to an external oracle (generally the user)
until a so-called buggy node is found. A buggy node is a node containing an erroneous
result, but whose children all have correct results. Hence, a buggy node has produced
an erroneous output from correct inputs and corresponds to an erroneous fragment of
code, which is pointed out as an error.

During the debugging process, the user does not need to understand the computation
operationally. Any buggy node represents an erroneous computation step, and the de-
bugger can display the program fragment responsible for it. From an explanatory point
of view, declarative debugging can be described as consisting of two stages, namely the
debugging tree generation and its navigation following some suitable strategy [20].

In this paper we present a declarative debugger for Maude functional modules
[7, Chap. 4]. Maude is a high-level language and high-performance system supporting
both equational and rewriting logic computation for a wide range of applications. It is
a declarative language because Maude modules correspond in general to specifications
in rewriting logic [12], a simple and expressive logic which allows the representation
of many models of concurrent and distributed systems. This logic is an extension of
equational logic; in particular, Maude functional modules correspond to specifications
in membership equational logic [2,13], which, in addition to equations, allows the state-
ment of membership assertions characterizing the elements of a sort. In this way, Maude
makes possible the faithful specification of data types (like sorted lists or search trees)
whose data are defined not only by means of constructors, but also by the satisfaction
of additional properties.

For a specification in rewriting or membership equational logic to be executable in
Maude, it must satisfy some executability requirements. In particular, Maude functional
modules are assumed to be confluent, terminating, and sort-decreasing1 [7], so that, by
orienting the equations from left to right, each term can be reduced to a unique canonical
form, and semantic equality of two terms can be checked by reducing both of them to
their respective canonical forms and checking that they coincide. Since we intend to
debug functional modules, we will assume throughout the paper that our membership
equational logic specifications satisfy these executability requirements.

The Maude system supports several approaches for debugging Maude programs:
tracing, term coloring, and using an internal debugger [7, Chap. 22]. The tracing facili-
ties allow us to follow the execution on a specification, that is, the sequence of rewrites
that take place. Term coloring consists in printing with different colors the operators
used to build a term that does not fully reduce. The Maude debugger allows the user to
define break points in the execution by selecting some operators or statements. When

1 All these requirements must be understood modulo some axioms such as associativiy and
commutativity that are associated to some binary operations.
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a break point is found the debugger is entered. There, we can see the current term and
execute the next rewrite with tracing turned on.

The Maude debugger has as a disadvantage that, since it is based on the trace, it
shows to the user every small step obtained by using a single statement. Thus the user
can loose the general view of the proof of the incorrect inference that produced the
wrong result. That is, when the user detects an unexpected statement application it is
difficult to know where the incorrect inference started.

Here we present a different approach based on declarative debugging that solves
this problem for functional modules. The debugging process starts with an incorrect
transition from the initial term to a fully reduced unexpected one. Our debugger, after
building a proof tree for that inference, will present to the user questions of the fol-
lowing form: “Is it correct that T fully reduces to T ′?”, which in general are easy to
answer. Moreover, since the questions are located in the proof tree, the answer allows
the debugger to discard a subset of the questions, leading and shortening the debugging
process.

The current version of the tool has the following characteristics:

– It supports all kinds of functional modules: operators can be declared with any com-
bination of axiom attributes (except for the attribute strat, that allows to specify
an evaluation strategy); equations can be defined with the otherwise attribute; and
modules can be parameterized.2

– It provides two strategies to traverse the debugging tree: top-down, that traverses
the tree from the root asking each time for the correctness of all the children of
the current node, and then continues with one of the incorrect children; and divide
and query, that each time selects the node whose subtree’s size is the closest one to
half the size of the whole tree, keeping only this subtree if its root is incorrect, and
deleting the whole subtree otherwise.

– Before starting the debugging process, the user can select a module containing only
correct statements. By checking the correctness of the inferences with respect to
this module (i.e., using this module as oracle) the debugger can reduce the number
of questions asked to the user.

– It allows the user to debug Maude functional modules where some equations and
memberships are suspicious and have been labeled (each one with a different label).
Only these labeled statements generate nodes in the proof tree, while the unlabeled
ones are considered correct. The user is in charge of this labeling. Moreover, the
user can answer that he trusts the statement associated with the currently questioned
inference; that is, statements can be trusted “on the fly.”

Detailed proofs of the results, additional examples, and much more information
about the implementation can be found in the technical report [4], which, together with
the Maude source files for the debugger, is available from the webpage http://maude.
sip.ucm.es/debugging .

2 For the sake of simplicity, our running example will be unparameterized, but it can easily be
parameterized, as shown in [4].

http://maude.
sip.ucm.es/debugging
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2 Maude Functional Modules

Maude uses a very expressive version of equational logic, namely membership equa-
tional logic (MEL) [2,13], which, in addition to equations, allows the statement of mem-
bership assertions characterizing the elements of a sort. Below we present the logic and
how its specifications are represented as Maude functional modules.

2.1 Membership Equational Logic

A signature in MEL is a triple (K,Σ,S) (just Σ in the following), with K a set of kinds,
Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K a many-kinded signature, and S = {Sk}k∈K a pairwise dis-
joint K-kinded family of sets of sorts. The kind of a sort s is denoted by [s]. We write
TΣ,k and TΣ,k(X) to denote respectively the set of ground Σ-terms with kind k and of
Σ-terms with kind k over variables in X , where X = {x1 : k1, . . . ,xn : kn} is a set of K-
kinded variables. Intuitively, terms with a kind but without a sort represent undefined
or error elements. MEL atomic formulas are either equations t = t ′, where t and t ′ are
Σ-terms of the same kind, or membership assertions of the form t : s, where the term
t has kind k and s ∈ Sk. Sentences are universally-quantified Horn clauses of the form
(∀X)A0 ⇐ A1 ∧ . . .∧An, where each Ai is either an equation or a membership assertion,
and X is a set of K-kinded variables containing all the variables in the Ai. Order-sorted
notation s1 < s2 (with s1,s2 ∈ Sk for some kind k) can be used to abbreviate the condi-
tional membership (∀x : k)x : s2 ⇐ x : s1. A specification is a pair (Σ,E), where E is a
set of sentences in MEL over the signature Σ.

Models of MEL specifications are called algebras. A Σ-algebra A consists of a set Ak

for each kind k ∈ K, a function A f : Ak1 ×·· ·×Akn −→ Ak for each operator f ∈ Σk1...kn,k,
and a subset As ⊆ Ak for each sort s ∈ Sk, with the meaning that the elements in sorts
are well-defined, whereas elements in a kind not having a sort are undefined or error
elements. The meaning [[t]]A of a term t in an algebra A is inductively defined as usual.
Then, an algebra A satisfies an equation t = t ′ (or the equation holds in the algebra),
denoted A |= t = t ′, when both terms have the same meaning: [[t]]A = [[t ′]]A . In the same
way, satisfaction of a membership is defined as: A |= t : s when [[t]]A ∈ As.

A specification (Σ,E) has an initial model TΣ/E whose elements are E-equivalence
classes of terms [t]. We refer to [2,13] for a detailed presentation of (Σ,E)-algebras,
sound and complete deduction rules, initial algebras, and specification morphisms.

Since the MEL specifications that we consider are assumed to satisfy the executabil-
ity requirements of confluence, termination, and sort-decreasingness, their equations
t = t ′ can be oriented from left to right, t → t ′. Such a statement holds in an algebra,
denoted A |= t → t ′, exactly when A |= t = t ′, i.e., when [[t]]A = [[t ′]]A . Moreover, un-
der those assumptions an equational condition u = v in a conditional equation can be
checked by finding a common term t such that u → t and v → t. This is the notation we
will use in the inference rules and debugging trees studied in Sect. 3.

2.2 Representation in Maude

Maude functional modules, introduced with syntax fmod ... endfm, are executable
MEL specifications and their semantics is given by the corresponding initial member-
ship algebra in the class of algebras satisfying the specification.
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In a functional module we can declare sorts (by means of keyword sort(s)); sub-
sort relations between sorts (subsort); operators (op) for building values of these sorts,
giving the sorts of their arguments and result, and which may have attributes such as
being associative (assoc) or commutative (comm), for example; memberships (mb) as-
serting that a term has a sort; and equations (eq) identifying terms. Both memberships
and equations can be conditional (cmb and ceq).

Maude does automatic kind inference from the sorts declared by the user and their
subsort relations. Kinds are not declared explicitly, and correspond to the connected
components of the subsort relation. The kind corresponding to a sort s is denoted [s].
For example, if we have sorts Nat for natural numbers and NzNat for nonzero natural
numbers with a subsort NzNat < Nat, then [NzNat] = [Nat].

An operator declaration like3

op _div_ : Nat NzNat -> Nat .

is logically understood as a declaration at the kind level

op _div_ : [Nat] [Nat] -> [Nat] .

together with the conditional membership axiom

cmb N div M : Nat if N : Nat and M : NzNat .

2.3 A Buggy Example: Non-empty Sorted Lists

Let us see a simple example showing how to specify sorted lists of natural numbers in
Maude. The following module includes the predefined module NAT defining the natural
numbers.

(fmod SORTED-NAT-LIST is
pr NAT .

We introduce sorts for non-empty lists and sorted lists. We identify a natural number
with a sorted list with a single element by means of a subsort declaration.

sorts NatList SortedNatList .
subsorts Nat < SortedNatList < NatList .

The lists that have more than one element are built by means of the associative jux-
taposition operator __.

op __ : NatList NatList -> NatList [ctor assoc] .

We define now when a list (with more than one element) is sorted by means of a
membership assertion. It states that the first number must be smaller than the first of the
rest of the list, and that the rest of the list must also be sorted.

3 The underscores indicate the places where the arguments appear in mixfix syntax.
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vars E E’ : Nat . var L : NatList . var OL : SortedNatList .
cmb [olist] : E L : SortedNatList if E <= head(L) /\ L : SortedNatList .

The definition of the head function distinguishes between lists with a single element
and longer ones.

op head : NatList -> Nat .
eq [hd1] : head(E) = E .
eq [hd2] : head(L E) = E .

We also define a sort function which sorts a list by successively inserting each nat-
ural number in the appropriate position in the sorted sublist formed by the numbers
previously considered.

op insertion-sort : NatList -> SortedNatList .
op insert-list : SortedNatList Nat -> SortedNatList .
eq [is1] : insertion-sort(E) = E .
eq [is2] : insertion-sort(E L) = insert-list(insertion-sort(L), E) .

The function insert-list distinguishes several cases. If the list has only one num-
ber, the function checks if it is bigger than the number being inserted, and returns the
sorted list. If the list has more than one element, the function checks that the list is
previously sorted; if the number being inserted is smaller than the first of the list, it is
located as the (new) first element, while if it is bigger we keep the first element and
recursively insert the element in the rest of the list.

ceq [il1] : insert-list(E, E’) = E’ E if E’ < E .
eq [il2] : insert-list(E, E’) = E E’ [owise] .
ceq [il3] : insert-list(E OL, E’) = E E’ OL
if E’ <= E /\ E OL : SortedNatList .
ceq [il4] : insert-list(E OL, E’) = E insert-list(OL, E’)
if E OL : SortedNatList [owise] .

endfm)

Now, we can reduce a term in this module. For example, we can try to sort the list
3 4 7 6 with

Maude> (red insertion-sort(3 4 7 6) .)
result SortedNatList : 6 3 4 7

But... the list obtained is not sorted! Moreover, Maude infers that it is sorted. Did
you notice the bugs? We will show how to use the debugger in Sect. 4.3 to detect them.

3 Declarative Debugging of Maude Functional Modules

We describe how to build the debugging trees for MEL specifications. Detailed proofs
can be found in [4].
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(Rf )

(Transitivity)
e1 → e′ e′ → e2

e1 → e2
(Tr)

(Congruence)
e1 → e′

1 . . . en → e′
n

f (e1, . . . , en) → f (e′
1, . . . , e′

n)
(Cong)

(Subject Reduction)
e → e′ e′ : s

e : s
(SRed)

(Membership)
{θ(ui) → ti ← θ(u′

i)}1≤i≤n {θ(v j) : s j}1≤ j≤m

θ(e) : s
(Mb)

if e : s ⇐ u1 = u′
1 ∧·· ·∧un = u′

n ∧ v1 : s1 ∧·· · ∧ vm : sm

(Replacement)
{θ(ui) → ti ← θ(u′

i)}1≤i≤n {θ(v j) : s j}1≤ j≤m

θ(e) → θ(e′)
(Rep)

if e → e′ ⇐ u1 = u′
1 ∧·· · ∧un = u′

n ∧ v1 : s1 ∧·· ·∧ vm : sm

Fig. 1. Semantic calculus for Maude functional modules

3.1 Proof Trees

Before defining the debugging trees employed in our declarative debugging framework
we need to introduce the semantic rules defining the specification semantics. The infer-
ence rules of the calculus can be found in Fig. 1, where θ denotes a substitution.

They are an adaptation to the case of Maude functional modules of the deduction
rules for MEL presented in [13]. The notation θ(ui) → ti ← θ(u′

i) must be understood as
a shortcut for θ(ui) → ti, θ(u′

i) → ti. We assume the existence of an intended interpre-
tation I of the specification, which is a Σ-algebra corresponding to the model that the
user had in mind while writing the statements E , i.e., the user expects that I |= e → e′,
I |= e : s for each reduction e → e′ and membership e : s computed w.r.t. the specification
(Σ,E). As a Σ-algebra, I must satisfy the following proposition:

Proposition 1. Let S = (Σ,E) be a MEL specification and let A be any Σ-algebra. If
e → e′ (respectively e : s) can be deduced using the semantic calculus rules reflexivity,
transitivity, congruence, or subject reduction using premises that hold in A , then A |=
e → e′ (respectively A |= e : s).

Observe that this proposition cannot be extended to the membership and replacement
inference rules, where the correctness of the conclusion depends not only on the calcu-
lus but also on the associated specification statement, which could be wrong.

We will say that e → e′ (respectively e : s) is valid when it holds in I , and invalid
otherwise. Declarative debuggers rely on some external oracle, normally the user, in
order to obtain information about the validity of some nodes in the debugging tree.
The concept of validity can be extended to distinguish wrong equations and wrong
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membership axioms, which are those specification pieces that can deduce something
invalid from valid information.

Definition 1. Let R ≡ (af ⇐ u1 = u′
1 ∧·· · ∧un = u′

n ∧ v1 : s1 ∧·· · ∧ vm : sm), where af
denotes an atomic formula, that is, either an oriented equation or a membership axiom
in a specification S. Then:

– θ(R) is a wrong equation instance (respectively, a wrong membership axiom in-
stance) w.r.t. an intended interpretation I when

• There exist t1, . . . , tn such that I |= θ(ui) → ti, I |= θ(u′
i) → ti for i = 1 . . .n.

• I |= θ(v j) : s j for j = 1 . . .m.
• θ(af ) does not hold in I .

– R is a wrong equation (respectively, a wrong membership axiom) if it admits some
wrong instance.

It will be convenient to represent deductions in the calculus as proof trees, where the
premises are the child nodes of the conclusion at each inference step. For example, the
proof tree depicted in Fig. 2 corresponds to the result of the reduction in the specifica-
tion for sorted lists described at the end of Sect. 2.3. For obvious reasons, the operation
names have been abbreviated in a self-explanatory way; furthermore, each node cor-
responding to an instance of the replacement or membership inference rules has been
labelled with the label of the equation or membership statement which is being applied.

In declarative debugging we are specially interested in buggy nodes which are invalid
nodes with all its children valid. The following proposition characterizes buggy nodes
in our setting.

Proposition 2. Let N by a buggy node in some proof tree in the calculus of Fig. 1 w.r.t.
an intended interpretation I . Then:

1. N is the consequence of either a membership or a replacement inference step.
2. The equation associated to N is a wrong equation or a wrong membership axiom.

3.2 Abbreviated Proof Trees

Our goal is to find a buggy node in any proof tree T rooted by the initial error symptom
detected by the user. This could be done simply by asking questions to the user about
the validity of the nodes in the tree according to the following top-down strategy:

Input: A tree T with an invalid root.
Output: A buggy node in T .
Description: Consider the root N of T . There are two possibilities:

– If all the children of N are valid, then finish identifying N as buggy.
– Otherwise, select the subtree rooted by any invalid child and use re-

cursively the same strategy to find the buggy node.

Proving that this strategy is complete is straightforward by using induction on the height
of T . As an easy consequence, the following result holds:
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Proposition 3. Let T be a proof tree with an invalid root. Then there exists a buggy
node N ∈ T such that all the ancestors of N are invalid.

However, we will not use the proof tree T as debugging tree, but a suitable abbrevia-
tion which we denote by APT (T ) (from Abbreviated Proof Tree), or simply APT if the
proof tree T is clear from the context. The reason for preferring the APT to the orig-
inal proof tree is that it reduces and simplifies the questions that will be asked to the
user while keeping the soundness and completeness of the technique. In particular the
APT contains only nodes related to the replacement and membership inferences using
statements included in the specification, which are the only possible buggy nodes as
Proposition 2 indicates. Fig. 3 shows the definition of APT (T ). The Ti represent proof
trees corresponding to the premises in some inferences.

The rule APT 1 keeps the root unaltered and employs the auxiliary function APT ′ to
produce the children subtrees. APT ′ is defined in rules APT 2 . . .APT 8. It takes a proof
tree as input parameter and returns a forest {T1, . . . ,Tn} of APT s as result. The rules for
APT ′ are assumed to be tried top-down, in particular APT 4 must not be applied if APT3

is also applicable. It is easy to check that every node N ∈ T that is the conclusion of a
replacement or membership inference has its corresponding node N′ ∈ APT (T ) labeled
with the same abbreviation, and conversely, that for each N′ ∈ APT (T ) different from
the root, there is a node N ∈ T , which is the conclusion of a replacement or membership
inference. In particular the node associated to e1 → e2 in the righthand side of APT3 is
the node e1 → e′ of the proof tree T , which is not included in the APT (T ). We have
chosen to introduce e1 → e2 instead of simply e1 → e′ in the APT (T ) as a pragmatic
way of simplifying the structure of the APT s, since e2 is obtained from e′ and hence
likely simpler (the root of the tree T ′ in APT3 must be necessarily of the form e′ → e2

by the structure of the inference rule for transitivity in Fig. 1). We will formally state
below (Theorem 1) that skipping e1 → e′ and introducing instead e1 → e2 is safe from
the point of view of the debugger.

Although APT (T ) is no longer a proof tree we keep the inference labels (Rep) and
(Mb), assuming implicitly that they contain a reference to the equation or membership
axiom used at the corresponding step in the original proof trees. It will be used by the
debugger in order to single out the incorrect fragment of specification code.

Before proving the correctness and completeness of the debugging technique we
need some auxiliary results. The first one indicates that APT ′ transforms a tree with
invalid root into a set of trees such that at least one has an invalid root. We denote the
root of a tree T as root(T ).

Lemma 1. Let T be a proof tree such that root(T ) is invalid w.r.t. an intended interpre-
tation I . Then there is some T ′ ∈ APT ′(T ) such that root(T ′) is invalid w.r.t. I .

An immediate consequence of this result is the following:

Lemma 2. Let T be a proof tree and APT (T ) its abbreviated proof tree. Then the root
of APT (T ) cannot be buggy.

The next theorem guarantees the correctness and completeness of the debugging tech-
nique based on APTs:
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(APT1) APT

(
T1 . . .Tn

af
(R)

)
=

APT ′
(

T1 . . .Tn

af
(R)

)

af
(with (R) any inference rule)

(APT2) APT ′
(

e → e
(Rf )

)
= /0

(APT3) APT ′

⎛
⎝ T1 . . .Tn

e1 → e′ (Rep)
T ′

e1 → e2
(Tr)

⎞
⎠ =

{
APT ′(T1) . . .APT ′(Tn) APT ′(T ′)

e1 → e2
(Rep)

}

(APT4) APT ′
(

T1 T2
e1 → e2

(Tr)

)
= {APT ′(T1), APT ′(T2)}

(APT5) APT ′
(

T1 . . .Tn

e1 → e2
(Cong)

)
= {APT ′(T1), . . . ,APT ′(Tn)}

(APT6) APT ′
(

T1 T2

e : s
(SRed)

)
= {APT ′(T1), APT ′(T2)}

(APT7) APT ′
(

T1 . . .Tn

e : s
(Mb)

)
=

{
APT ′(T1) . . .APT ′(Tn)

e : s
(Mb)

}

(APT8) APT ′
(

T1 . . .Tn

e1 → e2
(Rep)

)
=

{
APT ′(T1) . . .APT ′(Tn)

e1 → e2
(Rep)

}

Fig. 3. Transforming rules for obtaining abbreviated proof trees

Theorem 1. Let S be a specification, I its intended interpretation, and T a finite proof
tree with invalid root. Then:

– APT (T ) contains at least one buggy node (completeness).
– Any buggy node in APT (T ) has an associated wrong equation in S.

The theorem states that we can safely employ the abbreviated proof tree as a basis
for the declarative debugging of Maude functional modules: the technique will find a
buggy node starting from any initial symptom detected by the user. Of course, these
results assume that the user answers correctly all the questions about the validity of the
APT nodes asked by the debugger (see Sect. 4.1).

The tree depicted in Fig. 4 is the abbreviated proof tree corresponding to the proof
tree in Fig. 2, using the same conventions w.r.t. abbreviating the operation names. The
debugging example described in Sect. 4.3 will be based on this abbreviated proof tree.

4 Using the Debugger

Before describing the basics of the user interaction with the debugger, we make explicit
what is assumed about the modules introduced by the user; then we present the available
commands and how to use them to debug the buggy example introduced in Sect. 2.3.
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is(6) → 6
is1

il(6, 7) → 6 7
il2

is(7 6) → 6 7
is2

hd(7) → 7
hd1

6 7 : SNL
olist

il(6 7, 4) → 6 4 7
il3

is(4 7 6) → 6 4 7
is2

hd(4 7) → 7
hd2

hd(7) → 7
hd1

4 7 : SNL
olist

6 4 7 : SNL
olist

il(6 4 7, 3) → 6 3 4 7
il3

is(3 4 7 6) → 6 3 4 7
is2

Fig. 4. Abbreviated proof tree for the sorted lists example

4.1 Assumptions

Since we are debugging Maude functional modules, they are expected to satisfy the ap-
propriate executability requirements, namely, the specifications have to be terminating,
confluent, and sort-decreasing.

One interesting feature of our tool is that the user is allowed to trust some state-
ments, by means of labels applied to the suspicious statements. This means that the
unlabeled statements are assumed to be correct. A trusted statement is treated in the
implementation as the reflexivity, transitivity, and congruence rules are treated in the
APT transformation described in Fig. 3; more specifically, an instance of the member-
ship or replacement inference rules corresponding to a trusted statement is collapsed in
the abbreviated proof tree.

In order to obtain a nonempty abbreviated proof tree, the user must have labeled some
statements (all with different labels); otherwise, everything is assumed to be correct. In
particular, the buggy statement must be labeled in order to be found. When not all the
statements are labeled, the correctness and completeness results shown in Sect. 3 are
conditioned by the goodness of the labeling for which the user is responsible.

Although the user can introduce a module importing other modules, the debugging
process takes place in the flattened module. However, the debugger allows the user to
trust a whole imported module.

As mentioned in the introduction, navigation of the debugging tree takes place by
asking questions to an external oracle, which in our case is either the user or another
module introduced by the user. In both cases the answers are assumed to be correct.
If either the module is not really correct or the user provides an incorrect answer, the
result is unpredictable. Notice that the information provided by the correct module need
not be complete, in the sense that some functions can be only partially defined. In the
same way, the signature of the correct module need not coincide with the signature of
the module being debugged. If the correct module cannot help in answering a question,
the user may have to answer it.

4.2 Commands

The debugger is initiated in Maude by loading the file dd.maude (available from
http://maude.sip.ucm.es/debugging), which starts an input/output loop that al-
lows the user to interact with the tool.

As we said in the introduction, the generated proof tree can be navigated by using
two different strategies, namely, top-down and divide and query, the latter being the

http://maude.sip.ucm.es/debugging
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default one. The user can switch between them by using the commands (top-down
strategy .) and (divide-query strategy .). If a module with correct definitions
is used to reduce the number of questions, it must be indicated before starting the de-
bugging process with the command (correct module MODULE-NAME .). Moreover,
the user can trust all the statements in several modules with the command (trust[*]
MODULE-NAMES-LIST .) where * means that modules are considered flattened.

Once we have selected the strategy and, optionally, the module above, we start the
debugging process with the command4

(debug [in MODULE-NAME :] INITIAL-TERM -> WRONG-TERM .)

If we want to debug only with a subset of the labeled statements, we use the command

(debug [in MODULE-NAME :] INITIAL-TERM -> WRONG-TERM with LABELS .)

where LABELS is the set of suspicious equation and membership axiom labels that must
be taken into account when generating the debugging tree.

In the same way, we can debug a membership inference with the commands

(debug [in MODULE-NAME :] INITIAL-TERM : WRONG-SORT .)
(debug [in MODULE-NAME :] INITIAL-TERM : WRONG-SORT with LABELS .)

How the process continues depends on the selected strategy. In case the top-down
strategy is selected, several nodes will be displayed in each question. If there is an
invalid node, we must select one of them with the command (node N .), where N is
the identifier of this wrong node. If all the nodes are correct, we type (all valid .).

In the divide and query strategy, each question refers to one inference that can be
either correct or wrong. The different answers are transmitted to the debugger with the
commands (yes .) and (no .). Instead of just answering yes, we can also trust some
statements on the fly if, once the process has started, we decide the bug is not there. To
trust the current statement we type the command (trust .).

Finally, we can return to the previous state in both strategies by using the command
(undo .).

4.3 Sorted Lists Revisited

We recall from Sect. 2.3 that if we try to sort the list 3 4 7 6, we obtain the strange
result

Maude> (red insertion-sort(3 4 7 6) .)
result SortedNatList : 6 3 4 7

That is, the function returns an unsorted list, but Maude infers it is sorted. We can debug
the buggy specification by using the command

Maude> (debug in SORTED-NAT-LIST : insertion-sort(3 4 7 6) -> 6 3 4 7 .)

4 If no module name is given, the current module is used by default.
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is(6) → 6
is1

il(6, 7) → 6 7
il2

is(7 6) → 6 7
is2

hd(7) → 7
hd1

6 7 : SNL
olist

il(6 7, 4) → 6 4 7
il3

is(4 7 6) → 6 4 7
is2

Fig. 5. Abbreviated proof tree after the first question

With this command the debugger computes the tree shown in Fig. 4. Since the default
navigation strategy is divide and query, the first question is

Is this transition (associated with the equation is2) correct?
insertion-sort(4 7 6) -> 6 4 7
Maude> (no .)

We expect insertion-sort to order the list, so we answer negatively and the sub-
tree in Fig. 5 is selected to continue the debugging. The next question is

Is this transition (associated with the equation is2) correct?
insertion-sort(7 6) -> 6 7
Maude> (yes .)

Since the list is sorted, we answer yes, so this subtree is deleted (Fig. 6 left). The
debugger asks now the question

Is this membership (associated with the membership olist) correct?
6 7 : SortedNatList
Maude> (yes .)

This sort is correct, so this subtree is also deleted (Fig. 6 right) and the next question
is prompted.

Is this transition (associated with the equation il3) correct?
insert-list(6 7, 4) -> 6 4 7
Maude> (no .)

With this information the debugger selects the subtree and, since it is a leaf, it con-
cludes that the node is associated with the buggy equation.

The buggy node is:
insert-list(6 7, 4) -> 6 4 7
With the associated equation: il3

hd(7) → 7
hd1

6 7 : SNL
olist

il(6 7, 4) → 6 4 7
il3

is(4 7 6) → 6 4 7
is2

il(6 7, 4) → 6 4 7
il3

is(4 7 6) → 6 4 7
is2

Fig. 6. Abbreviated proof trees after the second and third questions
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That is, the debugger points to the equation il3 as buggy. If we examine it

ceq [il3] : insert-list(E OL, E’) = E E’ OL
if E’ <= E /\ E OL : SortedNatList .

we can see that the order of E and E’ in the righthand side is wrong and we can proceed
to fix it appropriately.

We can check the fixed function by sorting again the list 3 4 7 6. We obtain now the
sorted list 3 4 6 7. Then, we have solved one problem, but if we reduce the unsorted
list 6 3 4 7

Maude> (red 6 3 4 7 .)
result SortedNatList : 6 3 4 7

we can see that Maude continues assigning to it an incorrect sort.
We can check this inference by using the command

Maude> (debug 6 3 4 7 : SortedNatList .)

The first question the debugger prompts is

Is this membership (associated with the membership olist) correct?
3 4 7 : SortedNatList
Maude> (yes .)

Of course, this list is sorted. The following question is

Is this transition (associated with the equation hd2) correct?
head(3 4 7) -> 7
Maude> (no .)

But the head of a list should be the first element, not the last one, so we answer no.
With only these two questions the debugger prints

The buggy node is:
head(3 4 7) -> 7
With the associated equation: hd2

If we check the equation hd2, we can see that we take the element from the wrong
side.

eq [hd2] : head(L E) = E .

To debug this module we have used the default divide and query strategy. Let us
check it now with the top-down strategy. We debug again the inference

insertion-sort(3 4 7 6) -> 6 3 4 7

in the initial module with the two errors. The first question asked in this case is



Declarative Debugging of Membership Equational Logic Specifications 189

Is any of these nodes wrong?
Node 0 : insertion-sort(4 7 6) -> 6 4 7
Node 1 : insert-list(6 4 7, 3) -> 6 3 4 7
Maude> (node 0 .)

Both nodes are wrong, so we select, for example, the first one. The next question is

Is any of these nodes wrong?
Node 0 : insertion-sort(7 6) -> 6 7
Node 1 : insert-list(6 7, 4) -> 6 4 7
Maude> (node 1 .)

This time, only the second node is wrong, so we select it. The debugger prints now

Is any of these nodes wrong?
Node 0 : 6 7 : SortedNatList
Maude> (all valid .)

There is only one node, and it is correct, so we give this information to the debugger,
and it detects the wrong equation.

The buggy node is:
insert-list(6 7, 4) -> 6 4 7
With the associated equation: il3

But remember that we chose a node randomly when the debugger showed two wrong
nodes. What happens if we select the other one? The following question is printed.

Is any of these nodes wrong?
Node 0 : 6 4 7 : SortedNatList
Maude> (node 0 .)

Since this single node is wrong, we choose it and the debugger asks

Is any of these nodes wrong?
Node 0 : head(4 7) -> 7
Node 1 : 4 7 : SortedNatList
Maude> (node 0 .)

The first node is the only one erroneous, so we select it. With this information, the
debugger prints

The buggy node is:
head(4 7) -> 7
With the associated equation: hd2

That is, the second path finds the other bug. In general, this strategy finds different
bugs if the user selects different wrong nodes.

In order to prune the debugging tree, we can define a module specifying the sorting
function sort in a correct, but inefficient, way. This module will define the functions
insertion-sort and insert-list by means of sort.
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(fmod CORRECT-SORTING is
pr NAT .
sorts NatList SortedNatList .
subsorts Nat < SortedNatList < NatList .
vars E E’ : Nat . vars L L’ : NatList . var OL : SortedNatList .
op __ : NatList NatList -> NatList [ctor assoc] .
cmb E E’ : SortedNatList if E <= E’ .
cmb E E’ L : SortedNatList if E <= E’ /\ E’ L : SortedNatList .

The sort function is defined by switching unsorted adjacent elements in all the pos-
sible cases for lists.

op sort : NatList -> SortedNatList .
ceq sort(L E E’ L’) = sort(L E’ E L’) if E’ < E .
ceq sort(L E E’) = sort(L E’ E) if E’ < E .
ceq sort(E E’ L) = sort(E’ E L) if E’ < E .
ceq sort(E E’) = E’ E if E’ < E .
eq sort(L) = L [owise] .

We now use sort to implement insertion-sort and insert-list.

op insertion-sort : NatList -> SortedNatList .
op insert-list : SortedNatList Nat -> SortedNatList .
eq insertion-sort(L) = sort(L) .
eq insert-list(OL, E) = sort(E OL) .
endfm)

We can use this module to prune the debugging trees built by the debug commands
if we previously introduce the command

Maude> (correct module CORRECT-SORTING .)

Now, we try to debug the initial module (with two errors) again. In this example, all
the questions about correct inferences have been pruned, so all the answers are negative.
In general, the correct module does not have to be complete, so some correct inferences
could be presented to the user.

Maude> (debug in SORTED-NAT-LIST : insertion-sort(3 4 7 6) -> 6 3 4 7 .)

Is this transition (associated with the equation il3) correct?
insert-list(6 4 7, 3) -> 6 3 4 7
Maude> (no .)

Is this membership (associated with the membership olist) correct?
6 4 7 : SortedNatList
Maude> (no .)

Is this transition (associated with the equation hd2) correct?
head(4 7) -> 7
Maude> (no .)



Declarative Debugging of Membership Equational Logic Specifications 191

The buggy node is:
head(4 7) -> 7
With the associated equation: hd2

The correct module also improves the debugging of the membership. With only one
question we obtain the buggy equation.

Maude> (debug in SORTED-NAT-LIST : 6 3 4 7 : SortedNatList .)

Is this transition (associated with the equation hd2) correct?
head(3 4 7) -> 7
Maude> (no .)

The buggy node is:
head(3 4 7) -> 7
With the associated equation: hd2

4.4 Implementation

Exploiting the fact that rewriting logic is reflective [6,8], a key distinguishing fea-
ture of Maude is its systematic and efficient use of reflection through its predefined
META-LEVEL module [7, Chap. 14], a feature that makes Maude remarkably extensi-
ble and that allows many advanced metaprogramming and metalanguage applications.
This powerful feature allows access to metalevel entities such as specifications or com-
putations as data. Therefore, we are able to generate and navigate the debugging tree
of a Maude computation using operations in Maude itself. In addition, the Maude sys-
tem provides another module, LOOP-MODE [7, Chap. 17], which can be used to specify
input/output interactions with the user. Thus, our declarative debugger for Maude func-
tional modules, including its user interactions, is implemented in Maude itself, as an
extension of Full Maude [7, Chap. 18]. As far as we know, this is the first declarative
debugger implemented using such reflective techniques.

The implementation takes care of the two stages of generating and navigating the
debugging tree. Since navigation is done by asking questions to the user, this stage has
to handle the navigation strategy together with the input/output interaction with the user.

To build the debugging tree we use the facts that the equations defined in Maude
functional modules are both terminating and confluent. Instead of creating the complete
proof tree and then abbreviating it, we build the abbreviated proof tree directly.

The main function in the implementation of the debugging tree generation is called
createTree. It receives the module where a wrong inference took place, a correct
module (or the constant noModule when no such module is provided) to prune the tree,
the term initially reduced, the (erroneous) result obtained, and the set of suspicious
statement labels. It keeps the initial inference as the root of the tree and uses an auxiliary
function createForest that, in addition to the arguments received by createTree,
receives the module “cleaned” of suspicious statements, and generates the abbreviated
forest corresponding to the reduction between the two terms passed as arguments. This
transformed module is used to improve the efficiency of the tree construction, because
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we can use it to check if a term reaches its final form only using trusted equations, thus
avoiding to build a tree that will be finally empty.

Regarding the navigation of the debugging tree, we have implemented two strategies.
In the top-down strategy the selection of the next node of the debugging tree is done by
the user, thus we do not need any function to compute it. The divide and query strategy
used to traverse the debugging tree selects each time the node whose subtree’s size is
the closest one to half the size of the whole tree, keeping only this subtree if its root
is incorrect, and deleting the whole subtree otherwise. The function searchBestNode
calculates this best node by searching for a subtree minimizing an appropriate function.

The technical report [4] provides a full explanation of this implementation, including
the user interaction.

5 Conclusions and Future Work

In this paper we have developed the foundations of declarative debugging of executable
MEL specifications, and we have applied them to implement a debugger for Maude
functional modules. As far as we know, this is the first debugger implemented in the
same language it debugs. This has been made possible by the reflective features of
Maude. In our opinion, this debugger provides a complement to existing debugging
techniques for Maude, such as tracing and term coloring. An important contribution of
our debugger is the help provided by the tool in locating the buggy statements, assuming
the user answers correctly the corresponding questions. The debugger keeps track of the
questions already answered, in order to avoid asking the same question twice.

We want to improve the interaction with the user by providing a complementary
graphical interface that allows the user to navigate the tree with more freedom. We are
also studying how to handle the strat operator attribute, that allows the specifier to
define an evaluation strategy. This can be used to represent some kind of laziness.

We plan to extend our framework by studying how to debug system modules, which
correspond to rewriting logic specifications and have rules in addition to memberships
and equations. These rules can be non-terminating and non-confluent, and thus behave
very differently from the statements in the specifications we handle here. In this context,
we also plan to study how to debug missing answers [14] in addition to the wrong
answers we have treated thus far.
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Abstract. Declarative debugging is a semi-automatic technique that
starts from an incorrect computation and locates a program fragment
responsible for the error by building a tree representing this computa-
tion and guiding the user through it to find the wrong statement. This
paper presents the fundamentals for the declarative debugging of rewrit-
ing logic specifications, realized in the Maude language, where a wrong
computation can be a reduction, a type inference, or a rewrite. We define
appropriate debugging trees obtained as the result of collapsing in proof
trees all those nodes whose correctness does not need any justification.
Since these trees are obtained from a suitable semantic calculus, the cor-
rectness and completeness of the debugging technique can be formally
proved. We illustrate how to use the debugger by means of an example
and succinctly describe its implementation in Maude itself thanks to its
reflective and metalanguage features.

1 Introduction

In this paper we present a declarative debugger for Maude specifications, includ-
ing equational functional specifications and concurrent systems specifications.
Maude [10] is a high-level language and high-performance system supporting
both equational and rewriting logic computation for a wide range of applications.
Maude modules correspond to specifications in rewriting logic [14], a simple and
expressive logic which allows the representation of many models of concurrent
and distributed systems. This logic is an extension of equational logic; in par-
ticular, Maude functional modules correspond to specifications in membership
equational logic [1, 15], which, in addition to equations, allows the statement of
membership axioms characterizing the elements of a sort. In this way, Maude
makes possible the faithful specification of data types (like sorted lists or search
trees) whose data are not only defined by means of constructors, but also by the
satisfaction of additional properties. Rewriting logic extends membership equa-
tional logic by adding rewrite rules, that represent transitions in a concurrent
system. Maude system modules are used to define specifications in this logic.
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The Maude system supports several approaches for debugging Maude pro-
grams: tracing, term coloring, and using an internal debugger [10, Chap. 22].
The tracing facilities allow us to follow the execution of a specification, that is,
the sequence of applications of statements that take place. The same ideas have
been applied to the functional paradigm by the tracer Hat [9], where a graph
constructed by graph rewriting is proposed as suitable trace structure. Term col-
oring consists in printing with different colors the operators used to build a term
that does not fully reduce. The Maude debugger allows to define break points in
the execution by selecting some operators or statements. When a break point is
found the debugger is entered. There, we can see the current term and execute
the next rewrite with tracing turned on. The Maude debugger has as a disad-
vantage that, since it is based on the trace, it shows to the user every small step
obtained by using a single statement. Thus the user can lose the general view
of the proof of the incorrect inference that produced the wrong result. That is,
when the user detects an unexpected statement application it is difficult to know
where the incorrect inference started. Here we present a different approach based
on declarative debugging that solves this problem for Maude specifications.

Declarative debugging, also known as algorithmic debugging, was first intro-
duced by E. Y. Shapiro [23]. It has been widely employed in the logic [12, 16, 25],
functional [18, 19, 20], multi-paradigm [3, 7, 13], and object-oriented [4] program-
ming languages. Declarative debugging starts from a computation considered in-
correct by the user (error symptom) and locates a program fragment responsible
for the error. The declarative debugging scheme [17] uses a debugging tree as
logical representation of the computation. Each node in the tree represents the
result of a computation step, which must follow from the results of its child nodes
by some logical inference. Diagnosis proceeds by traversing the debugging tree,
asking questions to an external oracle (generally the user) until a so-called buggy
node is found. A buggy node is a node containing an erroneous result, but whose
children have all correct results. Hence, a buggy node has produced an erroneous
output from correct inputs and corresponds to an erroneous fragment of code,
which is pointed out as an error. From an explanatory point of view, declarative
debugging can be described as consisting of two stages, namely the debugging
tree generation and its navigation following some suitable strategy [24].

The application of declarative debugging to Maude functional modules was
already studied in our previous papers [5, 6]. The executability requirements of
Maude functional modules mean that they are assumed to be confluent, termi-
nating, and sort-decreasing1 [10]. These requirements are assumed in the form of
the questions appearing in the debugging tree. In this paper, we considerably ex-
tend that work by also considering system modules. Now, since the specifications
described in this kind of modules can be non-terminating and non-confluent,
their handling must be quite different.

The debugging process starts with an incorrect computation from the initial
term to an unexpected one. The debugger then builds an appropriate debugging

1 All these requirements must be understood modulo some axioms such as associativity
and commutativity that are associated to some binary operations.
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tree which is an abbreviation of the corresponding proof tree obtained by apply-
ing the inference rules of membership equational logic and rewriting logic. The
abbreviation consists in collapsing those nodes whose correctness does not need
any justification, such as those related with transitivity or congruence. Since the
questions are located in the debugging tree, the answers allow the debugger to
discard a subset of the questions, leading and shortening the debugging process.
In the case of functional modules, the questions have the form “Is it correct that
T fully reduces to T ′?”, which in general are easier to answer. However, in the
absence of confluence and termination, these questions do not make sense; thus,
in the case of system modules, we have decided to develop two different trees
whose nodes produce questions of the form “Is it correct that T is rewritten to
T ′?” where the difference consists in the number of steps involved in the rewrite.
While one of the trees refers only to one-step rewrites, which are often easier
to answer, the other one can also refer to many-steps rewrites that, although
may be harder to answer, in general discard a bigger subset of nodes. The user,
depending on the debugged specification or his “ability” to answer questions
involving several rewrite steps, can choose between these two kinds of trees.

Moreover, exploiting the fact that rewriting logic is reflective [11], a key distin-
guishing feature of Maude is its systematic and efficient use of reflection through
its predefined META-LEVEL module [10, Chap. 14], a feature that makes Maude
remarkably extensible and powerful, and that allows many advanced metapro-
gramming and metalanguage applications. This powerful feature allows access
to metalevel entities such as specifications or computations as usual data. There-
fore, we are able to generate and navigate the debugging tree of a Maude compu-
tation using operations in Maude itself. In addition, the Maude system provides
another module, LOOP-MODE [10, Chap. 17], which can be used to specify in-
put/output interactions with the user. However, instead of using this module
directly, we extend Full Maude [10, Chap. 18], that includes features for parsing,
evaluating, and pretty-printing terms, improving the input/output interaction.
Moreover, Full Maude allows the specification of concurrent object-oriented sys-
tems, that can also be debugged. Thus, our declarative debugger, including its
user interactions, is implemented in Maude itself.

The rest of the paper is structured as follows. Sect. 2 provides a summary of
the main concepts of both membership equational logic and rewriting logic, and
how their specifications are realized in Maude functional and system modules,
respectively. Sect. 3 describes the theoretical foundations of the debugging trees
for inferences in both logics. Sect. 4 shows how to use the debugger by means of
an example, while Sect. 5 comments some aspects of the Maude implementation.
Finally, Sect. 6 concludes and mentions some future work.

Detailed proofs of the results, additional examples, and much more informa-
tion about the implementation can be found in the technical report [21], which,
together with the Maude source files for the debugger, is available from the
webpage http://maude.sip.ucm.es/debugging

http://maude.sip.ucm.es/debugging
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2 Rewriting Logic and Maude

As mentioned in the introduction, Maude modules are executable rewriting logic
specifications. Rewriting logic [14] is a logic of change very suitable for the speci-
fication of concurrent systems that is parameterized by an underlying equational
logic, for which Maude uses membership equational logic (MEL) [1, 15], which, in
addition to equations, allows the statement of membership axioms characterizing
the elements of a sort.

2.1 Membership Equational Logic

A signature in MEL is a triple (K, Σ, S) (just Σ in the following), with K
a set of kinds, Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K a many-kinded signature, and
S = {Sk}k∈K a pairwise disjoint K-kinded family of sets of sorts. The kind of a
sort s is denoted by [s]. We write TΣ,k and TΣ,k(X) to denote respectively the
set of ground Σ-terms with kind k and of Σ-terms with kind k over variables in
X , where X = {x1 : k1, . . . , xn : kn} is a set of K-kinded variables. Intuitively,
terms with a kind but without a sort represent undefined or error elements.

The atomic formulas of MEL are either equations t = t′, where t and t′ are
Σ-terms of the same kind, or membership axioms of the form t : s, where the
term t has kind k and s ∈ Sk. Sentences are universally-quantified Horn clauses
of the form (∀X)A0 ⇐ A1 ∧ . . . ∧ An, where each Ai is either an equation or
a membership axiom, and X is a set of K-kinded variables containing all the
variables in the Ai. A specification is a pair (Σ, E), where E is a set of sentences
in MEL over the signature Σ.

Models of MEL specifications are Σ-algebras A consisting of a set Ak for
each kind k ∈ K, a function Af : Ak1 × · · · × Akn −→ Ak for each operator
f ∈ Σk1...kn,k, and a subset As ⊆ Ak for each sort s ∈ Sk. The meaning [[t]]A
of a term t in an algebra A is inductively defined as usual. Then, an algebra
A satisfies an equation t = t′ (or the equation holds in the algebra), denoted
A |= t = t′, when both terms have the same meaning: [[t]]A = [[t′]]A. In the same
way, satisfaction of a membership is defined as: A |= t : s when [[t]]A ∈ As.

A MEL specification (Σ, E) has an initial model TΣ/E whose elements are
E-equivalence classes of terms [t]. We refer to [1, 15] for a detailed presentation
of (Σ, E)-algebras, sound and complete deduction rules (that we adapt to our
purposes in Fig. 1 in Sect. 3.1), as well as the construction of initial and free al-
gebras. Since the MEL specifications that we consider are assumed to satisfy the
executability requirements of confluence, termination, and sort-decreasingness,
their equations t = t′ can be oriented from left to right, t → t′. Such a statement
holds in an algebra, denoted A |= t → t′, exactly when A |= t = t′, i.e., when
[[t]]A = [[t′]]A. Moreover, under those assumptions an equational condition u = v
in a conditional equation can be checked by finding a common term t such that
u → t and v → t. The notation we will use in the inference rules studied in
Sect. 3 for this situation is u ↓ v.
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2.2 Rewriting Logic

Rewriting logic extends equational logic by introducing the notion of rewrites
corresponding to transitions between states; that is, while equations are inter-
preted as equalities and therefore they are symmetric, rewrites denote changes
which can be irreversible. A rewriting logic specification, or rewrite theory, has
the form R = (Σ, E, R), where (Σ, E) is an equational specification and R is a
set of rules as described below. From this definition, one can see that rewriting
logic is built on top of equational logic, so that rewriting logic is parameter-
ized with respect to the version of the underlying equational logic; in our case,
Maude uses MEL, as described in the previous section. A rule in R has the
general conditional form2

(∀X) t ⇒ t′ ⇐
n∧

i=1

ui = u′
i ∧

m∧
j=1

vj : sj ∧
l∧

k=1

wk ⇒ w′
k

where the head is a rewrite and the conditions can be equations, memberships,
and rewrites; both sides of a rewrite must have the same kind. From these rewrite
rules, one can deduce rewrites of the form t ⇒ t′ by means of general deduction
rules introduced in [2, 14], that we have adapted to our purposes.

Models of rewrite theories are called R-systems in [14]. Such systems are
defined as categories that possess a (Σ, E)-algebra structure, together with a
natural transformation for each rule in the set R. More intuitively, the idea
is that we have a (Σ, E)-algebra, as described in Sect. 2.1, with transitions
between the elements in each set Ak; moreover, these transitions must satisfy
several additional requirements, including that there are identity transitions for
each element, that transitions can be sequentially composed, that the operations
in the signature Σ are also appropriately defined for the transitions, and that
we have enough transitions corresponding to the rules in R. Then, if we keep in
this context the notation A to denote an R-system, a rewrite t ⇒ t′ is satisfied
by A, denoted A |= t ⇒ t′, when there is a transition [[t]]A ⇒A [[t′]]A in the
system between the corresponding meanings of both sides of the rewrite, where
⇒A will be our notation for such transitions. The rewriting logic deduction rules
introduced in [14] are sound and complete with respect to this notion of model.
Moreover, they can be used to build initial and free models; see [14] for details.

2.3 Maude Modules

Maude functional modules [10, Chap. 4], introduced with syntax fmod ...
endfm, are executable membership equational specifications and their seman-
tics is given by the corresponding initial membership algebra in the class of
algebras satisfying the specification. In a functional module we can declare sorts

2 Note that we use the notation ⇒ for rewrites (as in Maude) and → for oriented
equations and reductions using such equations. Other papers on rewriting logic use
instead the notation → for rewrites.



Declarative Debugging of Rewriting Logic Specifications 313

(by means of keyword sort(s)); subsort relations between sorts (subsort); op-
erators (op) for building values of these sorts, giving the sorts of their arguments
and result, and which may have attributes such as being associative (assoc) or
commutative (comm), for example; memberships (mb) asserting that a term has
a sort; and equations (eq) identifying terms. Both memberships and equations
can be conditional (cmb and ceq).

Maude system modules [10, Chap. 6], introduced with syntax mod ... endm,
are executable rewrite theories and their semantics is given by the initial system
in the class of systems corresponding to the rewrite theory. A system module can
contain all the declarations of a functional module and, in addition, declarations
for rules (rl) and conditional rules (crl).

The executability requirements for equations and memberships are confluence,
termination, and sort-decreasingness. With respect to rules, the satisfaction of
all the conditions in a conditional rewrite rule is attempted sequentially from
left to right, solving rewrite conditions by means of search; for this reason, we
can have new variables in such conditions but they must become instantiated
along this process of solving from left to right (see [10] for details). Furthermore,
the strategy followed by Maude in rewriting with rules is to compute the normal
form of a term with respect to the equations before applying a rule. This strategy
is guaranteed not to miss any rewrites when the rules are coherent with respect
to the equations [10, 26].

The following section describes an example of a Maude system module with
both equations and rules.

2.4 An Example: Knight’s Tour Problem

A knight’s tour is a journey around the chessboard in such a way that the
knight lands on each square exactly once. The legal move for a knight is two
spaces in one direction, then one in a perpendicular direction. We want to solve
the problem for a 3×4 chessboard with the knight initially located in one corner.

We represent positions in the chessboard as pairs of integers and journeys as
lists of positions.

(mod KNIGHT is
protecting INT .
sorts Position Movement Journey Problem .
subsort Position < Movement .
subsorts Position < Journey < Problem .
op [_,_] : Int Int -> Position .
op nil : -> Journey .
op __ : Journey Journey -> Journey [assoc id: nil] .
vars N X Y : Int . vars P Q : Position . var J : Journey .

The term move P represents a position reachable from position P. Since the
reachable positions are not unique, this operation is defined by means of rewrite
rules, instead of equations. The reachable positions can be outside the chess-
board, so we define the operation legal, that checks if a position is inside the
3 × 4 chessboard.
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op move_ : Position -> Movement .
rl [mv1] : move [X, Y] => [X + 2, Y + 1] .
...
rl [mv8] : move [X, Y] => [X - 1, Y - 2] .
op legal : Position -> Bool .
eq [leg] : legal([X, Y]) = X >= 1 and Y >= 1 and X <= 3 and Y <= 4 .

The function contains(J, P) checks if position P occurs in the journey J.

op contains : Journey Position -> Bool .
eq [con1] : contains(P J, P) = true .
eq [con2] : contains(J, P) = false [otherwise] .

knight(N) represents a journey where the knight has performed N hops. When
no hops are taken, the knight remains at the first position [1, 1]. When N > 0
the problem is recursively solved (using backtracking in an implicit way) as
follows: first a legal journey of N - 1 steps is found, then a new hop from the
last position of that journey is performed, and finally it is checked that this last
hop is legal and compatible with the other ones.

op knight : Nat -> Problem .
rl [k1] : knight(0) => [1, 1] .
crl [k2] : knight(N) => J P Q
if N > 0
/\ knight(N - 1) => J P
/\ move P => Q
/\ legal(Q)
/\ not(contains(J P, Q)) .

endm)

The solution to the 3 × 4 chessboard can be found by looking for a journey
with 11 hops, but we obtain the following unexpected, wrong result, where the
journey contains repeated positions. We will show how to debug it in Sect. 4.

Maude> (rew knight(11) .)
result Journey :

[1,1][2,3][3,1][2,3][3,1][2,3][3,1][2,3][3,1][2,3][3,1][2,3]

3 Debugging Trees for Maude Specifications

Now we will describe debugging trees for both MEL specifications and rewriting
logic specifications. Since a MEL specification coincides with a rewrite theory
with an empty set of rules, our treatment will simply be at the level of rewrite
theories. Our proof and debugging trees will include statements for reductions
t → t′, memberships t : s, and rewrites t ⇒ t′, and in the following sections we
will describe how to build the debugging trees from the proof trees taking into
account each kind of statement.
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3.1 Proof Trees

Before defining the debugging trees employed in our declarative debugging frame-
work we introduce the semantic rules defining the semantics of a rewrite theory
R. The inference rules of the calculus can be found in Fig. 1, where θ denotes a
substitution. The rules allow to deduce statements of the three kinds and are an
adaptation of the rules presented in [1, 15] for MEL and in [2, 14] for rewriting
logic. With respect to MEL, because of the executability assumptions, we have
a more operational interpretation of the equations, which are oriented from left
to right. With respect to rewriting logic, we work with terms (as in [2]) instead
of equivalence classes of terms (as in [14]); moreover, unlike [2], replacement is
not nested. Both changes make the logical representation closer to the way the
Maude system operates. As usual, we represent deductions in the calculus as
proof trees, where the premises are the child nodes of the conclusion at each
inference step. We assume that the inference labels (Rep⇒), (Rep→), and (Mb)
decorating the inference steps contain information about the particular rewrite
rule, equation, and membership axiom, respectively, applied during the infer-
ence. This information will be used by the debugger in order to present to the
user the incorrect fragment of code causing the error.

In our debugging framework we assume the existence of an intended interpre-
tation I of the given rewrite theory R = (Σ, E, R). The intended interpretation
must be an R-system corresponding to the model that the user had in mind
while writing the specification R. Therefore the user expects that I |= t ⇒ t′,
I |= t → t′, and I |= t : s for each rewrite t ⇒ t′, reduction t → t′, and mem-
bership t : s computed w.r.t. the specification R. We will say that a statement
t ⇒ t′ (respectively t → t′, t : s) is valid when it holds in I, and invalid other-
wise. Declarative debuggers rely on some external oracle, normally the user, in
order to obtain information about the validity of some nodes in the debugging
tree. The concept of validity can be extended to distinguish wrong rules, wrong
equations, and wrong membership axioms, which are those specification pieces
that can deduce something invalid from valid information.

Definition 1. Let r ≡ (af ⇐
∧n

i=1 ui = u′
i∧

∧m
j=1 vj : sj∧

∧l
k=1 wk ⇒ w′

k) where
af denotes an atomic formula, that is, r is either a rewrite rule, an oriented
equation, or a membership axiom (in the last two cases l = 0) in some rewrite
theory R. Then:

– θ(r) is a wrong rewrite rule instance (respectively wrong equation instance
and wrong membership axiom instance) w.r.t. an intended interpretation I
when
1. There exist terms t1, . . . , tn such that I |= θ(ui) → ti, I |= θ(u′

i) → ti
for i = 1 . . . n.

2. I |= θ(vj) : sj for j = 1 . . . m.
3. I |= θ(wk) ⇒ θ(w′

k) for k = 1 . . . l.
4. θ(af ) does not hold in I.

– r is a wrong rewrite rule (respectively, wrong equation and wrong member-
ship axiom) if it admits some wrong instance.
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(Reflexivity)

t ⇒ t
(Rf ⇒)

t → t
(Rf →)

(Transitivity)
t1 ⇒ t′ t′ ⇒ t2

t1 ⇒ t2
(Tr⇒)

t1 → t′ t′ → t2
t1 → t2

(Tr→)

(Congruence)
t1 ⇒ t′1 . . . tn ⇒ t′n

f(t1, . . . , tn) ⇒ f(t′1, . . . , t′n)
(Cong⇒)

t1 → t′1 . . . tn → t′n
f(t1, . . . , tn) → f(t′1, . . . , t′n)

(Cong→)

(Replacement)

{θ(ui) ↓ θ(u′
i)}n

i=1 {θ(vj) : sj}m
j=1 {θ(wk) ⇒ θ(w′

k)}l
k=1

θ(t) ⇒ θ(t′)
(Rep⇒)

if t ⇒ t′ ⇐
Vn

i=1 ui = u′
i ∧

Vm
j=1 vj : sj ∧

Vl
k=1 wk ⇒ w′

k

{θ(ui) ↓ θ(u′
i)}n

i=1 {θ(vj) : sj}m
j=1

θ(t) → θ(t′)
(Rep→) if t → t′ ⇐

Vn
i=1 ui = u′

i ∧
Vm

j=1 vj : sj

(Equivalence Class)
t → t′ t′ ⇒ t′′ t′′ → t′′′

t ⇒ t′′′
(EC)

(Subject Reduction)
t → t′ t′ : s

t : s
(SRed)

(Membership)
{θ(ui) ↓ θ(u′

i)}n
i=1 {θ(vj) : sj}m

j=1

θ(t) : s
(Mb) if t : s ⇐

Vn
i=1 ui = u′

i ∧
Vm

j=1 vj : sj

Fig. 1. Semantic calculus for Maude modules

The general schema of [17] presents declarative debugging as the search of buggy
nodes (invalid nodes with all children valid) in a debugging tree representing an
erroneous computation. In our scheme instance, the proof trees constructed by
the inferences of Fig. 1 seem natural candidates for debugging trees. Although
this is a possible option, we will use instead a suitable abbreviation of these
trees. This is motivated by the following result:

Proposition 1. Let N be a buggy node in some proof tree in the calculus of
Fig. 1 w.r.t. an intended interpretation I. Then:

1. N is the result of either a membership or a replacement inference step.
2. The statement associated to N is either a wrong rewrite rule, a wrong equa-

tion, or a wrong membership axiom.

Both points are a consequence of the definition of the semantic calculus. The
first result states that all the inference steps different from membership and re-
placement are logically sound w.r.t. the definition of R-system, i.e., they always
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produce valid results from valid premises. The second result can be checked by
observing that any membership or replacement buggy node satisfies the require-
ments of Def. 1: the valid premises correspond to the points 1-3 of the definition,
while the invalid conclusion fulfills the last point.

3.2 Abbreviated Proof Trees

Our goal is to find a buggy node in any proof tree T rooted by the initial error
symptom detected by the user. This could be done simply by asking questions
to the user about the validity of the nodes in the tree according to the following
top-down strategy:

Input: A tree T with an invalid root.
Output: A buggy node in T .
Description: Consider the root N of T . There are two possibilities: if all the

children of N are valid, then finish pointing out at N as buggy; otherwise,
select the subtree rooted by any invalid child and use recursively the same
strategy to find the buggy node.

Proving that this strategy is complete is straightforward by using induction on
the height of T .

However, we will not use the proof tree T as debugging tree, but a suitable ab-
breviation which we denote by APT (T ) (from Abbreviated Proof Tree), or simply
APT if the proof tree T is clear from the context. The reason for preferring the
APT to the original proof tree is that it reduces and simplifies the questions that
will be asked to the user while keeping the soundness and completeness of the
technique. In particular the APT essentially contains only nodes related to the
replacement and membership inferences using statements included in the spec-
ification, which are the only possible buggy nodes as Prop. 1 indicates. Thus,
in order to minimize the number of questions asked to the user the debugger
should consider the validity of (Rep⇒), (Rep→), or (Mb). The APT rules can
be seen in Fig. 2.

The rules are assumed to be applied top-down: if several APT rules can
be applied at the root of a proof tree, we must choose the first one, that is,
the rule of least number. As a matter of fact, the figure includes rules for two
different possible APTs, which we call one-step abbreviated proof tree (in short
APT o(T )), defined by all the rules in the figure excluding (APTm

4 ), and many-
steps abbreviated proof tree (in short APTm(T )), defined by all the rules in the
figure excluding (APTo

4). Analogously, we will use the notation APT ′o(T ) (resp.
APT ′m(T )) for the subset of rules of APT ′ excluding (APTm

4 ) (resp. (APTo
4)).

The one-step debugging tree follows strictly the idea of keeping only nodes
corresponding to the replacement and membership inference rules. However, the
many-steps debugging tree also keeps nodes corresponding to the transitivity
inference rule for rewrites. The user will choose which debugging tree (one-step
or many-steps) will be used for the declarative debugging session, taking into
account that the many-steps debugging tree usually leads to shorter debugging
sessions (in terms of the number of questions) but with likely more compli-
cated questions. The number of questions is usually reduced because keeping



318 A. Riesco et al.

(APT1) APT
(

T1 . . . Tn

af
(R)

)
=

APT ′
(

T1 . . . Tn

af
(R)

)

af

(APT2) APT ′
(

t � t
(Rf�)

)
= ∅

(APT3) APT ′

⎛
⎝ T1 . . . Tn

t1 → t′
(Rep→)

T ′

t1 → t2
(Tr→)

⎞
⎠ =

{
APT ′(T1) . . .APT ′(Tn) APT ′(T ′)

t1 → t2
(Rep→)

}

(APTo
4) APT ′

(
T1 T2

t1 ⇒ t2
(Tr⇒)

)
= APT ′(T1)

⋃
APT ′(T2)

(APTm
4 ) APT ′

(
T1 T2

t1 ⇒ t2
(Tr⇒)

)
=

{
APT ′(T1) APT ′(T2)

t1 ⇒ t2
(Tr⇒)

}

(APT5) APT ′
(

T1 . . . Tn

t1 � t2
(Cong�)

)
= APT ′(T1)

⋃
. . .

⋃
APT ′(Tn)

(APT6) APT ′
(

T1 T2

t : s
(SRed)

)
= APT ′(T1)

⋃
APT ′(T2)

(APT7) APT ′
(

T1 . . . Tn

t : s
(Mb)

)
=

{
APT ′(T1) . . . APT ′(Tn)

t : s
(Mb)

}

(APT8) APT ′
(

T1 . . . Tn

t1 � t2
(Rep�)

)
=

{
APT ′(T1) . . .APT ′(Tn)

t1 � t2
(Rep�)

}

(APT9) APT ′

⎛
⎝ T ′

T1 . . . Tn

t ⇒ t′
(Rep⇒)

T ′′

t1 ⇒ t2
(EC)

⎞
⎠ =

{
APT ′(T ′) APT ′(T1) . . .APT ′(Tn) APT ′(T ′′)

t1 ⇒ t2
(Rep⇒)

}

(APT10) APT ′
(

T1 . . . Tn

t1 ⇒ t2
(EC )

)
= APT ′(T1)

⋃
. . .

⋃
APT ′(Tn)

(R) any inference rule � either → or ⇒
af either t1 → t2, t : s or t1 ⇒ t2

Fig. 2. Transforming rules for obtaining abbreviated proof trees
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the transitivity nodes for rewrites shapes some parts of the debugging tree as a
balanced binary tree (each transitivity inference has two premises, i.e., two child
subtrees), and this allows the debugger to use very efficient navigation strate-
gies [23, 24]. On the contrary, removing the transitivity inferences for rewrites
(as rule (APTo

4) does) produces flattened trees where this strategy is no longer
efficient. On the other hand, in rewrites t ⇒ t′ appearing as conclusion of the
transitivity inference rule, the term t′ can contain the result of rewriting several
subterms of t, and determining the validity of such nodes can be complicated,
while in the one-step debugging tree each rewrite node t ⇒ t′ corresponds to a
single rewrite applied at t and checking its validity is usually easier. The user
must balance the pros and cons of each option, and choose the best one for each
debugging session.

The rules (APT3) and (APT9) deserve a more detailed explanation. They
keep the corresponding label (Rep�) but changing the conclusion of the replace-
ment inference in the lefthand side. For instance, (APT3) replaces t1 → t′ by the
conclusion of the next transitivity inference t1 → t2. We do this as a pragmatic
way of simplifying the structure of the APT s, since t2 is obtained from t′ and
hence likely simpler (the root of the tree T ′ in (APT3) must be necessarily of
the form t′ → t2 by the structure of the inference rule for transitivity in Fig. 1).
A similar reasoning explains the form of (APT9). We will formally state now
that these changes are safe from the point of view of the debugger.

Theorem 1. Let T be a finite proof tree representing an inference in the calculus
of Fig. 1 w.r.t. some rewrite theory R. Let I be an intended interpretation of R
such that the root of T is invalid in I. Then:

– Both APT o(T ) and APTm(T ) contain at least one buggy node (complete-
ness).

– Any buggy node in APT o(T ), APTm(T ) has an associated wrong statement
in R (correctness).

The theorem states that we can safely employ the abbreviated proof tree as a
basis for the declarative debugging of Maude system and functional modules:
the technique will find a buggy node starting from any initial symptom detected
by the user. Of course, these results assume that the user answers correctly all
the questions about the validity of the APT nodes asked by the debugger.

4 A Debugging Session

The debugger is initiated in Maude by loading the file dd.maude (available from
http://maude.sip.ucm.es/debugging). This starts an input/output loop that
allows the user to interact with the tool. Then, the user can enter Full Maude
modules and commands, as well as commands for the debugger. The current

http://maude.sip.ucm.es/debugging
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version supports all kinds of modules. When debugging a rewrite computation,
two different debugging trees can be built: one whose questions are related to
one-step rewrites and another whose questions are related to several steps. The
latter tree is partially built so that any node corresponding to a one-step rewrite
is expanded only when the navigation process reaches it.

The debugger provides two strategies to traverse the debugging tree: top-
down, that traverses the tree from the root asking each time for the correctness
of all the children of the current node, and then continues with one of the in-
correct children; and divide and query, that each time selects the node whose
subtree’s size is the closest one to half the size of the whole tree, keeping only
this subtree if its root is incorrect, and deleting the whole subtree otherwise.
Note that, although the navigation strategy can be changed during the debug-
ging session, the construction strategy is selected before the tree is built and
cannot be changed.

The user can select a module containing only correct statements. By check-
ing the correctness of the inferences with respect to this module (i.e., using this
module as oracle) the debugger can reduce the number of questions. The debug-
ger allows us to debug specifications where some statements are suspicious and
have been labeled. Only these labeled statements generate nodes in the proof
tree, being the user in charge of this labeling. The user can decide to use all the
labeled statements as suspicious or can use only a subset by trusting labels and
modules. Moreover, the user can answer that he trusts the statement associated
with the currently questioned inference; that is, statements can be trusted “on
the fly.” The user can also give the answer “don’t know,” that postpones the
answer to that question by asking alternative questions. An undo command, al-
lowing the user to return to the previous state, is also provided. We refer the
reader to [21, 22] for further information.

In Sect. 2.4 we described a system module that simulates a knight’s tour. How-
ever, this system module contains a bug and the knight repeats some positions
in its tour. This error is also obtained when looking for a 3 steps journey:

Maude> (rew knight(3) .)
result List : [1,1][2,3][3,1][2,3]

Thus, we debug this smaller computation. Moreover, after inspecting the rewrite
rules describing the eight possible moves, we are sure that they are not respon-
sible for the error; therefore, we trust them by using commands that allow us to
select the suspicious statements.

Maude> (set debug select on .)
Maude> (debug select con1 con2 leg k1 k2 .)
Maude> (debug knight(3) =>* [1,1][2,3][3,1][2,3] .)

The default one-step tree construction strategy is used and the tree shown below
is built, where every operation has been abbreviated with its first letter.
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k(0) ⇒1 [1,1]
k1

l([2,3]) → t
leg

c([1,1],[2,3]) → f
con2

k(1) ⇒1 J2

k2

l([3,1]) → t
leg

c(J2,[3,1]) → f
con2

k(2) ⇒1 J1

k2

l([2,3]) → t
leg

c(J1,[2,3]) → f
con2

k(3) ⇒1 [1,1][2,3][3,1][2,3]
k2

where J1 denotes the journey [1,1][2,3][3,1] and J2 denotes [1,1][2,3].
Since the tree is navigated by using the default divide and query strategy, the

first two questions asked by the debugger are

Is this rewrite (associated with the rule k2) correct?
knight(1) =>1 [1,1][2,3]
Maude> (yes .)
Is this rewrite (associated with the rule k2) correct?
knight(2) =>1 [1,1][2,3][3,1]
Maude> (yes .)

Notice the form =>1 of the arrow in the rewrites appearing in the questions, to
emphasize that they are one-step rewrites.

In both cases the answer is yes because these paths are possible, legal be-
haviors of the knight when it can do one or two hops. These two subtrees are
removed and the current tree looks as follows:

l([2,3]) → t
leg

c(J1,[2,3]) → f
con2

k(3) ⇒1 [1,1][2,3][3,1][2,3]
k2

The next question is

Is this reduction (associated with the equation con2) correct?
contains([1,1][2,3][3,1],[2,3]) -> false
Maude> (no .)

Clearly, this is not a correct reduction, since position [2,3] is already in the
path [1,1][2,3][3,1]. With this answer this subtree is selected and, since it
is a single node, the bug is located:

The buggy node is:
contains([1,1][2,3][3,1],[2,3]) -> false
with the associated equation: con2

Looking at the definition of the contains operation, we realize that it defines the
membership operation for sets, not for lists. A correct definition of the contains
operation is as follows:

eq [con1] : contains(nil, P) = false .
eq [con2] : contains(Q J, P) = P == Q or contains(J, P) .
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5 The Implementation

As mentioned in the introduction, a key distinguishing feature of Maude is its
systematic and efficient use of reflection through its predefined META-LEVELmod-
ule [10, Chap. 14]. This powerful feature allows access to metalevel entities such
as specifications or computations as usual data. Therefore, we are able to gen-
erate and navigate the debugging tree of a Maude computation using opera-
tions in Maude itself. In addition, the Maude system provides another module,
LOOP-MODE [10, Chap. 17], which can be used to specify input/output interac-
tions with the user. Thus, our declarative debugger, including its user interface,
is implemented in Maude itself, as an extension of Full Maude [10, Chap. 18].
Instead of creating the complete proof tree and then abbreviating it, we build
the abbreviated proof tree directly. Since navigation is done by asking questions
to the user, this stage has to handle the navigation strategy together with the
input/output interaction with the user. The technical report [21] provides a full
explanation of this implementation, including the user interaction.

The way in which the debugging trees for reductions and memberships or
rewrites are built is completely different. In the first case, we use the facts that
equations and membership axioms are both terminating and confluent, which
allow us to build the debugging tree in a “greedy” way, selecting at each moment
the first equation applicable to the current term. However, we have to use a
different methodology in the construction of the debugging tree for incorrect
rewrites. We use breadth-first search to find from the initial term the wrong term
introduced by the user, and then we use the found path to build the debugging
tree in the two possible ways described in previous sections.

The functions in charge of building the debugging trees, that correspond to
the APT function from Fig. 2, have a common initial behavior. They receive
the module where the wrong inference took place, a correct module (or a special
constant when no such module is provided) to prune the tree, the initial term,
the (erroneous) result obtained, and the set of suspicious statements labels. They
keep the initial inference as the root of the tree and generate the forest of abbre-
viated trees corresponding to the inference with functions that, in addition to the
arguments above, receive the initial module “cleaned” of suspicious statements
and correspond to the APT ′ function from Fig. 2. This transformed module is
used to improve the efficiency of the tree construction, because we can use it
to check if an inference can be obtained by using only trusted statements, thus
avoiding to build a tree that will be finally empty.

The function that builds debugging trees for wrong reductions works with the
same innermost strategy as the Maude interpreter: it first fully reduces the sub-
terms recursively building their debugging trees (it mimics a specific behavior
of the congruence rule in Fig. 1), and once all the subterms have been reduced,
if the result is not the final one, it tries to reduce at the top to reach the fi-
nal result by transitivity. Reduction at the top tries to apply one equation,3 by

3 Since the module is assumed to be confluent, we can choose any equation and the
final result should be the same.
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using the replacement rule from Fig. 1. Debugging trees for the conditions of
the equation are also built and placed as children of the replacement rule. The
construction of debugging trees for wrong memberships mimics the subject re-
duction rule from Fig. 1 by computing the tree for the full reduction of the term
and then computing the tree for the membership inference of its least sort by
using the operator declarations and the membership axioms, which corresponds
to a concrete application of the membership inference rule.

The one-step tree for wrong rewrites computes the tree for the reduction
from the initial term to normal form and then computes the rest of the tree,
that corresponds to a rewrite from a fully reduced term (this corresponds to
a concrete application of the equivalence class inference rule from Fig. 1). The
debugging tree for this rewrite is computed from the trace, that is obtained with
the predefined function metaSearchPath. Each step of the trace corresponds to
the application of one rule, that generates a tree, with the trees correspond-
ing to the conditions of the rule as its children (reproducing the replacement
rule). Note that although the information in the trace is related to the whole
rewritten term, the application of a rule can be in a subterm, which corresponds
with the congruence inference rule, so only the rewritten subterms appear in
the debugging tree. Other children are generated for the reduction to normal
form due to the equivalence class inference rule. Finally, all the steps are put
together as children of the same root by using the transitivity inference rule. The
many-steps debugging tree is built by demand, so that the debugging subtrees
corresponding to one-step rewrites are only generated when they are pointed
out as wrong. These one-step nodes are used to create a balanced binary tree,
by dividing them into two forests of approximately the same size, recursively
creating their trees, and then using them as children of a new binary tree that
has as root the combination by transitivity of the rewrites in their roots.

6 Concluding Remarks

In this paper we have developed the foundations of declarative debugging of
executable rewriting logic specifications, and we have applied them to implement
a debugger for Maude modules. The work encompasses and extends previous
presentations [5, 6] on the declarative debugging of Maude functional modules,
which constitute now a particular case of a more general setting.

We have formally described how debugging trees can be obtained from Maude
proof trees, proving the correctness and completeness of the debugging technique.
The tool based on these ideas allows the user to concentrate on the logic of the
program disregarding the operational details. In order to deal with the possibly
complex questions associated to rewrite statements, the tool offers the possibil-
ity of choosing between two different debugging trees: the one-step trees, with
simpler questions and likely longer debugging sessions, and the many-steps trees,
which in general require fewer but more complex questions before finding the
bug. The experience will show the user which one must be chosen in each case
depending on the complexity of the specification.
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In our opinion, this debugger provides a complement to existing debugging
techniques for Maude, such as tracing and term coloring. An important advan-
tage of our debugger is the help provided by the tool in locating the buggy
statements, assuming the user answers correctly the corresponding questions.

As future work we want to provide a graphical interface, that allows the user
to navigate the tree with more freedom. We are also investigating how to improve
the questions done in the presence of the strat operator attribute, that allows
the specifier to define an evaluation strategy. This can be used to represent some
kind of laziness. Finally, we plan to study how to debug missing answers [8, 16]
in addition to the wrong answers we have treated thus far.
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Abstract. Declarative debugging has been applied to many declarative program-
ming paradigms; in this paper, a declarative debugger for rewriting logic specifi-
cations, embodied in the Maude language, is presented. Starting from an incorrect
computation (a reduction, a type inference, or a rewrite), the debugger builds a
tree representing this computation and guides the user through it to find a wrong
statement. We present the debugger’s main features, such as support for func-
tional and system modules, two possible constructions of the debugging tree, two
different strategies to traverse it, use of a correct module to reduce the number
of questions asked to the user, selection of trusted vs. suspicious statements, and
trusting of statements “on the fly”.

1 Introduction

Declarative debugging, introduced by E. Y. Shapiro [8], is a semi-automatic technique
that starts from a computation considered incorrect by the user (error symptom) and lo-
cates a program fragment responsible for the error. It has been widely employed in the
logic [6], functional [7], and multiparadigm [3] programming languages. The declar-
ative debugging scheme uses a debugging tree as a logical representation of the com-
putation. Each node in the tree represents the result of a computation step, which must
follow from the results of its child nodes by some logical inference. Diagnosis proceeds
by traversing the debugging tree, asking questions to an external oracle (generally the
user) until a so-called buggy node is found. Any buggy node represents a wrong com-
putation step, and the debugger can display the program fragment responsible for it.

Maude [4] is a declarative language based on both equational and rewriting logic for
the specification and implementation of a whole range of models and systems. Here we
present a declarative debugger for Maude functional and system modules. Functional
modules define data types and operations on them by means of membership equational
logic theories that support multiple sorts, subsort relations, equations, and assertions of
membership in a sort. Declarative debugging of functional modules has been presented
in [2,1]. System modules specify rewrite theories that also support rules, defining local
concurrent transitions that can take place in a system.

The debugging process starts with an incorrect computation from an initial term. Our
debugger, after building a proof tree for that inference, will present to the user questions
about the computation. Moreover, since the questions are located in the proof tree, the
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answer allows the debugger to discard a subset of the questions, leading and shortening
the debugging process. The current version of the tool supports all kinds of modules
(except for the attribute strat), different ways of trusting statements, two possible
constructions of the debugging tree for rewritings, and two strategies for traversing it.
The debugger is implemented on top of Full Maude [4, Chap. 18]—allowing to debug
the different modules provided by it, such as object-oriented and parameterized ones—
and exploiting the reflective capabilities of Maude. Complete explanations about the
fundamentals and novelties of our debugging approach can be found in the technical
report [10], which, together with the source files for the debugger, examples, and related
papers, is available from the webpage http://maude.sip.ucm.es/debugging.

2 Using the Debugger

We make explicit first what is assumed about the modules introduced by the user; then
we present the available commands.

Assumptions. A rewrite theory has an underlying equational theory, containing equa-
tions and memberships, which is expected to satisfy the appropriate executability re-
quirements, namely, it has to be terminating, confluent, and sort decreasing. Rules are
assumed to be coherent with respect to the equations; for details, see [4].

In our debugger, unlabeled statements are assumed to be correct. Moreover, the user
can trust more statements or introduce a correct module to check the inferences. In
order to obtain a nonempty abbreviated proof tree, at least the buggy statement must be
suspicious; the user is responsible for the correctness of these decisions.

Commands. The debugger is initiated in Maude by loading the file dd.maude, which
starts an input/output loop that allows the user to interact with the tool. Since the debug-
ger is implemented on top of Full Maude, all modules must be introduced enclosed in
parentheses. If a module with correct definitions is used to reduce the number of ques-
tions, it must be indicated before starting the debugging with the command (correct
module MODULE-NAME .). Since rewriting with rules is not assumed to terminate, a
bound, which is 42 by default although can be unbounded, is used when searching in
the correct module and can be set with the command (set bound BOUND .). The user
can debug with only a subset of the labeled statements by using the command (set
debug select on .). Once this mode is activated, the user can select and deselect
statements by using (debug [de]select LABELS .). Moreover, all the labeled state-
ments of a flattened module can be selected or deselected with the commands (debug
include/exclude MODULES .). When debugging rewrites, two different trees can be
built: one whose questions are related to one-step rewrites and another one whose ques-
tions are related to several steps. The user can switch between these trees with the com-
mands (one-step tree .), which is the default one, and (many-steps tree .),
taking into account that the many-steps debugging tree usually leads to shorter debug-
ging sessions (in terms of the number of questions) but with likely more complicated
questions. The proof tree can be navigated by using two different strategies: the more
intuitive top-down strategy, that traverses the tree from the root asking each time for
the correctness of all the children of the current node, and then continues with one of

http://maude.sip.ucm.es/debugging
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the incorrect children; and the more efficient divide and query strategy, that each time
selects the node whose subtree’s size is the closest one to half the size of the whole tree,
the latter being the default one. The user can switch between them with the commands
(top-down strategy .) and (divide-query strategy .). Debugging is started
with the following commands for wrong reductions, memberships, and rewrites.1

(debug [in MODULE-NAME :] INITIAL-TERM -> WRONG-TERM .)
(debug [in MODULE-NAME :] INITIAL-TERM : WRONG-SORT .)
(debug [in MODULE-NAME :] INITIAL-TERM =>* WRONG-TERM .)

How the process continues depends on the selected strategy. In case the top-down
strategy is selected, several nodes will be displayed in each question. If there is an in-
valid node, we must select one of them with the command (node N .). If all the nodes
are correct, we answer (all valid .). In the divide and query strategy, each question
refers to one inference that can be either correct or wrong. The different answers are
transmitted with the commands (yes .) and (no .). Instead of just answering yes,
we can also trust some statements on the fly if, once the process has started, we decide
the bug is not there. To trust the current statement we type the command (trust .).
Finally, we can return to the previous state by using the command (undo .).

We show in the next sections how to use these commands to debug several examples.

3 Functional Module Example: Multisets

We use sets and multisets to illustrate how to debug functional modules. We describe
sets by means of a membership that asserts that a set is a multiset without repetitions.
However, the equation mt2 is wrong, because it should add 1 to mult(N, S):

cmb [set] : N S : Set if S : Set /\ mult(N, S) = 0 .
eq [mt2] : mult(N, N S) = mult(N, S) .

If we check now the type of 1 1 2 3 we obtain it is Set! We debug this wrong
behavior with the command

Maude> (debug 1 1 2 3 : Set .)

that builds the associated debugging tree, and selects a node using divide and query:

Is this membership (associated with the membership set) correct?
1 2 3 : Set
Maude> (yes .)

The debugger continues asking the questions below, now associated to equations:

Is this reduction (associated with the equation mt3) correct?
mult(1, 2 3) -> 0
Maude> (yes .)
Is this reduction (associated with the equation mt2) correct?
mult(1, 1 2 3) -> 0
Maude> (no .)

1 If no module name is given, the current module is used by default.
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With this information, the debugger finds the wrong statement:

The buggy node is: mult(1, 1 2 3) -> 0
With the associated equation: mt2

4 System Module Example: Operational Semantics

We illustrate in this section how to debug system modules by means of the semantics
of the WhileL language, a simple imperative language described in [5] and represented
in Maude in [9]. The syntax of the language includes skip, assignment, composition,
conditional statement, and while loop. The state of the execution is kept in the store, a
set of pairs of variables and values.

Evaluation semantics. The evaluation semantics takes a pair consisting of a command
and a store and returns a store.2 However, we have committed an error in the while loop:

crl [WhileR2] : < While be Do C, st > => < skip, st’ >
if < be, st > => T /\ < C, st > => < skip, st’ > .

That is, if the condition is true, the body is evaluated only once. Thus, if we execute
the program below to multiply x and y and keep the result in z

Maude> (rew < z := 0 ; (While Not Equal(x, 0) Do
z := z +. y ; x := x -. 1), x = 2 y = 3 z = 1 > .)

result Statement : < skip, y = 3 z = 3 x = 1 >

we obtain z = 3, while we expected to obtain z = 6. We debug this behavior with the
top-down strategy and the default one-step tree by typing the commands

Maude> (top-down strategy .)
Maude> (debug < z := 0 ; (While Not Equal(x, 0) Do

z := z +. y ; x := x -. 1), x = 2 y = 3 z = 1 >
=>* < skip, y = 3 z = 3 x = 1 > .)

The debugger computes the tree and asks about the validity of the root’s children:

Please, choose a wrong node:
Node 0 : < z := 0, x = 2 y = 3 z = 1 > =>1 < skip, x = 2 y = 3 z = 0 >
Node 1 : < While Not Equal(x,0) Do z := z +. y ; x := x -. 1, x = 2 y = 3 z = 0 >

=>1 < skip, y = 3 z = 3 x = 1 >
Maude> (node 1 .)

The second node is erroneous, because x has not reached 0, so the user selects this
node to continue the debugging, and the following question is related to its children:

Please, choose a wrong node:
Node 0 : < Not Equal(x,0), x = 2 y = 3 z = 0 > =>1 T
Node 1 : < z := z +. y ; x := x -. 1, x = 2 y = 3 z = 0 >

=>1 < skip, y = 3 z = 3 x = 1 >
Maude> (all valid .)

2 In order to reuse this module later, the returned result is a pair < skip, st >.
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Since both nodes are right, the debugger determines that the current node is buggy:

The buggy node is:
< While Not Equal(x,0) Do z := z +. y ; x := x -. 1, x = 2 y = 3 z = 0 >
=>1 < skip, y = 3 z = 3 x = 1 >
With the associated rule: WhileR2

Computation semantics. In contrast to the evaluation semantics, the computation se-
mantics describes the behavior of programs in terms of small steps. In order to illustrate
this, we make a mistake in the rule describing the semantics of the composition, keeping
the initial state instead of the new one computed in the condition:

crl [ComRc1] : < C ; C’, st > => < C’’ ; C’, st >
if < C, st > => < C’’, st’ > /\ C =/= C’’ .

If we rewrite now a program to swap the values of two variables, their values are not
exchanged. We use the many-steps tree to debug this wrong behavior:

Maude> (many-steps tree .)
Maude> (debug < x := x -. y ; y := x +. y ; x := y -. x, x = 5 y = 2 >

=>* < skip, y = 2 x = 0 > .)
Is this rewrite correct?
< y := x +. y ; x := y -. x, x = 5 y = 2 > =>+ < skip, y = 2 x = 0 >
Maude> (no .)

The transition is wrong because the variables have not been properly updated.

Is this rewrite (associated with the rule ComRc1) correct?
< y := x +. y ; x := y -. x,x = 5 y = 2 > =>1 < x := y -. x,x = 5 y = 2 >
Maude> (no .)
Is this rewrite (associated with the rule OpR) correct?
< x +. y, x = 5 y = 2 > =>1 7
Maude> (trust .)

We consider that the application of a primitive operation is simple enough to be
trusted. The next question is related to the application of an equation to update the store

Is this reduction (associated with the equation st1) correct?
x = 5 y = 2[7 / y] -> x = 5 y = 7
Maude> (yes .)

Finally, a question about assignment is posed:

Is this rewrite (associated with the rule AsRc) correct?
< y := x +. y, x = 5 y = 2 > =>1 < skip, x = 5 y = 7 >
Maude> (yes .)

With this information, the debugger is able to find the bug. However, since we have
the evaluation semantics of the language already specified and debugged, we can use
that module as correct module to reduce the number of questions to only one.
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Maude> (correct module EVALUATION-WHILE .)
Maude> (debug ... .)
Is this rewrite correct?
< y := x +. y ; x := y -. x, x = 5 y = 2 > =>+ < skip, y = 2 x = 0 >
Maude> (no .)

5 Conclusions

We have implemented a declarative debugger for Maude modules that allows to de-
bug wrong reductions, type inferences, and rewrites. Although the complexity of the
debugging process increases with the size of the proof tree, it does not depend on the
total number of statements but on the number of applications of suspicious statements
involved in the wrong inference. Moreover, bugs found when reducing complex initial
terms can, in general, be reproduced with simpler terms which give rise to smaller proof
trees. We plan to improve the interaction with the user by providing a complementary
graphical interface that allows the user to navigate the tree with more freedom. This in-
teraction could also be improved by allowing the user to give the answer “don’t know,”
that would postpone the answer to the question by asking alternative questions. We are
also studying how to handle the strat operator attribute, that allows the specifier to
define an evaluation strategy. This can be used to represent some kind of laziness.
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Abstract. Declarative debugging is a semi-automatic technique that
locates a program fragment responsible for the error by building a tree
representing the computation and guiding the user through it to find the
error. Two different kinds of errors are considered for debugging: wrong
answers—a wrong result obtained from an initial value—and missing
answers—a term that should be reachable but cannot be obtained from
an initial value—, where the latter has only been considered in nonde-
terministic systems. However, we consider that missing answers can also
appear in deterministic systems, when we obtain correct results that do
not provide all the expected information, which corresponds, in the con-
text of Maude modules, to terms whose normal form is not reached and
to terms whose computed least sort is, although correct, bigger than the
expected one. We present in this paper a calculus to deduce normal forms
and least sorts, and a proper abbreviation of the trees obtained with it.
These trees increase both the causes (missing equations and member-
ships) and the errors (erroneous normal forms and least sorts) detected
in our debugging framework.

Keywords: declarative debugging, Maude, rewriting logic, membership
equational logic, wrong answers, missing answers.

1 Introduction

Declarative debugging (also known as declarative diagnosis or algorithmic de-
bugging) [17] is a debugging technique that abstracts the computation details
to focus on results. It starts from an incorrect computation, the error symp-
tom, and locates a program fragment responsible for the error. To find this error
the debugger represents the computation as a debugging tree [10], where each
node stands for a computation step and must follow from the results of its child
nodes by some logical inference. This tree is traversed by asking questions to
an external oracle (generally the user) until a buggy node—a node containing
an erroneous result, but whose children are all correct—is found. Traditional
debugging techniques are devoted to fixing errors in specifications when an er-
roneous result, called a wrong answer, is found. Declarative debugging of this
� Research supported by MICINN Spanish project DESAFIOS10 (TIN2009-14599-

C03-01) and Comunidad de Madrid program PROMETIDOS (S2009/TIC-1465).
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kind of errors has been widely studied in the logic [9,19], functional [11,12],
and multi-paradigm [3,7] programming languages. Another kind of errors, called
missing answers [4,1], appears in nondeterministic systems when a term that
should be reachable cannot be obtained from an initial one. This kind of errors
has been less studied because it can only be applied to nondeterministic systems
and because the associated calculus may be much more complicated than the
one associated to wrong answers, making the debugging process unbearable.

Maude [5] is a high-level language and high-performance system supporting
both equational and rewriting logic computation. Maude modules correspond
to specifications in rewriting logic [8], a logic that allows the representation of
many models of concurrent and distributed systems. This logic is an extension
of membership equational logic [2], an equational logic that, in addition to equa-
tions, allows to state membership axioms characterizing the elements of a sort.
Rewriting logic extends membership equational logic by adding rewrite rules,
that represent transitions in a concurrent system. The Maude system supports
several approaches for debugging: tracing, term coloring, and using an internal
debugger [5, Chap. 22]. As part of an ongoing project to develop a declarative de-
bugger for Maude specifications, we have already studied wrong answers in both
functional and system modules [14] and missing answers in rewrites [15]. We now
extend our framework by developing a calculus to deduce normal forms and least
sorts seeing that the errors associated to these deductions correspond to missing
answers in a deterministic framework. With this calculus we can detect errors due
not only to wrong statements in a given specification but also to statements that
the user forgot to specify,1 indicating in this last case the operator at the top that
the statement needs. These features improve our debugger in two ways: allowing
to debug missing answers in the equational part of Maude modules and increas-
ing the range of errors detected by the tool. For example, we can now debug
missing answers when a rule cannot be applied because the term does not reach
its normal form due to a missing equation or because the lefthand side does not
match the term because it has a wrong least sort. We illustrate this improvement
in Section 3 with a system module that, if debugged with the previous version
of our tool, would print Error: With the given information (labeling,
correct module, and answers) it is impossible to debug., while in the
current version the error is located.

The rest of the paper is organized as follows: after briefly introducing Maude
modules with an example, Section 2 presents the calculus for missing answers
and how the proof trees built with it are pruned in order to obtain appropriate
debugging trees. Section 3 presents our tool by debugging some examples, while
Section 4 concludes and outlines some future work.

The Maude source of the debugger, a user guide [13], additional examples,
and other papers on this subject, including detailed proofs of the results [16],
are all available from the webpage http://maude.sip.ucm.es/debugging.

1 Note that the treatment of these missing statements is more powerful than the one
currently applied in the Maude sufficient completeness checker [6], because it can be
used with conditional and non left-linear statements.

http://maude.sip.ucm.es/debugging
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1.1 An Example: Heaps

We show in this section how to specify in Maude binary heaps, that is, binary
trees fulfilling that (1) all levels of the tree, except possibly the last one, are
complete and, if the last level of the tree is not complete, the nodes of that level
are filled from left to right; and (2) the value in each node is greater than the
value in each of its children. The module HEAP defines binary trees (BTree) and
Heaps and its nonempty variants (NeBTree and NeHeap), using a theory TH (not
shown here) that defines the functions min, max, and a total order _<_ over the
elements of the sort Elt:

(fmod HEAP{X :: TH} is

pr NAT .

sorts BTree Heap NeBTree NeHeap .

subsort NeHeap < NeBTree Heap < BTree .

op mt : -> Heap [ctor] .

op ___ : BTree X$Elt BTree -> NeBTree [ctor] .

We state by means of memberships when a binary tree is a heap:

vars E E’ : X$Elt . vars BT BT’ : BTree .

vars L L’ R R’ : Heap . vars NL NR : NeHeap .

cmb [h1] : NL E mt : NeHeap

if max(NL) < E /\ depth(NL) == 1 .

cmb [h2] : NL E NR : NeHeap

if max(NL) < E /\ max(NR) < E /\

(depth(NL) == depth(NR) and complete(NL)) or

(depth(NL) == s(depth(NR)) and complete(NR)) .

where the auxiliary function depth computes the depth of a binary tree; max re-
turns the value at the root of a nonempty heap (i.e., its maximum); and complete
checks whether a binary tree is complete:

op depth : BTree -> Nat .

eq [dp1] : depth(mt) = 0 .

eq [dp2] : depth(BT N BT’) = max(depth(BT), depth(BT’)) + 1 .

op max : NeHeap -> X$Elt .

ceq [max] : max(L E R) = E if L E R : NeHeap .

op complete : BTree -> Bool .

eq [cmp1] : complete(mt) = true .

eq [cmp2] : complete(BT E BT’) = complete(BT) and complete(BT’) and

depth(BT) == depth(BT’) .

The function insert introduces a new element in a heap by sinking it to the
appropriate position:
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op insert : X$Elt Heap ~> NeHeap .

eq [ins1] : insert(E, mt) = mt E mt .

ceq [ins2] : insert(E, L E’ R) = L’ max(E, E’) R

if L E’ R : NeHeap /\

not complete(L) or ((depth(L) > depth(R)) and complete(R)) /\

L’ := insert(min(E, E’), L) .

ceq [ins3] : insert(E, L E’ R) = L max(E, E’) R’

if L E’ R : NeHeap /\

not complete(R) or (depth(L) > depth(R)) and complete(L) /\

R’ := insert(min(E, E’), R) .

endfm)

We use a view HN (not shown here) to instantiate the values of the heap as
natural numbers and we define a constant heap for testing:

(fmod NAT-HEAP is

pr HEAP{HN} .

op heap : -> NeHeap .

eq heap = (mt 4 mt) 5 (mt 3 mt) .

endfm)

If we check in our specification the type of the constant heap:

Maude> (red heap .)

result NeBTree : (mt 4 mt) 5 (mt 3 mt)

we realize that although it has a correct sort (it is a NeBTree) its expected least
sort, NeHeap, has not been obtained. We will show in Section 3 how to debug it.

2 Debugging Trees for Normal Forms and Least Sorts

We present in this section a calculus to compute the normal form and the least
sort of a given term. The proof trees computed with this calculus contain the
information proving why the term has been reduced to this normal form or this
sort has been inferred (positive information) and also why the term has not been
further reduced or a lesser sort has not been computed (negative information).
The calculus is introduced as an extension of the calculus in [14] that allowed to
deduce judgments corresponding to oriented equations t → t′ and memberships
t : s, and improves the calculus of missing answers of [15] by adding new causes
to the errors debugged thus far. Once this extended calculus is presented, we
show how to use it to define appropriate debugging trees.

2.1 A Calculus for Normal Forms and Least Sorts

From now on, we assume a rewrite theory R = (Σ,E,R) satisfying the Maude
executability requirements, i.e., E is confluent and terminating, maybe modulo
some equational attributes such as associativity and commutativity, while R is
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coherent with respect to E. Equations corresponding to the equational attributes
form the set A and the equations in E −A can be oriented from left to right.

Throughout this paper we only consider a special kind of conditions and
substitutions that operate over them, called admissible. They correspond to the
ones used in Maude modules and are defined as follows:

Definition 1. A condition C1 ∧ · · · ∧ Cn is admissible if, for 1 ≤ i ≤ n, Ci is

– an equation ui = u′i or a membership ui : s and vars(Ci) ⊆
⋃i−1

j=1 vars(Cj),
or

– a matching condition ui := u′i, ui is a pattern and vars(u′i) ⊆
⋃i−1

j=1 vars(Cj),
or

– a rewrite condition ui ⇒ u′i, u
′
i is a pattern and vars(ui) ⊆

⋃i−1
j=1 vars(Cj).

Note that the lefthand side of matching conditions and the righthand side of
rewrite conditions can contain extra variables that will be instantiated once the
condition is solved.

Definition 2. A kind-substitution, denoted by κ, is a mapping from variables
to terms of the form v1 �→ t1; . . . ; vn �→ tn such that ∀1≤i≤n . kind(vi) = kind(ti),
that is, each variable has the same kind as the term it binds.

Definition 3. A substitution, denoted by θ, is a mapping from variables to
terms of the form v1 �→ t1; . . . ; vn �→ tn such that ∀1≤i≤n . sort(vi) ≥ ls(ti), that
is, the sort of each variable is greater than or equal to the least sort of the term
it binds. Note that a substitution is a special type of kind-substitution where each
term has the sort appropriate to its variable.

Definition 4. Given an atomic condition C, we say that a substitution θ is
admissible for C if

– C is an equation u = u′ or a membership u : s and vars(C) ⊆ dom(θ), or
– C is a matching condition u := u′ and vars(u′) ⊆ dom(θ), or
– C is a rewrite condition u⇒ u′ and vars(u) ⊆ dom(θ).

The calculus presented in this section (Figures 1 and 2) will be used to deduce
the following judgments, that we introduce together with their meaning for a
Σ-term model [8,16] T ′ = TΣ/E′,R′ defined by equations and memberships E′

and by rules R′:

– Given a term t and a kind-substitution κ, T ′ |= adequateSorts(κ) � Θ
when either Θ = {κ} ∧ ∀v ∈ dom(κ).T ′ |= κ[v] : sort(v) or Θ = ∅ ∧ ∃v ∈
dom(κ).T ′ |= κ[v] : sort(v), where κ[v] denotes the term bound by v in
κ. That is, when all the terms bound in the kind-substitution κ have the
appropriate sort, then κ is a substitution and it is returned; otherwise (at
least one of the terms has an incorrect sort), the kind-substitution is not a
substitution and the empty set is returned.

– Given an admissible substitution θ for an atomic condition C, T ′ |= [C, θ] �
Θ when Θ = {θ′ | T ′, θ′ |= C and θ′ �dom(θ)= θ}, that is, Θ is the set of
substitutions that fulfill the atomic condition C and extend θ.
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θ(t2) →norm t′ adequateSorts(κ1) � Θ1 . . . adequateSorts(κn) � Θn

[t1 := t2, θ] � ⋃n
i=1 Θi

PatC

if {κ1, . . . , κn} = {κθ | κ(θ(t1)) ≡A t′}
t1 : sort(v1) . . . tn : sort(vn)

adequateSorts(v1 �→ t1; . . . ; vn �→ tn) � {v1 �→ t1; . . . ; vn �→ tn}
AS1

ti :ls si

adequateSorts(v1 �→ t1; . . . ; vn �→ tn) � ∅ AS2 if si �≤ sort(vi)

θ(t) : s

[t : s, θ] � {θ} MbC1
θ(t) :ls s′

[t : s, θ] � ∅ MbC2 if s′ �≤ s

θ(t1) ↓ θ(t2)

[t1 = t2, θ] � {θ} EqC1

θ(t1) →norm t′1 θ(t2) →norm t′2
[t1 = t2, θ] � ∅ EqC2 if t′1 �≡A t′2

θ(t1) �t2 := �
n+1 S

[t1 ⇒ t2, θ] � {θ′θ | θ′(θ(t2)) ∈ S} RlC

if n = min(x ∈ N : ∀i ≥ 0 (θ(t1) �t2 := �
x+i S))

[C, θ1] � Θ1 · · · [C, θm] � Θm

〈C, {θ1, . . . , θm}〉 �
m⋃

i=1

Θi

SubsCond

Fig. 1. Calculus for substitutions

– Given a set of admissible substitutions Θ for an atomic condition C, T ′ |=
〈C,Θ〉 � Θ′ when Θ′ = {θ′ | T ′, θ′ |= C and θ′ �dom(θ)= θ for some θ ∈ Θ},
that is, Θ′ is the set of substitutions that fulfill the condition C and extend
any of the admissible substitutions in Θ.

– Given an equation or membership a and a term t, T ′ |= disabled(a, t) when
a cannot be applied to t at the top.

– Given two terms t and t′, T ′ |= t→red t
′ when T ′ |= t→1

E′ t′ or T ′ |= ti →!
E′

t′i, with ti = t′i, for some subterm ti of t such that t′ = t[ti �→ t′i], that is,
the term t is either reduced one step at the top or reduced by substituting
a subterm by its normal form.

– Given two terms t and t′, T ′ |= t→norm t′ when T ′ |= t→!
E′ t′, that is, t′ is

in normal form with respect to the equations E′.
– Given a term t and a sort s, T ′ |= t :ls s when T ′ |= t : s and moreover s is the

least sort with this property (with respect to the ordering on sorts obtained
from the signature Σ and the equations and memberships E′ defining the
Σ-term model T ′).

We introduce in Figure 1 the inference rules defining the relations [C, θ] �
Θ, 〈C,Θ〉 � Θ′, and adequateSorts(κ) � Θ. Intuitively, these judgments will
provide positive information when they lead to nonempty sets (indicating that
the condition holds in the first two judgments or that the kind-substitution
is a substitution in the third one) and negative information when they lead
to the empty set (indicating respectively that the condition fails or the kind-
substitution is not a substitution):
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– Rule PatC computes all the possible substitutions that extend θ and satisfy
the matching of the term t2 with the pattern t1 by first computing the normal
form t′ of t2, obtaining then all the possible kind-substitutions κ that make
t′ and θ(t1) equal modulo axioms (indicated by ≡A), and finally checking
that the terms assigned to each variable in the kind-substitutions have the
appropriate sort with adequateSorts(κ). The union of the set of substitutions
thus obtained constitutes the set of substitutions that satisfy the matching.

– Rule AS1 checks whether the terms of the kind-substitution have the ap-
propriate sort to match the variables. In this case the kind-substitution is a
substitution and it is returned.

– Rule AS2 indicates that, if the least sort of any of the terms in the kind-
substitution is bigger than the required one, then it is not a substitution and
thus the empty set of substitutions is returned.

– Rule MbC1 returns the current substitution if a membership condition holds.
– Rule MbC2 is used when the membership condition is not satisfied. It checks

that the least sort of the term is not less than or equal to the required one,
and thus the substitution does not satisfy the condition and the empty set
is returned.

– Rule EqC1 returns the current substitution when an equality condition holds,
that is, when the two terms can be joined with equations, abbreviated as
t1 ↓ t2.

– Rule EqC2 checks that an equality condition fails by obtaining the normal
forms of both terms and then examining that they are different.

– Rewrite conditions are handled by rule RlC. This rule extends the set of
substitutions by computing all the reachable terms that satisfy the pattern
(using the relation t �C

n S explained in [16]) and then using these terms to
obtain the new substitutions.

– Finally, rule SubsCond computes the extensions of a set of admissible sub-
stitutions {θ1, . . . , θn} by using the rules above with each of them.

We use these judgments to define the inference rules of Figure 2, that describe
how the normal form and the least sort of a term are computed:

– Rule Dsb indicates when an equation or membership a cannot be applied to a
term t. It checks that there are no substitutions that satisfy the matching of
the term with the lefthand side of the statement and that fulfill its condition.
Note that we check the conditions from left to right, following the same order
as Maude and making all the substitutions admissible.

– Rule Rdc1 reduces a term by applying one equation when it checks that
the conditions can be satisfied, where the matching conditions are included
in the equality conditions. While in the previous rule we made explicit the
evaluation from left to right of the condition to show that finally the set of
substitutions fulfilling it was empty, in this case we only need one substitu-
tion to fulfill the condition and the order is unimportant.

– Rule Rdc2 reduces a term by reducing a subterm to normal form (checking
in the side condition that it is not already in normal form).
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[l := t, ∅] � Θ0 〈C1, Θ0〉 � Θ1 . . . 〈Cn, Θn−1〉 � ∅
disabled(a, t)

Dsb

if a ≡ l → r ⇐ C1 ∧ . . . ∧ Cn ∈ E or
a ≡ l : s ⇐ C1 ∧ . . . ∧ Cn ∈ E

{θ(ui) ↓ θ(u′
i)}n

i=1 {θ(vj) : sj}m
j=1

θ(l) →red θ(r)
Rdc1 if l → r ⇐ ∧n

i=1 ui = u′
i ∧ ∧m

j=1 vj : sj ∈ E

t →norm t′

f(t1, . . . , t, . . . , tn) →red f(t1, . . . , t′, . . . , tn)
Rdc2 if t �≡A t′

disabled(e1, f(t1, . . . , tn)) . . . disabled(el, f(t1, . . . , tn)) t1 →norm t1 . . . tn →norm tn

f(t1, . . . , tn) →norm f(t1, . . . , tn)
Norm

if {e1, . . . , el} = {e ∈ E | e �top
K f(t1, . . . , tn)}

t →red t1 t1 →norm t′

t →norm t′ NTr

t →norm t′ t′ : s disabled(m1, t′) . . . disabled(ml, t′)
t :ls s

Ls

if {m1, . . . , ml} = {m ∈ E | m �top
K t′ ∧ sort(m) < s}

Fig. 2. Calculus for normal forms and least sorts

– Rule Norm states that the term is in normal form by checking that no equations
can be applied at the top considering the variables at the kind level (which is
indicated by �top

K ) and that all its subterms are already in normal form.
– Rule NTr describes the transitivity for the reduction to normal form. It

reduces the term with the relation →red and the term thus obtained then is
reduced to normal form by using again →norm .

– Rule Ls computes the least sort of the term t. It computes a sort for its
normal form (that has the least sort of the terms in the equivalence class)
and then checks that memberships deducing lesser sorts, applicable at the
top with the variables considered at the kind level, cannot be applied.

In these rules Dsb provides the negative information, proving why the statements
(either equations or membership axioms) cannot be applied, while the remaining
rules provide the positive information indicating why the normal form and the
least sort are obtained.

Theorem 1. The calculus of Figures 1 and 2 is correct w.r.t. R = (Σ,E,R) in
the sense that for any judgment ϕ, ϕ is derivable in the calculus if and only if
TΣ/E,R |= ϕ, with TΣ/E,R being the corresponding initial model.

Once these rules have been presented, we can compute the proof tree associ-
ated to the erroneous computation shown in Section 1.1 for the heaps example.
Remember that the least sort of the term heap, that should be NeHeap, was
instead NeBTree. Figures 3 and 4 show the associated proof tree, where h stands
for the term (mt 4 mt) 5 (mt 3 mt), l for the lefthand side of the membership
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heap →red h
Rdc1

h →norm h
Norm

heap →norm h
NTr

h : NeBTree
Mb

T1

heap :ls NeBTree
Ls

Fig. 3. Proof tree for the heap example

h →norm h
Norm

�
mt 4 mt :ls NeBTree

Ls

adequateSorts (l, θ)
AS2

[l := h] � ∅ PatC 〈C1, ∅〉 � ∅ SubsCond
. . . 〈Cn, ∅〉 � ∅ SubsCond

disabled(h2, h)
Dsb

Fig. 4. Proof tree T1, proving the matching with h2

h2, namely NL E NR with NL and NR variables of sort NeHeap and E a natural
number, C1 and Cn are respectively the first condition and last condition of h2,
θ is NL �→ mt 4 mt; E �→ 5; NR �→ mt 3 mt, and � represents a tree similar to the
one depicted in Figure 3.

The tree shown in Figure 3 illustrates that to compute the least sort of heap
first it obtains its normal form and then it checks that no memberships can
be applied to this term (and thus the sort is inferred by using the operator
declarations). To check that no memberships are applied it only checks whether
h2 is used, because the other membership does not match the term with the
variables at the kind level. The tree T1, depicted in Figure 4, is in charge of this
proof, that is, it provides the negative information proving that the membership
cannot be applied. First, it checks that the lefthand side of the membership
does not match the term because mt 4 mt has as least sort NeBTree and hence
it does not match the variable NL, that has sort NeHeap. Since the empty set
of substitutions is computed for this matching, the rest of conditions of the
membership cannot be fulfilled, which is proved by the nodes associated with
the rule SubsCond.

Following the approach shown in [14], we assume the existence of an intended
interpretation I of the given rewrite theory R = (Σ,E,R). This intended inter-
pretation is a Σ-term model corresponding to the model that the user had in
mind while writing the specification R. We say that a judgment is valid when it
holds in I, and invalid otherwise. The basis of declarative debugging consists in
searching buggy nodes (invalid nodes with all its children valid) [10] in a debug-
ging tree standing for a problematic computation. In our debugging framework,
we are able to locate wrong equations, wrong memberships, missing equations,
and missing memberships,2 which are defined as follows:

2 It is important not to confuse wrong and missing answers with wrong and missing
statements. The former are the initial symptoms that indicate the specifications fails,
while the latter are the errors that generated this misbehavior.
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– Given a statement A ⇐ C1 ∧ · · · ∧ Cn (where A is either an equation l = r
or a membership l : s) and a substitution θ, the statement instance θ(A) ⇐
θ(C1) ∧ · · · ∧ θ(Cn) is wrong when all the atomic conditions θ(Ci) are valid
in I but θ(A) is not.

– Given a term t, there is a missing equation for t if the computed normal
form of t does not correspond with the one expected in I.

– A specification has a missing equation if there exists a term t such that there
is a missing equation for t.

– Given a term t, there is a missing membership for t if the computed least
sort for t does not correspond with the one expected in I.

– A specification has a missing membership if there exists a term t such that
there is a missing membership for t.

Regarding missing statements, what the debugger reports is that a statement is
missing or the conditions in the remaining statements are not the intended ones
(thus they are not applied when expected and another one would be needed),
but the error is not located in the statements used in the conditions, since they
are also checked during the debugging process.

Proposition 1. Let N be a buggy node in some proof tree in the calculus of
Figures 1 and 2 w.r.t. an intended interpretation I. Then the error associated
to N is a wrong equation, a missing equation, or a missing membership.

Although these are the errors detected by the calculus presented in this paper,
since it is integrated with both the calculus of wrong answers [14] and the cal-
culus for missing answers [15], the debugger as a whole can also detect wrong
memberships and wrong and missing rules.

2.2 Abbreviated Proof Trees

We describe in this section how the proof trees shown in the previous section can
be abbreviated in order to ease the questions posed to the user while keeping
the completeness and correctness of the technique. To achieve this aim we ex-
tend the notion of APT (T ) introduced in [14]; APT (T ) (from Abbreviated Proof
Tree) is obtained by a transformation based on deleting nodes whose correctness
only depends on the correctness of their children. For example, nodes related to
judgments about sets of substitutions, that can be complicated due to matching
modulo, are removed.

The rules to compute the abbreviated proof tree, which are assumed to be
applied in order (i.e., a rule cannot be applied if there is another one with a
lower index that can be used), are described in Figure 5:

– Rule (APT1) keeps the root of the tree and applies the general function
APT ′, that returns a set of trees, to the tree.

– Rule (APT2) improves the questions presented to the user when the inference
rule NTr is used. This abbreviation associates the equation applied in the left
branch (in the inference rule Rdc1) to the judgment rooting the tree. In this
way we ask about reductions to normal form instead of reductions in one step.
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(APT1) APT

(
T1 . . . Tn

aj
R1

)
= APT ′

(
T1 . . . Tn

aj
R1

)

aj
R1

(APT2) APT ′

⎛
⎝ T1 . . . Tn

t → t′′ Rdc1 T ′

t → t′ NTr

⎞
⎠ =

{
APT ′ (T1) . . . APT ′ (Tn) APT ′ (

T ′)
t → t′ Rdc1

}

(APT3) APT ′
(

Tt→norm t′ T1 . . . Tn

t :ls s
Ls

)
=

{
APT ′ (

Tt→norm t′
)

APT ′ (T1) . . . APT ′ (Tn)
t′ :ls s

Ls

}

(APT4) APT ′
(

T1 . . . Tn

aj
R2

)
=

{
APT ′ (T1) . . . APT ′ (Tn)

aj
R2

}

(APT5) APT ′
(

T1 . . . Tn

aj
R1

)
= APT ′ (T1)

⋃
. . .

⋃
APT ′ (Tn)

R1 any inference rule R2 Rdc1, or Norm aj any judgment

Fig. 5. APT rules

– Rule (APT3) improves the questions about least sorts by asking about the
normal form of the term and thus the user is not in charge of computing it.

– Rule (APT4) keeps the conclusion of the inference rules that contain de-
bugging information.

– Rule (APT5) discards the conclusion of the rules which do not contain
debugging information.

Theorem 2. Let T be a finite proof tree representing an inference in the cal-
culus of Figures 1 and 2 w.r.t. some rewrite theory R. Let I be an intended
interpretation of R such that the root of T is invalid in I. Then:

– APT (T ) contains at least one buggy node (completeness).
– Any buggy node in APT (T ) has an associated wrong equation, missing equa-

tion, or missing membership axiom in R (correctness).

The abbreviated proof tree obtained by applying these rules to the proof tree
depicted in Figures 3 and 4 is shown in Figure 6. This proof tree has been
obtained by combining different features available in our tool:

– Judgments of the form t→norm t, that indicate that t is in normal form, are
dropped from the proof tree if they are built only with constructors. In our
example, the nodes corresponding to h→norm h have been removed.

– Only labeled statements generate nodes in the abbreviated proof tree. For
example, the equation to reduce the constant heap is not labeled and thus
the node heap →red h (or its corresponding abbreviation) does not appear in
the abbreviated tree. Moreover, the debugger provides some other trusting
mechanisms: statements and imported modules can be trusted before start-
ing the debugging process; statements can also be trusted on the fly; and
a correct module, introduced before starting the debugging process, can be
used as oracle before asking the user.
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(‡) mt :ls Heap
Ls

(†) h :ls NeBTree
Ls

heap :ls NeBTree
Ls

Fig. 6. Abbreviated proof tree for the heap example

– The signature is always considered correct, and hence judgments inferred by
using it do not appear in the abbreviated tree. For example, the membership
inference h : BTree only uses operator declarations and thus it does not
appear in the final tree.

– The rest of nodes have been pruned by the APT rules. For example, they
prevent all the judgments using substitutions from being asked.

Furthermore, the user can also follow some strategies to reduce the size of the
debugging tree:

– If an error is found using a complex initial term, this error can probably
be reproduced with a simpler one. Using this simpler term leads to easier
debugging sessions.

– When facing a problem with both wrong and missing answers, it is usually
better to debug first the wrong answers, because questions related to them
are easier to answer and fixing them can also solve the missing answers
problem.

– The Maude profiler [5, Chap. 22] indicates the most frequently used state-
ments for a given computation. Trusting these statements will greatly reduce
the size of the tree, although it requires the user to make sure that these
statements are indeed correct.

Once the tree has been abbreviated we only have a subset of the original nodes
and hence only the correctness of the judgments in these nodes concerns the
debugging process. We present here the questions derived only from the calculus
presented here, while the rest of the questions asked by the debugger can be
found in [13]:

– When a term cannot be further reduced and it is not built only by construc-
tors the debugger asks “Is t in normal form?,” which is correct if the user
expected t to be a normal form.

– When a term t has been reduced by using equations to another term t′,
the debugger asks questions of the form “Is this reduction correct? t → t′.”
These judgments are correct if the user expected t to be reduced to t′.

– When a sort s is inferred for a term t, the debugger prompts questions of
the form “Is this membership correct? t : s.” This judgment is correct if t
has sort s.

– When the judgment refers to the least sort ls of a term t, the tool makes
questions of the form “Did you expect t to have least sort ls?.” In this case,
the judgment is correct if the intended least sort of t is exactly ls .
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3 A Debugging Session

We describe in this section how to debug the specification shown in Section 1.1.
To debug the error discovered in this specification (the least sort of the term
heap is NeBTree) we use the command:

Maude> (missing heap : NeBTree .)

This command builds the tree depicted in Figure 6 and asks the following
question, associated with the node marked with (†) in the figure:3

Is NeBTree the least sort of mt 4 mt ?

Maude> (no .)

Since we expected the term to have sort NeHeap the judgment is erroneous
and the next question, that is associated to the node (‡) in Figure 6, is:

Is Heap the least sort of mt ?

Maude> (yes .)

With this answer the node (‡) disappears from the tree and the node (†)
becomes buggy, because it is associated to an incorrect judgment and it has no
children. The debugger presents the following message:

The buggy node is:

The least sort of mt 4 mt is NeBTree

Either the operator ___ needs more membership axioms or the conditions of

the current axioms are not written in the intended way.

Actually, if we check the specification we notice that the membership corre-
sponding to the case when both heaps are empty was not stated. We should add
to the specification the membership axiom:

mb [h3] : mt E mt : NeHeap .

We can use now these heaps to implement another application. We present
here a very simple specification of an auction. The module AUCTION defines the
sort People as a multiset of Person (a pair of names and bids) and an Auction
as some people and a heap, defined in NS-HEAP, containing elements of the form
[N,S], where N is a natural number standing for the bid and S a String with
the name of the bidder. The winner of the auction will be the person on the top
of the heap:

(mod AUCTION is

pr NS-HEAP .

sorts Person People Auction .

3 Although the debugger provides two different navigation strategies, in this simple
tree both of them choose the same node.
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subsort Person < People .

op <_‘,_> : String Nat -> Person [ctor] .

op nobody : -> People [ctor] .

op __ : People People -> People [ctor comm assoc id: nobody] .

op _‘[_‘] : People Heap -> Auction [ctor] .

The rule bid inserts a bid into the heap:

var N : Nat . var H : Heap .

var P : People . var S : String .

rl [bid] : (P < S, N >) [H] => P [insert([N,S], H)] .

endm)

If we search now for the possible winners of an auction, where initial stands
for < "aida", 5 > < "nacho", 4 > < "charlie", 3 > [mt]:

Maude> (search in AUCTION : initial =>!

nobody [L:Heap [N:Nat, S:String] R:Heap] .)

No solution.

no solutions are found. Since one solution is expected, we debug the specification
with the command:

Maude> (missing initial =>! nobody [ L:Heap [N:Nat, S:String] R:Heap ] .)

This command builds the corresponding debugging tree and traverses it with
the default divide and query strategy, that each time selects the node whose
subtree’s size is the closest one to half the size of the whole tree, keeping only
this subtree if its root is incorrect, and deleting the whole subtree otherwise.
The first question is:

Are the following terms all the reachable terms from

(< "aida", 5 > < "charlie", 3 > < "nacho", 4 >)[mt] in one step?

1 (< "aida", 5 > < "nacho", 4 >)[mt [3, "charlie"] mt]

2 (< "aida", 5 > < "charlie", 3 >)[mt [4, "nacho"] mt]

3 (< "charlie", 3 > < "nacho", 4 >)[mt [5, "aida"] mt]

Maude> (yes .)

The rule has inserted each person into the heap and thus the transition is
correct. After some other questions related to rewrites in the style of [15], the
debugger asks:

Is insert([4,"nacho"],mt[3,"charlie"]mt) in normal form?

Maude> (no .)

This term is not in normal form because we expected insert to be reduced.
The next questions are also related to normal forms:4

4 Note that, in these cases, the String values are not built with constructors and thus
this question is not automatically removed by the debugger. If we defined our own
constants for the names with the ctor attribute, these questions would not appear.
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Is mt [3, "charlie"] mt in normal form?

Maude> (yes .)

Is [4,"nacho"] in normal form?

Maude> (yes .)

In these cases the judgment is correct because no equations should be applied
to them. The next questions refer to reductions:

Is this reduction (associated with the equation dp1) correct?

depth(mt) -> 0

Maude> (trust .)

Is this reduction (associated with the equation cmp1) correct?

complete(mt) -> true

Maude> (trust .)

Since these reductions were associated to simple equations we have used the
command trust to prevent the debugger from asking questions related to these
equations again. The next question deals with memberships:

Is this membership (associated with the membership h3) correct?

mt [3, "charlie"] mt : NeHeap

Maude> (yes .)

The membership is correct because it only contains the value at the root.
With this information the debugger finds the following bug:

The buggy node is:

insert([4,"nacho"], mt [3, "charlie"] mt) is in normal form.

Either the operator insert needs more equations or the conditions of

the current equations are not written in the intended way.

If we carefully inspect the equations for insert we notice that we have not
treated the case where the tree is complete and a new level has to be started. We
can add the appropriate equation or fix the equation ins2, that distinguishes a
case that cannot occur in heaps. If we choose the latter, it should be fixed as
follows:

ceq [ins2] : insert(E, L E’ R) = L’ max(E, E’) R

if L E’ R : NeHeap /\

not complete(L) or ((depth(L) == depth(R)) and complete(R)) /\

L’ := insert(min(E, E’), L) .

4 Future Work

In this paper we have presented a calculus to debug erroneous normal forms
and least sorts by abbreviating the proof trees obtained with it. This calculus,
besides allowing to debug these new errors, improves the former versions of our
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debugger by allowing the debugging of new causes of missing answers in rewrites:
missing equations and memberships. These debugging features have also been
integrated with the graphical user interface [13].

Although the current version of the tool allows the user to introduce a correct
but maybe incomplete module in order to shorten the debugging session [14], we
also want to add a new command to introduce complete modules, which would
greatly reduce the number of questions asked to the user. We also intend to add
new navigation strategies like the ones shown in [18] that take into account the
number of different potential errors in the subtrees, instead of their size.

Finally, we plan to use the new narrowing features of Maude to implement
a test generator for Maude specifications. This generator would allow to check
Maude specifications and then to invoke the debugger when one of the test cases
fails.
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to investigate the causes for missing answers in a deterministic context, and the
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Abstract. Declarative debugging is a semi-automatic technique that starts from an in-
correct computation and locates a program fragment responsible for the error by building
a tree representing this computation and guiding the user through it to find the error.
Membership equational logic (MEL) is an equational logic that in addition to equations
allows to state of membership axioms characterizing the elements of a sort. Rewriting
logic is a logic of change that extends MEL by adding rewrite rules, that correspond to
transitions between states and can be nondeterministic. In this paper we propose a cal-
culus to infer normal forms and least sorts with the equational part, and sets of reachable
terms through rules. We use an abbreviation of the proof trees computed with this cal-
culus to build appropriate debugging trees for missing answers (results that are erroneous
because they are incomplete), whose adequacy for debugging is proved. Using these trees
we have implemented a declarative debugger for Maude, a high-performance system based
on rewriting logic, whose use is illustrated with an example.

1. Introduction

Declarative debugging [20], also known as declarative diagnosis or algorithmic debugging, is
a debugging technique that abstracts the execution details, which may be difficult to follow in
declarative languages, and focus on the results. We can distinguish between two different kinds of
declarative debugging: debugging of wrong answers, that is applied when a wrong result is obtained
from an initial value and has been widely employed in the logic [12, 22], functional [14, 15], multi-
paradigm [3, 9], and object-oriented [4] programming languages; and debugging of missing answers
[5, 1], applied when a result is incomplete, which has been less studied because the calculus involved
is more complex than in the case of wrong answers. Declarative debugging starts from an incorrect
computation, the error symptom, and locates the code (or the absence of code) responsible for the
error. To find this error the debugger represents the computation as a debugging tree [13], where
each node stands for a computation step and must follow from the results of its child nodes by some
logical inference. This tree is traversed by asking questions to an external oracle (generally the user)
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until a buggy node—a node containing an erroneous result, but whose children are all correct—is
found. Hence, we distinguish two phases in this scheme: the debugging tree generation and its
navigation following some suitable strategy [21].

In this paper we present a declarative debugger of missing answers for Maude specifications.
Maude [6] is a high-level language and high-performance system supporting both equational and
rewriting logic computation. The Maude system supports several approaches for debugging: trac-
ing, term coloring, and using an internal debugger [6, Chap. 22]. However, these tools have the
disadvantages that they are supposed to be used only when a wrong result is found ; and both the
trace and the Maude debugger (that is based on the trace) show the statements applied in the order
in which they are executed and thus the user can lose the general view of the proof of the incorrect
computation that produced the wrong result.

Declarative debugging of wrong answers in Maude specifications was already studied in [17],
where we presented how to debug wrong results due to errors in the statements of the specification. In
[18] we extended the concept of missing answers, usually attached to incomplete sets of results, to deal
with erroneous normal forms and least sorts in equational theories. However, in a nondeterministic
context such as that of Maude modules other problems can arise. We show in this paper how to
debug missing answers in rewriting specifications, that is, expected results that the specification is
not able to compute. This kind of problems appears in Maude when using its breadth-first search,
that finds all the reachable terms from an initial one given a pattern, a condition, and a bound in
the number of steps. To debug this kind of errors we have extended our calculus to deduce sets
of reachable terms given an initial term, a bound in the number of rewrites, and a condition to
be fulfilled. Unlike other proposals like [5], our debugging framework combines the treatment of
wrong and missing answers and, moreover, is able to detect missing answers due to both missing
rules and wrong statements. The state of the art can be found in [21], where different algorithmic
debuggers are compared and that will include our debugger in its next version. Roughly speaking,
our debugger has the pros of building different kinds of debugging trees (one-step and many-steps)
and applying the missing answers technique to debug normal forms and least sorts1 (the different
trees are a novelty in the declarative debugging world), and only it and DDT [3] implement the
Hirunkitti’s divide and query navigation strategy, provide a graphical interface, and debug missing
answers; as cons, we do not provide answers like “maybe yes,” “maybe not,” and “inadmissible,”
and do not perform tree compression. However, these features have recently been introduced in
specific debuggers, and we expect to implement them in our debugger soon. Finally, some of the
features shared by most of the debuggers are: the trees are abbreviated in order to shorten and ease
the debugging process (in our case, since we obtain the trees from a formal calculus, we are able
to prove the correctness and completeness of the technique), which mitigates the main problem of
declarative debugging, the complexity of the questions asked to the user; trusting of statements;
undo and don’t know commands; and different strategies to traverse the tree. We refer to [21, 16]
for the meaning of these concepts. With respect to other approaches, such as the Maude sufficient
completeness checker [6, Chap. 21] or the sets of descendants [8], our tool provides a wider approach,
since we handle conditional statements and our equations are not required to be left-linear.

The rest of the paper is structured as follows. Section 2 provides a summary of the main
concepts of rewriting logic and Maude specifications. Section 3 describes our calculus and Section 4
shows the debugging trees obtained from it. Finally, Section 5 concludes and mentions some future
work.

Detailed proofs of the results can be found in [19], while additional examples, the source code
of the tool, and other papers on the subject, including the user guide [16], where a graphical user
interface for the debugger is presented, are all available from the webpage http://maude.sip.ucm.
es/debugging.

1Although the least sort error can be seen as a Maude-directed problem, normal forms are a common
feature in several programming languages.
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2. Rewriting Logic and Maude

Maude modules are executable rewriting logic specifications. Rewriting logic [10] is a logic
of change very suitable for the specification of concurrent systems that is parameterized by an
underlying equational logic, for which Maude uses membership equational logic (MEL) [2], which,
in addition to equations, allows to state of membership axioms characterizing the elements of a sort.
Rewriting logic extends MEL by adding rewrite rules.

For our purposes in this paper, we are interested in a subclass of rewriting logic models [10]
that we call term models, where the syntactic structure of terms is kept and associated notions such
as variables, substitutions, and term rewriting make sense. These models will be used in Section 4
to represent the intended interpretation that the user had in mind while writing a specification.
Since we want to find the discrepancies between the intended model and the initial model of the
specification as written, we need to consider the relationship between a specification defined by a set
of equations E and a set of rules R, and a model defined by possibly different sets of equations E′

and of rules R′; in particular, when E′ = E and R′ = R, the term model coincides with the initial
model built in [10].

Given a rewrite theory R = (Σ, E,R), with Σ a signature, E a set of equations, and R a set
of rules, a Σ-term model has an underlying (Σ, E′)-algebra whose elements are equivalence classes
[t]E′ of ground Σ-terms modulo some set of equations and memberships E′ (which may be different
from E), and there is a transition from [t]E′ to [t′]E′ when [t]E′ →∗

R′/E′ [t′]E′ , where rewriting is

considered on equivalence classes [10, 7]. The set of rules R′ may also be different from R, that
is, the term model is TΣ/E′,R′ for some E′ and R′. In such term models, the notion of valuation
coincides with that of (ground) substitution. A term model TΣ/E′,R′ satisfies, under a substitution
θ, an equation u = v, denoted TΣ/E′,R′ , θ |= u = v, when θ(u) =E′ θ(v), or equivalently, when
[θ(u)]E′ = [θ(v)]E′ ; a membership u : s, denoted TΣ/E′,R′ , θ |= u : s, when the Σ-term θ(u) has sort
s according to the information in the signature Σ and the equations and memberships E′; a rewrite
u ⇒ v, denoted TΣ/E′,R′ , θ |= u ⇒ v, when there is a transition in TΣ/E′,R′ from [θ(u)]E′ to [θ(v)]E′ ,
that is, when [θ(u)]E′ →∗

R′/E′ [θ(v)]E′ . Satisfaction is extended to conditional sentences as usual. A

Σ-term model TΣ/E′,R′ satisfies a rewrite theory R = (Σ, E,R) when TΣ/E′,R′ satisfies the equations
and memberships in E and the rewrite rules in R in this sense. For example, this is obviously the
case when E ⊆ E′ and R ⊆ R′; as mentioned above, when E′ = E and R′ = R the term model
coincides with the initial model for R.

Maude functional modules [6, Chap. 4], introduced with syntax fmod ... endfm, are exe-
cutable membership equational specifications that allow the definition of sorts (by means of key-
word sort(s)); subsort relations between sorts (subsort); operators (op) for building values of these
sorts, giving the sorts of their arguments and result, and which may have attributes such as being
associative (assoc) or commutative (comm), for example; memberships (mb) asserting that a term
has a sort; and equations (eq) identifying terms. Both memberships and equations can be condi-
tional (cmb and ceq). Maude system modules [6, Chap. 6], introduced with syntax mod ... endm,
are executable rewrite theories. A system module can contain all the declarations of a functional
module and, in addition, declarations for rules (rl) and conditional rules (crl).

We present how to use this syntax by means of an example. Given a maze, we want to obtain
all the possible paths to the exit. First, we define the sorts Pos, List, and State that stand for
positions in the labyrinth, lists of positions, and the path traversed so far respectively:

(mod MAZE is

pr NAT . sorts Pos List State .

Terms of sort Pos have the form [X,Y], where X and Y are natural numbers, and lists are built
with nil and the juxtaposition operator _ _:

subsort Pos < List . op [_,_] : Nat Nat -> Pos [ctor] .

op nil : -> List [ctor] . op _ _ : List List -> List [ctor assoc id: nil] .
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Terms of sort State are lists enclosed by curly brackets, that is, {_} is an “encapsulation
operator” that ensures that the whole state is used:

op {_} : List -> State [ctor] .

The predicate isSol checks whether a list is a solution in a 5× 5 labyrinth:

vars X Y : Nat . var P Q : Pos . var L : List .

op isSol : List -> Bool .

eq [is1] : isSol(L [5,5]) = true .

eq [is2] : isSol(L) = false [owise] .

The next position is computed with rule expand, that extends the solution with a new position
by rewriting next(L) to obtain a new position and then checking whether this list is correct with
isOk. Note that the choice of the next position, that could be initially wrong, produces an implicit
backtracking:

crl [expand] : { L } => { L P } if next(L) => P /\ isOk(L P) .

The function next is defined in a nondeterministic way, where sd denotes the symmetric differ-
ence:

op next : List -> Pos .

rl [n1] : next(L [X,Y]) => [X, Y + 1] .

rl [n2] : next(L [X,Y]) => [sd(X, 1), Y] .

rl [n3] : next(L [X,Y]) => [X, sd(Y, 1)] .

isOk(L P) checks that the position P is within the limits of the labyrinth, not repeated in L,
and not part of the wall by using an auxiliary function contains:

op isOk : List -> Bool .

eq isOk(L [X,Y]) = X >= 1 and Y >= 1 and X <= 5 and Y <= 5

and not(contains(L, [X,Y])) and not(contains(wall, [X,Y])) .

op contains : List Pos -> Bool .

eq [c1] : contains(nil, P) = false .

eq [c2] : contains(Q L, P) = if P == Q then true else contains(L, P) fi .

Finally, we define the wall of the labyrinth as a list of positions:

op wall : -> List .

eq wall = [2,1] [2,2] [3,2] [2,3] [4,3] [5,3] [1,5] [2,5] [3,5] [4,5] .

endm)

Now, we can use the module to search the labyrinth’s exit from the position [1,1] with the
Maude command search, but it cannot find any path to escape. We will see in Section 4.1 how to
debug it.

3. A Calculus for Missing Answers

We describe in this section a calculus to infer, given a term and some constraints, the complete
set of reachable terms from this term that fulfill the requirements. The proof trees built with this
calculus have nodes that justify why the terms are included in the corresponding sets (positive infor-
mation) but also nodes that justify why there are no more terms (negative information). These latter
nodes are then used in the debugging trees to localize as much as possible the reasons responsible
for missing answers. This calculus integrates the calculus to deduce substitutions, normal forms,
and least sorts that was presented in [18], and that we reproduce here to give the reader an overall
view of debugging of missing answers in Maude specifications. Moreover, these calculi extend the
calculus in [17], used to deduce judgments corresponding to oriented equations t → t′, memberships
t : s, and rewrites t ⇒ t′, and to debug wrong answers. All the results in this paper refer to the
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complete calculus comprising these three calculi, and thus we consider this work as the final step in
the development of foundations for a complete declarative debugger for Maude.

From now on, we assume a rewrite theory R = (Σ, E,R) satisfying the Maude executability
requirements, i.e., E is confluent, terminating, maybe modulo some equational axioms such as
associativity and commutativity, and sort-decreasing, while R is coherent with respect to E; see [6]
for details. Equations corresponding to the axioms form the set A and the equations in E − A can
be oriented from left to right.

We introduce the inference rules used to obtain the set of reachable terms given an initial one,
a pattern [6], a condition, and a bound in the number of rewrites. First, the pattern P and the
condition C (that can use variables bound by the pattern) are put together by creating the condition
C′ ≡ P := ⊛ ∧ C, where ⊛ is a “hole” that will be filled by the concrete terms to check if they
fulfill both the pattern and the condition. Throughout this paper we only consider a special kind
of conditions and substitutions that operate over them, called admissible. They correspond to the
ones used in Maude modules and are defined as follows:

Definition 3.1. A condition C1 ∧ · · · ∧ Cn is admissible if, for 1 ≤ i ≤ n, Ci is

• an equation ui = u′
i or a membership ui : s and vars(Ci) ⊆

⋃i−1
j=1 vars(Cj), or

• a matching condition ui := u′
i, ui is a pattern and vars(u′

i) ⊆
⋃i−1

j=1 vars(Cj), or

• a rewrite condition ui ⇒ u′
i, u

′
i is a pattern and vars(ui) ⊆

⋃i−1
j=1 vars(Cj).

Note that the lefthand side of matching conditions and the righthand side of rewrite conditions
can contain extra variables that will be instantiated once the condition is solved.

Definition 3.2. A condition C ≡ P := ⊛ ∧ C1 ∧ · · · ∧ Cn is admissible if P := t ∧ C1 ∧ · · · ∧ Cn is
admissible for t any ground term.

Definition 3.3. A kind-substitution, denoted by κ, is a mapping between variables and terms of
the form v1 7→ t1; . . . ; vn 7→ tn such that ∀1≤i≤n . kind(vi) = kind(ti), that is, each variable has the
same kind as the term it binds.

Definition 3.4. A substitution, denoted by θ, is a mapping between variables and terms of the form
v1 7→ t1; . . . ; vn 7→ tn such that ∀1≤i≤n . sort(vi) ≥ ls(ti), that is, the sort of each variable is greater
than or equal to the least sort of the term it binds. Note that a substitution is a special type of
kind-substitution where each term has the sort appropriate to its variable.

Definition 3.5. Given an atomic condition C, we say that a substitution θ is admissible for C if

• C is an equation u = u′ or a membership u : s and vars(C) ⊆ dom(θ), or
• C is a matching condition u := u′ and vars(u′) ⊆ dom(θ), or
• C is a rewrite condition u ⇒ u′ and vars(u) ⊆ dom(θ).

The calculus presented in this section (in Figures 1–4) will be used to deduce the following
judgments, that we introduce together with their meaning for a Σ-term model T ′ = TΣ/E′,R′ defined
by equations and memberships E′ and by rules R′:

• Given a term t and a kind-substitution κ, T ′ |= adequateSorts(κ)  Θ when either Θ =
{κ} ∧ ∀v ∈ dom(κ).T ′ |= κ[v] : sort(v) or Θ = ∅ ∧ ∃v ∈ dom(κ).T ′ 6|= κ[v] : sort(v),
where κ[v] denotes the term bound by v in κ. That is, when all the terms bound in the
kind-substitution κ have the appropriate sort, then κ is a substitution and it is returned;
otherwise (at least one of the terms has an incorrect sort), the kind-substitution is not a
substitution and the empty set is returned.

• Given an admissible substitution θ for an atomic condition C, T ′ |= [C, θ]  Θ when
Θ = {θ′ | T ′, θ′ |= C and θ′ ↾dom(θ)= θ}, that is, Θ is the set of substitutions that fulfill the
atomic condition C and extend θ by binding the new variables appearing in C.
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• Given a set of admissible substitutions Θ for an atomic condition C, T ′ |= 〈C,Θ〉  Θ′

when Θ′ = {θ′ | T ′, θ′ |= C and θ′ ↾dom(θ)= θ for some θ ∈ Θ}, that is, Θ′ is the set of
substitutions that fulfill the condition C and extend any of the admissible substitutions in
Θ.

• T ′ |= disabled(a, t) when the equation or membership a cannot be applied to t at the top.
• T ′ |= t →red t′ when either T ′ |= t →1

E′ t′ or T ′ |= ti →
!
E′ t′i, with ti 6= t′i, for some subterm

ti of t such that t′ = t[ti 7→ t′i], that is, the term t is either reduced one step at the top or
reduced by substituting a subterm by its normal form.

• T ′ |= t →norm t′ when T ′ |= t →!
E′ t′, that is, t′ is in normal form with respect to the

equations E′.
• Given an admissible condition C ≡ P := ⊛ ∧ C1 ∧ · · · ∧ Cn, T

′ |= fulfilled(C, t) when there
exists a substitution θ such that T ′, θ |= P := t ∧ C1 ∧ · · · ∧ Cn, that is, C holds when ⊛ is
substituted by t.

• Given an admissible condition C as before, T ′ |= fails(C, t) when there exists no substitution
θ such that T ′, θ |= P := t ∧ C1 ∧ · · · ∧ Cn, that is, C does not hold when ⊛ is substituted
by t.

• T ′ |= t :ls s when T ′ |= t : s and moreover s is the least sort with this property (with respect
to the ordering on sorts obtained from the signature Σ and the equations and memberships
E′ defining the Σ-term model T ′).

• T ′ |= t ⇒top S when S = {t′ | t →top
R′ t′}, that is, the set S is formed by all the reachable

terms from t by exactly one rewrite at the top with the rules R′ defining T ′. Moreover,
equality in S is modulo E′, i.e., we are implicitly working with equivalence classes of ground
terms modulo E′.

• T ′ |= t ⇒q S when S = {t′ | t →top

{q} t′}, that is, the set S is the complete set of reachable

terms (modulo E′) obtained from t with one application of the rule q ∈ R′ at the top.
• T ′ |= t ⇒1 S when S = {t′ | t →1

R′ t′}, that is, the set S is constituted by all the reachable
terms (modulo E′) from t in exactly one step, where the rewrite step can take place anywhere
in t.

• T ′ |= t  C
n S when S = {t′ | t →≤n

R′ t′ and T ′ |= fulfilled(C, t′)}, that is, S is the set of all
the terms (modulo E′) that satisfy the admissible condition C and are reachable from t in
at most n steps.

We first introduce in Figure 1 the inference rules defining the relations [C, θ] Θ, 〈C,Θ〉 Θ′,
and adequateSorts(κ)  Θ. Intuitively, these judgments will provide positive information when
they lead to nonempty sets (indicating that the condition holds in the first two judgments or that
the kind-substitution is a substitution in the third one) and negative information when they lead
to the empty set (indicating respectively that the condition fails or the kind-substitution is not a
substitution):

• Rule PatC computes all the possible substitutions that extend θ and satisfy the matching of
the term t2 with the pattern t1 by first computing the normal form t′ of t2, obtaining then all
the possible kind-substitutions κ that make t′ and θ(t1) equal modulo axioms (indicated by
≡A), and finally checking that the terms assigned to each variable in the kind-substitutions
have the appropriate sort with adequateSorts(κ). The union of the set of substitutions thus
obtained constitutes the set of substitutions that satisfy the matching.

• Rule AS1 checks whether the terms of the kind-substitution have the appropriate sort to
match the variables. In this case the kind-substitution is a substitution and it is returned.

• Rule AS2 indicates that, if any of the terms in the kind-substitution has a sort bigger than
the required one, then it is not a substitution and thus the empty set of substitutions is
returned.

• Rule MbC1 returns the current substitution if a membership condition holds.
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θ(t2) →norm t′ adequateSorts(κ1) Θ1 . . . adequateSorts(κn) Θn

[t1 := t2, θ] 
⋃n

i=1 Θi

PatC

if {κ1, . . . , κn} = {κθ | κ(θ(t1)) ≡A t′}

t1 : sort(v1) . . . tn : sort(vn)

adequateSorts(v1 7→ t1; . . . ; vn 7→ tn) {v1 7→ t1; . . . ; vn 7→ tn}
AS1

ti :ls si

adequateSorts(v1 7→ t1; . . . ; vn 7→ tn) ∅
AS2 if si 6≤ sort(vi)

θ(t) : s

[t : s, θ] {θ}
MbC1

θ(t) :ls s
′

[t : s, θ] ∅
MbC2 if s′ 6≤ s

θ(t1) ↓ θ(t2)

[t1 = t2, θ] {θ}
EqC1

θ(t1) →norm t′1 θ(t2) →norm t′2

[t1 = t2, θ] ∅
EqC2 if t′1 6≡A t′2

θ(t1) 
t2 :=⊛

n+1 S

[t1 ⇒ t2, θ] {θ′θ | θ′(θ(t2)) ∈ S}
RlC

if n = min(x ∈ N : ∀i ≥ 0 (θ(t1) 
t2 :=⊛

x+i S))

[C, θ1] Θ1 · · · [C, θm] Θm

〈C, {θ1, . . . , θm}〉 
m
⋃

i=1

Θi

SubsCond

Figure 1: Calculus for substitutions

• Rule MbC2 is used when the membership condition is not satisfied. It checks that the least
sort of the term is not less than or equal to the required one, and thus the substitution does
not satisfy the condition and the empty set is returned.

• Rule EqC1 returns the current substitution when an equality condition holds, that is, when
the two terms can be joined with equations, abbreviated as t1 ↓ t2.

• Rule EqC2 checks that an equality condition fails by obtaining the normal forms of both
terms and then examining that they are different.

• Rewrite conditions are handled by rule RlC. This rule extends the set of substitutions
by computing all the reachable terms that satisfy the pattern (using the relation t  C

n S

explained below) and then using these terms to obtain the new substitutions.
• Finally, rule SubsCond computes the extensions of a set of admissible substitutions {θ1, . . . , θn}
by using the rules above with each of them.

We use these judgments to define the inference rules of Figure 2, that describe how the normal
form and the least sort of a term are computed:

• Rule Dsb indicates when an equation or membership a cannot be applied to a term t. It
checks that there are no substitutions that satisfy the matching of the term with the lefthand
side of the statement and that fulfill its condition. Note that we check the conditions from
left to right, following the same order as Maude and making all the substitutions admissible.

• Rule Rdc1 reduces a term by applying one equation when it checks that the conditions can
be satisfied, where the matching conditions are included in the equality conditions. While
in the previous rule we made explicit the evaluation from left to right of the condition to
show that finally the set of substitutions fulfilling it was empty, in this case we only need
one substitution to fulfill the condition and the order is unimportant.

• Rule Rdc2 reduces a term by reducing a subterm to normal form (checking in the side
condition that it is not already in normal form).
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[l := t, ∅] Θ0 〈C1,Θ0〉 Θ1 . . . 〈Cn,Θn−1〉 ∅

disabled(a, t)
Dsb

if a ≡ l → r ⇐ C1 ∧ . . . ∧ Cn ∈ E or
a ≡ l : s ⇐ C1 ∧ . . . ∧ Cn ∈ E

{θ(ui) ↓ θ(u′
i)}

n
i=1 {θ(vj) : sj}

m
j=1

θ(l) →red θ(r)
Rdc1 if l → r ⇐

∧n
i=1 ui = u′

i ∧
∧m

j=1 vj : sj ∈ E

t →norm t′

f(t1, . . . , t, . . . , tn) →red f(t1, . . . , t
′, . . . , tn)

Rdc2 if t 6≡A t′

disabled(e1, f(t1, . . . , tn)) . . . disabled(el, f(t1, . . . , tn)) t1 →norm t1 . . . tn →norm tn

f(t1, . . . , tn) →norm f(t1, . . . , tn)
Norm

if {e1, . . . , el} = {e ∈ E | e ≪top
K f(t1, . . . , tn)}

t →red t1 t1 →norm t′

t →norm t′
NTr

t →norm t′ t′ : s disabled(m1, t
′) . . . disabled(ml, t

′)

t :ls s
Ls

if {m1, . . . ,ml} = {m ∈ E | m ≪top
K t′ ∧ sort(m) < s}

Figure 2: Calculus for normal forms and least sorts

fulfilled(C, t)

t C
0 {t}

Rf1
fails(C, t)

t C
0 ∅

Rf2

θ(P ) ↓ t {θ(ui) ↓ θ(u′
i)}

n
i=1 {θ(vj) : sj}

m
j=1 {θ(wk) ⇒ θ(w′

k)}
l
k=1

fulfilled(C, t)
Fulfill

if C ≡ P := ⊛ ∧
∧n

i=1 ui = u′
i ∧

∧m
j=1 vj : sj ∧

∧l
k=1 wk ⇒ w′

k

[P := t, ∅] Θ0 〈C1,Θ0〉 Θ1 · · · 〈Ck,Θk−1〉 ∅

fails(C, t)
Fail if C ≡ P := ⊛ ∧ C1 ∧ . . . ∧ Ck

Figure 3: Calculus for solutions

• Rule Norm states that the term is in normal form by checking that no equations can be
applied at the top considering the variables at the kind level (which is indicated by ≪top

K )
and that all its subterms are already in normal form.

• Rule NTr describes the transitivity for the reduction to normal form. It reduces the term
with the relation →red and the term thus obtained then is reduced to normal form by using
again →norm .

• Rule Ls computes the least sort of the term t. It computes a sort for its normal form (that
has the least sort of the terms in the equivalence class) and then checks that memberships
deducing lesser sorts, applicable at the top with the variables considered at the kind level,
cannot be applied.

In these rules Dsb provides the negative information, proving why the statements (either equa-
tions or membership axioms) cannot be applied, while the remaining rules provide the positive
information indicating why the normal form and the least sort are obtained.

Once these rules have been introduced, we can use them in the rules defining the relation
t C

n S. First, we present in Figure 3 the rules related to n = 0 steps:
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fulfilled(C, t) t ⇒1 {t1, . . . , tk} t1  
C
n S1 . . . tk  

C
n Sk

t C
n+1

k
⋃

i=1

Si ∪ {t}

Tr1

fails(C, t) t ⇒1 {t1, . . . , tk} t1  
C
n S1 . . . tk  

C
n Sk

t C
n+1

k
⋃

i=1

Si

Tr2

f(t1, . . . , tm) ⇒top St t1 ⇒1 S1 · · · tm ⇒1 Sm

f(t1, . . . , tm) ⇒1 St ∪
⋃m

i=1{f(t1, . . . , ui, . . . , tm) | ui ∈ Si}
Stp

t ⇒q1 Sq1 · · · t ⇒ql Sql

t ⇒top

l
⋃

i=1

Sqi

Top if {q1, . . . , ql} = {q ∈ R | q ≪top
K t}

[l := t, ∅] Θ0 〈C1,Θ0〉 Θ1 · · · 〈Ck,Θk−1〉 Θk

t ⇒q
⋃

∀ θ∈Θk

{θ(r)}
Rl if q : l ⇒ r ⇐ C1 ∧ . . . ∧ Ck ∈ R

t →norm t1 t1  
C
n {t2} ∪ S t2 →norm t′

t C
n {t′} ∪ S

Red

Figure 4: Calculus for missing answers

• Rule Rf1 indicates that when only zero steps are used and the current term fulfills the
condition, the set of reachable terms consists only of this term.

• Rule Rf2 complements Rf1 by defining the empty set as result when the condition does not
hold.

• Rule Fulfill checks whether a term satisfies a condition. The premises of this rule check
that all the atomic conditions hold, taking into account that it starts with a matching
condition with a hole that must be filled with the current term and thus proved with the
premise θ(P ) ↓ t. Note that when the condition is satisfied we do not need to check all the
substitutions, but only to verify that there exists one substitution that makes the condition
true.

• To check that a term does not satisfy a condition, it is not enough to check that there exists
a substitution that makes it to fail; we must make sure that there is no substitution that
makes it true. We use the rules shown in Figure 1 to prove that the set of substitutions that
satisfy the condition (where the first set of substitutions is obtained from the first matching
condition filling the hole with the current term) is empty. Note that, while rule Fulfill
provides the positive information indicating that a condition is fulfilled, this one provides
negative information, proving that the condition fails.

Now we introduce in Figure 4 the rules defining the relation t C
n S when the bound n is greater

than 0, which can be understood as searches in zero or more steps:

• Rules Tr1 and Tr2 show the behavior of the calculus when at least one step can be used.
First, we check whether the condition holds (rule Tr1) or not (rule Tr2) for the current term,
in order to introduce it in the result set. Then, we obtain all the terms reachable in one
step with the relation ⇒1, and finally we compute the reachable solutions from these terms
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constrained by the same condition and the bound decreased in one step. The union of the
sets obtained in this way and the initial term, if needed, corresponds to the final result set.

• Rule Stp shows how the set for one step is computed. The result set is the union of the
terms obtained by applying each rule at the top (calculated with t ⇒top S) and the terms
obtained by rewriting one step the arguments of the term. This rule can be straightforwardly
adapted to the more general case in which the operator f has some frozen arguments (i.e.,
that cannot be rewritten); the implementation of the debugger makes use of this more
general rule.

• How to obtain the terms by rewriting at the top is explained by rule Top, that specifies
that the result set is the union of the sets obtained with all the possible applications of each
rule of the program. We restrict these rules to those whose lefthand side, with the variables
considered at the kind level, matches the term.

• Rule Rl uses the rules in Figure 1 to compute the set of terms obtained with the application
of a single rule. First, the set of substitutions obtained from matching with the lefthand
side of the rule is computed, and then it is used to find the set of substitutions that satisfy
the condition. This final set is used to instantiate the righthand side of the rule to obtain
the set of reachable terms. The kind of information provided by this rule corresponds to
the information provided by the substitutions; if the empty set of substitutions is obtained
(negative information) then the rule computes the empty set of terms, which also corre-
sponds with negative information proving that no terms can be obtained with this program
rule; analogously when the set of substitutions is nonempty (positive information). This
information is propagated through the rest of inference rules justifying why some terms are
reachable while others are not.

• Finally, rule Red reduces the reachable terms in order to obtain their normal forms. We
use this rule to reproduce Maude behavior, first the normal form is computed and then the
rules are applied.

Now we state that this calculus is correct in the sense that the derived judgments with respect
to the rewrite theory R = (Σ, E,R) coincide with the ones satisfied by the corresponding initial
model TΣ/E,R, i.e., for any judgment ϕ, ϕ is derivable in the calculus if and only if TΣ/E,R |= ϕ.
This is well known for the judgments corresponding to equations t = t′, memberships t : s, and
rewrites t ⇒ t′ [11, 10].

Theorem 3.6. The calculus of Figures 1, 2, 3, and 4 is correct.

Once these rules are defined, we can build the tree corresponding to the search result shown in
Section 2 for the maze example. We recall that we have defined a system to search a path out of a
labyrinth but, given a concrete labyrinth with an exit, the program is unable to find it. First of all,
we have to use a concrete bound to build the tree. It must suffice to compute all the reachable terms,
and in this case the least of these values is 4. We have depicted the tree in Figure 5, where we have
abbreviated the equational condition {L:List} := ⊛ ∧ isSol(L:List) = true by C and isSol(L)

= true by isSol(L). The leftmost tree justifies that the search condition does not hold for the
initial term (this is the reason why Tr2 has been used instead of Tr1) and thus it is not a solution.
Note that first the substitutions from the matching with the pattern are obtained (L 7→ [1,1] in
this case), and then these substitutions are used to instantiate the rest of the condition, that for
this term does not hold, which is proved by ∗1. The next tree shows the set of reachable terms in
one step (the tree ∗2, explained below, computes the terms obtained by rewrites at the top, while
the tree on its right shows that the subterms cannot be further rewritten) and finally the rightmost
tree, that has a similar structure to this one and will not be studied in depth, continues the search
with a decreased bound.

The tree ∗1 shows why the current list is not a solution (i.e., the tree provides the negative
information proving that this fragment of the condition does not hold). The reason is that the term
isSol(L) is reduced to false, when we needed it to be reduced to true.
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1 →norm 1
Norm

[1,1] →norm [1,1]
Norm

{[1,1]} →norm {[1,1]}
Norm

[{L:List} := {[1,1]}, ∅] L 7→ [1,1]}
PatC

∗1
〈isSol(L), {L 7→ [1,1]}〉 ∅

SubsCond

fails(C, {[1,1]})
Fail

∗2

[1,1] ⇒top ∅
Top 1 ⇒top ∅

Top

1 ⇒1 ∅
Stp

[1,1] ⇒1 ∅
Stp

{[1,1]} ⇒1 {[1,1][1,2]}
Stp

∗3

{[1,1][1,2]} C
3 ∅

Tr2

{[1,1]} C
4 ∅

Tr2

Figure 5: Tree for the maze example

isSol([1,1]) →red false
Rdc1

false →norm false
Norm

isSol([1,1]) →norm false
NTr

true →norm true
Norm

[isSol(L) = true, L 7→ [1,1]] ∅
EqC2

Figure 6: Tree ∗1 for the search condition

The tree labeled with ∗2 is sketched in Figure 7. In this tree the applications of all the rules
whose lefthand side matches the current term ({[1,1]}) are tried. In this case only the rule expand
(abbreviated by e) can be used, and it generates a list with the new position [1,2]; the tree ∗4 is used
to justify that the first condition of expand holds and extends the set of substitutions that fulfill the
condition thus far to the set {θ1, θ2, θ3}, where θ1 ≡ L 7→ [1,1]; P 7→ [1,2], θ2 ≡ L 7→ [1,1]; P 7→
[1,0], and θ3 ≡ L 7→ [1,1]; P 7→ [0,1]. The substitution θ1 also fulfills the next condition,
isOk(L P), which is proved with the rule EqC1 in ♣ (where the big triangle is a computation in the
calculus of [17] proving that the conditions of the equations hold), while the substitutions θ2 and θ3
fail; the trees ▽ proving it are analogous to the one shown in Figure 6. This substitution θ1 is thus
the only one inferred in the root of the tree, where the node ♣ provides the positive information
proving why the substitution is obtained and its siblings (▽) the negative information proving why
the other substitutions are not in the set.

1 →norm 1
Norm

{[1,1]} →norm {[1,1]}
Norm

[{L} := {[1,1]}, ∅] {L 7→ [1,1]}
PatC

∗4

�
�
�

A
A
A

isOk([1,1][1,2]) → true
Rep

→ true → true
Rf

→

(♣) [isOk(L P), θ1] {θ1}
EqC1

▽ ▽

〈isOk(L P), {θ1, θ2, θ3}〉 {θ1}
SubsCond

{[1,1]} ⇒e {[1,1][1,2]}
Rl

{[1,1]} ⇒top {[1,1][1,2]}
Top

Figure 7: Tree ∗2 for the applications at the top

The tree ∗4, shown in Figure 8, is in charge of inferring the set of substitutions obtained when
checking the first condition of the rule expand, namely next(L) => P. The condition is instantiated
with the substitution obtained from matching the term with the lefthand side of the rule (in this
case L 7→ [1,1]) and, since it is a rewrite condition, the set of reachable terms—computed with ∗5,
which will not be further discussed here—is used to extend this substitution, obtaining a set with
three different substitutions (that we previously abbreviated as θ1, θ2, and θ3).

4. Debugging Trees

We describe in this section how to obtain appropriate debugging trees from the proof trees in-
troduced in the previous section. Following the approach shown in [17], we assume the existence of
an intended interpretation I of the given rewrite theory R = (Σ, E,R). This intended interpretation
is a Σ-term model corresponding to the model that the user had in mind while writing the specifi-
cation R. Therefore the user expects that I |= ϕ for any judgment ϕ deduced with respect to the
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∗5

next([1,1]) P:=⊛

2 {[1,2], [1,0], [0,1]}
Tr2

[next(L) ⇒ P, L 7→ [1,1]] {L 7→ [1,1]; P 7→ [1,2], L 7→ [1,1]; P 7→ [1,0], L 7→ [1,1]; P 7→ [0,1]}
RlC

〈next(L) ⇒ P, {L 7→ [1,1]}〉 {L 7→ [1,1]; P 7→ [1,2], L 7→ [1,1]; P 7→ [1,0], L 7→ [1,1]; P 7→ [0,1]}
SubsCond

Figure 8: Tree ∗4 for the first condition of expand

rewrite theory R. We will say that a judgment is valid when it holds in the intended interpretation
I, and invalid otherwise. Our goal is to find a buggy node in any proof tree T rooted by the initial
error symptom detected by the user. This could be done simply by asking questions to the user
about the validity of the nodes in the tree according to the following top-down strategy: If all the
children of N are valid, then finish pointing out at N as buggy; otherwise, select the subtree rooted
by any invalid child and use recursively the same strategy to find the buggy node. Proving that this
strategy is complete is straightforward by using induction on the height of T . By using the proof
trees computed with the calculus of the previous section as debugging trees we are able to locate
wrong statements, missing statements, and wrong search conditions, which are defined as follows:

• Given a statement A ⇐ C1 ∧ · · · ∧ Cn (where A is either an equation l = r, a membership
l : s, or a rule l ⇒ r) and a substitution θ, the statement instance θ(A) ⇐ θ(C1)∧· · ·∧θ(Cn)
is wrong when all the atomic conditions θ(Ci) are valid in I but θ(A) is not.

• Given a rule l ⇒ r ⇐ C1 ∧ · · · ∧ Cn and a term t, the rule has a wrong instance if the
judgments [l := t, ∅]  Θ0, [C1,Θ0]  Θ1, · · · , [Cn,Θn−1]  Θn are valid in I but the
application of Θn to the righthand side does not provide all the results expected for this
rule.

• Given a condition l := ⊛ ∧ C1 ∧ · · · ∧ Cn and a term t, if [l := t, ∅] Θ0, [C1,Θ0] Θ1,
· · · , [Cn,Θn−1] ∅ are valid in I (meaning that the condition does not hold for t) but the
user expected the condition to hold, then we have a wrong search condition instance.

• Given a condition l := ⊛ ∧ C1 ∧ · · · ∧ Cn and a term t, if there exists a substitution θ such
that θ(l) ≡A t and all the atomic conditions θ(Ci) are valid in I, but the condition is not
expected to hold, then we also have a wrong search condition instance.

• A statement or condition is wrong when it admits a wrong instance.
• Given a term t, there is a missing equation for t if the computed normal form of t does
not correspond with the one expected in I. A specification has a missing equation if there
exists a term t such that there is a missing equation for t.

• Given a term t, there is a missing membership for t if the computed least sort for t does not
correspond with the one expected in I. A specification has a missing membership if there
exists a term t such that there is a missing membership for t.

• Given a term t, there is a missing rule for t if all the rules applied to t at the top lead to
judgments t ⇒qi Sqi valid in I but the union

⋃

Sqi does not contain all the reachable terms
from t by using rewrites at the top. A specification has a missing rule if there exists a term
t such that there is a missing rule for t.2

In our debugging framework, when a wrong statement is found, this specific statement is pointed
out; when a missing statement is found, the debugger indicates the operator at the top of the term
in the lefthand side of the statement that is missing; and when a wrong condition is found, the
specific condition is shown. We will see in the next section that some extra information will be kept
in the tree to provide this information. It is important not to confuse missing answers with missing

2Actually, what the debugger reports is that a statement is missing or the conditions in the remaining
statements are not the intended ones (thus they are not applied when expected and another one would be
needed), but the error is not located in the statements used in the conditions, since they are also checked
during the debugging process.
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statements; the current calculus detects missing answers due to both wrong and missing statements
and wrong search conditions.

4.1. Abbreviated Proof Trees

We will not use proof trees T directly as debugging trees, but a suitable abbreviation which we
denote by APT (T ) (from Abbreviated Proof Tree), or simply APT when T is clear from the context.
The reason for preferring the APT is that it reduces and simplifies the questions that will be asked
to the user while keeping the soundness and completeness of the technique. This transformation
relies on the following proposition:

Proposition 4.1. Let N be a buggy node in some proof tree in the calculus of Figures 1, 2, 3, and
4, w.r.t. an intended interpretation I. Then:

(1) N is the consequence of a Rep→, Rep⇒, Mb, Rdc1, Norm, Ls, Fulfill, Fail, Top, or Rl
inference rule.

(2) The error associated to N is a wrong statement, a missing statement, or a wrong search
condition.

To indicate the error associated to the buggy node, we assume that the nodes inferred with
these inference rules are decorated with some extra information to identify the error when they are
pointed out as buggy. More specifically, nodes related to wrong statements keep the label of the
statement, nodes related to missing statements keep the operator at the top that requires more
statements to be defined, and nodes related to wrong conditions keep the condition.

The key idea in the APT , whose rules are shown in Figure 9, is to keep the nodes related to the
inference rules indicated in Proposition 4.1, making use of the rest of rules to improve the questions
asked to the user. The abbreviation always starts by applying (APT1). This rule simply duplicates
the root of the tree and applies APT ′, which receives a proof tree and returns a forest (i.e., a set
of trees). Hence without this duplication the result of the abbreviation could be a forest instead of
a single tree. The rest of the APT rules correspond to the function APT ′ and are assumed to be
applied top-down: if several APT rules can be applied at the root of a proof tree, we must choose
the first one, that is, the rule of least number. The following advantages are obtained:

• Questions associated to nodes with reductions are improved (rules (APT2), (APT3),
(APT5), (APT6), and (APT7)) by asking about normal forms instead of asking about
intermediate states. For example, in rule (APT2) the error associated to t → t′ is the one
associated to t → t′′, which is not included in the APT . We have chosen to introduce t → t′

instead of simply t → t′′ in the APT as a pragmatic way of simplifying the structure of the
APT s, since t′ is obtained from t′′ and hence likely simpler.

• The rule (APT4) deletes questions about rewrites at the top (that can be difficult to answer
due to matching modulo) and associates the information of those nodes to questions related
to the set of reachable terms in one step with rewrites in any position, that are in general
easier to answer.

• It creates, with the variants of the rules (APT8) and (APT9), two different kinds of tree,
one that contains judgments of rewrites with several steps and another that only contains
rewrites in one step. The one-step debugging tree follows strictly the idea of keeping only
nodes corresponding to relevant information. However, the many-steps debugging tree also
keeps nodes corresponding to the transitivity inference rules. The user will choose which
debugging tree (one-step or many-steps) will be used for the debugging session, taking into
account that the many-steps debugging tree usually leads to shorter debugging sessions (in
terms of the number of questions) but with likely more complicated questions. The number
of questions is usually reduced because keeping the transitivity nodes for rewrites gives to
some parts of the debugging tree the shape of a balanced binary tree (each transitivity
inference has two premises, i.e., two child subtrees), and this allows the debugger to use
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(APT1) APT

(

T1 . . . Tn

aj
R1

)

=
APT ′

(

T1 . . . Tn

aj
R1

)

aj

(APT2) APT ′





T1 . . . Tn

t → t′′
Rep

→

T ′

t → t′
Tr→



 =

{

APT ′(T1) . . .APT
′(Tn) APT

′(T ′)
t → t′

Rep
→

}

(APT3) APT ′





T1 . . . Tn

t → t′′
Rdc1 T ′

t → t′
NTr



 =

{

APT ′ (T1) . . . APT ′ (Tn) APT ′ (T ′)
t → t′

Rdc1

}

(APT4) APT ′





T1 . . . Tn

t ⇒top S′ Top T ′
1 . . . T

′
m

t ⇒1 S
Stp



 =

{

APT ′ (T1) . . . APT ′ (Tn) APT ′ (T ′
1) . . . APT ′ (T ′

m)
t ⇒1 S

Top

}

(APT5) APT ′



 T ′
T1 . . . Tn

t ⇒ t′
Rep

⇒

T ′′

t1 ⇒ t2
EC



 =

{

APT ′(T ′) APT ′(T1) . . .APT
′(Tn) APT

′(T ′′)
t1 ⇒ t2

Rep
⇒

}

(APT6) APT ′





T
T1 . . . Tn

aj ′
R1 T ′

aj
Red



 =

{

APT ′ (T ) APT ′ (T1) . . . APT ′ (Tn) APT ′ (T )
aj

R1

}

(APT7) APT ′

(

Tt→norm t′ T1 . . . Tn

t :ls s
Ls

)

=

{

APT ′ (Tt→norm t′) APT ′ (T1) . . . APT ′ (Tn)
t ′ :ls s

Ls

}

(APTo
8) APT ′

(

T1 T2

t ⇒ t′
Tr⇒

)

= APT ′(T1)
⋃

APT ′(T2)

(APTm
8 ) APT ′

(

T1 T2

t ⇒ t′
Tr⇒

)

=

{

APT ′(T1) APT
′(T2)

t ⇒ t′
Tr⇒

}

(APTo
9) APT ′

(

T1 . . . Tn

aj
Tr

)

= APT ′ (T1)
⋃

. . .
⋃

APT ′ (Tn)

(APTm
9 ) APT ′

(

T1 . . . Tn

aj
Tri

)

=

{

APT ′ (T1) . . . APT ′ (Tn)
aj

Tri

}

(APT10) APT ′

(

T1 . . . Tn

aj
R2

)

=

{

APT ′(T1) . . .APT
′(Tn)

aj
R2

}

(APT11) APT ′

(

T1 . . . Tn

aj
R1

)

= APT ′(T1)
⋃

. . .
⋃

APT ′(Tn)

R1 any inference rule R2 either Mb, Rep→, Rep⇒, Rdc1, Norm, Fulfill, Fail, Ls, Rl, or Top

1 ≤ i ≤ 2 aj , aj ′ any judgment

Figure 9: Transforming rules for obtaining abbreviated proof trees

efficiently the divide and query navigation strategy. On the contrary, removing the tran-
sitivity inferences for rewrites (as rules (APTo

8) and (APTo
9) do) produces flattened trees

where this strategy is no longer efficient. On the other hand, in rewrites t ⇒ t′ and searches
t  C

n S appearing as conclusion of a transitivity inference rule, the judgment can be more
complicated because it combines several inferences. The user must balance the pros and
cons of each option, and choose the best one for each debugging session.
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(♠) 1 →norm 1
Norm

s

(♠) [1,1] →norm [1,1]
Norm

[ , ]

(♠) {[1,1]} →norm {[1,1]}
Norm

{ }
isSol(P1) → f

Rdc
is2 ⋆1 ▽ . . . ▽ ⋆2

{[1,1]} C
4 ∅

Tr2

Figure 10: Abbreviated proof tree for the maze example

• The rule (APT11) removes from the tree all the nodes not associated with relevant infor-
mation, since the rule (APT10) keeps the relevant information and the rules are applied
in order. We remove, for example, nodes related to judgments about sets of substitutions,
disabled statements, and rewrites with a concrete rule, that can be in general difficult to an-
swer. Moreover, it removes from the tree trivial judgments like the ones related to reflexivity
or congruence.

• Since the APT is built without computing the associated proof tree, it reduces the time
and space needed to build the tree.

The following theorem states that we can safely employ the abbreviated proof tree as a basis
for the declarative debugging of Maude system and functional modules: the technique will find a
buggy node starting from any initial symptom. We assume that the information introduced by the
user during the session is correct.

Theorem 4.2. Let T be a finite proof tree representing an inference in the calculus of Figures 1, 2,
3, and 4 w.r.t. some rewrite theory R. Let I be an intended interpretation of R s.t. the root of T is
invalid in I. Then:

• APT (T ) contains at least one buggy node (completeness).
• Any buggy node in APT (T ) has an associated wrong statement, missing statement, or wrong
condition in R (correctness).

The trees in Figures 10–12 depict the (one-step) abbreviated proof tree for the maze exam-
ple, where C stands for {L:List}:= ⊛ ∧ isSol(L:List), P1 for [1,1], L1 for [1,1][1,2],
L2 for [1,1][1,0], L3 for [1,1][0,1], t for true, f for false, n for next, e for expand, L for
[1,1][1,2][1,3][1,4], and ∗′5 for the application of APT ′ to ∗5. We have also extended the in-
formation in the labels with the operator or statement associated to the inference. More concretely,
the tree in Figure 10 abbreviates the tree in Figure 5; the first two premises in the abbreviated
tree abbreviate the first premise in the proof tree (which includes the tree in Figure 6), keeping
only the nodes associated with relevant information according to Proposition 4.1: Norm, with the
operator associated to the reduction, and Rdc1, with the label of the associated equation. The tree
⋆1, shown in Figure 11, abbreviates the second premise of the tree in Figure 5 as well as the trees
in Figures 7 and 8; it only keeps the nodes referring to normal forms, searches in one step, that
are now associated to the rule Top, each of them referring to a different operator (the operator s_
is the successor constructor for natural numbers), and the applications of rules (Rl) and equations
(Rep→). Note that the equation describing the behavior of isOk has not got any label, which is
indicated with the symbol ⊥; we will show below how the debugger deals with these nodes. The
tree ⋆2, presented in Figure 12, shares these characteristics and only keeps nodes related to one-step
searches and application of rules.

These APT rules are combined with trusting mechanisms that further reduce the proof tree
(note that the correctness of these techniques relies on the decisions made by the user):

• Statements can be trusted in several ways: non labelled statements are always trusted (i.e.,
the nodes marked with (♦) in Figure 11 will be discarded by the debugger), statements and
modules can be trusted before starting the debugging process, and statements can also be
trusted on the fly.



292 A. RIESCO, A. VERDEJO, AND N. MARTÍ-OLIET

(♠) 1 →norm 1
Norm

s

(♠) [1,1] →norm [1,1]
Norm

[ , ]

∗′5 (♦) isOk(L1) → t
Rep

⊥ (♦) isOk(L2) → f
Rep

⊥ (♦) isOk(L3) → f
Rep

⊥

{[1,1]} ⇒e {[1,1][1,2]}
Rl

e

(♥) 1 ⇒1 ∅
Top

s

(♥) [1,1] ⇒1 ∅
Top

[ , ]

{[1,1]} ⇒1 {[1,1][1,2]}
Top

{ }

Figure 11: Abbreviated tree ⋆1

▽ . . . ▽

n(L) ⇒n1 [1,5]
Rl

n1

▽ . . . ▽

n(L) ⇒n2 [0,4]
Rl

n2

▽ . . . ▽

n(L) ⇒n3 [1,3]
Rl

n3

(‡) n(L) ⇒1 {[1,5], [0,4], [1,3]}
Top

n ▽ . . . ▽

(†) {[1,1][1,2][1,3][1,4]} ⇒e ∅
Rl

e

(†) {[1,1][1,2][1,3][1,4]} ⇒1 ∅
Top

{ }

Figure 12: Abbreviated tree ⋆2

• A correct module can be given before starting a debugging session. By checking the cor-
rectness of the judgments against this module, correct nodes can be deleted from the tree.

• We consider that constructed terms (terms built only with constructors, pointed out with
the ctor attribute, and also known as data terms in other contexts) are in normal form and
thus inferences of the form t →norm t with t constructed are removed from the tree. This
would remove from the tree the nodes marked with (♠) in Figures 10 and 11.

• Constructed terms of certain sorts or built with some operators can be considered final,
which indicates that they cannot be further rewritten. For example, we could consider
terms of sorts Nat and List to be final and thus the nodes marked with (♥) in Figure 11
would be removed from the tree.

Once this tree has been built, we can use it to debug the error shown in Section 2. Using the
top-down navigation strategy our tool would show all the children of the root and ask the user to
select an incorrect one. The last one (the root of ⋆2) is incorrect and can be selected, and then the
user has to answer about the validity of the child of this node. Since it is also incorrect the debugger
selects it as current one (the path thus far has been marked with (†) in Figure 12) and the debugger
shows its children. The first child (‡) is erroneous, but this time its children are all correct, so the
tool points it out as buggy and it is associated to an erroneous fragment of code. More concretely,
the rule used to infer this judgment was Top, and it is associated with the operator next (that was
abbreviated as n), i.e., another rule for this operator is needed. Indeed, if we check the module we
notice that the movement to the right has not been specified. We can fix it by adding:
rl [n4] : next(L [X,Y]) => [X + 1, Y] .

A detailed session of this example is available in the webpage maude.sip.ucm.es/debugging.

5. Conclusions and Future Work

We have presented in this paper a debugger of missing answers for Maude specifications. The
trees for this kind of debugging are obtained from an abbreviation of a proper calculus whose
adequacy for debugging has been proved. This work extends our previous work on wrong and
missing answers [17, 18] and provides a powerful and complete debugger for Maude specifications.
Moreover, we also provide a graphical user interface that eases the interaction with the debugger
and improves its traversal. The tree construction, its navigation, and the user interaction (excluding
the GUI) have been all implemented in Maude itself. For more information, see http://maude.

sip.ucm.es/debugging.
We plan to add new navigation strategies like the ones shown in [21] that take into account

the number of different potential errors in the subtrees, instead of their size. Moreover, the current
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version of the tool allows the user to introduce a correct but maybe incomplete module in order to
shorten the debugging session. We intend to add a new command to introduce complete modules,
which would greatly reduce the number of questions asked to the user. Finally, we also plan to
create a test generator to test Maude specifications and debug the erroneous test with the debugger.
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Abstract. We present a declarative debugger for Maude specifications that al-
lows to debug wrong answers (a wrong result is obtained) and missing answers
(a correct but incomplete result is obtained) due to both wrong and missing state-
ments and wrong search conditions. The debugger builds a tree representing the
computation and guides the user through it to find the bug. We present the de-
bugger’s latest commands and features, illustrating its use with several examples.

Keywords: Declarative debugging, Maude, missing answers, wrong answers.

1 Introduction

Declarative debugging [8] is a semi-automatic debugging technique that focuses on
results, which makes it specially suited for declarative languages, whose operational
details may be hard to follow. Declarative debuggers represent the computation as a
tree, called debugging tree, where each node must be logically inferred from the results
in its children. In our case, these trees are obtained by abbreviating proof trees obtained
in a formal calculus [4,5]. Debugging progresses by asking questions related to the
nodes of this tree (i.e., questions related to subcomputations of the wrong result being
debugged) to an external oracle (usually the user), discarding nodes in function of the
answers until a buggy node—a node with an erroneous result and with all its children
correct—is located. Since each node in the tree has associated a piece of code, when
this node is found, the bug, either a wrong or a missing statement,1 is also found.

Maude [2] is a declarative language based on both equational and rewriting logic
for the specification and implementation of a whole range of models and systems.
Functional modules define data types and operations on them by means of membership
equational logic theories that support multiple sorts, subsort relations, equations, and
assertions of membership in a sort, while system modules specify rewrite theories that
also support rules, defining local concurrent transitions that can take place in a system.
As a programming language, a distinguishing feature of Maude is its use of reflection,
that allows many metaprogramming applications. Moreover, the debugger is imple-
mented on top of Full Maude [2, Chap. 18], a tool completely written in Maude which

� Research supported by MICINN Spanish project DESAFIOS10 (TIN2009-14599-C03-01) and
Comunidad de Madrid program PROMETIDOS (S2009/TIC-1465).

1 It is important not to confuse wrong and missing answers with wrong and missing statements.
The former are the initial symptoms that indicate the specifications fails, while the latter is the
error that generated this misbehavior.

M. Johnson and D. Pavlovic (Eds.): AMAST 2010, LNCS 6486, pp. 216–225, 2011.
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includes features for parsing and pretty-printing terms, improving the input/output inter-
action. Thus, our declarative debugger, including its user interactions, is implemented
in Maude itself.

We extend here the tool presentation in [7], based on [1,4], for the debugging of
wrong answers (wrong results, which correspond in our case to erroneous reductions,
sort inferences, and rewrites) with the debugging of missing answers (incomplete re-
sults, which correspond here to not completely reduced normal forms, greater than ex-
pected least sorts, and incomplete sets of reachable terms), showing how the theory
introduced in [5,6] is applied. The reasons the debugger is able to attribute to these er-
rors are wrong and missing statements and, since missing answers in system modules
are usually found with the search command [2, Chap. 6] that performs a reachability
analysis, wrong search conditions.

With this extension we are able to present a state-of-the-art debugger, with several
options to build, prune, and traverse the debugging tree. Following the classification
in [9], these are the main characteristics of our debugger. Although we have not imple-
mented all the possible strategies to shorten and navigate the debugging tree, like the
latest tree compression technique or the answers “maybe yes,” “maybe not,” and “inad-
missible,” our trees are abbreviated (in our case, since we obtain the trees from a formal
calculus, we are able to prove the correctness and completeness of the technique), state-
ments can be trusted in several ways, a correct module can be used as oracle, undo and
don’t know commands are provided, the tree can be traversed with different strategies,
and a graphical interface is available. Furthermore, we have developed a new technique
to build the debugging tree: before starting the debugging process, the user can choose
between different debugging trees, one that leads to shorter sessions (from the point of
view of the number of questions) but with more complex questions, and another one that
presents longer, although easier, sessions. We have successfully applied this approach
to both wrong and missing answers.

Complete explanations about our debugger, including a user guide [3] that describes
the graphical user interface, the source files for the debugger, examples, and related
papers, are available in the webpage http://maude.sip.ucm.es/debugging .

2 Using the Debugger

We make explicit first what is assumed about the modules introduced by the user; then
we present the new available commands.

Assumptions. A rewrite theory has an underlying equational theory, containing equa-
tions and memberships, which is expected to satisfy the appropriate executability re-
quirements, namely, it has to be terminating, confluent, and sort decreasing. Rules are
assumed to be coherent with respect to the equations; for details, see [2].

The tool allows to shorten the debugging trees in several ways: statements and com-
plete modules can be trusted, a correct module can be used as oracle, constructed terms
(terms built only with constructors, indicated with the attribute ctor) are considered to
be in normal form, and constructed terms of some sorts or built with some operators
can be pointed out as final (they cannot be further rewritten). This information, as well

http://maude.sip.ucm.es/debugging
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as the answers given during the debugging process and the signature of the module, is
assumed to be correct.

Commands. The debugger is started by loading the file dd.maude, which starts an
input/output loop that allows the user to interact with the tool. Since the debugger is
implemented on top of Full Maude, all modules and commands must be introduced
enclosed in parentheses. Debugging of missing answers uses all the features already
described for wrong answers: use of a correct module as oracle, trusting of statements
and modules, and different types of debugging tree; see [3,7] for details about the
corresponding commands.

When debugging missing answers we can select some sorts as final (i.e., they cannot
be further rewritten) with (final [de]select SORTS .), that only works once the
final mode has been activated with (set final select on/off .).

When debugging missing answers in system modules, two different trees can be
built: one whose questions are related to one-step searches and another one whose ques-
tions are related to many-steps searches; the user can switch between these trees with the
commands(one-step missing-tree .), which is the default one, and (many-steps
missing-tree .), taking into account that the many-steps debugging tree usually
leads to shorter debugging sessions but with likely more complicated questions.

The user can prioritize questions related to the fulfillment of the search condition
from questions involving the statements defining it with (solutions prioritized
on/off .).

The debugging tree can be navigated by using two different strategies: the more
intuitive top-down strategy, that traverses the tree from the root asking each time for
the correctness of all the children of the current node, and then continues with one of
the incorrect children; and the more efficient divide and query strategy, that each time
selects the node whose subtree’s size is the closest one to half the size of the whole
tree, discarding the whole subtree if the inference in this node is correct and continuing
the process with this subtree in other case. The user can switch between them with
the commands (top-down strategy .) and (divide-query strategy .), being
divide and query the default strategy.

The debugging process is started with:

(missing [in MODULE-NAME :] INIT-TERM -> NF .)
(missing [in MODULE-NAME :] INIT-TERM : LS .)
(missing [[depth]] [in MODULE-NAME :] INIT-TERM ARROW PATTERN [s.t. COND] .)

The first command debugs normal forms, where INIT-TERM is the initial term and NF
is the obtained unexpected normal form. Similarly, the second command starts the de-
bugging of incorrect least sorts, where LS is the computed least sort. The last command
refers to incomplete sets found when using search, where depth indicates the bound in
the number of steps, which is considered unbounded when omitted; ARROW is =>* for
searches in zero or more steps, =>+ for searches in one or more steps, and =>! for final
terms; and COND is the optional condition to be fulfilled by the results. Finally, when no
module name is specified in a command, the default one is used.



A Complete Declarative Debugger for Maude 219

When the divide and query strategy is selected, one question, that can be either
correct or wrong (w.r.t. the intended behavior the user has in mind), is presented in
each step. The different answers are transmitted with the commands (yes .) and (no
.). Instead of just answering yes, we can also trust some statements on the fly if, once
the process has started, we decide the bug is not there. To trust the current statement we
type the command (trust .). If a question refers to a set of reachable terms and one of
these terms is not reachable, the user can point it out with the answer (I is wrong .)
where I is the index of the wrong term in the set; in case the question is related to a set
of reachable solutions, if one of the terms should not be a solution the user can indicate
it with (I is not a solution .). Information about final terms can also be given on
the fly with (its sort is final .), which indicates that the least sort of the term
currently displayed is final. If the current question is too complicated, it can be skipped
with the command (don’t know .), although this answer can, in general, introduce
incompleteness in the debugging process. When the top-down strategy is used, several
questions will be displayed in each step. The answer in this case is transmitted with
(N : ANSWER), where N is the number of the question and ANSWER the answer the user
would give in the divide and query strategy. As a shortcut to answer yes to all nodes, the
tool also provides the answer (all : yes .). Finally, we can return to the previous
state by using the command (undo .).

Graphical User Interface. The graphical user interface allows the user to visualize
the debugging tree and navigate it with more freedom. More advanced users can take
advantage of visualizing the whole tree to select the questions that optimize the debug-
ging process (keeping in mind that the user is looking for incorrect nodes with all its
children correct, he can, for example, search for erroneous nodes with few children or
even erroneous leaves), while average users can just follow the implemented strategies
and answer the questions in a friendlier way. Moreover, the interface eases the trust-
ing of statements by providing information about the statements in each module and
the subsort relations between sorts; provides three different navigation strategies (top-
down, divide and query, and free); and implements two different modes to modify the
tree once the user introduces an answer: in the prune mode only the minimum amount
of relevant information is depicted in each step, while in the keep mode the complete
tree is kept through the whole debugging process, coloring the nodes depending on the
information given by the user. The first mode centers on the debugging process, while
the second one allows the user to see how different answers modify the tree.

3 Debugging Sessions

We illustrate how to use the debugger with two examples, the first one shows how to
debug an erroneous normal form due to a missing statement and the second one how to
debug an incomplete set of reachable terms due to a wrong statement. Complete details
about both examples are available in the webpage.

Example 1. We want to implement a function that, given an initial city (built with the
operator city, that receives a natural number as argument), a number of cities, and a
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cost graph (i.e., a partial function from pairs of cities to natural numbers indicating the
cost of traveling between cities), returns a tour around all the cities that finishes in the
initial one. First, we specify a priority queue where the states of this function will be
kept:

sorts Node PNodeQueue .
subsort Node < PNodeQueue .

op node : Path Nat -> Node [ctor] .
op mtPQueue : -> PNodeQueue [ctor] .
op _ _ : PNodeQueue PNodeQueue -> PNodeQueue [ctor assoc id: mtPQueue] .

where a Path is just a list of cities. We use this priority queue to implement the function
travel in charge of computing this tour:

op travel : City Nat Graph -> TravelResult .
ceq travel(C, N, G) = travel(C, N, G, R, node(C, 0))
if R := greedyTravel(C, N, G) .

This function uses an auxiliary function travel that, in addition to the parameters
above, receives a potential best result, created with the operator result and computed
with the greedy function greedyTravel, and the initial priority queue, that only con-
tains the node node(C, 0). This auxiliary function is specified with the equations:

ceq [tr1] : travel(C, N, G, R, ND PQ) = travel(C, N, G, R, PQ’)
if not isResult(ND, N) /\ N’ := getCost(R) /\ N’’ := getCost(ND) /\

N’’ < N’ /\ PQ’ := expand(ND, N, G, PQ) .

ceq [tr2] : travel(C, N, G, R, node(P C’, N’) PQ) =
travel(C, N, G, result(P C’ C, UB), PQ)

if isResult(node(P C’, N’), N) /\ N’’ := getCost(R) /\
UB := N’ + (G [road(C, C’)]) /\ UB < N’’ .

ceq [tr3] : travel(C, N, G, R, node(P C’, N’) PQ) = travel(C, N, G, R, PQ)
if isResult(node(P C’, N’), N) /\ N’’ := getCost(R) /\

UB := N’ + (G [road(C, C’)]) /\ UB >= N’’ .

ceq [tr4] : travel(C, N, G, R, ND PQ) = R
if N’ := getCost(R) /\ N’’ := getCost(ND) /\ N’’ >= N’ .

However, we forget to specify the equation that returns the result when the queue is
empty:

eq [tr5] : travel(C, N, G, R, emptyPQueue) = R .

Without this equation, Maude is not able to compute the desired normal form in an
example for 4 cities. To debug it, we first consider that GTRAVELER, the module defining
the greedy algorithm, is correct and can be trusted:
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Maude> (set debug select on .)
Debug select is on.

Maude> (debug exclude GTRAVELER .)
Labels cheap1 cheap2 cheap3 gc1 gc2 gc3 gt1 gt2 in1 in2 in3 mi1 mi2 sz1

sz2 are now trusted.

The command indicates that all the statements in the GTRAVELER module, whose labels
are shown, are now trusted (unlabeled statements are trusted by default). Now, we debug
a wrong reduction with the following command, where the term on the left of the arrow
is the initial term we tried to reduce, the term on the right is the obtained result, and G
abbreviates the cost graph:

(missing travel(city(0), 3, generateCostMatrix(3)) -> travel(city(0),3,G,
result(city(0)city(3)city(1)city(2)city(0),15),emptyPQueue) .)

With this command the debugger builds the debugging tree, that is navigated with the
default divide and query strategy. The first question is:

Is travel(city(0), 3, G, result(city(0) city(3) city(1) city(2) city(0), 15),
emptyPQueue) in normal form?
Maude> (no .)

Since we expected travel to be reduced to a result, this term is not in normal form.
The next question is:

Is PNodeQueue the least sort of emptyPQueue ?
Maude> (yes .)

In fact, emptyPQueue—the empty priority queue—has as least sort PNodeQueue, the
sort for priority queues. With this information the debugger locates the error, indicating
that either another equation is required for the operator travel or that the conditions in
the current equations are wrong:

The buggy node is:
travel(city(0), 3, G, result(city(0) city(3) city(1) city(2) city(0), 15),
emptyPQueue) is in normal form.
Either the operator travel needs more equations or the conditions of the
current equations are not written in the intended way.

When a missing statement is detected, the debugger indicates that either a new statement
is needed or the conditions can be changed to allow more matchings (e.g., the user can
change N > 2 by N >= 2). Note that the error may be located in the conditions but
not in the statements defining them, since they are also checked during the debugging
process.

Example 2. Assume now we have specified the district in charge of a firefighters
brigade. Buildings are represented by their street, avenue (New York alike coordinates),
time to collapse (all of them natural numbers), and status, that can be ok or fire. When
the status is fire the time to collapse is reduced until it reaches 0, when the fire cannot
be extinguished, and the fire can be propagated to the nearest buildings:
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sorts Building Neighborhood Status FFDistrict .
subsort Building < Neighborhood .

ops ok fire : -> Status [ctor] .
op < av :_, st :_, tc :_, sts :_> : Nat Nat Nat Status -> Building [ctor] .

The neighborhood is built with the empty neighborhood and the juxtaposition operator:

op empty : -> Neighborhood [ctor] .
op _ _ : Neighborhood Neighborhood -> Neighborhood

[ctor assoc comm id: empty] .

Finally, the district contains the buildings in the neighborhood and two natural numbers
indicating the avenue and the street where the firefighters are currently located:

op [_]_ _ : Neighborhood Nat Nat -> FFDistrict [ctor] .

The firefighters travel with the rule:

crl [go] : [NH] Av1 St1
=> [NH’’] Av2 St2
if extinguished?(NH, Av1, St1) /\

B NH’ := NH /\
fire?(B) /\
Av2 := getAvenue(B) /\
St2 := getStreet(B) /\
N := distance(Av1, St1, Av2, St2) /\
NH’’ := update(NH, N) .

where the conditions check that the building in the current location is not in fire with
extinguished?, search for a building in fire B with the matching condition and the con-
dition fire?, extract the avenue Av2 and the street St2 of this building with getAvenue
and getStreet, compute the distance between the current and the new location with
distance, and finally update the neighborhood (the time to collapse of the buildings
is reduced an amount equal to the distance previously computed) with update. We are
interested in the equational condition fire?(B), because the equation f2 specifying
fire?, a function that checks whether the status of a building is fire, is buggy and
returns false when it should return true:

op fire? : Building -> Bool .
eq [f1] : fire?(< av : Av, st : St, tc : TC, sts : ok >) = false .
eq [f2] : fire?(< av : Av, st : St, tc : TC, sts : fire >) = false .

If we use the command search to find the final states where the fire in both buildings
has been extinguished, in an example with two buildings on fire with time to collapse
4 located in (1,2) and (2,1), and the firefighters initially in (0,0), we realize that no
states fulfilling the condition are found:

Maude> (search nh =>! F:FFDistrict s.t. allOk?(F:FFDistrict) .)
search in TEST : nh =>! F:FFDistrict .
No solution.
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Fig. 1. Initial command for the firefighters example

Fig. 2. Debugging tree for the firefighters example

where nh is a constant with value [< av : 1, st : 2, tc : 4, sts : fire > <
av : 2, st : 1, tc : 4, sts : fire >] 0 0. We can debug this behavior with
the command shown in Figure 1, that builds the default one-step tree. We show in
Figure 2 how the corresponding tree, with only two levels expanded, is depicted by the
graphical user interface.

Although this graphical interface has both the divide and query and the top-down
navigation strategies implemented, advanced users can find more useful the free nav-
igation strategy, that can greatly reduce the number of questions asked to the user. To
achieve this, the user must find either correct nodes (which are removed from the tree)
rooting big subtrees or wrong nodes (which are selected as current root) rooting small
trees.

In the tree depicted in Figure 2 we notice that Maude cannot apply the rule go (the
rule is shown once the node is selected) to a configuration with some buildings with
status fire, which is indicated by the interface by showing that the term is rewritten
to the empty set, /0. Since this is incorrect, we can use the button Wrong to indicate it
and the tree in Figure 3 is shown. Note that this node is associated to a concrete rule
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Fig. 3. Debugging tree for the firefighters example after one answer

Fig. 4. Bug found in the firefighters example

and then the debugger allows the user to use the command Trust, that would remove
all the nodes associated to this same rule from the debugging tree; trusting the most
frequent statements is another strategy that can easily be followed by the user when
using the graphical interface. However, since the question is incorrect, we cannot use
this command to answer it.

In this case, the first three nodes are correct (the notation _:s_ appearing in the
second and third nodes indicates that the term has this sort as least sort), but we can
select any of the other nodes as erroneous; the interested reader will find that both of
them lead to the same error. In our case, we select the fourth node as erroneous and the
debugger shows the error, as shown in Figure 4.

4 Conclusions

We have implemented a declarative debugger of wrong and missing answers for Maude,
that is able to detect wrong and missing statements and wrong search conditions. Since
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one of the main drawbacks of declarative debugging is the size of the debugging trees
and the complexity of the questions, we provide several mechanisms to shorten and
ease the tree, including a graphical user interface. As future work, we plan to imple-
ment a test case generator, that integrated with the debugger will allow to test Maude
specifications and debug the erroneous cases.
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Abstract

Declarative debugging is a semi-automatic technique that starts from an incorrect computation and
locates a program fragment responsible for the error by building a tree representing this computation and
guiding the user through it to find the error. Membership equational logic (MEL) is an equational logic that
in addition to equations allows to state membership axioms characterizing the elements of a sort. Rewriting
logic is a logic of change that extends MEL by adding rewrite rules, which correspond to transitions between
states and can be nondeterministic. We propose here a calculus to infer reductions, sort inferences, normal
forms, and least sorts with the equational subset of rewriting logic, and rewrites and sets of reachable terms
through rules. We use an abbreviation of the proof trees computed with this calculus to build appropriate
debugging trees for both wrong (an incorrect result obtained from an initial result) and missing answers
(results that are erroneous because they are incomplete), whose adequacy for debugging is proved. Using
these trees we have implemented Maude DDebugger, a declarative debugger for Maude, a high-performance
system based on rewriting logic. We illustrate its use with an example.

Keywords: declarative debugging, rewriting logic, Maude, wrong answers, missing answers

1. Introduction

Declarative debugging [35], also known as declarative diagnosis or algorithmic debugging, is a debugging
technique that abstracts the execution details, which may be difficult to follow in declarative languages, to
focus on the results. We can distinguish between two different kinds of declarative debugging: debugging
of wrong answers, applied when a wrong result is obtained from an initial value, which has been widely
employed in the logic [38, 18], functional [26, 28], multi-paradigm [5, 20], and object-oriented [6] programming
languages; and debugging of missing answers [23, 38, 18, 10, 1], applied when a result is incomplete, which
has been less studied because the calculus involved is more complex than in the case of wrong answers.
Declarative debugging starts from an incorrect computation, the error symptom, and locates the code (or
the absence of code) responsible for the error. To find this error the debugger represents the computation
as a debugging tree [24], where each node stands for a computation step and must follow from the results
of its child nodes by some logical inference. This tree is traversed by asking questions to an external oracle
(generally the user) until a buggy node—a node containing an erroneous result, but whose children are all
correct—is found. Hence, we distinguish two phases in this scheme: the debugging tree generation and its
navigation following some suitable strategy [36].
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Santesmases s/n, 28040 Madrid (Spain). email: ariesco@fdi.ucm.es. Tel: (+34)913947648. Fax: (+34)913947529.
Email addresses: ariesco@fdi.ucm.es (Adrián Riesco), alberto@sip.ucm.es (Alberto Verdejo), narciso@sip.ucm.es

(Narciso Mart́ı-Oliet), rafa@sip.ucm.es (Rafael Caballero)

Preprint submitted to The Journal of Logic and Algebraic Programming March 15, 2011



We present here Maude DDebugger, a declarative debugger for Maude specifications. Maude [12] is a
high-level language and high-performance system supporting both equational and rewriting logic computa-
tion. Maude modules correspond to specifications in rewriting logic [21], a logic that allows the representation
of many models of concurrent and distributed systems. This logic is an extension of membership equational
logic [2], an equational logic that, in addition to equations, allows to state membership axioms characterizing
the elements of a sort. Rewriting logic extends membership equational logic by adding rewrite rules, which
represent transitions in a concurrent system and can be nondeterministic. The Maude system supports sev-
eral approaches for debugging Maude programs: tracing, term coloring, and using an internal debugger [12,
Chap. 22]. The tracing facilities allow us to follow the execution of a specification, that is, the sequence of
applications of statements that take place. The same ideas have been applied to the functional paradigm by
the tracer Hat [11], where a graph constructed by graph rewriting is proposed as a suitable trace structure.
Term coloring uses different colors to print the operators used to build a term that does not fully reduce.
Finally, the Maude internal debugger allows the definition of break points in the execution by selecting some
operators or statements. When a break point is found the debugger is entered, where we can see the current
term and execute the next rewrite with tracing turned on. However, these tools have the disadvantage that,
since they are based on the trace, show the statements applied in the order in which they are executed, and
thus the user can lose the general view of the proof of the incorrect computation that produced the wrong
result.

Declarative debugging of wrong answers of membership equational logic specifications was studied
in [8, 7], and was later extended to debugging of wrong answers in rewriting logic specifications in [30],
while descriptions of the implemented system can be found in [34], where we present how to debug wrong
results due to errors in the statements of the specification. In [32] we investigated how to apply declarative
debugging of missing answers, traditionally associated with nondeterministic frameworks [10, 23], to mem-
bership equational logic specifications. We achieve this by broadening the concept of missing answers to deal
with erroneous normal forms and least sorts. Finally, we extended the calculus developed thus far in [31]
to debug missing answers in rewriting logic specifications, that is, expected results that the specification is
not able to compute. A description of the whole system is presented in [33].

One of the strong points of our approach is that, unlike other proposals like [10], it combines the treatment
of wrong and missing answers and thus it is able to detect missing answers due to both wrong and missing
statements. The state of the art can be found in [36], which contains a comparison among the algorithmic
debuggers B.i.O. [3] (Believe in Oracles), a debugger integrated in the Curry compiler KICS; Buddha [27, 28],
a debugger for Haskell 98; DDT [9], a debugger for TOY; Freja [26], a debugger for Haskell; Hat-Delta [14],
part of a set of tools to debug Haskell programs; Mercury’s Algorithmic Debugger [20], a debugger integrated
into the Mercury compiler; Münster Curry Debugger [19], a debugger integrated into the Münster Curry
compiler; and Nude [25], the NU-Prolog Debugging Environment. We extend this comparison by taking into
account the features in the latest updates of the debuggers and adding two new ones: DDJ [16], a debugger
for Java programs, and our own debugger, Maude DDebugger. This comparison is summarized in Tables 1
and 2, where each column shows a declarative debugger and each row a feature. More specifically:

• The implementation language indicates the language used to implement the debugger. In some cases
front- and back-ends are shown: they refer, respectively, to the language used to obtain the information
needed to compute the debugging tree and the language used to interact with the user.

• The target language states the language debugged by the tool.

• The strategies row indicates the different navigation strategies implemented by the debuggers. TD
stands for top-down, that starts from the root and selects a wrong child to continue with the navigation
until all the children are correct; DQ for divide and query, that selects in each case a node rooting a
subtree half the size of the whole tree; SS for single stepping, that performs a post-order traversal of the
execution tree; HF for heaviest first, a modification of top-down that selects the child with the biggest
subtree; MRF for more rules first, another variant of top-down that selects the child with the biggest
number of different statements in its subtree; DRQ for divide by rules and query, an improvement of
divide and query that selects the node whose subtree has half the number of associated statements of

2



the whole tree; MD for the divide and query strategy implemented by the Mercury Debugger; SD for
subterm dependency, a strategy that allows to track specific subterms that the user has pointed out as
erroneous; and HD for the Hat-Delta heuristics.

• Database indicates whether the tool keeps a database of answers to be used in future debugging
sessions, while memoization indicates whether this database is available for the current session.

• The front-end indicates whether it is integrated into the compiler or it is standalone.

• Interface shows the interface between the front-end and the back-end. Here, APT stands for the
Abbreviated Proof Tree generated by Maude; ART for Augmented Redex Trail, the tree generated by
Hat-Delta; ET is an abbreviation of Execution Tree; and step count refers to a specific method of the
B.i.O. debugger that keeps the information used thus far into a text file.

• Debugging tree presents how the debugging trees are managed.

• The missing answers row indicates whether the tool can debug missing answers.

• Accepted answers: the different answers that can be introduced into the debugger. yes; no; dk
(don’t know); tr (trust); in (inadmissible), used to indicate that some arguments should not have
been computed; and my and mn (maybe yes and maybe no), that behave as yes and no although the
questions can be repeated if needed. More details about these debugging techniques can be found
in [36, 37].

• Tracing subexpressions means that the user is able to point out a subterm as erroneous.

• ET exploration indicates whether the debugging tree can be freely traversed.

• Whether the debugging tree can be built following different strategies depending on the specific situ-
ation is shown in the Different trees? row.

• Tree compression indicates whether the tool implements tree compression [14], a technique to remove
redundant nodes from the execution tree.

• Undo states whether the tool provides an undo command.

• Trusting lists the trusting options provided by each debugger. MO stands for trusting modules; FU
for functions (statements); AR for arguments; and FN for final forms.

• GUI shows whether the tool provides a graphical user interface.

• Version displays the version of the tool used for the comparison.

The results shown in these tables can be interpreted as follows:

Navigation strategies. Several navigation strategies have been proposed for declarative debugging [36].
However, most of the debuggers (including Maude DDebugger) only implement the basic top-down
and divide and query techniques. On the other hand, DDJ implements most of the known navigation
techniques (some of them also developed by the same researchers), including an adaptation of the nav-
igation techniques developed for Hat-Delta. Among the basic techniques, only DDJ, DDT, and Maude
DDebugger provide the most efficient divide and query strategy, Hirunkitti’s divide and query [36].

Available answers. The declarative debugging scheme relies on an external oracle answering the questions
asked by the tool, and thus the bigger the set of available answers the easier the interaction. The
minimum set of answers accepted by all the debuggers is composed of the answers yes and no; Hat-
Delta, the Münster Curry Debugger, and Nude do not accept any more answers, but the remaining
debuggers allow some others. Other well-known answers are don’t know and trust ; the former, that
can introduce incompleteness, allows the user to skip the current question and is implemented by

3



M
au

d
e

B
.i.O

.
B

u
d

d
h

a
D

D
J

D
D

T
F
reja

D
D

eb
u

gger
Im

p
lem

en
tation

M
aude

C
urry

H
askell

Java
T

oy
(front-end)

H
askell

lan
gu

age
Ja va

(back-end)
T

arget
M

aude
C

urry
H

ask ell
Ja va

T
oy

H
ask ell

lan
gu

age
subset

S
trategies

T
D

D
Q

T
D

T
D

T
D

D
Q

D
R

Q
T

D
D

Q
T

D
SS

H
F

M
R

F
H

D
D

atab
ase

/
N

O
/Y

E
S

N
O

/N
O

N
O

/Y
E

S
Y

E
S/Y

E
S

N
O

/Y
E

S
N

O
/N

O
M

em
oization

?
F
ron

t-en
d

Independent
Independent

Independent
Independent

Integrated
Integrated

prog.
trans.

prog.
trans.

prog.
trans.

prog.
trans.

prog.
trans.

com
piler

In
terface

A
P

T
Step

count
E

T
E

T
E

T
E

T
on

dem
and

on
dem

and
(X

M
L

/T
X

T
)

D
eb

u
ggin

g
M

ain
m

em
ory

M
ain

m
em

ory
M

ain
m

em
ory

D
atabase

M
ain

m
em

ory
M

ain
m

em
ory

tree
on

dem
and

on
dem

and
on

dem
and

M
issin

g
Y

E
S

N
O

N
O

N
O

Y
E

S
N

O
an

sw
ers?

A
ccep

ted
y
e
s
n
o

y
e
s
n
o

y
e
s
n
o

d
k

y
e
s
n
o

y
e
s
n
o

y
e
s
n
o

an
sw

ers
d
k
t
r

d
k

i
n
t
r

d
k
t
r

d
k
t
r

m
y
m
n

T
racin

g
N

O
N

O
N

O
N

O
N

O
N

O
su

b
ex

p
ression

s?
E

T
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
ex

p
loration

?
D

iff
eren

t
Y

E
S

N
O

N
O

Y
E

S
N

O
N

O
trees?
T

ree
N

O
N

O
N

O
N

O
N

O
N

O
com

p
ression

?
U

n
d

o?
Y

E
S

Y
E

S
N

O
Y

E
S

N
O

Y
E

S
T

ru
stin

g
M

O
/F

U
/F

N
M

O
/F

U
/A

R
M

O
/F

U
F

U
F

U
M

O
/F

U
G

U
I?

Y
E

S
N

O
N

O
Y

E
S

Y
E

S
N

O
V

ersion
2.0

K
ics

0.81893
1.2.1

2.4
1
.2

(24/5/2010)
(15/4/2009)

(1/12/2006)
(23/10/2010)

(29/9/2005)
(2000)

T
a
b

le
1
:

A
co

m
p

a
ra

tiv
e

o
f

d
ecla

ra
tiv

e
d

eb
u

g
g
ers

I

4



M
au

d
e

M
er

cu
ry

M
ü
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B.i.O., DDJ, DDT, Buddha, Mercury, and Maude DDebugger, while the latter prevents the debugger
from asking questions related to the current statement and is accepted by DDJ, DDT, Buddha, the
Mercury debugger, and Maude DDebugger. Buddha and the Mercury debugger have developed an
answer inadmissible to indicate that some arguments should not have been computed, redirecting the
debugging process in this direction; our debugger accepts a similar mechanism when debugging missing
answers in system modules with the answer the term n is not a solution/reachable, which indicates
that a term in a set is not a solution/reachable, leading the process in this direction. Finally, Freja
accepts the answers maybe yes and maybe not, that the debugger uses as yes and not, although it will
return to these questions if the bug is not found.

Database. A common feature in declarative debugging is the use of a database to prevent the tool from
asking the same question twice, which is implemented by DDJ, DDT, Hat-Delta, Buddha, the Mercury
debugger, Nude, and Maude DDebugger. Nude has improved this technique by allowing this database
to be used during the next sessions, which has also been adopted by DDJ.

Memory. The debuggers allocate the debugging tree in different ways. The Hat-Delta tree is stored in
the file system, DDJ uses a database, and the rest of the debuggers (including ours) keep it in main
memory. Most debuggers improve memory management by building the tree on demand, as B.i.O.,
Buddha, DDJ, the Mercury debugger, Nude, and Maude DDebugger.

Tracing subexpressions. The Mercury debugger is the only one able to indicate that a specific subex-
pression, and not the whole term, is wrong, improving both the answers no and inadmissible with
precise information about the subexpression. With this technique the navigation strategy can focus
on some nodes of the tree, enhancing the debugging process.

Construction strategies. A novelty of our approach is the possibility of building different trees depend-
ing on the complexity of the specification and the experience of the user: the trees for both wrong
and missing answers can be built following either a one-step or a many-step strategy (giving rise to
four combinations). While with the one-step strategy the tool asks more questions in general, these
questions are easier to answer than the ones presented with the many-steps strategy. An improvement
of this technique has been applied in DDJ in [17], allowing the system to balance the debugging trees
by combining so called chains, that is, sequences of statements where the final data of each step is the
initial data of the following one.

Tree compression. The Hat-Delta debugger has developed a new technique to remove redundant nodes
from the execution tree, called tree compression [14]. Roughly speaking, it consists in removing (in
some cases) from the debugging tree the children of nodes that are related to the same error as the
father, in such a way that the father will provide debugging information for both itself and these
children. This technique is very similar to the balancing technique implemented for DDJ in [17].

Tree exploration. Most of the debuggers allow the user to freely navigate the debugging tree, including
ours when using the graphical user interface. Only the Münster Curry Debugger and Nude do not
implement this feature.

Trusting. Although all the debuggers provide some trusting mechanisms, they differ on the target: all
the debuggers except Hat-Delta have mechanisms to trust specific statements, and all the debuggers
except DDJ, DDT, and Nude can trust complete modules. An original approach is to allow the user
to trust some arguments, which currently is only supported by B.i.O. In our case, and since we are
able to debug missing answers, a novel trusting mechanism has been developed: the user can identify
some sorts and some operators as final, that is, they cannot be further reduced; with this method all
nodes referring to “finalness” of these terms are removed from the debugging tree. Finally, a method
similar to trusting consists in using a correct specification as an oracle to answer the questions; this
approach is followed by B.i.O. and Maude DDebugger.
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Undo command. In a technique that relies on the user as oracle, it is usual to commit an error and thus an
undo command can be very useful. However, not all the debuggers have this command, with B.i.O.,
DDJ, Freja, the Mercury debugger, and Maude DDebugger being the only ones implementing this
feature.

Graphical interface. A graphical user interface eases the interaction between the user and the tool, allow-
ing him to freely navigate the debugging tree and showing all the features in a friendly way. In [36], only
one declarative debugger—DDT—implemented such an interface, while nowadays four tools—DDT,
DDJ, Münster Curry Debugger,1 and Maude DDebugger—have this feature.

Errors detected. It is worth noticing that only DDT and Maude DDebugger can debug missing answers,
while all the other debuggers are devoted exclusively to wrong answers. However, DDT only debugs
missing answers due to nondeterminism, while our approach uses this technique to debug erroneous
normal forms and least sorts.

Other remarks. An important subject in declarative debugging is scalability. The development of DDJ
has taken special care of this subject by using a complex architecture that manages the available
memory and uses a database to store the parts of the tree that do not fit in main memory. Moreover,
the navigation strategies have been modified to work with incomplete trees. Regarding reusability, the
latest version of B.i.O. provides a generic interface that allows other tools implementing it to use its
debugging features. Finally, the DDT debugger has been improved to deal with constraints.

Exploiting the fact that rewriting logic is reflective [13], a key distinguishing feature of Maude is its
systematic and efficient use of reflection through its predefined META-LEVEL module [12, Chap. 14], a feature
that makes Maude remarkably extensible and powerful, and that allows many advanced metaprogramming
and metalanguage applications. This powerful feature allows access to metalevel entities such as specifica-
tions or computations as usual data. Therefore, we are able to generate and navigate the debugging tree
of a Maude computation using operations in Maude itself. In addition, the Maude system provides another
module, LOOP-MODE [12, Chap. 17], which can be used to specify input/output interactions with the user.
However, instead of using this module directly, we extend Full Maude [12, Chap. 18], which includes features
for parsing, evaluating, and pretty-printing terms, improving the input/output interaction. Moreover, Full
Maude allows the specification of concurrent object-oriented systems, which can also be debugged. Thus,
our declarative debugger, including its user interactions, is implemented in Maude itself.

The rest of the paper is structured as follows. Section 2 presents the preliminaries of our debugging
approach. Section 3 describes our calculus while the next section explains how to transform the proof trees
built with this calculus into appropriate debugging trees. Section 5 shows how to use the debugger, while
Section 6 illustrates it with an example. Section 7 describes the implementation of our tool and Section 8
concludes and presents some future work. We present in Appendix A the detailed proofs of the results stated
throughout the paper.

Additional examples, the source code of the tool, and other papers on the subject, including the user
guide [29], where the graphical user interface for the debugger is presented, are all available from the webpage
http://maude.sip.ucm.es/debugging.

2. Preliminaries

In the following sections we present both membership equational logic and rewriting logic, and how
their specifications are represented as Maude modules. Then, we state the assumptions made on those
specifications.

1Only available for Mac OS X.
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2.1. Membership equational logic
A signature in membership equational logic is a triple (K,Σ, S) (just Σ in the following), with K a set

of kinds, Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K a many-kinded signature, and S = {Sk}k∈K a pairwise disjoint
K-kinded family of sets of sorts. The kind of a sort s is denoted by [s]. We write TΣ,k and TΣ,k(X) to
denote respectively the set of ground Σ-terms with kind k and of Σ-terms with kind k over variables in X,
where X = {x1 : k1, . . . , xn : kn} is a set of K-kinded variables. Intuitively, terms with a kind but without
a sort represent undefined or error elements.

The atomic formulas of membership equational logic are equations t = t′, where t and t′ are Σ-terms of
the same kind, and membership axioms of the form t : s, where the term t has kind k and s ∈ Sk. Sentences
are universally-quantified Horn clauses of the form (∀X)A0 ⇐ A1 ∧ · · · ∧ An, where each Ai is either an
equation or a membership axiom, and X is a set of K-kinded variables containing all the variables in the
Ai. A specification is a pair (Σ, E), where E is a set of sentences in membership equational logic over the
signature Σ.

Models of membership equational logic specifications are Σ-algebras A consisting of a set Ak for each
kind k ∈ K, a function Af : Ak1 × · · · ×Akn

−→ Ak for each operator f ∈ Σk1...kn,k, and a subset As ⊆ Ak
for each sort s ∈ Sk. Given a Σ-algebra A and a valuation σ : X −→ A mapping variables to values in the
algebra, the meaning [[t]]σA of a term t is inductively defined as usual. Then, an algebra A satisfies, under a
valuation σ,

• an equation t = t′, denoted A, σ |= t = t′, if and only if both terms have the same meaning: [[t]]σA =
[[t′]]σA; we also say that the equation holds in the algebra under the valuation.

• a membership t : s, denoted A, σ |= t : s, if and only if [[t]]σA ∈ As.

Satisfaction of Horn clauses is defined in the standard way. Finally, when terms are ground, valuations play
no role and thus can be omitted. A membership equational logic specification (Σ, E) has an initial model
TΣ/E whose elements are E-equivalence classes of ground terms [t]E , and where an equation or membership
is satisfied if and only if it can be deduced from E by means of a sound and complete set of deduction
rules [2, 22].

Since the membership equational logic specifications that we consider are assumed to satisfy the exe-
cutability requirements of confluence, termination, and sort-decreasingness [12], their equations t = t′ can
be oriented from left to right, t→ t′. Such a statement holds in an algebra, denoted A, σ |= t→ t′, exactly
when A, σ |= t = t′, i.e., when [[t]]σA = [[t′]]σA. Moreover, under those assumptions an equational condition
u = v in a conditional equation can be checked by finding a common term t such that u → t and v → t;
the notation we will use in the inference rules and debugging trees studied in Section 3 for this situation is
u ↓ v. Also, the notation t =E t′ means that the equation t = t′ can be deduced from E, equivalently, that
[t]E = [t′]E .

2.2. Maude functional modules
Maude functional modules [12, Chapter 4], introduced with syntax fmod ... endfm, are executable

membership equational logic specifications and their semantics is given by the corresponding initial algebra
in the class of algebras satisfying the specification.

In a functional module we can declare sorts (by means of the keyword sorts); subsort relations between
sorts (subsort); operators (op) for building values of these sorts, giving the sorts of their arguments and
result, and which may have attributes such as being associative (assoc) or commutative (comm), for example;
memberships (mb) asserting that a term has a sort; and equations (eq) identifying terms. Both memberships
and equations can be conditional (cmb and ceq). Conditions, in addition to memberships and equations,
can also be matching equations t := t′, whose mathematical meaning is the same as that of an ordinary
equation t = t′ but that operationally are solved by matching the righthand side t′ against the pattern t in
the lefthand side, thus instantiating possibly new variables in t.

Maude does automatic kind inference from the sorts declared by the user and their subsort relations.
Kinds are not declared explicitly and correspond to the connected components of the subsort relation. The
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kind corresponding to a sort s is denoted [s]. For example, if we have sorts Nat for natural numbers and
NzNat for nonzero natural numbers with a subsort NzNat < Nat, then [NzNat] = [Nat].

An operator declaration like

op _div_ : Nat NzNat -> Nat .

is logically understood as a declaration at the kind level

op _div_ : [Nat] [Nat] -> [Nat] .

together with the conditional membership axiom

cmb N div M : Nat if N : Nat and M : NzNat .

A subsort declaration NzNat < Nat is logically understood as the conditional membership axiom

cmb N : Nat if N : NzNat .

2.3. Rewriting logic
Rewriting logic extends equational logic by introducing the notion of rewrites corresponding to transitions

between states; that is, while equations are interpreted as equalities and therefore they are symmetric,
rewrites denote changes which can be irreversible.

A rewriting logic specification, or rewrite theory, has the form R = (Σ, E,R), where (Σ, E) is an equa-
tional specification and R is a set of rules as described below. From this definition, one can see that rewriting
logic is built on top of equational logic, so that rewriting logic is parameterized with respect to the version
of the underlying equational logic; in our case, Maude uses membership equational logic, as described in the
previous sections. A rule q in R has the general conditional form2

q : (∀X) e⇒ e′ ⇐
n∧
i=1

ui = u′i ∧
m∧
j=1

vj : sj ∧
l∧

k=1

wk ⇒ w′k

where q is the rule label, the head is a rewrite and the conditions can be equations, memberships, and
rewrites; both sides of a rewrite must have the same kind. From these rewrite rules, one can deduce rewrites
of the form t⇒ t′ by means of general deduction rules introduced in [21] (see also [4]).

Models of rewrite theories are called R-systems in [21]. Such systems are defined as categories that
possess a (Σ, E)-algebra structure, together with a natural transformation for each rule in the set R. More
intuitively, the idea is that we have a (Σ, E)-algebra, as described in Section 2.1, with transitions between the
elements in each set Ak; moreover, these transitions must satisfy several additional requirements, including
that there are identity transitions for each element, that transitions can be sequentially composed, that the
operations in the signature Σ are also appropriately defined for the transitions, and that we have enough
transitions corresponding to the rules in R. The rewriting logic deduction rules introduced in [21] are sound
and complete with respect to this notion of model. Moreover, they can be used to build initial models.
Given a rewrite theory R = (Σ, E,R), the initial model TΣ/E,R for R has an underlying (Σ, E)-algebra
TΣ/E whose elements are equivalence classes [t]E of ground Σ-terms modulo E, and there is a transition
from [t]E to [t′]E when there exist terms t1 and t2 such that t =E t1 →∗R t2 =E t′, where t1 →∗R t2 means
that the term t1 can be rewritten into t2 in zero or more rewrite steps applying rules in R, also denoted
[t]E →∗R/E [t′]E when rewriting is considered on equivalence classes [21, 15].

However, for our purposes in this paper, we are interested in a subclass of rewriting logic models [21] that
we call term models, where the syntactic structure of terms is kept and associated notions such as variables,
substitutions, and term rewriting make sense. These models will be used in the next section to represent

2There is no need for the condition to list equations first, then memberships, and then rewrites; this is just a notational
abbreviation, since they can be listed in any order.
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the intended interpretation that the user had in mind while writing a specification. Since we want to find
the discrepancies between the intended model and the initial model of the specification as written, we need
to consider the relationship between a specification defined by a set of equations E and a set of rules R, and
a model defined by possibly different sets of equations E′ and of rules R′; in particular, when E′ = E and
R′ = R, the term model coincides with the initial model built in [21].

Given a rewrite theory R = (Σ, E,R), with Σ a signature, E a set of equations, and R a set of rules,
a Σ-term model has an underlying (Σ, E′)-algebra whose elements are equivalence classes [t]E′ of ground
Σ-terms modulo some set of equations and memberships E′ (which may be different from E), and there is a
transition from [t]E′ to [t′]E′ when [t]E′ →∗R′/E′ [t′]E′ , where rewriting is considered on equivalence classes
[21, 15]. The set of rules R′ may also be different from R, that is, the term model is TΣ/E′,R′ for some E′

and R′. In such term models, the notion of valuation coincides with that of (ground) substitution. A term
model TΣ/E′,R′ satisfies, under a substitution θ,

• an equation u = v, denoted TΣ/E′,R′ , θ |= u = v, when θ(u) =E′ θ(v), or equivalently, when [θ(u)]E′ =
[θ(v)]E′ ;

• a membership u : s, denoted TΣ/E′,R′ , θ |= u : s, when the Σ-term θ(u) has sort s according to the
information in the signature Σ and the equations and memberships E′;

• a rewrite u⇒ v, denoted TΣ/E′,R′ , θ |= u⇒ v, when there is a transition in TΣ/E′,R′ from [θ(u)]E′ to
[θ(v)]E′ , that is, when [θ(u)]E′ →∗R′/E′ [θ(v)]E′ .

Satisfaction is extended to conditional sentences as usual. A Σ-term model TΣ/E′,R′ satisfies a rewrite theory
R = (Σ, E,R) when TΣ/E′,R′ satisfies the equations and memberships in E and the rewrite rules in R in
this sense. For example, this is obviously the case when E ⊆ E′ and R ⊆ R′; as mentioned above, when
E′ = E and R′ = R the term model coincides with the initial model for R.

2.4. Maude system modules
Maude system modules [12, Chapter 6], introduced with syntax mod ... endm, are executable rewrite

theories and their semantics is given by the initial system in the class of systems corresponding to the rewrite
theory. A system module can contain all the declarations of a functional module and, in addition, decla-
rations for rules (rl) and conditional rules (crl), whose conditions can be equations, matching equations,
memberships, and rewrites.

The executability requirements for equations and memberships in a system module are the same as those
of functional modules, namely, confluence, termination, and sort-decreasingness. With respect to rules, the
satisfaction of all the conditions in a conditional rewrite rule is attempted sequentially from left to right,
solving rewrite conditions by means of search; for this reason, we can have new variables in such conditions
but they must become instantiated along this process of solving from left to right (see [12] for details).
Furthermore, the strategy followed by Maude in rewriting with rules is to compute the normal form of a
term with respect to the equations before applying a rule. This strategy is guaranteed not to miss any
rewrites when the rules are coherent with respect to the equations [39, 12]. In a way quite analogous to
confluence, this coherence requirement means that, given a term t, for each rewrite of it using a rule in R to
some term t′, if u is the normal form of t with respect to the equations and memberships in E, then there
is a rewrite of u with some rule in R to a term u′ such that u′ =E t′.

The following section describes an example of a Maude system module with both equations and rules.

2.5. An example of system module: A maze
Given a maze, we want to obtain all the possible paths to the exit. First, we define the sorts Pos, Pos?,

List, and State, that stand for positions in the labyrinth, incorrect positions (that we will use later to
indicate that terms with this sort must be rewritten to become a correct position) lists of positions, and the
path traversed so far, respectively:
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(mod MAZE is

pr NAT .

sorts Pos Pos? List State .

Terms of sort Pos have the form [X,Y], where X and Y are natural numbers, and lists are built with nil
and the juxtaposition operator __:

subsorts Pos < Pos? List .

op [_,_] : Nat Nat -> Pos [ctor] .

op nil : -> List [ctor] .

op __ : List List -> List [ctor assoc id: nil] .

Terms of sort State are lists enclosed by curly brackets, that is, {_} is an “encapsulation operator” that
ensures that the whole state is used:

op {_} : List -> State [ctor] .

The predicate isSol checks whether a list is a solution in a 8× 8 labyrinth:

vars X Y : Nat .

vars P Q : Pos .

var L : List .

op isSol : List -> Bool .

eq [is1] : isSol(L [8,8]) = true .

eq [is2] : isSol(L) = false [owise] .

The next position is computed with rule expand, that extends the solution with a new position by
rewriting next(L) to obtain a new position and then checking whether this list is correct with isOk. Note
that the choice of the next position, that could be initially wrong, produces an implicit backtracking:

crl [expand] : { L } => { L P } if next(L) => P /\ isOk(L P) .

The function next, that builds terms of the sort Pos?, is defined in a nondeterministic way with the
rules:

op next : List -> Pos? .

rl [n1] : next(L [X,Y]) => [X, Y + 1] .

rl [n2] : next(L [X,Y]) => [sd(X, 1), Y] .

rl [n3] : next(L [X,Y]) => [X, sd(Y, 1)] .

where sd denotes symmetric difference on natural numbers.
isOk(L P) checks that the position P is within the limits of the labyrinth, not repeated in L, and not

part of the wall by using an auxiliary function contains:

op isOk : List -> Bool .

eq isOk(L [X,Y]) = X >= 1 and Y >= 1 and X <= 8 and Y <= 8

and not(contains(L, [X,Y])) and not(contains(wall, [X,Y])) .

op contains : List Pos -> Bool .

eq [c1] : contains(nil, P) = false .

eq [c2] : contains(Q L, P) = if P == Q then true else contains(L, P) fi .

Finally, we define the wall of the labyrinth as a list of positions:
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op wall : -> List .

eq wall = [2,1] [4,1]

[2,2] [3,2] [6,2] [7,2]

[2,3] [4,3] [5,3] [6,3] [7,3]

[1,5] [2,5] [3,5] [4,5] [5,5] [6,5] [8,5]

[6,6] [8,6]

[6,7]

[6,8] [7,8] .

endm)

Now, we can use the module to search the labyrinth’s exit from the position [1,1] with the Maude
command search, but it cannot find any path to escape. We will see in Section 5 how to debug this
specification.

Maude> (search {[1,1]} =>* {L:List} s.t. isSol(L:List) .)

No solution.

2.6. Assumptions
Since we are debugging Maude modules, they are expected to satisfy the appropriate executability

requirements indicated in the previous sections. Namely, the specifications in functional modules have to
be terminating, confluent, sort decreasing and, given an equation t1 = t2 if C1 ∧ · · · ∧ Cn, all the variables
occurring in t2 and C1 . . . Cn must appear in t1 or become instantiated by matching [12, Section 4.6]. While
the equational part of system modules has to fulfill these requirements, rewrite rules must be coherent with
respect to the equations and, given a rule t1 ⇒ t2 if C1∧· · ·∧Cn, the variables occurring in t2 and C1 . . . Cn
must appear in t1 or become instantiated in matching or rewriting conditions [12, Section 6.3].

One interesting feature of our tool is that the user can trust some statements, by means of labels applied
to the suspicious statements. This means that the unlabeled statements are assumed to be correct, and
only their conditions will generate questions. In order to obtain a nonempty abbreviated proof tree, the
user must have labeled some statements (all with different labels); otherwise, everything is assumed to be
correct. In particular, the wrong statement must be labeled in order to be found. Likewise, when debugging
missing answers, constructed terms (terms built only with constructors, indicated with the attribute ctor,
and also known as data terms in other contexts) are considered to be in normal form, and some of these
constructed terms can be pointed out as “final” (they cannot be further rewritten). Thus, this information
has to be accurate in order to find the buggy node.

Although the user can introduce a module importing other modules, the debugging process takes place
in the flattened module. However, the debugger allows the user to trust a whole imported module.

Navigation of the debugging tree takes place by asking questions to an external oracle, which in our
case is either the user or another module introduced by the user. In both cases the answers are assumed
to be correct. If either the module is not really correct or the user provides an incorrect answer, the result
is unpredictable. Notice that the information provided by the correct module need not be complete, in
the sense that some functions can be only partially defined. In the same way, it is not required to use the
same signature in the correct and the debugged modules. If the correct module cannot help in answering a
question, the user may have to answer it.

Finally, all the information in the signature (sorts, subsorts, operators, and equational attributes such
as assoc, comm, etc.) is supposed to be correct and will not be considered during the debugging process.

3. A calculus for debugging

Now we will describe debugging trees for both wrong and missing answers. First, Section 3.1 presents
a calculus to deduce reductions, memberships, and rewrites. We will extend this calculus in Section 3.2 to
describe a calculus to compute normal forms, least sorts, and sets of reachable terms. From now on, we
assume a rewrite theory R = (Σ, E,R) satisfying the assumptions stated in the previous section.
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(Reflexivity)

e⇒ e
Rf⇒

e→ e
Rf→

(Transitivity)

e1 ⇒ e′ e′ ⇒ e2

e1 ⇒ e2
Tr⇒

e1 → e′ e′ → e2

e1 → e2
Tr→

(Congruence)

e1 ⇒ e′1 . . . en ⇒ e′n
f(e1, . . . , en)⇒ f(e′1, . . . , e

′
n)

Cong⇒
e1 → e′1 . . . en → e′n

f(e1, . . . , en)→ f(e′1, . . . , e
′
n)

Cong→

(Replacement)

{θ(ui) ↓ θ(u′i)}ni=1 {θ(vj) : sj}mj=1 {θ(wk)⇒ θ(w′k)}lk=1

θ(e)⇒ θ(e′)
Rep⇒

if e⇒ e′ ⇐
Vn
i=1 ui = u′i ∧

Vm
j=1 vj : sj ∧

Vl
k=1 wk ⇒ w′k

{θ(ui) ↓ θ(u′i)}ni=1 {θ(vj) : sj}mj=1

θ(e)→ θ(e′)
Rep→

if e→ e′ ⇐
Vn
i=1 ui = u′i ∧

Vm
j=1 vj : sj

(Equivalence Class) (Subject Reduction)

e→ e′ e′ ⇒ e′′ e′′ → e′′′

e⇒ e′′′
EC

e→ e′ e′ : s

e : s
SRed

(Membership)

{θ(ui) ↓ θ(u′i)}ni=1 {θ(vj) : sj}mj=1

θ(e) : s
Mb

if e : s⇐
Vn
i=1 ui = u′i ∧

Vm
j=1 vj : sj

Figure 1: Semantic calculus for Maude modules

3.1. A calculus for wrong answers
We show here a calculus to deduce judgments for reductions e → e′, memberships e : s, and rewrites

e ⇒ e′. The inference rules for this calculus, shown in Figure 1, are an adaptation of the rules presented
in [2, 22] for membership equational logic and in [21, 4] for rewriting logic. Remember that the notation
θ(ui) ↓ θ(u′i) is an abbreviation of ∃ti.θ(ui) → ti ∧ θ(u′i) → ti. As usual, we represent deductions in
the calculus as proof trees, where the premises are the child nodes of the conclusion at each inference
step. We assume that the inference labels Rep⇒, Rep→, and Mb decorating the inference steps contain
information about the particular rewrite rule, equation, and membership axiom, respectively, applied during
the inference. This information will be used by the debugger in order to present to the user the incorrect
fragment of code causing the error.

For example, we can try to build the proof tree for the following reduction:

Maude> (red isOk([1,1][1,2]) .)

result Bool : true

Figures 2 and 3 depict the proof tree associated to this reduction, where c stands for contains, t
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isOk([1,1][1,2])→ rhs
Rep→

5 5
1 >= 1→ t

Tr
. . .

5 5
2 <= 8→ t

Tr
�
�
A
A1

5
(•) rhs → t and ... and t

Cong
5 5

t and ... and t→ t
Tr

rhs → t
Tr

isOk([1,1][1,2])→ t
Tr

Figure 2: Tree for the reduction of isOk([1,1][1,2])

c([1,1],[1,2])→ t1
Rep→

[1,1] == [1,2]→ f
Rep→

t1 → t2
Cong

t2 → c(nil,[1,2])
Rep→

c(nil,[1,2])→ f
Rep→

t2 → f
Tr

t1 → t
Tr

c([1,1], [1,2])→ f
Tr

not(c([1,1],[1,2]))→ not(f)
Cong

not(f)→ t
Rep→

not(c([1,1],[1,2]))→ t
Tr

Figure 3: Tree ��AA1 for not(c([1,1],[1,2]))

for true, f for false, rhs for 1 >= 1 and 2 >= 1 and 1 <= 8 and 2 <= 8 and not(c([1,1],[1,2]))
and not(c(wall,[1,2])), t1 for if [1,1] == [1,2] then t else c(nil,[1,2]) fi, t2 for if f then
t else c(nil,[1,2]) fi, and each 5 abbreviates a computation not shown here. In order to obtain the
result we use the transitivity inference rule, whose left premise applies the replacement rule with the equation
for isOk, obtaining the term rhs, that will be further reduced in the right premise to obtain t by means of
another transitivity step. The left child of this last node reduces all the subterms in rhs to t, while the right
one just applies the usual equations for conjunctions to obtain the final result. While the first reductions in
the premises of the node (•) correspond to arithmetic computations and will not been shown here, the last
two are more complex. Figure 3 describes the tree ��AA1 , that proves how one of the subterms using equations
defined by the user is reduced to t, while the tree on its right is very similar and will not be studied in
depth. The tree ��AA1 reduces in its left child the inner subterm to f by traversing the list of positions (in this
case the only element in the list is [1,1]), reducing the if_then_else_fi term in t1 and then applying the
equation for the empty list nil. Then, the right child of the root applies the predefined equation for not to
obtain the final result.

In our debugging framework we assume the existence of an intended interpretation I of the given rewrite
theory R = (Σ, E,R). This intended interpretation is a Σ-term model corresponding to the model that
the user had in mind while writing the specification R. Therefore the user expects that I |= e ⇒ e′,
I |= e→ e′, and I |= e : s for each rewrite e⇒ e′, reduction e→ e′, and membership e : s computed w.r.t.
the specification R. As a term model, I must satisfy the following proposition:

Proposition 1. Let R = (Σ, E,R) be a rewrite theory and let T = TΣ/E′,R′ be any Σ-term model. If a
statement e ⇒ e′ (respectively e → e′, e : s) can be deduced using the semantic calculus rules reflexivity,
transitivity, congruence, equivalence class, or subject reduction using premises that hold in T , then T |=
e⇒ e′ (respectively T |= e→ e′, T |= e : s).

Observe that this proposition cannot be extended to the membership and replacement inference rules,
where the correctness of the conclusion depends not only on the calculus but also on the associated specifi-
cation statement, which could be wrong.

3.2. A calculus for missing answers
The calculus in this section, that extends the one shown in the previous section, will be used to infer the

normal form of a term, the least sort of a term, and, given a term and some constraints, the complete set of
reachable terms from this term that fulfill the requirements.3 The proof trees built with this calculus have

3The requirements of this last inference mimic the ones used in the Maude’s breadth-first search, which is usually used to
detect the existence of missing answers.
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nodes that justify the positive information (why the normal form is reached, the least sort is obtained, and
the terms are included in the corresponding sets) but also nodes that justify the negative information (why
the normal form is no further reduced, why no smaller sort can be obtained for the term, and why there are
no more terms in the sets). These latter nodes are then used in the debugging trees to localize as much as
possible the reasons responsible for missing answers. Throughout this paper we only consider a special kind
of conditions and substitutions that operate over them, called admissible, that we define as follows:

Definition 1. A condition C ≡ C1 ∧ · · · ∧ Cn is admissible if, for 1 ≤ i ≤ n,

• Ci is an equation ui = u′i or a membership ui : s and

vars(Ci) ⊆
i−1⋃
j=1

vars(Cj), or

• Ci is a matching condition ui := u′i, ui is a pattern and

vars(u′i) ⊆
i−1⋃
j=1

vars(Cj), or

• Ci is a rewrite condition ui ⇒ u′i, u
′
i is a pattern and

vars(ui) ⊆
i−1⋃
j=1

vars(Cj).

Definition 2. A condition C ≡ P := ~∧C1 ∧ · · · ∧Cn, where ~ denotes a special variable not occurring in
the rest of the condition, is admissible if P := t ∧ C1 ∧ · · · ∧ Cn is admissible for t any ground term.

Definition 3. A kind-substitution, denoted by κ, is a mapping from variables to terms of the form v1 7→
t1; . . . ; vn 7→ tn such that ∀1≤i≤n . kind(vi) = kind(ti), that is, each variable has the same kind as the
associated term.

Definition 4. A substitution, denoted by θ, is a mapping from variables to terms of the form v1 7→
t1; . . . ; vn 7→ tn such that ∀1≤i≤n . sort(vi) ≥ ls(ti), that is, the sort of each variable is greater than or
equal to the least sort of the associated term. Note that a substitution is a special type of kind-substitution
where each term has the sort appropriate to its variable.

Definition 5. Given an atomic condition C, we say that a substitution θ is admissible for C if

• C is an equation u = u′ or a membership u : s and vars(C) ⊆ dom(θ), or

• C is a matching condition u := u′ and vars(u′) ⊆ dom(θ), or

• C is a rewrite condition u⇒ u′ and vars(u) ⊆ dom(θ).

The calculus presented in this section (in Figures 4–7, and 12) will be used to deduce the following
judgments, that we introduce together with their meaning for a Σ-term model T ′ = TΣ/E′,R′ defined by
equations and memberships E′ and by rules R′:

• Given a term t and a kind-substitution κ, T ′ |= adequateSorts(κ)  Θ when either Θ = {κ} and
∀v ∈ dom(κ).T ′ |= κ[v] : sort(v), or Θ = ∅ and ∃v ∈ dom(κ).T ′ 6|= κ[v] : sort(v), where κ[v] denotes
the term bound by v in κ. That is, when all the terms bound in the kind-substitution κ have the
appropriate sort, then κ is a substitution and it is returned; otherwise (at least one of the terms has
an incorrect sort), the kind-substitution is not a substitution and the empty set is returned.4

4Do not confuse, in the judgments inferring sets of substitutions, the empty set of substitutions ∅, which indicates that no
substitutions fulfill the condition, with the set containing the empty substitution {∅}, which indicates that the condition is
fulfilled and the condition is ground.
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• Given an admissible substitution θ for an atomic condition C, T ′ |= [C, θ] Θ when

Θ = {θ′ | T ′, θ′ |= C and θ′ �dom(θ)= θ},

that is, Θ is the set of substitutions that fulfill the atomic condition C and extend θ by binding the
new variables appearing in C.

• Given a set of admissible substitutions Θ for an atomic condition C, T ′ |= 〈C,Θ〉 Θ′ when

Θ′ = {θ′ | T ′, θ′ |= C and θ′ �dom(θ)= θ for some θ ∈ Θ},

that is, Θ′ is the set of substitutions that fulfill the condition C and extend any of the admissible
substitutions in Θ.

• T ′ |= disabled(a, t) when the equation or membership a cannot be applied to t at the top.

• T ′ |= t→red t
′ when either T ′ |= t→1

E′ t
′ or T ′ |= ti →!

E′ t
′
i, with ti 6= t′i, for some subterm ti of t such

that t′ = t[ti 7→ t′i], that is, the term t is either reduced one step at the top or reduced by substituting
a subterm by its normal form.

• T ′ |= t→norm t′ when T ′ |= t→!
E′ t
′, that is, t′ is in normal form with respect to the equations E′.

• Given an admissible condition C ≡ P := ~ ∧ C1 ∧ · · · ∧ Cn, T ′ |= fulfilled(C, t) when there exists a
substitution θ such that T ′, θ |= P := t ∧ C1 ∧ · · · ∧ Cn, that is, C holds when ~ is substituted by t.

• Given an admissible condition C as before, T ′ |= fails(C, t) when there exists no substitution θ such
that T ′, θ |= P := t ∧ C1 ∧ · · · ∧ Cn, that is, C does not hold when ~ is substituted by t.

• T ′ |= t :ls s when T ′ |= t : s and moreover s is the least sort with this property (with respect to the
ordering on sorts obtained from the signature Σ and the equations and memberships E′ defining the
Σ-term model T ′).

• T ′ |= t⇒top S when S = {t′ | t→top
R′ t

′}, that is, the set S is formed by all the reachable terms from t
by exactly one rewrite at the top with the rules R′ defining T ′. Moreover, equality in S is modulo E′,
i.e., we are implicitly working with equivalence classes of ground terms modulo E′.

• T ′ |= t ⇒q S when S = {t′ | t →top
{q} t

′}, that is, the set S is the complete set of reachable terms
(modulo E′) obtained from t with one application of the rule q ∈ R′ at the top.

• T ′ |= t ⇒1 S when S = {t′ | t →1
R′ t

′}, that is, the set S is constituted by all the reachable terms
(modulo E′) from t in exactly one step, where the rewrite step can take place anywhere in t.

• T ′ |= t  Cn S when S = {t′ | t →≤nR′ t′ and T ′ |= fulfilled(C, t′)}, that is, S is the set of all the terms
(modulo E′) that satisfy the admissible condition C and are reachable from t in at most n steps.

• T ′ |= t +CnS as before, but with reachability from t in at least one step and in at most n steps.

• T ′ |= t  !CnS when S = {t′ | t →≤nR′ t′ and T ′ |= fulfilled(C, t′) and t′ 6→R′}, that is, now the terms
(modulo E′) in S are final, meaning that they cannot be further rewritten.

We first introduce in Figure 4 the inference rules defining the relations [C, θ]  Θ, 〈C,Θ〉  Θ′, and
adequateSorts(κ)  Θ. Intuitively, these judgments will provide positive information when they lead to
nonempty sets (indicating that the condition holds in the first two judgments or that the kind-substitution
is a substitution in the third one) and negative information when they lead to the empty set (indicating
respectively that the condition fails or the kind-substitution is not a substitution):
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θ(t2)→norm t′ adequateSorts(κ1) Θ1 . . . adequateSorts(κn) Θn

[t1 := t2, θ] 
Sn
i=1 Θi

PatC

if {κ1, . . . , κn} = {κθ | κ(θ(t1)) ≡A t′}

t1 : sort(v1) . . . tn : sort(vn)

adequateSorts(v1 7→ t1; . . . ; vn 7→ tn) {v1 7→ t1; . . . ; vn 7→ tn}
AS1

ti :ls si
adequateSorts(v1 7→ t1; . . . ; vn 7→ tn) ∅

AS2 if si 6≤sort(vi)

θ(t) : s

[t : s, θ] {θ}
MbC1

θ(t) :ls s
′

[t : s, θ] ∅ MbC2 if s′ 6≤ s

θ(t1) ↓ θ(t2)

[t1 = t2, θ] {θ}
EqC1

θ(t1)→norm t′1 θ(t2)→norm t′2

[t1 = t2, θ] ∅
EqC2 if t′1 6≡At

′
2

θ(t1) t2 := ~
n+1 S

[t1 ⇒ t2, θ] {θ′θ | θ′(θ(t2)) ∈ S}
RlC if n = min(x ∈ N : ∀i ≥ 0 (θ(t1) t2 := ~

x+i S))

[C, θ1] Θ1 · · · [C, θm] Θm

〈C, {θ1, . . . , θm}〉 
m[
i=1

Θi

SubsCond

Figure 4: Calculus for substitutions

• Rule PatC computes all the possible substitutions that extend θ and satisfy the matching of the term
t2 with the pattern t1 by first computing the normal form t′ of t2, obtaining then all the possible
kind-substitutions κ that make t′ and θ(t1) equal modulo axioms (indicated by ≡A), and finally
checking that the terms assigned to each variable in the kind-substitutions have the appropriate sort
with adequateSorts(κ). The union of the set of substitutions thus obtained constitutes the set of
substitutions that satisfy the matching.

• Rule AS1 checks whether the terms of the kind-substitution have the appropriate sort to match the
variables. In this case the kind-substitution is a substitution and it is returned.

• Rule AS2 indicates that, if any of the terms in the kind-substitution has a sort bigger than the required
one, then it is not a substitution and thus the empty set of substitutions is returned.

• Rule MbC1 returns the current substitution if a membership condition holds.

• Rule MbC2 is used when the membership condition is not satisfied. It checks that the least sort of
the term is not less than or equal to the required one, and thus the substitution does not satisfy the
condition and the empty set is returned.

• Rule EqC1 returns the current substitution when an equality condition holds, that is, when the two
terms can be joined.

• Rule EqC2 checks that an equality condition fails by obtaining the normal forms of both terms and
then examining that they are different.

• Rewrite conditions are handled by rule RlC. This rule extends the set of substitutions (where we use
the juxtaposition of substitutions to express composition) by computing all the reachable terms that
satisfy the pattern (using the relation t Cn S explained below) and then using these terms to obtain
the new substitutions.
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[l := t, ∅] Θ0 〈C1,Θ0〉 Θ1 . . . 〈Cn,Θn−1〉 ∅
disabled(a, t)

Dsb

if a ≡ l→ r ⇐ C1 ∧ . . . ∧ Cn ∈ E or
a ≡ l : s⇐ C1 ∧ . . . ∧ Cn ∈ E

{θ(ui) ↓ θ(u′i)}ni=1 {θ(vj) : sj}mj=1

θ(l)→red θ(r)
Rdc1 if l→r⇐

Vn
i=1 ui=u′i∧

Vm
j=1 vj :sj∈E

t→norm t′

f(t1, . . . , t, . . . , tn)→red f(t1, . . . , t
′, . . . , tn)

Rdc2 if t6≡At
′

disabled(e1, f(t1, . . . , tn)) . . . disabled(el, f(t1, . . . , tn)) t1 →norm t1 . . . tn →norm tn

f(t1, . . . , tn)→norm f(t1, . . . , tn)
Norm

if {e1, . . . , el} = {e ∈ E | e�top
K f(t1, . . . , tn)}

t→red t1 t1 →norm t′

t→norm t′
NTr

t→norm t′ t′ : s disabled(m1, t
′) . . . disabled(ml, t

′)

t :ls s
Ls

if {m1, . . . ,ml} = {m ∈ E | m�top
K t′ ∧ sort(m) < s}

Figure 5: Calculus for normal forms and least sorts

• Finally, rule SubsCond computes the extensions of a set of admissible substitutions for C {θ1, . . . , θn}
by using the rules above with each of them.

We use these judgments to define the inference rules of Figure 5, that describe how the normal form and
the least sort of a term are computed:

• Rule Dsb indicates when an equation or membership a cannot be applied to a term t. It checks that
there are no substitutions that satisfy the matching of the term with the lefthand side of the statement
and that fulfill its condition. Note that we check the conditions from left to right, following the same
order as Maude and making all the substitutions admissible.

• Rule Rdc1 reduces a term by applying one equation when it checks that the conditions can be satisfied,
where the matching conditions are included in the equality conditions. While in the previous rule
we made explicit the evaluation from left to right of the condition to show that finally the set of
substitutions fulfilling it was empty, in this case we only need one substitution to fulfill the condition
and the order is unimportant.

• Rule Rdc2 reduces a term by reducing a subterm to normal form (checking in the side condition that
it is not already in normal form).

• Rule Norm states that the term is in normal form by checking that no equations can be applied at the
top considering the variables at the kind level (which is indicated by �top

K ) and that all its subterms
are already in normal form.

• Rule NTr describes the transitivity for the reduction to normal form. It reduces the term with the
relation →red and the term thus obtained then is reduced to normal form by using again →norm .

• Rule Ls computes the least sort of the term t. It computes a sort for its normal form (that has the
least sort of the terms in the equivalence class) and then checks that memberships deducing smaller
sorts cannot be applied.
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fulfilled(C, t)
t C0 {t}

Rf1
fails(C, t)
t C0 ∅

Rf2

θ(P ) ↓ t {θ(ui) ↓ θ(u′i)}ni=1 {θ(vj) : sj}mj=1 {θ(wk)⇒ θ(w′k)}lk=1

fulfilled(C, t)
Fulfill

if C ≡ P := ~ ∧
Vn
i=1 ui = u′i ∧

Vm
j=1 vj : sj ∧

Vl
k=1 wk ⇒ w′k

[P := t, ∅] Θ0 〈C1,Θ0〉 Θ1 · · · 〈Ck,Θk−1〉 ∅
fails(C, t)

Fail if C ≡ P := ~ ∧ C1 ∧ . . . ∧ Ck

Figure 6: Calculus for solutions

In these rules Dsb provides the negative information, proving why the statements (either equations or
membership axioms) cannot be applied, while the remaining rules provide the positive information indicating
why the normal form and the least sort are obtained.

Once these rules have been introduced, we can use them in the rules defining the relation t Cn S. First,
we present in Figure 6 the rules related to n = 0 steps:

• Rule Rf1 indicates that when only zero steps can be used and the current term fulfills the condition,
the set of reachable terms consists only of this term.

• Rule Rf2 complements Rf1 by defining the empty set as result when the condition does not hold.

• Rule Fulfill checks whether a term satisfies a condition. The premises of this rule check that all the
atomic conditions hold, taking into account that it starts with a matching condition with a hole that
must be filled with the current term and thus proved with the premise θ(P ) ↓ t (the rest of the
matching conditions are included in the equality conditions). Note that when the condition is satisfied
we do not need to check all the substitutions, but only to verify that there exists one substitution
that makes the condition true.

• To check that a term does not satisfy a condition, it is not enough to check that there exists a
substitution that makes it fail; we must make sure that there is no substitution that makes it true. This
is indicated by rule Fail, which uses the rules shown in Figure 4 to prove that the set of substitutions
that satisfy the condition (where the first set of substitutions is obtained from the first matching
condition filling the hole with the current term) is empty. Note that, while rule Fulfill provides the
positive information indicating that a condition is fulfilled, this one provides the negative information,
proving that the condition does not hold.

Now we introduce in Figure 7 the rules defining the relation t Cn S when the bound n is greater than 0,
which can be understood as searches in zero or more steps:

• Rules Tr1 and Tr2 show the behavior of the calculus when at least one step can be used. First, we check
whether the condition holds (rule Tr1) or not (rule Tr2) for the current term, in order to introduce
it in the result set. Then, we obtain all the terms reachable in one step with the relation ⇒1, and
finally we compute the reachable solutions from these terms constrained by the same condition and
the bound decreased by one step. The union of the sets obtained in this way and the initial term, if
needed, corresponds to the final result set.

• Rule Stp shows how the set for one step is computed. The result set is the union of the terms obtained
by applying each rule at the top (calculated with t ⇒top S) and the terms obtained by rewriting the
arguments of the term one step. This rule can be straightforwardly adapted to the more general case in
which the operator f has some frozen arguments (i.e., that cannot be rewritten); the implementation
of the debugger makes use of this more general rule.
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fulfilled(C, t) t⇒1 {t1, . . . , tk} t1  Cn S1 . . . tk  Cn Sk

t Cn+1

k[
i=1

Si ∪ {t}

Tr1

fails(C, t) t⇒1 {t1, . . . , tk} t1  Cn S1 . . . tk  Cn Sk

t Cn+1

k[
i=1

Si

Tr2

f(t1, . . . , tm)⇒top St t1 ⇒1 S1 · · · tm ⇒1 Sm

f(t1, . . . , tm)⇒1 St ∪
Sm
i=1{f(t1, . . . , ui, . . . , tm) | ui ∈ Si}

Stp

t⇒q1 Sq1 · · · t⇒ql Sql

t⇒top
l[
i=1

Sqi

Top if {q1, . . . , ql} = {q ∈ R | q �top
K t}

[l := t, ∅] Θ0 〈C1,Θ0〉 Θ1 · · · 〈Ck,Θk−1〉 Θk

t⇒q
[

θ∈Θk

{θ(r)}
Rl if q : l⇒ r ⇐ C1 ∧ . . . ∧ Ck ∈ R

t→norm t1 t1  Cn {t2} ∪ S t2 →norm t′

t Cn {t′} ∪ S
Red1

Figure 7: Calculus for missing answers

• How to obtain the terms by rewriting at the top is explained by rule Top, which specifies that the result
set is the union of the sets obtained with all the possible applications of each rule in the program.
We have restricted these rules to those whose lefthand side, with the variables considered at the kind
level, matches the term, represented with notation q �top

K t, where q is the label of the rule and t the
current term.

• Rule Rl uses the rules in Figure 4 to compute the set of terms obtained with the application of a
single rule. First, the set of substitutions obtained from matching with the lefthand side of the rule
is computed, and then it is used to find the set of substitutions that satisfy the condition. This final
set is used to instantiate the righthand side of the rule to obtain the set of reachable terms. The kind
of information provided by this rule corresponds to the information provided by the substitutions; if
the empty set of substitutions is obtained (negative information) then the rule computes the empty
set of terms, which also corresponds with negative information proving that no terms can be obtained
with this rewrite rule; analogously when the set of substitutions is nonempty (positive information).
This information is propagated through the rest of the inference rules justifying why some terms are
reachable while others are not.

• Finally, rule Red1 reduces the reachable terms in order to obtain their normal forms. We use this rule
to reproduce Maude behavior, first the normal form of the term is computed and then the rules are
applied.

Now we prove that this calculus is correct in the sense that the derived judgments with respect to the
rewrite theory R = (Σ, E,R) coincide with the ones satisfied by the corresponding initial model TΣ/E,R,
i.e., for any judgment ϕ, ϕ is derivable in the calculus if and only if TΣ/E,R |= ϕ.

Theorem 1. The calculus of Figures 4, 5, 6, and 7 is correct.

Once these rules are defined, we can build the tree corresponding to the search result shown in Section 2.5
for the maze example. We recall that we have defined a system to search a path out of a labyrinth but,
given a concrete labyrinth with an exit, the program is unable to find it:
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Maude> (search {[1,1]} =>* {L:List} s.t. isSol(L:List) .)

search in MAZE :{[1,1]} =>* {L:List}.

No solution.

First of all, we have to use a concrete bound to build the tree. It must suffice to compute all the reachable
terms, and in this case the least of these values is 4. We have depicted the tree in Figure 8, where we have
abbreviated the equational condition {L:List} := ~∧ isSol(L:List) = true by C and isSol(L:List) =
true by isSol(L). The leftmost tree justifies that the search condition does not hold for the initial term
(this is the reason why Tr2 has been used instead of Tr1) and thus it is not a solution. Note that first the
substitutions from the matching with the pattern are obtained (L 7→ [1,1] in this case), and then these
substitutions are used to instantiate the rest of the condition, that for this term does not hold, which is
proved by ��AA2 . The next tree shows the set of reachable terms in one step (the tree ��AA3 , explained below,
computes the terms obtained by rewrites at the top, while the tree on its right shows that the subterms
cannot be further rewritten) and finally the rightmost tree, that has a similar structure to this one and will
not be studied in depth, continues the search with the bound decreased in one step.

1→norm 1
Norm

[1,1]→norm [1,1]
Norm

{[1,1]}→norm {[1,1]}
Norm

[{L} := {[1,1]}, ∅] {L 7→ [1,1]}
PatC

�
�
A
A2

〈isSol(L), {L 7→ [1,1]}〉 ∅
SubsCond

fails(C, {[1,1]})
Fail

�
�
A
A3 [1,1]⇒top ∅

Top
1⇒top ∅

Top

1⇒1 ∅
Stp

[1,1]⇒1 ∅
Stp

{[1,1]}⇒1 {{[1,1][1,2]}}
Stp

5
{[1,1][1,2]} C3 ∅

Tr2

{[1,1]} C4 ∅
Tr2

Figure 8: Tree for the maze example

The tree ��AA2 shows why the current list is not a solution (i.e., the tree provides the negative information
proving that this fragment of the condition does not hold). The reason is that the function isSol is reduced
to false, when we needed it to be reduced to true.

isSol([1,1])→red false
Rdc1

false→norm false
Norm

isSol([1,1])→norm false
NTr

true→norm true Norm

[isSol(L) = true, L 7→ [1,1]] ∅
EqC2

Figure 9: Tree ��AA2 for the search condition

The tree labeled with ��AA3 is sketched in Figure 10. In this tree the applications of all the rules whose
lefthand side matches the current term ({[1,1]}) are tried. In this case only the rule expand (abbreviated
by e) can be used, and it generates a list with the new position [1,2]; the tree ��AA4 is used to justify
that the first condition of expand holds and extends the set of substitutions that fulfill the condition
thus far to the set {θ1, θ2, θ3}, where θ1 ≡ L 7→ [1,1]; P 7→ [1,2], θ2 ≡ L 7→ [1,1]; P 7→ [1,0], and
θ3 ≡ L 7→ [1,1]; P 7→ [0,1]. The substitution θ1 also fulfills the next condition, isOk(L P), which is
proved with the rule EqC1 in (♣) (where ��AA5 is the proof tree shown in Figure 2, proving that the condition
holds), while the substitutions θ2 and θ3 fail; the trees 5 proving it are analogous to the one shown in
Figure 9. This substitution θ1 is thus the only one inferred in the root of the tree, where the node (♣)
provides the positive information proving why the substitution is obtained and its siblings (5) the negative
information proving why the other substitutions are not in the set.

The tree ��AA4 , shown in Figure 11, is in charge of inferring the set of substitutions obtained when checking
the first condition of the rule expand, namely next(L) => P. The condition is instantiated with the substi-
tution obtained from matching the term with the lefthand side of the rule (in this case L 7→ [1,1]) and,
since it is a rewrite condition, the set of reachable terms is used to extend this substitution, obtaining a set
with three different substitutions (that we previously abbreviated as θ1, θ2, and θ3).
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1→norm 1
Norm

{[1,1]}→norm {[1,1]}
Norm

[{L} := {[1,1]}, ∅] {L 7→ [1,1]}
PatC

�
�
A
A4

�
�
A
A5

true→ true
Rf→

(♣) [isOk(L P), θ1] {θ1}
EqC1 5 5

〈isOk(L P), {θ1, θ2, θ3}〉 {θ1}
SubsCond

{[1,1]}⇒e {{[1,1][1,2]}}
Rl

{[1,1]}⇒top {{[1,1][1,2]}}
Top

Figure 10: Tree ��AA3 for the applications at the top

5
next([1,1]) P:=~

2 {[1,2], [1,0], [0,1]}
Tr2

[next(L)⇒ P, L 7→ [1,1]] {L 7→ [1,1]; P 7→ [1,2], L 7→ [1,1]; P 7→ [1,0], L 7→ [1,1]; P 7→ [0,1]}
RlC

〈next(L)⇒ P, {L 7→ [1,1]}〉 {L 7→ [1,1]; P 7→ [1,2], L 7→ [1,1]; P 7→ [1,0], L 7→ [1,1]; P 7→ [0,1]}
SubsCond

Figure 11: Tree ��AA4 for the first condition of expand

There are two additional kinds of search allowed in our framework: searches for final terms and searches
in one or more steps. Figure 12 presents the inference rules for these cases:

• Rules Rf3 and Rf4 are applied when the set of reachable terms in one step is empty (that is, when the
term is final). They check whether the term, in addition to being final, fulfills the condition in order
to insert it in the result set when appropriate.

• Rule Rf5 specifies that, if the term is not final but no more steps are allowed, then the set of reachable
final terms is empty.

• Rule Tr3 shows the transitivity for this kind of search. Since the term is not final, it is not necessary
to check whether it fulfills the condition.

• Rule Red2 reduces the reachable final terms in order to obtain their normal forms.

• If only zero steps are available in searches where at least one is required, the empty set is obtained,
which is indicated in rule Rf6.

• When at least one step can be used we apply rule Tr4, that indicates that one step is used, and then
the relation for zero or more steps is used with the results in order to obtain the final solutions.

The correctness of these inference rules with respect to the initial model TΣ/E,R is proved in the following
theorem:

Theorem 2. The calculus of Figure 12 is correct.

Following the approach shown in the previous section, we assume the existence of an intended interpre-
tation I of the given rewrite theory R = (Σ, E,R). As any Σ-term model, I must satisfy the following
soundness propositions:

Proposition 2. Let R = (Σ, E,R) be a rewrite theory, C an atomic condition, θ an admissible substitution,
and TΣ/E′,R′ any Σ-term model. If adequateSorts(κ) Θ, [C, θ] Θ, or 〈C,Θ〉 Θ′ can be deduced using
the rules from Figure 4 using premises that hold in TΣ/E′,R′ , then also TΣ/E′,R′ |= adequateSorts(κ) Θ,
TΣ/E′,R′ |= [C, θ] Θ, and TΣ/E′,R′ |= 〈C,Θ〉 Θ′, respectively.

Proposition 3. Let R = (Σ, E,R) be a rewrite theory and ϕ a judgment deduced with the inference rules
Dsb, Rdc2, or NTr from Figure 5 from premises that hold in TΣ/E′,R′ . Then also TΣ/E′,R′ |= ϕ.
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fulfilled(C, t) t⇒1 ∅
t !Cn {t}

Rf3

fails(C, t) t⇒1 ∅
t !Cn ∅

Rf4

t⇒1 S

t !C0 ∅
Rf5 S 6= ∅

t⇒1 {t1, . . . , tk} t1  !CnS1 . . . tk  !CnSk

t !Cn+1

k[
i=1

Si

Tr3 if k > 0

t→ t1 t1  !Cn{t2} ∪ S t2 → t′

t !Cn{t′} ∪ S
Red2

t +C0∅
Rf6

t→ t′ t′ ⇒1 {t1, . . . , tk} t1  Cn S1 . . . tk  Cn Sk

t +Cn+1

k[
i=1

Si

Tr4

Figure 12: Calculus for final and one or more steps searches

Proposition 4. Let R = (Σ, E,R) be a rewrite theory, C an admissible condition, and TΣ/E′,R′ any Σ-term
model. If t C0 S can be deduced using rules Rf1 or Rf2 from Figure 6 using premises that hold in TΣ/E′,R′ ,
then also TΣ/E′,R′ |= t C0 S.

Proposition 5. Let R = (Σ, E,R) be a rewrite theory, C an admissible condition, n a natural number, and
TΣ/E′,R′ any Σ-term model. If t  Cn S or t ⇒1 S can be deduced by means of the rules in Figure 7 using
premises that hold in TΣ/E′,R′ , then also TΣ/E′,R′ |= t Cn S or TΣ/E′,R′ |= t⇒1 S, respectively.

Proposition 6. Let R = (Σ, E,R) be a rewrite theory, C an admissible condition, n a natural number, and
TΣ/E′,R′ any Σ-term model. If a statement t  !Cn S or t  +Cn S can be deduced by means of the rules in
Figure 12 using premises that hold in TΣ/E′,R′ , then also TΣ/E′,R′ |= t  !Cn S or TΣ/E′,R′ |= t  +Cn S,
respectively.

Observe that these soundness propositions cannot be extended to the Ls, Fulfill, Fail, Top, and Rl inference
rules, where the soundness of the conclusion depends not only on the calculus but also on the specification,
which could be wrong.

4. Debugging trees

We describe in this section how to obtain appropriate debugging trees from the proof trees introduced
in the previous section. First, we describe the errors that can be found with these proof trees; then, we
describe how they can be abbreviated in such a way that soundness and completeness are kept while easing
the debugging sessions.
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4.1. Debugging with proof trees
As explained in the previous sections, we assume the existence of an intended interpretation I of the

given rewrite theory R = (Σ, E,R). This intended interpretation is a Σ-term model corresponding to the
model that the user had in mind while writing the specification R. We will say that a judgment is valid
when it holds in the intended interpretation I, and invalid otherwise. Our goal is to find a buggy node (an
invalid node with all its children correct) in any proof tree T rooted by the initial error symptom detected
by the user. This could be done simply by asking the user questions about the validity of the nodes in the
tree according to the following top-down strategy:

Input: A tree T with an invalid root.

Output: A buggy node in T .

Description: Consider the root N of T . There are two possibilities:

• If all the children of N are valid, then finish pointing out N as buggy.
• Otherwise, select the subtree rooted by any invalid child and recursively use the same

strategy to find the buggy node.

Proving that this strategy is complete is straightforward by using induction on the height of T . As an
easy consequence, the following result holds:

Proposition 7. Let T be a proof tree with an invalid root. Then there exists a buggy node N ∈ T such that
all the ancestors of N are invalid.

By using the proof trees computed with the calculus of the previous section as debugging trees we are
able to locate wrong statements, missing statements, and wrong search conditions, which are defined as
follows:

• Given a statement A ⇐ C1 ∧ · · · ∧ Cn (where A is either an equation l = r, a membership l : s, or a
rule l⇒ r) and a substitution θ, the statement instance θ(A)⇐ θ(C1)∧ · · · ∧ θ(Cn) is wrong when all
the atomic conditions θ(Ci) are valid in I but θ(A) is not.

• Given a rule l ⇒ r ⇐ C1 ∧ · · · ∧ Cn and a term t, the rule has a wrong instance if the judgments
[l := t, ∅]  Θ0, [C1,Θ0]  Θ1, . . ., [Cn,Θn−1]  Θn are valid in I but the application of Θn to the
righthand side does not provide all the results expected for this rule.

• Given a condition l := ~ ∧ C1 ∧ · · · ∧ Cn and a term t, if [l := t, ∅]  Θ0, [C1,Θ0]  Θ1, . . .,
[Cn,Θn−1] ∅ are valid in I (meaning that the condition does not hold for t) but the user expected
the condition to hold, then we have a wrong search condition instance.

• Given a condition l := ~ ∧ C1 ∧ · · · ∧ Cn and a term t, if there exists a substitution θ such that
θ(l) ≡A t and all the atomic conditions θ(Ci) are valid in I, but the condition is not expected to hold,
then we also have a wrong search condition instance.

• A statement or condition is wrong when it admits a wrong instance.

• Given a term t, there is a missing equation for t if t is not expected to be in normal form and none of
the equations in the specification are expected to be applied to it.

• A specification has a missing equation if there exists a term t such that there is a missing equation for
t.

• Given a term t, there is a missing membership for t if t is an expected normal form such that the
computed least sort of t is not the expected one and none of the membership axioms in the specification
are expected to be applied to it.
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Rep→ Wrong equation
Rep⇒ Wrong rule

Mb Wrong membership
Rdc1 Wrong equation
Norm Missing equation

Ls Missing membership
Fulfill Wrong search condition
Fail Wrong search condition
Top Missing rule
Rl Wrong rule

Table 3: Errors detected by the proof trees

• A specification has a missing membership if there exists a term t such that there is a missing mem-
bership for t.

• Given a term t, there is a missing rule for t if all the rules applied to t at the top lead to judgments
t ⇒qi Sqi

valid in I but the union
⋃
Sqi

does not contain all the reachable terms from t by using
rewrites at the top.

• A specification has a missing rule if there exists a term t such that there is a missing rule for t.

We relate these definitions with our calculus in the following proposition:

Proposition 8. Let N be a buggy node in some proof tree in the calculus of Figures 1, 4, 5, 6, 7, and 12
w.r.t. an intended interpretation I. Then:

1. N corresponds to the consequence of an inference rule in the first column of Table 3.
2. The error associated to N can be obtained from the inference rule as shown in the second column of

Table 3.

We assume that the nodes inferred with these inference rules are decorated with some extra information to
identify the error when they are pointed out as buggy. More specifically, nodes related to wrong statements
keep the label of the statement, nodes related to missing statements keep the operator at the top that
requires more statements to be defined, and nodes related to wrong conditions keep the condition. With
this information available, when a wrong statement is found this specific statement is pointed out; when
a missing statement is found, the debugger indicates the operator at the top of the term in the lefthand
side of the statement that is missing; and when a wrong condition is found, the specific condition is shown.
Actually, when a missing statement is found what the debugger reports is that a statement is missing or
the conditions in the remaining statements are not the intended ones (thus they are not applied when
expected and another one would be needed), but the error is not located in the statements used in the
conditions, since they are also checked during the debugging process. Finally, it is important not to confuse
missing answers with missing statements; the current calculus detects missing answers due to both wrong
and missing statements and wrong search conditions.

4.2. Abbreviated proof trees
We will not use the proof trees T computed in the previous sections directly as debugging trees, but a

suitable abbreviation which we denote by APT (T ) (from Abbreviated Proof Tree), or simply APT if the
proof tree T is clear from the context. The reason for preferring the APT to the original proof tree is
that it reduces and simplifies the questions that will be asked to the user while keeping the soundness and
completeness of the technique. This transformation relies on Proposition 8: only potential buggy nodes are
kept.

25



The rules for deriving an APT can be seen in Figure 13. The abbreviation always starts by applying
(APT1). This rule simply duplicates the root of the tree and applies APT ′, which receives a proof tree
and returns a forest (i.e., a set of trees). Hence without this duplication the result of the abbreviation could
be a forest instead of a single tree. The rest of the APT rules correspond to the function APT ′ and are
assumed to be applied top-down: if several APT rules can be applied at the root of a proof tree, we must
choose the first one, that is, the rule with the lowest index. The following advantages are obtained with this
transformation:

• Questions associated to nodes with reductions are improved (rules (APT2), (APT3), (APT5),
(APT6), and (APT7)) by asking about normal forms instead of asking about intermediate states.
For example, in rule (APT2) the error associated to t1 → t2 is the one associated to t1 → t′, which is
not included in the APT . We have chosen to introduce t1 → t2 instead of simply t1 → t′ in the APT
as a pragmatic way of simplifying the structure of the APT s, since t2 is obtained from t′ and hence
likely simpler.

• The rule (APT4) deletes questions about rewrites at the top of a given term (that may be difficult to
answer due to matching modulo) and associates the information of those nodes to questions related
to the set of reachable terms in one step with rewrites in any position, that are in general easier to
answer.

• It creates, with the variants of the rules (APT8) and (APT9), two different kinds of tree, one that
contains judgments of rewrites with several steps and another that only contains rewrites in one step.
The one-step debugging tree strictly follows the idea of keeping only nodes corresponding to relevant
information. However, the many-steps debugging tree also keeps nodes corresponding to the transitivity
inference rules. The user will choose which debugging tree (one-step or many-steps) will be used for
the debugging session, taking into account that the many-steps debugging tree usually leads to shorter
debugging sessions (in terms of the number of questions) but with likely more complicated questions.
The number of questions is usually reduced because keeping the transitivity nodes for rewrites gives
some parts of the debugging tree the shape of a balanced binary tree (each transitivity inference has
two premises, i.e., two child subtrees), and this allows the debugger to efficiently use the divide and
query navigation strategy. On the contrary, removing the transitivity inferences for rewrites (as rules
(APTo

8) and (APTo
9) do) produces flattened trees where this strategy is no longer so efficient. On

the other hand, in rewrites t ⇒ t′ and searches t  Cn S appearing as the conclusion of a transitivity
inference rule, the judgment can be more complicated because it combines several inferences. The user
must balance the pros and cons of each option, and choose the best one for each debugging session.

• The rule (APT11) removes from the tree all the nodes which are not associated with relevant infor-
mation, since the rule (APT10) keeps the relevant information and the rules are applied in order.
We remove, for example, nodes related to judgments about sets of substitutions, disabled statements,
and rewrites with a concrete rule. Moreover, it removes trivial judgments, like the ones related to
reflexivity or congruence, from the tree.

• Since the APT is built without computing the associated proof tree, it reduces the time and space
needed to build the tree.

We can state the correctness and completeness of the debugging technique based on APT s:

Theorem 3. Let T be a finite proof tree representing an inference in the calculus of Figures 1, 4, 5, 6, 7,
and 12 w.r.t. some rewrite theory R. Let I be an intended interpretation of R such that the root of T is
invalid in I. Then:

• APT (T ) contains at least one buggy node (completeness).

• Any buggy node in APT (T ) has an associated wrong statement, missing statement, or wrong condition
in R according to Table 3 (correctness).
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(APT1) APT

„
T1 . . . Tn

ϕ
R1

«
=

APT ′
„

T1 . . . Tn
ϕ

R1

«
ϕ

(APT2) APT ′

0@ T1 . . . Tn
t1 → t′

Rep→
T ′

t1 → t2
Tr→

1A =


APT ′(T1) . . . APT ′(Tn) APT ′(T ′)

t1 → t2
Rep→

ff

(APT3) APT ′

0@ T1 . . . Tn
t→ t′′

Rdc1 T ′

t→ t′
NTr

1A =


APT ′ (T1) . . . APT ′ (Tn) APT ′ (T ′)

t→ t′
Rdc1

ff

(APT4) APT ′

0@ T1 . . . Tn
t⇒top S′

Top T ′1...T
′
m

t⇒1 S
Stp

1A =


APT ′ (T1) . . . APT ′ (Tn) APT ′

`
T ′1
´

. . . APT ′ (T ′m)
t⇒1 S

Top

ff

(APT5) APT ′

0@ T ′
T1 . . . Tn
t⇒ t′

Rep⇒
T ′′

t1 ⇒ t2
EC

1A =


APT ′(T ′) APT ′(T1) . . . APT ′(Tn) APT ′(T ′′)

t1 ⇒ t2
Rep⇒

ff

(APT6) APT ′

0@ T
T1 . . . Tn

ϕ′
R1 T ′

ϕ
Redi

1A =


APT ′ (T ) APT ′ (T1) . . . APT ′ (Tn) APT ′ (T )

ϕ
R1

ff

(APT7) APT ′
„

Tt→normt′ T1 . . . Tn
t :ls s

Ls

«
=


APT ′

`
Tt→normt′

´
APT ′ (T1) . . . APT ′ (Tn)
t ′ :ls s

Ls

ff

(APTo8) APT ′
„

T1 T2

t1 ⇒ t2
Tr⇒

«
= APT ′(T1)

S
APT ′(T2)

(APTm8 ) APT ′
„

T1 T2

t1 ⇒ t2
Tr⇒

«
=


APT ′(T1) APT ′(T2)

t1 ⇒ t2
Tr⇒

ff

(APTo9) APT ′
„

T1 . . . Tn
ϕ

Trj

«
= APT ′ (T1)

S
. . .

S
APT ′ (Tn)

(APTm9 ) APT ′
„

T1 . . . Tn
ϕ

Trj

«
=


APT ′ (T1) . . . APT ′ (Tn)

ϕ
Trj

ff

(APT10) APT ′
„

T1 . . . Tn
ϕ

R2

«
=


APT ′(T1) . . . APT ′(Tn)

ϕ
R2

ff

(APT11) APT ′
„

T1 . . . Tn
ϕ

R1

«
= APT ′(T1)

S
. . .

S
APT ′(Tn)

R1 any inference rule R2 either Mb, Rep→, Rep⇒, Rdc1, Norm, Fulfill, Fail, Ls, Rl, or Top

1 ≤ i ≤ 2 1 ≤ j ≤ 4 ϕ, ϕ′ any judgment

Figure 13: Transforming rules for obtaining abbreviated proof trees
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(♠) 1→norm 1
Norms

(♠) [1,1]→norm [1,1]
Norm[ , ]

(♠) {[1,1]}→norm {[1,1]}
Norm{ }

isSol(P1)→ f
Rdcis2

�
�
A
A6

5 . . . 5 �
�
A
A7

{[1,1]} C4 ∅
Tr2

Figure 14: Abbreviated proof tree for the maze example

(♠) 1→norm 1
Norms

(♠) [1,1]→norm [1,1]
Norm[ , ]

5 �
�
A
A8

(♦) isOk(L2)→ f
Rep⊥

(♦) isOk(L3)→ f
Rep⊥

{[1,1]}⇒e {{[1,1][1,2]}}
Rle

(♥) 1⇒1 ∅
Tops

(♥) [1,1]⇒1 ∅
Top[ , ]

{[1,1]}⇒1 {{[1,1][1,2]}}
Top{ }

Figure 15: Abbreviated tree ��AA6

The theorem states that we can safely employ the abbreviated proof tree as a basis for the declarative
debugging of Maude system and functional modules: the technique will find a buggy node starting from any
initial symptom detected by the user. Of course, these results assume that the user correctly answers all
the questions about the validity of the APT nodes asked by the debugger (see Section 2.6).

The trees in Figures 14–17 depict the (one-step) abbreviated proof tree for the maze example, where C
stands for {L:List}:= ~ ∧ isSol(L:List), P1 for [1,1], L1 for [1,1][1,2], L2 for [1,1][1,0], L3 for
[1,1][0,1], t for true, f for false, n for next, e for expand, and L for [1,1][1,2][1,3][1,4]. We have
also extended the information in the labels with the operator or statement associated to the inference. More
concretely, the tree in Figure 14 abbreviates the tree in Figure 8; the first two premises in the abbreviated
tree stand for the first premise in the proof tree (which includes the tree in Figure 9), keeping only the nodes
associated with relevant information according to Proposition 8: Norm, with the operator associated to the
reduction, and Rdc1, with the label of the associated equation. The tree ��AA6 , shown in Figure 15, abbreviates
the second premise of the tree in Figure 8 as well as the trees in Figures 10 and 11; it only keeps the
nodes referring to normal forms, searches in one step, that are now associated to the rule Top, each of them
referring to a different operator (the operator s_ is the successor constructor for natural numbers), and the
applications of rules (Rl) and equations (Rep→). Note that the equation describing the behavior of isOk has
not got any label, which is indicated with the symbol ⊥; we will show below how the debugger deals with
these nodes. The tree ��AA7 , presented in Figure 16, shares these characteristics and only keeps nodes related
to one-step searches and application of rules. The tree ��AA8 abbreviates the proof tree for the reduction shown
in Figure 2, where the important result of the abbreviation is that all replacement inferences are related
now to reductions to normal form, thus easing the questions that will be asked to the user.

These abbreviation rules are combined with trusting mechanisms that further reduce the proof tree:

• Statements can be trusted in several ways: non labelled statements, which include the predefined
functions, are always trusted (i.e., the nodes marked with (♦) in Figures 15 and 17 will be discarded
by the debugger); statements and modules can be trusted before starting the debugging process; and
statements can also be trusted on the fly.

5 . . . 5

5 . . . 5
n(L)⇒n1 {[1,5]}

Rln1
5 . . . 5

n(L)⇒n2 {[0,4]}
Rln2

5 . . . 5
n(L)⇒n3 {[1,3]}

Rln3

(‡) n(L)⇒1 {[1,5], [0,4], [1,3]}
Topn

(o) {[1,1][1,2][1,3][1,4]}⇒e ∅
Rle

(†) {[1,1][1,2][1,3][1,4]}⇒1 ∅
Top{ }

Figure 16: Abbreviated tree ��AA7
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5
(♦) 1 >= 1→ t

Rep⊥
. . .

5
(♦) 2 <= 8→ t

Rep⊥

c(nil,[1,2])→ f
Repc1

(♦) t2 → f
Rep⊥

(♦) t1 → t
Rep⊥

c([1,1], [1,2])→ f
Repc2 (♦) not(f)→ t

Rep⊥
5

(♦) t and ... and t→ t
Rep⊥

(♦) isOk([1,1][1,2])→ t
Rep⊥

Figure 17: Abbreviated proof tree ��AA8

• A correct module can be given before starting a debugging session. By checking the correctness of the
judgments against this module, correct nodes can be deleted from the tree.

• Constructed terms (that is, terms built only with constructors, defined by means of the ctor attribute)
of certain sorts or built with some operators can be considered final, which indicates that they cannot
be further rewritten. For example, we could consider terms of sorts Nat and List (and hence its
subsort Pos) to be final and thus the nodes marked with (♥) in Figure 15 would be removed from the
tree.

• Moreover, we consider that constructed terms are in normal form and thus they are automatically
removed from the tree. For example, the nodes marked with (♠) in Figures 14 and 15 will be removed
from the debugging tree.

5. Using the debugger

We introduce in this section how to create and navigate the debugging tree.

5.1. Creating the debugging tree
We describe in this section how to start the debugging process, describing the commands that must be

used before creating the debugging tree and the different commands to create it.
The debugger is initiated in Maude by loading the file dd.maude (available from http://maude.sip.

ucm.es/debugging), which starts an input/output loop that allows the user to interact with the tool. Then,
the user can enter Full Maude modules and commands, as well as commands for the debugger. Tables 4
and 5 present a summary of the commands explained below.

The user can choose between using all the labeled statements in the debugging process (by default) or
selecting some of them by means of the command

(set debug select on .)

Once this mode is activated, the user can select and deselect statements by using5

(debug select LABELS .)

(debug deselect LABELS .)

where LABELS is a list of statement labels separated by spaces.
Moreover, all the labels in statements of a flattened module can be selected or deselected with the

commands

(debug include MODULES .)

(debug exclude MODULES .)

5Although these labels, as well as the set of labels from a module and the final sorts below, can be selected and deselected
with the corresponding modes switched off, they will have effect only when the corresponding modes are activated.
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where MODULES is a list of module names separated by spaces.
The selection mode can be switched off by using the command

(set debug select off .)

In a similar way, it is also possible to indicate that some terms are final, that is, that they cannot be
further rewritten:

• By using the value final in the attribute metadata of an operator declaration, that indicates that the
terms built with this operator at the top are final.

• By selecting a set of final sorts. In this case, constructed terms having one of these sorts (or having a
subsort of these sorts) are considered final.

• On the fly, as will be explained below.

In the first two cases, the user must activate the final sorts mode with the command

(set final select on .)

While the attribute metadata must be written in the Maude file, final sorts can be selected/deselected
with the commands

(final select SORTS .)

(final deselect SORTS .)

where SORTS is a list of sort identifiers separated by spaces.
This option can be switched off with the command

(set final select off .)

A module with only correct definitions can be used to reduce the number of questions. In this case, it
must be indicated before starting the debugging process with the command

(correct module MODULE-NAME .)

and can be deselected with the command

(delete correct module .)

Since rewriting is not assumed to terminate, a bound, which is 42 by default, is used when searching in
the correct module and can be set with the command

(set bound BOUND .)

where BOUND is either a natural number or the constant unbounded. Note that if it is 0 the correct module
will not be used for rewrites, while if it is unbounded the correct module is assumed to be terminating.

When debugging wrong rewrites, two different trees can be built: one whose questions are related to
one-step rewrites and another whose questions are related to several steps. The user can switch between
these trees, before starting the debugging process, with the commands

(one-step tree .)

(many-steps tree .)

the first of which is the default one.
In the same way, when debugging missing answers we distinguish between trees whose nodes are related

to sets of terms obtained with one (the default case) or many steps. The user can select them with the
commands
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(one-step missing tree .)

(many-steps missing tree .)

When debugging missing answers, the user can prioritize questions related to the fulfillment of the search
condition from questions involving the statements defining it. This option, switched off by default, can be
activated with the command

(solutions prioritized on .)

and can be switched off again with

(solutions prioritized off .)

The debugging process for wrong answers is started with the commands

(debug [in MODULE-NAME :] INITIAL-TERM -> WRONG-TERM .)

(debug [in MODULE-NAME :] INITIAL-TERM : WRONG-SORT .)

(debug [in MODULE-NAME :] INITIAL-TERM =>* WRONG-TERM .)

for wrong reductions, memberships, and rewrites, respectively. MODULE-NAME is the module where the
computation took place; if no module name is given, the current module is used by default. Similarly, we
start the debugging of missing answers with the commands

(missing [in MODULE-NAME :] INITIAL-TERM -> ERR-NORMAL-FORM .)

(missing [in MODULE-NAME :] INITIAL-TERM : ERR-LEAST-SORT .)

(missing [[depth]] [in MODULE-NAME :] INITIAL-TERM =>* PATTERN [s.t. CONDITION] .)

(missing [[depth]] [in MODULE-NAME :] INITIAL-TERM =>+ PATTERN [s.t. CONDITION] .)

(missing [[depth]] [in MODULE-NAME :] INITIAL-TERM =>! PATTERN [s.t. CONDITION] .)

where the first command debugs erroneous normal forms, the second one erroneous least sorts, and the
remaining ones refer to incomplete sets found when using search. More specifically, the third command
specifies a search in zero or more steps, the fourth command in one or more steps, and the last one only
checks final terms. The depth argument indicates the bound in the number of steps allowed in the search,
and it is considered unbounded when omitted, while MODULE-NAME has the same behavior as in the commands
above.

5.2. Navigating the debugging tree
We describe in this section how the debugging tree created with the commands described in the previous

section is traversed. The debugging tree can be navigated by using two different strategies, namely, top-down
and divide and query, the latter being the default one. The user can switch between them at any moment
by using the commands

(top-down strategy .)

(divide-query strategy .)

In the divide and query strategy, each question refers to one judgment that can be either correct or
wrong. The different answers are transmitted to the debugger with the answers

(yes .)

(no .)

If the question asked is too difficult, the user can avoid answering with6

6Notice that in the current version of the debugger the question will not be asked again, thus this answer can lead to
incompleteness.
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(don’t know .)

To know the appropriate answer, we briefly describe the different kinds of questions asked by the debug-
ger, defining for each of them when they are considered correct and describing the additional answers that
can be used in each specific case. The possible questions are related to:

Reductions. When a term t has been reduced by using equations to another term t′, the debugger asks
questions of the form “Is this reduction correct? t → t′.” These judgments are correct if the user
expected t to be fully reduced to t′ by using the equational part (equations and memberships) of the
module.

In addition to the general answers, when the question corresponds to the application of a specific
statement (either a equation, like in this case, a membership, or a rule), instead of just answering
yes, we can also trust the statement on the fly if we decide the bug is not there. To trust the current
statement we answer (trust .).

Normal forms. When a term cannot be further reduced and it is not a constructed term, the debugger
asks “Is t in normal form?,” which is correct if the user expected t to be a normal form.

Memberships. When a sort s is inferred for a term t, the debugger prompts questions of the form “Is this
membership correct? t : s.” These judgments are correct if the expected least sort of t is a subsort of
s or s itself.

Least sorts. When the judgment refers to the least sort ls of a term t, the tool makes questions of the
form “Did you expect t to have least sort ls?.” In this case, the judgment is correct if the intended
least sort of t is exactly ls.

Rewrites in one step. When a term t is rewritten into another term t′ in only one step, the debugger
asks questions of the form “Is this rewrite correct? t ⇒1 t

′,” where t′ has already been fully reduced
by using equations. This judgment is correct if the user expected to obtain t′ from t modulo equations
with only one rewrite.

Rewrites in several steps. When a term t is rewritten into another one t′ after several rewrite steps,
the debugger shows the question “Is this rewrite correct? t ⇒+ t′,” where t′ is fully reduced. This
question is only prompted if the user selects the many-steps tree for wrong answers. This judgment is
correct if t′ is expected to be reachable from t.

Final terms. When a term t cannot be further rewritten, the debugger asks “Did you expect t to be final?.”
This judgment is correct if the user expected that no rules can be applied to t.

Additional information for this question can be given by answering (its sort is final .), that
indicates to the debugger that all the constructed terms with the same sort as this term are final.

Solutions. When a term t fulfills the search condition, the debugger shows questions of the form “Did you
expect t to be a solution?.” This judgment is correct if t is one of the intended solutions. In the same
way, if a term does not fulfill the search condition the debugger asks “Did you expect t not to be a
solution?,” that is correct if t is not one of the expected solutions.

Reachable terms in one step. When all the possible applications of each rule in the current specification
to a term t lead to a set of terms {t1, . . . , tn}, with n > 0, the debugger prompts the question “Are
the following terms all the reachable terms from t in one step? t1, . . . , tn.” This judgment is correct if
all the expected terms from t in one step constitute the set {t1, . . . , tn}.
In this case, if one of the terms is not reachable, the user can point it out with the answer (I is wrong .)
where I is the index of the wrong term in the set. With this answer the debugger focuses on debugging
this wrong judgment. This answer can also be used for reachable terms with one rule and in several
steps.

34



Reachable terms with one rule. Given a term t and a rule r, when all the possible applications of r to
t produce a set of terms {t1, . . . , tn}, the debugger presents questions of the form “Are the following
terms all the reachable terms from t with one application of the rule r? t1, . . . , tn.” This judgment is
correct if all the expected reachable terms from t with one application of r form the set {t1, . . . , tn}.
When n = 0 the debugger prompts questions of the form “Did you expect that no terms can be
obtained from t by applying the rule r?,” that is correct if the rule r is not expected to be applied to
t.

Reachable terms in several steps. Given an initial term t, a condition c, and a bound in the number
of steps n, when all the terms reachable in at most n steps from t that fulfill c are t1, . . . , tm, with
m > 0, the debugger makes the following distinction:

• If the condition c defines the initial condition of the search, the tool asks questions of the form
“Are the following terms all the possible solutions from t in n steps? t1, . . . , tm,” where the bound
is omitted if it is unbounded. This judgment is correct if all the solutions that the user expected
to obtain from t in at most n steps constitute the set {t1, . . . , tm}. If m = 0 the debugger asks
questions of the form “Did you expect that no solutions are reachable from t in n steps?,” where
the bound is again omitted if it is unbounded. In this case, the judgment is correct if no solutions
were expected from t in at most n steps.
In this case, if one of the solutions is reachable but it should not fulfill the search condition, the
user can indicate it with (I is not a solution .), where I is the index of the term that should
not be in the set. With this answer the user indicates that the definition of the search condition
is erroneous and the debugger centers on it to continue the process.

• If the condition c has been obtained from a rewrite condition t′ ⇒ p, then c is just a matching
condition with the pattern p, and n is unbounded. In this case, the questions have the form
“Are the following terms all the reachable terms from t that match the pattern p? t1, . . . , tm.”
This judgment is correct if all the terms that should be obtained from t and match the pattern p
constitute the set {t1, . . . , tm}. When m = 0 the questions have the form “Did you expect that
no terms matching the pattern p can be obtained from t?,” that is correct if t is expected to be
final or all the terms reachable from t are not expected to match p.

These questions are only asked if the many-steps tree for missing answers is used.

In case the top-down strategy is selected, several questions will be displayed in each step. The user can
then introduce answers of the form (N : answer .), where N is the index of the question and answer is the
same answer that would be used in the divide and query strategy for this question. Moreover, as a shortcut
to answer (yes .) to all the questions, the debugger provides the answer

(all : yes .)

Finally, we can return to the previous state in both strategies by using the command

(undo .)

5.3. Recommendations
We recommend following some tips to ease the questions asked during the debugging process:

• It is usually more complicated to answer questions related to many steps (both in wrong and missing
answers) than questions related to one step. Thus, if a specification is complex it is better to debug it
with a one-step tree.

• There are some sorts that are usually final, such as Bool and Nat, so identifying them as final can
avoid several tedious questions.
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• If an error is found using a complex initial term, this error can probably be reproduced with a simpler
one. Using this simpler term leads to easier debugging sessions.

• When facing a problem with both wrong and missing answers, it is usually better to debug the wrong
answers first, because questions related to them are usually easier to answer and fixing them can also
solve the missing answers problem.

• When a question is related to a set of reachable terms that contains some wrong terms, it is recom-
mended to point out one of these terms as erroneous instead of indicating the whole set as wrong.

• When using the top-down navigation strategy, several questions are prompted. To point out one as
erroneous or all of them as valid will shorten the debugging process, while pointing out one question
as correct usually only eases the current set of questions. Thus, to indicate that a question is valid is
only recommended for extremely complicated or large sets of questions.

If the user follows these tips and uses the trusting mechanisms it is possible to debug very large specifi-
cations, because:

• Specifications are assumed to be structured, and usually the module being debugged imports several
other auxiliary modules. These modules should have been debugged before testing the current one,
and thus they can be trusted (maybe some complex functions from these auxiliary modules can be
suspicious).

• Specific reductions/sort inferences/rewrites usually do not apply every statement in the specification,
but a small subset of them. From this point of view, debugging a large specification should not be
harder than debugging a smaller one.

• The debugger assists the user through the computation, making the debugging process easier than
checking by hand thousands of statements and than traversing the trace without any guide.

6. A debugging session

We describe in this section how to debug the maze example shown in Section 2.5. We recall that we
have specified a module to search a path out of a labyrinth but, given a concrete labyrinth with an exit, the
program is unable to find it. We start the debugging process with the command:

Maude> (missing {[1,1]} =>* {L:List} s.t. isSol(L:List) .)

With this command the debugger builds a debugging tree for missing answers in zero or more steps with
the questions about solutions not prioritized, and navigated with the default divide and query strategy. The
first question is:

Did you expect {[1,1][1,2][1,3][1,4]} to be final?

Maude> (no .)

Since we expected to reach the position [2,4] from [1,4], this state should be rewritten and thus it is
not final. The next question is:

Is this reduction (associated with the equation c2) correct?

contains([2,1][4,1][2,2][3,2][6,2][7,2][2,3][4,3][5,3][6,3][7,3][1,5][2,5][3,5][4,5][5,5]

[6,5][8,5][6,6][8,6][6,7][6,8][7,8],[1,3]) -> false

Maude> (yes .)
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That is, the debugger asks whether it is correct that the position [1,3] is not included in the wall. We
answer that it is correct and the next question is:

Are the following terms all the reachable terms from next([1,1][1,2][1,3][1,4]) in one step?

1 [1,5]

2 [1,3]

3 [0,4]

Maude> (no .)

The answer is no because the set of terms is incomplete: we expected to find the movement to the right
too. The debugger now asks:

Did you expect [1,4] to be final?

Maude> (yes .)

The answer is yes because we have not defined rules for positions, thus they cannot evolve. The following
series of questions are:

Did you expect [1,3] to be final?

Maude> (yes .)

Did you expect [1,2] to be final?

Maude> (yes .)

Did you expect [1,1][1,2][1,3][1,4] to be final?

Maude> (yes .)

We use the same reasoning about final terms to answer these questions. The next questions are:

Are the following terms all the reachable terms from next([1,1][1,2][1,3][1,4])

with one application of the rule n2 ?

1 [0,4]

Maude> (yes .)

Are the following terms all the reachable terms from next([1,1][1,2][1,3][1,4])

with one application of the rule n3 ?

1 [1,3]

Maude> (yes .)

Are the following terms all the reachable terms from next([1,1][1,2][1,3][1,4])

with one application of the rule n1 ?

1 [1,5]

Maude> (yes .)
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All these questions are related to the appropriate application of certain rules; these rules move the last
position of the list to the left, up, and down, and thus they are correct. With this information, the debugger
is able to find the bug, prompting:

The buggy node is:

next([1,1][1,2][1,3][1,4]) =>1 {[1,5], [1,3], [0,4]}

Either the operator next needs more rules or the conditions of the current rules are not written

in the intended way.

In fact, if we check the code we realize that we forgot to define the rule that specifies movements to the
right. We must add the rule:

rl [next4] : next(L [X,Y]) => [X + 1, Y] .

However, we noticed that this session required us to answer a lot of similar questions. We can enhance
the behavior of the debugger by using features such as selection of final terms on the fly. For example, when
the fourth question is prompted:

Did you expect [1,4] to be final?

Maude> (its sort is final .)

Terms of sort Pos are final.

we can indicate that not only this term, but all the terms with its sort (not necessarily as least one, that is,
subsorts are also checked) are final. With this answer the debugging tree is pruned, and the next question
is:

Did you expect [1,1][1,2][1,3][1,4] to be final?

Maude> (its sort is final .)

Terms of sort List are final.

We use this answer again, although in this case it does not reduce the number of questions. As before,
the debugger finishes with the same three questions as above.

Although the number of questions has been reduced, we still face some questions that we would like to
avoid about final terms. To do this, we can activate the final selection mode before starting the debugging:

Maude> (set final select on .)

Final select is on.

Once this mode is active, we can point out the sorts of the terms that will not be rewritten. Note that
terms whose least sort is a subsort of the sorts selected will also be considered as final. For example, we
consider in our specification the sorts Nat and List as final, which implicitly indicates that the sort Pos,
subsort of List, is also final:

Maude> (final select Nat List .)

Sorts List Nat are now final.

Moreover, since we know that the rules next1, next2, and next3 are correct, we can avoid questions
about them by pointing out that the rest of the statements are suspicious with the commands:
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Maude> (set debug select on .)

Debug select is on.

Maude> (debug select is1 is2 c1 c2 expand .)

Labels c1 c2 expand is1 is2 are now suspicious.

Once these options are introduced, we can start the debugging process with the same command as before:

Maude> (missing {[1,1]} =>* {L:List} s.t. isSol(L:List) .)

Are the following terms all the reachable terms from {[1,1][1,2][1,3]} in one step?

1 {[1,1][1,2][1,3][1,4]}

Maude> (yes .)

Are the following terms all the reachable terms from {[1,1][1,2]} in one step?

1 {[1,1][1,2][1,3]}

Maude> (yes .)

Given the labyrinth’s limits and wall, we must go down in both cases to find the exit. The next question
selected by the debugger is:

Did you expect that no terms can be obtained from {[1,1][1,2][1,3][1,4]} by applying the rule

expand ?

Maude> (no .)

As we know, the list of positions should evolve to find the exit. The debugger asks now:

Is this reduction (associated with the equation c2) correct?

contains([2,1][4,1][2,2][3,2][6,2][7,2][2,3][4,3][5,3][6,3][7,3][1,5][2,5]

[3,5][4,5][5,5][6,5][8,5][6,6][8,6][6,7][6,8][7,8],[1,3]) -> false

Maude> (trust .)

We realize now that the equation c2 is simple enough to be trusted, although we pointed it out as
suspicious at the beginning of the session. We use the command trust and the following question is
prompted:

Is this reduction (associated with the equation c1) correct?

contains(nil,[1,5]) -> false

Maude> (trust .)

We consider that this equation can also be trusted. Finally, the debugger detects the problem with the
next answer:

Are the following terms all the reachable terms from next([1,1][1,2][1,3][1,4]) in one step?

1 [1,5]
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2 [1,3]

3 [0,4]

Maude> (no .)

The buggy node is:

next([1,1][1,2][1,3]) =>1 {[1,4], [1,2], [0,3]}

Either the operator next needs more rules or the conditions of the current rules are not written

in the intended way.

Although in this example we have used the default divide and query navigation strategy, it is also possible
to use the top-down one by using:

Maude> (top-down strategy .)

Top-down strategy selected.

In this case we reduce the number of questions by considering that the sorts Nat and List are final and
that the suspicious statements are the equations defining the solution, is1 and is2:

Maude> (set final select on .)

Final select is on.

Maude> (final select Nat List .)

Sorts List Nat are now final.

Maude> (set debug select on .)

Debug select is on.

Maude> (debug select is1 is2 .)

Labels is1 is2 are now suspicious.

We can follow how this strategy proceeds with the trees in Figures 14 and 16. Once we introduce the
debugging command, the first series of questions, which refers to the premises of the root in Figure 14
(although without some nodes, as the second one, deleted by the trusting mechanisms), is prompted:

Maude> (missing { [1,1] } =>* { L:List } s.t. isSol(L:List) .)

Question 1 :

Did you expect {[1,1]} not to be a solution?

Question 2 :

Are the following terms all the reachable terms from {[1,1]} in one step?

1 {[1,1][1,2]}

Question 3 :

Did you expect {[1,1][1,2]} not to be a solution?

Question 4 :

Are the following terms all the reachable terms from {[1,1][1,2]} in one step?
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1 {[1,1][1,2][1,3]}

Question 5 :

Did you expect {[1,1][1,2][1,3]} not to be a solution?

Question 6 :

Are the following terms all the reachable terms from {[1,1][1,2][1,3]} in one step?

1 {[1,1][1,2][1,3][1,4]}

Question 7 :

Did you expect {[1,1][1,2][1,3][1,4]} not to be a solution?

Question 8 :

Did you expect {[1,1][1,2][1,3][1,4]} to be final?

Maude> (8 : no .)

The eighth question (corresponding to the root of the tree in Figure 16, marked with (†)) is erroneous
because position [2,4] is reachable from [1,4] and it is free of wall, so we do not expect this term to be
final. The following questions are:7

Question 1 :

Is next([1,1][1,2][1,3][1,4]) in normal form?

Question 2 :

Is Pos? the least sort of next([1,1][1,2][1,3][1,4]) ?

Question 3 :

Are the following terms all the reachable terms from next([1,1][1,2][1,3][1,4]) in one step?

1 [1,5]

2 [1,3]

3 [0,4]

Maude> (3 : no .)

With this answer we have pointed out the node marked (‡) in Figure 16 as wrong. Since all its chil-
dren correspond to applications of equations that were trusted (n1, n2, and n3, while the only suspicious
statements were is1 and is2), this node is now a leaf and thus it corresponds to a buggy node:

The buggy node is:

next([1,1][1,2][1,3][1,4]) =>1 {[1,5], [1,3], [0,4]}

Either the operator next needs more rules or the conditions of the current rules are not written

in the intended way.

Many more examples are available at http://maude.sip.ucm.es/debugging/.

7. Implementation

We show here how the ideas described in the previous sections are implemented. This implementation is
done in Maude itself by means of its reflective capabilities, which allow us to use Maude terms and modules

7Note that the child of this node, marked with (o), is skipped because the corresponding equation has been trusted.
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as data [12, Chapter 14]. Sections 7.1 and 7.2 describe the tree construction stage, where the abbreviated
proof trees are constructed. The interaction with the user is explained in Section 7.3.

The complete code of the tool is contained in the file dd.maude, available at http://maude.sip.ucm.
es/debugging/.

7.1. Debugging trees definition
In this section we show how to represent the debugging trees in Maude. First, we implement parametric

general trees with generic data in each node. Then, we instantiate them by defining the concrete data for
building our debugging trees.

The parameterized module that describes the behavior of the tree receives the theory TRIV (that simply
requires a sort Elt) as parameter. We use lists of natural numbers to identify (the position of) each node.
General trees are defined by means of the constructor tree, composed of some contents (received from the
theory), the size of the tree, and a Forest, which in turn is a list of trees:

fmod TREE{X :: TRIV} is

pr NAT-LIST .

sorts Tree Forest .

subsort Tree < Forest .

op tree(_,_,_) : X$Elt Nat Forest -> Tree [ctor format (ngi o d d d d ++i n--i d)] .

op mtForest : -> Forest [ctor format (ni d)] .

op __ : Forest Forest -> Forest [ctor assoc id: mtForest] .

...

endfm

We use the sort Judgment to define the values kept in the debugging trees. When keeping reductions
and memberships, we want to know the name of the statement associated with the node and the lefthand
and righthand sides of the computation, or the term and sort of a membership, respectively.

fmod DEBUGGING-TREE-NODE is

pr META-LEVEL .

sort Judgment .

op _:_->_ : Qid Term Term -> Judgment [ctor format (b o d b o d)] .

op _:_:_ : Qid Term Type -> Judgment [ctor format (b o d b o d)] .

If the inferred type is the least sort, we use the special notation below:

op _:ls_ : Term Type -> Judgment [ctor format (d b o d)] .

In the case of rewrites, we distinguish between nodes in the one-step tree and nodes in the many-steps
tree:

op _:_=>1_ : Qid Term Term -> Judgment [ctor format (b o d b o d)] .

op _=>+_ : Term Term -> Judgment [ctor format (d b o d)] .

Since the many-steps tree is computed on demand, its leaves corresponding to one-step rewrites are kept
as “frozen,” and will be evaluated only if needed:

op _=>f_ : Term Term -> Judgment [ctor format (d b o d)] .

The nodes for debugging missing answers in system modules keep the initial term and the list of possible
results. We distinguish between:
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• The set of reachable terms in one step:

op _=>1{_} : Term TermList -> Judgment [ctor format (d b o d d d)] .

• The set of reachable terms by applying one rule:

op _=>q[_]{_} : Term Qid TermList -> Judgment [ctor format (d b o d d d d d d)] .

• The set of reachable terms when many rewrite steps are used. In this case we also keep the bound, the
pattern, the condition and a Boolean value indicating whether this search corresponds to the initial
one, and thus these terms are the reachable solutions from the initial one, or corresponds to a search
due to a rewrite condition:

op _~>[_]{_}s.t._&_[_] : Term Bound TermList Term Condition Bool

-> Judgment [ctor format (d b o d d d d d d d d d d d d d)] .

We use the operator sol to indicate (the Boolean value in the fourth argument) whether a term (the first
argument) matches the pattern given as second argument and fulfills the condition given as third argument.
When the questions about solutions are prioritized these nodes are frozen and are expanded on demand, so
it has a Boolean value (the fifth argument) indicating whether the node has been already expanded. Finally,
the last Boolean value indicates whether this term is a solution of the initial search condition or it is a
solution of a rewrite condition:

op sol : Term Term Condition Bool Bool Bool -> Judgment [ctor format (b o)] .

The operator normal indicates that a term is in normal form with respect to the equational theory:

op normal : Term -> Judgment [ctor format (r o)] .

Finally, we define a constant unknown, that will be used when the user answers don’t know to any
question:

op unknown : -> Judgment [ctor] .

endfm

We use this module to create a view from the TRIV theory and we obtain our debugging trees by
instantiating the module TREE above with this view:

view DebuggingTreeNode from TRIV to DEBUGGING-TREE-NODE is

sort Elt to Judgment .

endv

fmod PROOF-TREE is

pr TREE{DebuggingTreeNode} .

...

endfm

7.2. Debugging trees construction
In this section we describe how the different debugging trees are built. First, we describe the construction

of debugging trees for wrong reductions, memberships, and rewrites and then we use them in the construction
of the trees for erroneous normal forms, least sorts, and sets of reachable terms. Instead of creating the
complete proof trees and then abbreviating them, we build the abbreviated proof trees directly.
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7.2.1. Debugging trees for wrong reductions and memberships
The function createTree builds debugging trees for wrong reductions and memberships. It exploits

the fact that the equations and membership axioms are both terminating and confluent. It receives the
module where a wrong inference took place, a correct module (or the constant undefMod when no such
module is provided) to prune the tree, the initial term, the (erroneous) result obtained, and the set of
suspicious statement labels. It keeps the initial reduction as the root of the tree and uses an auxiliary
function createForest that, in addition to the arguments received by createTree, receives the module
“cleaned” of suspicious statements (by using deleteSuspicious), and generates the forest of abbreviated
trees corresponding to the reduction between the two terms given as arguments. The transformed module
is used to improve the efficiency of the tree construction, because we can use it to check whether a term
reaches its final form by using only trusted statements, preventing the debugger from building a tree that
will be finally empty.

op createTree : Module Maybe{Module} Term Term QidSet -> Tree .

ceq createTree(M, CM, T, T’, QS) =

contract(tree(’root@#$% : T -> T’, getOffspring*(F) + 1, F))

if ST? := strat?(M) /\

M’ := deleteSuspicious(M, QS) /\

F := createForest(M, M’, CM, T, T’, QS) .

We use the function createForest to create a forest of abbreviated trees. It receives as parameters the
module where the computation took place, the transformed module (that only contains trusted statements),
a correct module (possibly undefMod) to check the inferences, two terms representing the inference whose
proof tree we want to generate, and a set of labels of suspicious equations and memberships. First, the
function checks if the terms are equal, the result can be reached by using only trusted statements, or the
correct module can calculate this inference; in such cases, there is no need to calculate the tree, so the empty
forest is returned. Otherwise, it applies the function createForest2:

op createForest : Module Module Maybe{Module} Term Term QidSet ~> Forest .

eq createForest(OM, TM, CM, T, T’, QS) =

if T == T’ or-else reduce(TM, T) == T’ or-else reduce(CM, T) == T’ then mtForest

else createForest2(OM, TM, CM, T, T’, QS)

fi .

The function createForest2 checks first whether the current term is of the form if T1 then T2 else T3 fi.
In this case, the debugger evaluates T1 and then, depending on the result, it evaluates either T2 or T3 fol-
lowing the same evaluation strategy as Maude:8

op createForest2 : Module Module Maybe{Module} Term Term QidSet ~> Forest .

eq createForest2(OM, TM, CM, ’if_then_else_fi[T1, T2, T3], T’, QS) =

createForest(OM, TM, CM, T1, reduce(OM, T1), QS)

if reduce(OM, T1) == ’true.Bool then

createForest(OM, TM, CM, T2, T’, QS)

else

if reduce(OM, T1) == ’false.Bool then

createForest(OM, TM, CM, T3, T’, QS)

else

createForest(OM, TM, CM, T2, reduce(OM, T2), QS)

createForest(OM, TM, CM, T3, reduce(OM, T3), QS)

fi

fi .

8Note that it is possible to obtain neither true nor false when evaluating the condition. In this case, both branches will
be evaluated and the term thus obtained (which is not fully evaluated) used in the rest of the computation, possibly leading
to a missing answer.
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Otherwise, the debugger follows the Maude innermost strategy: it first tries to fully reduce the subterms
(by means of the function reduceSubterms), and once all the subterms have been reduced, if the result is
not the final one, it tries to reduce at the top (by using the function applyEq), to reach the final result by
transitivity :

ceq createForest2(OM, TM, CM, T, T’, QS) =

if T’’ == T’ then F

else F applyEq(OM, TM, CM, T’’, T’, QS)

fi

if < T’’, F > := reduceSubterms(OM, TM, CM, T, QS) [owise] .

The function applyEq tries to apply (at the top) one equation,9 by using the replacement rule from
Figure 1, with the constraint that we cannot apply equations with the otherwise attribute if other equations
can be applied. To apply an equation we check whether the term we are trying to reduce matches the lefthand
side of the equation and its conditions are fulfilled. If this happens, we obtain a substitution (from both the
matching with the lefthand side and the conditions) that we can apply to the righthand side of the equation.
Note that, if we can obtain the transition in the correct module, the forest is not computed:

op applyEq : Module Module Maybe{Module} Term Term QidSet -> Maybe{Forest} .

op applyEq : Module Module Maybe{Module} Term Term QidSet EquationSet -> Maybe{Forest} .

eq applyEq(OM, TM, CM, T, T’, QS) =

if reduce(TM, T) == T’ or-else reduce(CM, T) == T’ then mtForest

else applyEq(OM, TM, CM, T, T’, QS, getEqs(OM))

fi .

For example, the equations without the otherwise attribute as applied as follows:

ceq applyEq(OM, TM, CM, T, T’, QS, Eq EqS) =

if in?(AtS, QS) then

tree(label(AtS) : T -> T’, getOffspring*(F) + 1, F)

else F

fi

if ceq L = R if C [AtS] . := generalEq(Eq) /\

not owise?(AtS) /\

sameKind(OM, type(OM, L), type(OM, T)) /\

SB := metaMatch(OM, L, T, C, 0) /\

R’ := substitute(OM, R, SB) /\

F := conditionForest(substitute(OM, C, SB), OM, TM, CM, QS)

createForest(OM, TM, CM, R’, T’, QS) .

where we distinguish with the function in?(AtS, QS) whether the equation is trusted (the attribute set
does not contain a label or the label is contained in the set QS of trusted labels) to generate the node.

7.2.2. Debugging trees for wrong rewrites
We use a different methodology in the construction of the debugging tree for incorrect rewrites. Since

these modules are not assumed to be confluent or terminating, we use the predefined breadth-first search
function metaSearchPath to, from the initial term, find the wrong term introduced by the user, and then
we use the returned trace to build the debugging tree. The trace returned by Maude when searching from
T to T’ is a list of steps of the form:

{T1, Ty1, R1} ... {Tn, Tyn, Rn}

9Since the module is assumed to be confluent, we can choose any equation and the final result should be the same.
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where Tyi is the type of Ti, T1 is the normal form of T, Ri is the rule applied to (possibly a subterm of) Ti
to obtain Ti+1 (which is already in normal form), and T’ is the result of applying Rn to Tn.

The function createRewTree, given the module where the rewrite took place, a module with correct
statements (possibly undefMod), the rewritten term, the result term, the set of suspicious labels, the type
of tree selected (many-steps or one-step, identified by constants ms and os in the module TREE-TYPE), and
the bound of the search in the correct module, creates the corresponding debugging tree:

op createRewTree : Module Maybe{Module} Term Term QidSet TreeType Bound -> Maybe{Tree} .

eq createRewTree(OM, CM, T, T’, QS, os, B) = oneStepTree(OM, CM, T, T’, QS, B) .

eq createRewTree(OM, CM, T, T’, QS, ms, B) = manyStepsTree(OM, CM, T, T’, QS, B) .

The function oneStepTree creates a complete debugging tree with only one-step rewrites in its nodes.
It puts the complete judgment as the root of the tree, computes the tree for the reduction from the initial
term to normal form with the function createForest from Section 7.2.1, and then computes the rest of the
tree with the function oneStepForest. This corresponds to a concrete application of the equivalence class
inference rule from Figure 1:

op oneStepTree : Module Maybe{Module} Term Term QidSet Bound -> Maybe{Tree} .

ceq oneStepTree(OM, CM, T, T’, QS, B) =

contract(tree(T =>+ T’, getOffspring*(F) + 1, F))

if TM := deleteSuspicious(OM, QS) /\

T1 := reduce(OM, T) /\

F := createForest(OM, TM, CM, T, T1, QS, strat?(OM))

oneStepForest(OM, TM, CM, T1, T’, QS, B) .

eq oneStepTree(OM, CM, T, T’, QS, B) = error [owise] .

oneStepForest computes the trace of a rewrite with the predefined function metaSearchPath and uses
it to generate a debugging tree by using trace2forest, which generates a forest of one-step rewrites by
extracting each step of the trace and creating its corresponding tree:

op oneStepForest : Module Module Maybe{Module} Term Term QidSet Bound -> Maybe{Forest} .

ceq oneStepForest(OM, TM, CM, T, T’, QS, B) = F

if TR := metaSearchPath(OM, T, T’, nil, ’*, unbounded, 0) /\

F := trace2forest(OM, TM, CM, TR, T’, QS, B) .

eq oneStepForest(OM, TM, CM, T, T’, QS, B) = noProof [owise] .

The many-steps debugging tree is built with the function manyStepsTree. This tree is computed on
demand, so that the debugging subtrees corresponding to one-step rewrites are only generated when they
are pointed out as wrong. It uses an auxiliary function manyStepsTree2, which also receives as a parameter
the module cleaned of suspicious statements with deleteSuspicious:

op manyStepsTree : Module Maybe{Module} Term Term QidSet Bound -> Maybe{Tree} .

ceq manyStepsTree(OM, CM, T, T’, QS, B) =

contract(tree(T =>+ T’, getOffspring*(F) + 1, F))

if F := manyStepsTree2(OM, deleteSuspicious(OM, QS), CM, T, T’, QS, B) .

eq manyStepsTree(OM, CM, T, T’, QS, B) = error [owise] .

This auxiliary function uses the function metaSearchPath to compute the trace. If it is not empty, the
forest for the reduction of the initial term to normal form is built with the function createForest and the
tree for the rewrites is appended to this forest. If the trace consists of only one step, it is expanded with the
function stepForest. Otherwise, the many-steps tree from the trace is built with the function trace2tree,
that traverses the trace and creates a balanced tree from the forest of leaves obtained from it:
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op manyStepsTree2 : Module Module Maybe{Module} Term Term QidSet Bound ~> Maybe{Forest} .

ceq manyStepsTree2(OM, TM, CM, T, T’, QS, B) = F

if {T’’, Ty, R} TR := metaSearchPath(OM, T, T’, nil, ’*, unbounded, 0) /\

F := createForest(OM, TM, CM, T, T’’, QS, strat?(OM))

if TR =/= nil

then trace2tree(OM, TM, CM, {T’’, Ty, R} TR, T’, QS, B, mtForest, 0)

else stepForest(OM, TM, CM, T’’, T’, R, QS, B, ms)

fi .

If the trace is empty, only the tree for the reduction is computed:

ceq manyStepsTree2(OM, TM, CM, T, T’, QS, B) = createForest(OM, TM, CM, T, T’, QS, strat?(OM))

if nil == metaSearchPath(OM, T, T’, nil, ’*, unbounded, 0) .

Finally, if the final term is not reachable from the initial term, an error is returned. Note that errors due
to non-termination cannot be detected:

eq manyStepsTree2(OM, TM, CM, T, T’, QS, B) = noProof [owise] .

7.2.3. Debugging trees for missing answers
The debugging tree for normal forms is built with the function createMissingTree. It receives the

module where the reduction took place, a correct module, the initial term, the reached normal form, and a
set of suspicious labels:

op createMissingTree : Module Maybe{Module} Term Term QidSet -> Tree .

ceq createMissingTree(M, CM, T, T’, QS) = tree(’root : T -> T’’, getOffspring*(F) + 1, F)

if TM := deleteSuspicious(M, QS) /\

T’’ := reduce(M, T’) /\

F := cleanTree*(M, false, none, createMissingForest(M, TM, CM, T, T’’, QS)) .

The function createMissingForest checks whether the result can be obtained in the trusted or correct
modules. When this happens, it only generates a forest proving the term is in normal form with proveNormal;
otherwise, it uses the auxiliary function createMissingForest2:

op createMissingForest : Module Module Maybe{Module} Term Term QidSet -> Forest .

ceq createMissingForest(OM, TM, CM, T, T’, QS) = F

if T == T’ or-else reduce(TM, T) == T’ or-else reduce(CM, T) == T’ /\

F := proveNormal(OM, TM, CM, T’, QS) .

eq createMissingForest(OM, TM, CM, T, T’, QS) =

createMissingForest2(OM, TM, CM, T, T’, QS) [owise] .

createMissingForest2 generates the forest for the subterms with reduceSubtermsMissing and then
distinguishes whether the final result has been reached, proving in that case whether the term is in normal
form with proveNormal, or not, then applying the next equation with applyEqMissing:

ceq createMissingForest2(OM, TM, CM, T, T’, QS) =

if T’’ == T’ then F proveNormal(OM, TM, CM, T’, QS)

else F applyEqMissing(OM, TM, CM, T’’, T’, QS)

fi

if < T’’, F > := reduceSubtermsMissing(OM, TM, CM, T, QS) [owise] .

The debugging tree for incomplete sets of reachable terms is built with the function createMissingTree,
that receives:

• the module where the terms should be found,

• a correct module (possibly undefMod),
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• the initial term, the pattern,

• the condition to be fulfilled,

• the bound in the number of rewrites for wrong rewrites,

• the number of steps that can be given in the search,

• the search type,

• the type of tree to be built (one-step or many-steps) for both wrong and missing answers,

• the set of suspicious labels,

• the set of final sorts,

• a Boolean value indicating whether the search introduced by the user was unbounded, and

• a Boolean value pointing out whether the questions about solutions are prioritized.

The forest is generated with an auxiliary function createMissingForest that receives, in addition to the
values above, a Boolean value indicating whether the forest currently built corresponds to the initial search
or to a search due to a rewrite condition, which is true in the first case. Once the tree has been built, the
questions associated with terms that the user has declared as final are pruned with cleanTree*:

op createMissingTree : Module Maybe{Module} Term Term Condition Bound Bound SearchType

TreeType TreeType QidSet Bool QidSet Bool Bool -> Tree .

ceq createMissingTree(M, CM, T, PAT, C, BW, BM, ST, TTW, TTM, QS, BFS, FS, UB?, SP) =

contract(tree(T ~>[B’] {clean(extractTerms(F))} s.t. PAT & C [true],

1 + getOffspring*(F), F))

if TM := deleteSuspicious(M, QS) /\

T’ := getTerm(metaReduce(M, T)) /\

F := cleanTree*(M, BFS, FS, createForest(M, TM, CM, T, T’, QS, strat?(M))

createMissingForest(labeling(M), TM, CM, T’, PAT,

C, BW, BM, ST, TTW, TTM, QS, FS, UB?, SP, true)) /\

B’ := if UB? then unbounded else BM fi .

If the tree to be built cannot evolve (the bound is 0) and zero or more steps can be used, then we use
the function solutionTree to create a tree that proves whether the condition is satisfied or not:

op createMissingForest : Module Module Maybe{Module} Term Term Condition Bound Bound SearchType

TreeType TreeType QidSet QidSet Bool Bool Bool -> Forest .

eq createMissingForest(OM, TM, CM, T, PAT, C, BW, 0, zeroOrMore, TTW, TTM, QS,

FS, UB?, SP, FST) =

solutionTree(OM, TM, CM, T, PAT, C, BW, zeroOrMore, TTW, TTM, QS, FS, SP, FST) .

When the terms can still evolve (the bound is greater than 0), we compute all the possible reach-
able terms in exactly one step with the function oneStepMissingTree and evolve each of them with
createMissingForest*. The solutions obtained are gathered with extractTerms, while we check whether
the current term is a valid solution with the function solveCondition. Finally, if the tree selected by the
user is for many-steps transitions we create a root for the generated forest specifying the number of steps,
while if we want one-step transitions only the forest is returned:

ceq createMissingForest(OM, TM, CM, T, PAT, C, BW, s(N’), zeroOrMore, TTW, TTM,

QS, FS, UB?, SP, FST) =

if TTM == os then RF

else tree(T ~>[B’] {TL’’} s.t. PAT & C [FST], 1 + getOffspring*(RF), RF)
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fi

if tree(T =>1 {TL}, N, F) := oneStepMissingTree(OM, TM, CM, T, QS, FS, BW, zeroOrMore,

TTW, TTM, SP) /\

F’ := createMissingForest*(OM, TM, CM, TL, PAT, C, BW, N’, zeroOrMore,

TTW, TTM, QS, FS, UB?, SP, FST) /\

TL’ := if solveCondition(OM, T, PAT, C) then T

else empty fi /\

TL’’ := clean((extractTerms(F’), TL’)) /\

CF := solutionTree(OM, TM, CM, T, PAT, C, BW, zeroOrMore, TTW, TTM, QS, FS, SP, FST) /\

RF := CF tree(T =>1 {TL}, N, F) F’ /\

B’ := if UB? then unbounded else s(N’) fi .

7.3. The debugger environment
We implement our system on top of Full Maude, a language that extends Maude with support for

object-oriented specification and advanced module operations [12, Part II]. The implementation of Full
Maude includes code for parsing user input and pretty-printing; storing modules, theories, and views; and
transforming object-oriented modules into system modules.

To parse some input using the built-in function metaParse, Full Maude needs the meta-representation
of the signature in which the input has to be parsed. Thus, we define the signature of the debugger in a
module that extends the Full Maude signature:

fmod DD-SIGNATURE is

including FULL-MAUDE-SIGN .

op debug_. : @Bubble@ -> @Command@ .

op missing_. : @Bubble@ -> @Command@ .

...

endfm

This signature is included in the meta-module GRAMMAR to obtain the grammar DD-GRAMMAR, that allows
us to parse both Full Maude modules and commands together with the debugger commands:

fmod META-DD-SIGN is

inc META-FULL-MAUDE-SIGN .

inc UNIT .

op DD-GRAMMAR : -> FModule [memo] .

eq DD-GRAMMAR = addImports((including ’DD-SIGNATURE .), GRAMMAR) .

...

endfm

The module DD-COMMAND-PROCESSING is in charge of processing the commands dealing with suspicious
statements, final sorts, and the debugging commands:

fmod DD-COMMAND-PROCESSING is

pr COMMAND-PROCESSING .

pr META-DD-SIGN .

pr MISSING-ANSWERS-TREE .

pr SEARCH-TYPE .

pr PRINT .

For example, the parsing of the debugging command for wrong answers returns a tuple containing the
generated tree, the module where the computation took place, the set of suspicious statements, and a list
of quoted identifiers indicating the errors that occurred during the parsing:

sort DebugTuple .

op <_,_,_,_> : Forest Maybe{Module} QidSet QidList -> DebugTuple .
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The parsing of the command is done in the GRAMMAR-DEB module, where the first bubble can contain
either a module or just the initial term:

op GRAMMAR-DEB : -> FModule [memo] .

eq GRAMMAR-DEB = addOps(op ’_->_. : ’@Bubble@ ’@Bubble@ -> ’@Judgment@ [none] .

op ’_:_. : ’@Bubble@ ’@Bubble@ -> ’@Judgment@ [none] .

op ’_=>*_. : ’@Bubble@ ’@Bubble@ -> ’@Judgment@ [none] .,

addSorts(’@Judgment@, GRAMMAR-RED)) .

The function procDebug processes a bubble and returns either a tree for the corresponding debug com-
mand or an error message. It receives the term to be parsed, a correct module (possibly undefMod), a
Boolean indicating whether debug-select is on or off, the set of suspicious labels, the selected type of tree,
the bound of the search in the correct module, the default module, and Full Maude’s database of modules.

After finding out the kind of the debugging command (reduction, membership, or rewrite) and if a
module name has been selected by the command, the function procDebug builds the appropriate tree by
using the functions createTree and createRewTree explained in Section 7.2:

op procDebug : Term Maybe{Module} Bool QidSet TreeType Bound ModuleExpression

Database -> DebugTuple .

...

endfm

The persistent state of Full Maude’s system is given by a single object of class DatabaseClass, which
maintains the database of the system. We extend the Full Maude system by defining a subclass of
DatabaseClass inheriting its behavior and adding new attributes to it:

mod DD-DATABASE-HANDLING is

inc DATABASE-HANDLING .

pr DD-COMMAND-PROCESSING .

pr TREE-PRUNING .

pr DIVIDE-QUERY-STRATEGY .

pr LIST{DDState} .

pr LIST{Answer} .

sort DDDatabaseClass .

subsort DDDatabaseClass < DatabaseClass .

op DDDatabase : -> DDDatabaseClass [ctor] .

The new attributes include, for example:

• the debugging tree, which initially is empty, and that will be traversed during the debugging process:

op tree :_ : Forest -> Attribute [ctor] .

• the strategy to traverse the tree. The top-down strategy is represented by the constant td, whereas
divide and query is represented by dq:

op strategy :_ : Strat -> Attribute [ctor] .

• the set of labels considered suspicious:

op suspicious :_ : QidSet -> Attribute [ctor gather(&)] .

• the set of final sorts:

op finalSorts :_ : QidSet -> Attribute [ctor gather(&)] .
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The behavior of the debugger commands is described by means of rewrite rules that change the state of
these attributes. Below we show some of the most interesting rules.

The rule debug starts the debugging process for wrong answers. It receives a term that will be processed
with the function procDebug explained above. If there is no error (that is, the returned list of quoted
identifiers is nil), the tree, the module, and the set of suspicious labels are updated with the appropriate
information, while the answers given by the user so far and the previous states are reset. However, if the
command was incorrect, the error is shown and the state is set to finished:

crl [debug] :

< O : DDDC | db : DB, input : (’debug_.[T]), output : nil,

default : ME, tree : F, module : MM, correction : MM’,

previousStates : LS, answers : LA, state : TS,

treeType : TT, currentTTW : CTTW, bound : BND, select : B,

suspicious : QS, currentSuspicious : QS’, AtS >

=> if QIL == nil then

< O : DDDC | db : DB, input : nilTermList, output : nil, default : ME,

tree : F’, module : MM’’, correction : MM’,

previousStates : nil, answers : nil, state : computing,

treeType : TT, currentTTW : TT, bound : BND, select : B,

suspicious : QS, currentSuspicious : QS’’, AtS >

else

< O : DDDC | db : DB, input : nilTermList, output : QIL, default : ME,

tree : mtForest, module : MM, correction : MM’,

previousStates : nil, answers : nil, state : finished,

treeType : TT, currentTTW : CTTW, bound : BND, select : B,

suspicious : QS, currentSuspicious : QS’, AtS >

fi

if < F’, MM’’, QS’’, QIL > := procDebug(T, MM’, B, QS, TT, BND, ME, DB) .

When a correct module expression is introduced, correct-module keeps the associated module if it
exists, and shows an error message otherwise:

crl [correct-module] :

< O : DDDC | db : DB, input : (’correct‘module_.[T]), output : nil, correction : MM, AtS >

=> if M? :: Module

then < O : DDDC | db : DB, input : nilTermList, output : (’\n add-spaceR(printME(ME)) ’\b

’selected ’as ’correct ’module. ’\o ’\n),

correction : M?, AtS >

else < O : DDDC | db : DB, input : nilTermList, output : (’\n ’\r ’Error: ’\o getMsg(M?)),

correction : MM, AtS >

fi

if ME := parseModExp(T) /\

M? := if compiledModule(ME, DB)

then getFlatModule(ME, DB)

else getFlatModule(modExp(evalModExp(ME, DB)), database(evalModExp(ME, DB)))

fi .

The rule top-down-strategy fixes the value of the navigation strategy to td, and changes the state to
computing if the debugging has not finished to show the appropriate question:

rl [top-down-strategy] :

< O : DDDC | input : (’top-down‘strategy‘..@Command@), output : nil,

strategy : STRAT, state : TS, AtS >

=> < O : DDDC | input : nilTermList, output : (’\n ’\b ’Top-down ’strategy

’selected. ’\o ’\n),

strategy : td, state : if TS == finished then TS

else computing fi, AtS > .
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In the top-down strategy, when the user introduces the identifier of a wrong question, the debugger
updates the list of answers and the previous states, and changes the current tree by the appropriate child
of the root:

crl [top-down-traversal-no] :

< O : DDDC | input : (’_:‘no‘.[’token[T]]), strategy : td, tree : PT,

previousStates : LS, answers : LA, state : waiting, AtS >

=> < O : DDDC | input : nilTermList, strategy : td, tree : PT’,

previousStates : LS < nil, PT, td >,

answers : LA getAnswer(PT’, wrong), state : computing, AtS >

if UPT := removeUnknownChildren(PT) /\

N := downNat*(T) /\

N > 0 /\

N <= size(getForest(UPT, nil)) /\

PT’ := getSubTree(UPT, sd(N, 1)) .

where the function getAnswer constructs an answer given the current node and the answer given by the
user.

The rule missing-wrong is used when, while debugging missing answers with the divide and query
strategy, the user points out that a certain term is not reachable. The rule checks that the current question
is related to an inference of a set of terms with setInference? and that the selected question points to one
of these terms, and then creates the debugging tree for wrong answers with createRewTree:

crl [missing-wrong] :

< O : DDDC | input : (’_is‘wrong‘.[’token[T]]), strategy : dq, tree : PT,

current : NL, previousStates : LS, answers : LA, state : waiting,

currentSuspicious : QS, bound : BND, module : M, correction : MM,

currentTTW : TT, AtS >

=> < O : DDDC | input : nilTermList, strategy : dq, tree : PT’,

current : NL, previousStates : LS < NL, PT, dq >,

answers : LA getAnswer(getSubTree(PT, NL), wrong),

state : computing, currentSuspicious : QS, bound : BND,

module : M, correction : MM, currentTTW : TT, AtS >

if N := downNat*(T) /\

setInference?(getContents(PT, NL)) /\

N > 0 /\

N <= numTermsInRootSet(getSubTree(PT, NL)) /\

T1 := getFirstTerm(getSubTree(PT, NL)) /\

T2 := getWrongTerm(getSubTree(PT, NL), N) /\

PT’ := createRewTree(labeling(M), MM, T1, T2, QS, TT, BND) .

When the divide and query strategy is selected and the user decides to trust a statement, the current
subtree is deleted and the resulting tree is pruned in order to delete the nodes associated with the trusted
statement:

crl [divide-query-traversal] :

< O : DDDC | input : (’trust‘..@Command@), strategy : dq, tree : PT,

current : NL, previousStates : LS, answers : LA,

state : waiting, AtS >

=> < O : DDDC | input : nilTermList, strategy : dq, tree : PT’, current : NL,

previousStates : LS < NL, PT, dq >,

answers : LA getAnswer(getSubTree(PT, NL), right),

state : computing, AtS >

if Q := getLabel(PT, NL) /\

PT’ := prune(deleteSubTree(PT, NL), Q) .
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In the divide and query strategy, when the user indicates that the sort of a certain term is final on the
fly the rule sort-final is applied. It checks that the question is related to final terms with the function
finalQuestion? and then prunes all the tree with the function pruneFinalSort:

crl [sort-final] :

< O : DDDC | input : (’its‘sort‘is‘final‘..@Command@), output : nil,

tree : PT, current : NL, module : M, state : waiting, AtS >

=> < O : DDDC | input : nilTermList, output : (’\n ’\b ’Terms ’of ’sort ’\o Ty

’\b ’are ’final. ’\o ’\n),

tree : PT’, current : NL, module : M, state : computing, AtS >

if finalQuestion?(getContents(PT, NL)) /\

T := getFirstTerm(getSubTree(PT, NL)) /\

Ty := getType(metaReduce(M, T)) /\

PT’ := pruneFinalSort(M, Ty, PT) .

When the user decides to switch the select mode on to use a subset of the labeled statements as suspicious,
the select attribute is set to true:

rl [select] :

< O : DDDC | input : (’set‘debug‘select‘on‘..@Command@), select : B,

output : nil, AtS >

=> < O : DDDC | input : nilTermList, select : true,

output : (’\n ’\b ’Debug ’select ’is ’on. ’\o ’\n), AtS > .

The module DD manages the introduction of data by the user and the output of the debugger’s answers.
Full Maude uses the input/output facility provided by the LOOP-MODE module [12, Chapter 17], which consists
of an operator [_,_,_] with an input stream (the first argument), an output stream (the third argument),
and a state (given by its second argument):

mod DD is

inc DD-DATABASE-HANDLING .

inc LOOP-MODE .

inc META-DD-SIGN .

op o : -> Oid .

--- State for LOOP mode:

subsort Object < State .

op init-debug : -> System .

rl [init] :

init-debug

=> [nil, < o : DDDatabase | input : nilTermList, output : nil, init-state >, dd-banner] .

The rule in below parses the data introduced by the user, which appears in the first argument of the
loop, in the module DD-GRAMMAR and introduces it in the input attribute if it is correctly built:

crl [in] :

[QIL, < O : X@Database | input : nilTermList, Atts >, QIL’]

=> [nil,

< O : X@Database | input : getTerm(metaParse(DD-GRAMMAR, QIL, ’@Input@)), Atts >,

QIL’]

if QIL =/= nil /\

metaParse(DD-GRAMMAR, QIL, ’@Input@) : ResultPair .

The rule out is in charge of printing the messages from the debugger by moving the data in the output
attribute to the third component of the loop:

rl [out] :

[QIL, < O : X@Database | output : (QI QIL’), Atts >, QIL’’]

=> [QIL, < O : X@Database | output : nil, Atts >, (QIL’’ QI QIL’)] .

endm
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8. Conclusions and future work

We have presented in this paper a declarative debugger for Maude specifications. The debugging trees
used in the debugging process are obtained from an abbreviation of a proper calculus whose adequacy
for debugging has been proved. This work comprises our previous work on wrong [30, 8, 34] and missing
answers [32, 31], and provides a powerful and complete debugger for Maude specifications. Moreover,
we also provide a graphical user interface that eases the interaction with the debugger and allows one to
traverse the debugging tree with more freedom [29, 33]. The tree construction, its navigation, and the
user interaction (excluding the GUI) have all been implemented in Maude itself. For more information, see
http://maude.sip.ucm.es/debugging.

We plan to add new navigation strategies like the ones shown in [36] that take into account the number
of different potential errors in the subtrees, instead of their size. Moreover, the current version of the tool
allows the user to introduce a correct but maybe incomplete module in order to shorten the debugging
session. We intend to add a new command to introduce complete modules, which would greatly reduce
the number of questions asked to the user. Finally, we also plan to create a test generator to test Maude
specifications and debug the erroneous tests with the debugger.
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G. Roşu, editor, Proceedings of the Seventh International Workshop on Rewriting Logic and its Applications, WRLA
2008, volume 238(3) of Electronic Notes in Theoretical Computer Science, pages 63–81. Elsevier, 2009.
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Proceedings of the 8th International Workshop on Rewriting Logic and its Applications, WRLA 2010, volume 6381 of
Lecture Notes in Computer Science, pages 226–242. Springer, 2010.

[33] A. Riesco, A. Verdejo, and N. Mart́ı-Oliet. A complete declarative debugger for Maude. In M. Johnson and D. Pavlovic,
editors, Proceedings of the 13th International Conference on Algebraic Methodology and Software Technology, AMAST
2010, volume 6486 of Lecture Notes in Computer Science, pages 216–225. Springer, 2011.

[34] A. Riesco, A. Verdejo, N. Mart́ı-Oliet, and R. Caballero. A declarative debugger for Maude. In J. Meseguer and G. Roşu,
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Appendix A. Proofs

Proposition 1. Let R = (Σ, E,R) be a rewrite theory and let T = TΣ/E′,R′ be any Σ-term model. If a
statement e ⇒ e′ (respectively e → e′, e : s) can be deduced using the semantic calculus rules reflexivity,
transitivity, congruence, equivalence class, or subject reduction using premises that hold in T , then T |=
e⇒ e′ (respectively T |= e→ e′, T |= e : s).

Proof. The result is a direct consequence of the definition of satisfaction of rewrite theories. For instance
we check the result for the transitivity rules Tr⇒ and Tr→, and for the subject reduction rule SRed:

• Tr⇒. Suppose that T |= e1 ⇒ e′ and T |= e′ ⇒ e2. Then [[e1]]A →∗R′/E′ [[e′]]A, [[e′]]A →∗R′/E′ [[e2]]A.
Since →∗R′/E′ is compositional, [[e1]]A →∗R′/E′ [[e2]]A, i.e., T |= e1 ⇒ e2.

• Tr→. If T |= e1 → e′ and T |= e′ → e2 then [[e1]]A = [[e′]]A and [[e′]]A = [[e2]]A. Therefore [[e1]]A = [[e2]]A
and T |= e1 → e2.

• SRed. If T |= e→ e′ and T |= e′ : s, then [[e]]A = [[e′]]A and [[e′]]A ∈ As, and hence [[e]]A ∈ As.

The reflexivity, congruence, and equivalence class rules are checked analogously. ut

Theorem 1. The calculus of Figures 4, 5, 6, and 7 is correct.

Proof. By induction over proof trees; we distinguish cases over the different kinds of judgments:

• adequateSorts(κ)  Θ is correct. Given a kind-substitution κ, when it has the variables of the
appropriate sorts only the rule SubsCond can be applied and the set containing κ is returned. If the
matching fails, AS2 has to be applied and the empty substitution set is returned, being the judgment
correct.

• [C, θ] Θ is correct. We distinguish subcases over the different kinds of conditions:

– C ≡ t1 = t2. Since we work with admissible conditions, we know that θ(t1) and θ(t2) are ground,
and thus the only possible substitution that can be included in Θ is θ. If the condition is fulfilled
only rule EqC1 can be used, and {θ} is returned, which is correct. Otherwise, only EqC2 can be
used, returning now the empty set which is again correct.

– C ≡ t1 := t2. We assume that θ(t2)→norm t′ so, given the complete set of kind-substitutions, we
restrict them to those that are substitutions, thus returning the correct set.

– C ≡ t : s. Like in equational conditions, θ(t) is ground and the resulting set can only contain θ.
If the condition is fulfilled only MbC1 can be applied and the set obtained is correct. Analogously,
if the condition does not hold, only MbC2 can be used and the correct result is the empty set.

– C ≡ t1 ⇒ t2. We assume that the set of reachable terms from θ(t1) that match θ(t2) is correct,
and thus by definition the set computed by rule RlC, the only one applicable here, is correct.

• 〈C,Θ〉  Θ′ is correct. The only rule that deals with this judgment is SubsCond. Assuming the
premises correct, the conclusion is also correct.

• disabled(e, t) is correct. The only rule that deals with this judgment is Dsb. Assuming the premises
correct there are no substitutions satisfying the conditions and making the lefthand side of the equation
or membership match the term, so it cannot be applied and the judgment is correct.

• t→red t
′ is correct. In this case two rules can be used: Rdc1 and Rdc2. The first one covers reductions

at the top, while the second one covers reductions on the subterms, thus dealing with all possibilities.
Assuming the premises correct, in the first case we verify that one step is used because it corresponds
to the application of one equation, while in the second one we check with the side condition that at
least one step is used and thus the judgment is correct.
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• t →norm t′ is correct. The rules that deal with this case are Norm and NTr, that distinguish whether
the term is already in normal form or can be further reduced. In the first case if we assume the
premises correct then the term is in normal form and then the same term has to be returned. In the
second case, assuming the premises correct and a confluent specification, the conclusion is correct.

• fulfilled(C, t). This judgment is correct when there exists a substitution that makes C with the hole ~
filled by t hold. Rule Fulfill, the only one that can be used to prove this predicate, states this fact and
thus the judgment is correct.

• fails(C, t). This judgment is correct when C with t filling its hole ~ cannot be satisfied. Since the only
rule that can be used for this predicate is Fail and the premise indicates that the set of substitutions
that fulfill the condition is empty, the judgment is correct.

• t⇒q S. This judgment is only computed with rule Rl. By hypothesis, all the substitutions that fulfill
the conditions and make t match the lefthand side of the rule are in Θk, thus by definition the union
of the application of all the substitutions in Θk to the lefthand side of the rule generate the set we are
looking for and the judgment is correct.

• t⇒top S. This judgment is only computed with rule Top. First, we notice that the rules in {q1, . . . , ql}
are the only ones that can be applied to t (it does not match the lefthand side of the rest of the rules)
and thus the correctness is not affected by this selection. We know by hypothesis that each Si, the set
of reachable terms obtained from t with the rule qi, is correct and hence the union of all these sets is
by definition the set of reachable terms by rewriting at the top and the judgment is correct.

• t⇒1 S. This judgment is only computed with rule Stp. By hypothesis, we know that St contains the
set of reachable terms obtained by rewriting t at the top, while Si contains the reachable terms in one
step from ti. Since the set of reachable terms in one step from t is the union of the terms obtained by
one rewriting at the top and the set created by substituting each subterm by all the reachable terms
in one step from it, the judgment is correct.

• t  Cn S. For this judgment, rule Red1 can always be applied. Since we work with a coherent theory,
the set of reachable terms from both t and t1 are the same, while t2 and t′ are in the same equivalence
class and thus are equal modulo E.

When n = 0, rules Rf1 or Rf2 are used and the result is straightforward.

If n > 0 and the term fulfills the condition, rule Tr1 is applied. Since the condition holds, the result
set must contain t, that is added in the conclusion of the rule. Moreover, the terms t1, . . . , tk are the
reachable terms from t in exactly one step, while Si is the set of reachable terms from ti in zero or
more steps, that is, the union of the Si is the set of reachable terms in at least one step and at most
n, and thus the union of this set with the singleton set {t} creates a correct set for this judgment.
Analogously, when n > 0 and the condition does not hold, rule Tr2 is applied.

ut

Theorem 2. The calculus of Figure 12 is correct.

Proof.

• t  !Cn S. For this judgment, rule Red2 can always be applied. Since we work with a coherent theory,
the set of reachable terms from both t and t1 are the same, while t2 and t′ are equal modulo E.

When n = 0, rules Rf3, Rf4, and Rf5 can be used. If t is not final only Rf5 can be used and, since no
more steps are allowed, the empty set of results is returned, which is correct by definition. If t is final
we have to check whether the term fulfills the condition; if the condition holds only Rf3 can be used
and hence the singleton set consisting of the term is returned, while if the condition fails Rf4 is applied
and the empty set is returned. In both cases the result is correct by definition.
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When n > 0 rules Rf3, Rf4, and Tr3 can be used. If the term is final, Rf3 and Rf4 are applied and the
result holds as in the previous case. If the term is not final, then Tr3 is applied; the terms t1, . . . , tk are
the reachable terms from t in exactly one step, while Si is the set of reachable terms from ti in zero or
more steps, that is, the union of the Si is the set of reachable terms in at least one step and at most
n and, since the current term cannot be a solution because it is not final, the judgment is correct.

• t +Cn S. We distinguish cases over n:

When n = 0, only rule Rf6 can be applied; since the judgment requires at least one step, the set of
reachable terms is empty by definition.

When n > 0, rule Tr4 is applied. Since t → t′ and the specification is coherent, we know that the set
of reachable terms from both t and t′ is the same; the terms t1, . . . , tk are the reachable terms from t
in exactly one step, while Si is the set of reachable terms from ti in zero or more steps (note that the
judgments in the premises are different from the one in the conclusion), that is, the union of the Si is
the set of reachable terms in at least one step and at most n and hence the judgment is correct.

ut

Proposition 2. Let R = (Σ, E,R) be a rewrite theory, C an atomic condition, θ an admissible substitution,
and TΣ/E′,R′ any Σ-term model. If adequateSorts(κ) Θ, [C, θ] Θ, or 〈C,Θ〉 Θ′ can be deduced using
the rules from Figure 4 using premises that hold in TΣ/E′,R′ , then also TΣ/E′,R′ |= adequateSorts(κ) Θ,
TΣ/E′,R′ |= [C, θ] Θ, and TΣ/E′,R′ |= 〈C,Θ〉 Θ′, respectively.

Proof. We apply the definition of satisfaction for each rule:

EqC1 From the premises we deduce that [θ(t1)]E′ = [θ(t2)]E′ , that is, the condition is satisfied with the
current substitution θ. Since θ already binds all the variables in the condition, it cannot be extended
and θ itself is the result.

EqC2 From the premises we deduce that [θ(t1)]E′ 6= [θ(t2)]E′ , thus the condition fails and there is no
substitution that could satisfy it.

PatC We know that [θ(t2)]E′ = [t′]E′ and that matching conditions can have variables in its lefthand side
that are not bound in θ. Thus, the substitution is extended with all the substitutions θ′ that match
t′ and, since t′ is equal (modulo E′) to θ(t2) by hypothesis, these are all the substitutions that satisfy
the condition.

AS1 We know that the terms in the kind-substitution have the adequate sort, so it is a substitution.

AS2 When one term in the kind-substitution has an incorrect sort the match fails.

MbC1 We know that the condition is fulfilled and θ binds all the variables, therefore it cannot be extended
and the single substitution that verifies the condition is θ itself.

MbC2 Similarly to EqC2, we know by hypothesis that the condition does not hold, thus there is no substi-
tution able to satisfy it and the empty set of substitutions is computed.

RlC In this case θ can be extended because rewrite conditions can contain new variables in their righthand
side. We assume that S contains all the terms reachable from θ(t1) that match the pattern t2, and
then use it to extend θ with all the substitutions θ′ that bind the new variables in t2 to match the
terms in S, obtaining by definition all the substitutions that verify the condition.

SubsCond We assume that, for each θi, 1 ≤ i ≤ n, we obtain the set of substitutions Si that extend [C, θi].
By definition, 〈C, {θ1, . . . , θn}〉 computes the set of substitutions that extend any [C, θi], i.e., the union
of the Si, thus the inference is sound.
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ut

Proposition 3. Let R = (Σ, E,R) be a rewrite theory and ϕ a judgment deduced with the inference rules
Dsb, Rdc2, or NTr from Figure 5 from premises that hold in TΣ/E′,R′ . Then also TΣ/E′,R′ |= ϕ.

Proof. We apply the definition of satisfaction for each rule:

Dsb If the matching with the lefthand side and the conditions cannot be satisfied, then it is straightforward
to see that the statement cannot be applied.

Rdc2 The substitution of a subterm by its normal form is correct if the normal form is correct.

NTr Since the specification is confluent, we can use any equations to evolve a term and then compute the
normal form from this new term.

ut

Proposition 4. Let R = (Σ, E,R) be a rewrite theory, C an admissible condition, and TΣ/E′,R′ any Σ-term
model. If t C0 S can be deduced using rules Rf1 or Rf2 from Figure 6 using premises that hold in TΣ/E′,R′ ,
then also TΣ/E′,R′ |= t C0 S.

Proof. We apply the definition of satisfaction for each rule:

Rf1 We know by hypothesis that the term t fulfills the condition thus, by definition, the set of reachable
terms in zero steps is the singleton set with t as single element.

Rf2 In a similar way to the case above, if the condition does not hold with the term t, then the set of
reachable terms is empty.

ut

Proposition 5. Let R = (Σ, E,R) be a rewrite theory, C an admissible condition, n a natural number,
and TΣ/E′,R′ any Σ-term model. If t  Cn S or t ⇒1 S can be deduced by means of the rules in Figure 7
using premises that hold in TΣ/E′,R′ , then also TΣ/E′,R′ |= t Cn S or TΣ/E′,R′ |= t⇒1 S, respectively.

Proof. We apply the definition of satisfaction for each rule:

Tr1 We know that the condition is fulfilled by t, that t in exactly one step is rewritten to the set {t1, . . . , tk},
and that each of these terms is rewritten in at most n steps to S1, . . . , Sk. Since {t1, . . . , tk} have been
obtained in one step, the terms in S1, . . . , Sk have been computed in at most n+1 steps and in at least
1 step. Since we are looking for the solutions in zero or more steps, we have to compute the union of
these sets with the set of reachable terms in zero steps, that in this case is the singleton set containing
the term t itself, because we are assuming it fulfills the condition. Thus, the inference is sound.

Tr2 Analogous to the case above.

Stp We assume that all the possible rewrites in exactly one step at the top of f(ti), 0 ≤ i ≤ m, lead to
the set St and that all the reachable terms in exactly one step of each subterm ti form the set Si. By
definition, all the reachable terms in exactly one step is the union of the set of all the terms obtained
by rewrites at the top and the sets built by substituting each subterm by each reachable term from it
(only one subterm is substituted at the same time), so the inference is sound.

Red1 Since we know that t → t1, by coherence the same reachable terms are obtained from t and t1.
Moreover, since t2 =E′ t

′ we can substitute t2 by t′ and the set remains unchanged.
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ut

Proposition 6. Let R = (Σ, E,R) be a rewrite theory, C an admissible condition, n a natural number,
and TΣ/E′,R′ any Σ-term model. If a statement t  !Cn S or t  +Cn S can be deduced by means of the rules
in Figure 12 using premises that hold in TΣ/E′,R′ , then also TΣ/E′,R′ |= t  !Cn S or TΣ/E′,R′ |= t  +Cn S,
respectively.

Proof.

Rf3 In this case we know that the term fulfills the condition and that it is final, so by definition the set of
final reachable terms consists exactly of the term itself.

Rf4 If the term is final but it does not satisfy the condition, then the set of reachable states is empty by
definition.

Rf5 If no more steps can be used and the term is not final, the set of reachable terms is empty by definition.

Tr3 We know that the term is not final, so we can split the search into two different searches, one in one
step that leads to {t1, . . . , tk}, and another in n steps from these terms, that we know generate the
sets S1, . . . , Sk. Thus, the result is the union of these sets.

Red2 Analogous to Red1 in Proposition 5.

Rf6 By definition the relation requires at least one step, thus if only zero steps are available the result is the
empty set.

Tr4 First, we know that t → t′, hence, by coherence, the same reachable terms are obtained from t and t′.
Again, we distinguish the first step of the search, that leads to {t1, . . . , tk}, and the next n steps. Since
the terms in this second phase of the search have already evolved one step, the single requirement is
to fulfill the condition, and thus the union of the sets obtained with the relation for zero or more steps
has to be the result.

ut

Proposition 8. Let N be a buggy node in some proof tree in the calculus of Figures 1, 4, 5, 6, 7, and 12
w.r.t. an intended interpretation I. Then:

1. N corresponds to the consequence of an inference rule in the first column of Table 3.
2. The error associated to N can be obtained from the inference rule as shown in the second column of

Table 3.

Proof. The first item is a straightforward consequence of Propositions 1, 2, 3, 4, 5, and 6: N buggy means
N invalid with all its children valid, and these are the only possible inference rules at N .

For the second property we study each inference rule separately:

Rep→ In this case the associated equation is wrong as a direct consequence of having a wrong statement
instance: N is invalid in I, while the previous conditions, which state the validity of the statements in
the equation condition instance, correspond to the premises of the Rep→ inference rule (see Figure 1),
which are valid in I because N is buggy.

Rep⇒ and Mb Analogous to the case above.

Rdc1 In this case it is possible to have an erroneous result when the conditions hold. The reason is that the
equation can be wrong, and thus we would have a wrong equation instance.

Norm If the conclusion of this rule is erroneous but its premises hold this means that the specification does
not have all the required equations, that is, an error in this node is associated with a missing equation.
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Ls Similarly to the case above, if the conclusion of this rule is wrong while its premises hold this means that
the specification lacks some membership, that is, an error in this node is associated with a missing
membership.

Fulfill If this node is buggy then there exists a substitution that satisfies the condition but the condition
should not hold, thus we have a wrong condition. In this case the condition in the buggy node is
pointed out as the error in the specification.

Fail In this case the set of substitutions that fulfill the condition is empty but the condition should hold, so
the node is associated with a wrong condition. As in the case above, the error in the specification is
related to the condition in the buggy node.

Top When this node is buggy all the possible rules have been applied at the top and their results are correct,
but the union of these terms does not lead to all the intended reachable terms by rewriting the term
at the top, so this node is related to a missing rule. In this case, we will point to the operator at the
top of the term in the lefthand side of the buggy node as incompletely defined.

Rl The nodes computing the set of substitutions that fulfill the condition of the rule are correct, but once
the righthand side of the rule is instantiated with these substitutions there are reachable terms in the
intended interpretation that are not in this set. Thus, in this case the buggy node is associated with
a wrong rule and the rule applied in the node is pointed out as buggy.

ut

Lemma 1. Let T be a finite proof tree representing an inference in the calculus of Figures 1, 4, 5, 6, 7,
and 12 w.r.t. some rewrite theory R. Let I be an intended interpretation of R such that the root N of T is
invalid in I. Then:

(a) If T contains only one node, then APT ′(T ) = {T}.
(b) There is a T ′ ∈ APT ′(T ) such that T ′ has an invalid root.

Proof. If T contains only one node N then N is an invalid node without children and therefore buggy. By
Proposition 8 the inference step proving this node must be Rep→, Mb, Rep⇒, Rdc1, Norm, Fulfill, Fail, Ls,
Rl, or Top. In all these cases the rule (APT10) of Figure 13 must be applied and the result holds, since it
returns a singleton set with the same root.

The second item can be proved by induction on the number of nodes of T , which we denote as n(T ). If
n(T ) = 1 the property is straightforward from the part (a) above because T ∈ APT ′(T ). If n(T ) > 1 we
distinguish cases depending on the rule for APT ′ that can be applied at the root of T :

• If it is either (APT2), (APT3), (APT4), (APT5), (APT6), (APT7), (APTm
8 ), (APTm

9 ), or
(APT10) the result holds directly because the result is a singleton set with the same invalid root
(in the case of (APT7) an equivalent root).

• If it is (APTo
8), (APTo

9), or (APT11) by Proposition 8 N has some invalid child, which corresponds
to the root of some premise Ti. By the induction hypothesis, there is some T ′ ∈ APT ′(Ti) with invalid
root. And by observing the rules of Figure 13 it can be checked that every subtree Ti of the root of T
verifies APT ′(Ti) ⊆ APT ′(T ). Then T ′ ∈ APT ′(T ).

ut

Theorem 3. Let T be a finite proof tree representing an inference in the calculus of Figures 1, 4, 5, 6, 7,
and 12 w.r.t. some rewrite theory R. Let I be an intended interpretation of R such that the root of T is
invalid in I. Then:

• APT (T ) contains at least one buggy node (completeness).

• Any buggy node in APT (T ) has an associated wrong statement, missing statement, or wrong condition
in R according to Table 3 (correctness).
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Proof. We prove each item separately:

• APT (T ) contains at least one invalid node, since its root is the root of T , and any debugging tree
containing an invalid node contains a buggy node by Proposition 7.

• First we observe that the root of APT (T ) cannot be buggy, because if it is invalid then it has an invalid
child (Lemma 1(b)). Therefore any buggy node must be part of APT ′(T ) (the premise in (APT1)).

Let N be a buggy node occurring in APT ′(T ). Then N is the root of some tree TN , subtree of some
T ′ ∈ APT ′(T ). By the structure of the APT ′ rules this means that there is a subtree T ′ of T such
that TN ∈ APT ′(T ′). We prove that N has an associated wrong statement in S by induction on the
number of nodes of T ′, n(T ′).

If n(T ′) = 1 then T ′ contains only one node and APT ′(T ′) = {T ′} by Lemma 1(a). Then the only
possible buggy node is N , which means that N is also buggy in T and that the associated fragment
of code is wrong by Proposition 8.

If n(T ′) > 1 we examine the APT rule applied at the root of T ′:

(APT2) Then T ′ is of the form
T1 . . . Tn
e1 → e′

Rep→
T ′′

e1 → e2
Tr→

Hence N ≡ (e1 → e2) and TN is

APT ′(T1) . . .APT ′(Tn) APT ′(T ′′)
e1 → e2

Rep→

Since N is buggy in TN it is invalid w.r.t. I. By Proposition 8, e1 → e2 cannot be buggy in T ′, i.e.,
either T ′′ has an invalid root or e1 → e′ is invalid. But T ′′ cannot be invalid because APT ′(T ′′)
is a child subtree of N and by Lemma 1(b) it would contain a tree T ′′′ with invalid root, which
is not possible because T ′′′ is a child of the buggy node N in TN . Therefore e1 → e′ is invalid.
Moreover, the roots of T1, . . . , Tn are also valid by the same reason: APT ′(T1), . . . ,APT ′(Tn)
are child subtrees of N in TN and cannot have an invalid root. Therefore e1 → e′ is buggy in
T ′, i.e., is buggy in T and by Proposition 8 the equation associated to label Rep→ is wrong. And
this label is the same that can be found associated to N in the APT ′ TN . Therefore the buggy
node N of the APT ′ has an associated wrong equation.

(APT3) In this case T ′ has the form

T1 . . . Tn

t→red t
′′ Rdc1

T

t→norm t′
NTr

Thus t→norm t′ and TN is

APT ′(T1) . . . APT ′(Tn) APT ′(T )

t→norm t′
Rdc1

By Proposition 8 we know that N cannot be buggy in T ′, thus either t →red t′′ or the root of
T is invalid. However, if the root of T were invalid we know by Lemma 1 that the set obtained
with APT ′ would contain a tree with an invalid root and then N cannot be buggy. Therefore,
t →red t′′ is invalid but, for the same reason as before, T1 . . . Tn cannot be invalid, so it is also
buggy in T ′ and by Proposition 8 the rule label Rdc1 has associated a wrong equation. Since this
same label has been now assigned to N , the buggy node in the abbreviated proof tree has an
associated wrong equation.

62



(APT4) In this case T ′ has the form

T1 . . . Tn

t⇒top S′
Top

T ′1 . . . T ′n
t⇒1 S

Stp

Thus N ≡ t⇒1 S and TN is

APT ′(T1) . . . APT ′(Tn) APT ′(T ′1) . . . APT ′(T ′n)

t⇒1 S
Top

By Proposition 5 we know that N cannot be buggy in T ′, thus either of t ⇒top S′ or the root
of one of T ′1 . . . T

′
n is invalid. However, if the root of one of the trees T ′1 . . . T

′
n were invalid we

know by Lemma 1 that the set obtained with APT ′ would contain a tree with an invalid root
and then N cannot be buggy. Therefore, t⇒top S′ is invalid but, for the same reason as before,
T1 . . . Tn cannot be invalid, so it is also buggy in T ′ and by Proposition 8 the rule label Top has
associated a missing rule. Since this same label has been now assigned to N , the buggy node in
the abbreviated proof tree has an associated missing rule.

(APT5) and (APT6) Analogous to the previous cases.

(APT7) T ′ has the form

Tt→normt′ T1 . . . Tn
t :ls s

Ls

Then N ≡ t :ls s and TN is

APT ′(Tt→normt′) APT ′(T1) . . . APT ′(Tn)
t′ :ls s

Ls

Since N is buggy in TN all the trees in APT ′(Tt→normt′) APT ′(T1) . . . APT ′(Tn) are valid and
by Lemma 1 the roots of Tt→normt′ T1 . . . Tn are also valid and N is buggy in T ′. By Proposition
8 it is associated with a missing membership in T ′ and, since we have the same label in TN , the
result holds.

(APTo
8), (APTo

9), (APT11) Then TN ∈ APT ′(Ti) for some child subtree Ti of the root of T ′ and
the result holds by the induction hypothesis.

(APTm
8 ) We check that actually this rule cannot be applied to produce a buggy node and therefore

must not be considered here. If (APTm
8 ) is applied then T ′ must be of the form

T1 T2

e1 ⇒ e2
Tr⇒

N is e1 ⇒ e2 and TN is
APT ′(T1) APT ′(T2)

e1 ⇒ e2
Tr⇒

And N can be invalid but not buggy in T ′ (and hence in T ) by Proposition 8, because it is
the conclusion of a transitivity inference, and thus either T1 or T2 has an invalid root. Then by
Lemma 1(b), either APT ′(T1) or APT ′(T2) have an invalid root and N is not buggy in TN .

(APTm
9 ) Analogous to the previous case.

(APT10) We present the proof for the inference rule Fulfill, with the other cases being analogous. T ′

has the form

T1 . . . Tn
fulfilled(C, t) Fulfill

63



Then N ≡ fulfilled(C, t) and TN is

APT ′(T1) . . . APT ′(Tn)
fulfilled(C, t) Fulfill

Since N is buggy in TN all the trees in APT ′(T1) . . . APT ′(Tn) are valid and by Lemma 1 the
roots of T1 . . . Tn are also valid and N is buggy in T ′. By Proposition 8 it is associated with a
wrong statement in T ′ and, since we have the same label in TN , the result holds.

ut
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Abstract. Maude modules can be understood as models that can be
formally analyzed and verified with respect to different properties ex-
pressing various formal requirements. However, Maude lacks the formal
tools to perform some of these analyses and thus they can only be done
by hand. The Heterogeneous Tool Set Hets is an institution-based com-
bination of different logics and corresponding rewriting, model checking
and proof tools. We present in this paper an integration of Maude into
Hets that allows to use the logics and tools already integrated in Hets
with Maude specifications. To achieve such integration we have defined
an institution for Maude based on preordered algebras and a comorphism
between Maude and Casl, the central logic in Hets.

Keywords: Heterogeneous specifications, rewriting logic, institution,
Maude, Casl.

1 Introduction

Maude [3] is a high-level language and high-performance system supporting both
equational and rewriting logic computation for a wide range of applications.
Maude modules correspond to specifications in rewriting logic, a simple and
expressive logic which allows the representation of many models of concurrent
and distributed systems.

The key point is that there are three different uses of Maude modules:

1. As programs, to implement some application. We may have chosen Maude
because its features make the programming task easier and simpler than
other languages.

2. As formal executable specifications, that provide a rigorous mathematical
model of an algorithm, a system, a language, or a formalism. Because of
the agreement between operational and mathematical semantics, this math-
ematical model is at the same time executable.

3. As models that can be formally analyzed and verified with respect to differ-
ent properties expressing various formal requirements. For example, we may
want to prove that our Maude module terminates; or that a given function,
equationally defined in the module, satisfies some properties expressed as
first-order formulas.

However, when we follow this last approach we find that, although Maude can au-
tomatically perform analyses like model checking of temporal formulas or

M. Johnson and D. Pavlovic (Eds.): AMAST 2010, LNCS 6486, pp. 60–75, 2011.
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verification of invariants, other formal analyses have to be done “by hand,” thus
disconnecting the real Maude code from its logical meaning. Although some ef-
forts, like the Inductive Theorem Prover [4], have been dedicated to palliate this
problem, they are restricted to inductive proofs in Church-Rosser equational the-
ories, and they lack the generality to deal with all the features of Maude. With our
approach, we cover arbitrary first-order properties (also written in logics different
from Maude), and open the door to automated induction strategies such as those
of ISAplanner [7].

The Heterogeneous Tool Set, Hets [16] is an institution-based combination
of different logics and corresponding rewriting, model checking and proof tools.
Tools that have been integrated into Hets include the SAT solvers zChaff and
MiniSat, the automated provers SPASS, Vampire and Darwin, and the interac-
tive provers Isabelle and VSE.

In this paper, we describe an integration of Maude into Hets from which
we expect several benefits: On the one hand, Maude will be the first dedicated
rewriting engine that is integrated into Hets (so far, only the rewriting engine
of Isabelle is integrated, which however is quite specialized towards higher-order
proofs). On the other hand, certain features of the Maude module system like
views lead to proof obligations that cannot be checked with Maude—Hets will
be the suitable framework to prove them, using the above mentioned proof tools.

The rest of the paper is organized as follows: after briefly introducing Hets
in Section 2 and Maude in Section 3, Section 4 describes the institution we have
defined for Maude and the comorphism from this institution to Casl. Section 5
shows how development graphs for Maude specifications are built, and then how
they are normalized to deal with freeness constraints. Section 6 illustrates the
integration of Maude into Hets with the help of an example, while Section 7
concludes and outlines the future work.

2 Hets

The central idea of Hets is to provide a general logic integration and proof
management framework. One can think of Hets acting like a motherboard where
different expansion cards can be plugged in, the expansion cards here being
individual logics (with their analysis and proof tools) as well as logic translations.

The benefit of plugging in a new logic and tool such as Maude into the Hets
motherboard is the gained interoperability with the other logics and tools avail-
able in Hets.

The work that needs to be done for such an integration is to prepare both
the Maude logic and tool so that it can act as an expansion card for Hets.
On the side of the semantics, this means that the logic needs to be organized
as an institution [12]. Institutions capture in a very abstract and flexible way
the notion of a logical system, by leaving open the details of signatures, models,
sentences (axioms) and satisfaction (of sentences in models). The only condi-
tion governing the behavior of institutions is the satisfaction condition, stating
that truth is invariant under change of notation (or enlargement of context),
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which is captured by the notion of signature morphism (which leads to transla-
tions of sentences and reductions of models), see [12] for formal details.

Indeed, Hets has interfaces for plugging in the different components of an
institution: signatures, signature morphisms, sentences, and their translation
along signature morphisms. Recently, even (some) models and model reducts
have been covered, although this is not needed here. Note, however, that the
model theory of an institution (including model reducts and the satisfaction
condition) is essential when relating different logics via institution comorphisms.
The logical correctness of their use in multi-logic proofs is ensured by model-
theoretic means.

For proof management, Hets uses development graphs [15]. They can be
defined over an arbitrary institution, and they are used to encode structured
specifications in various phases of the development. Roughly speaking, each node
of the graph represents a theory. The links of the graph define how theories can
make use of other theories.

Definition 1. A development graph is an acyclic, directed graph DG = 〈N ,L〉.
N is a set of nodes. Each node N ∈ N is a tuple (ΣN , ΦN ) such that ΣN is

a signature and ΦN ⊆ Sen(ΣN) is the set of local axioms of N .
L is a set of directed links, so-called definition links, between elements of

N . Each definition link from a node M to a node N is either

– global (denoted M
σ �� N), annotated with a signature morphism σ :

ΣM → ΣN , or
– local (denoted M

σ �� N), again annotated with a signature morphism
σ : ΣM → ΣN , or

– hiding (denoted M
σ

hide
�� N), annotated with a signature morphism σ :

ΣN → ΣM going against the direction of the link, or
– free (denoted M

σ

free
�� N), annotated with a signature morphism σ : Σ →

ΣM where Σ is a subsignature of ΣM .

Definition 2. Given a node M in a development graph DG, its associated class
ModDG(M) of models (or M -models for short) is inductively defined to consist
of those ΣM -models m for which

1. m satisfies the local axioms ΦM ,
2. for each N

σ �� M ∈ DG, m|σ is an N -model,

3. for each N
σ �� M ∈ DG, m|σ satisfies the local axioms ΦN ,

4. for each N
σ

hide
�� M ∈ DG, m has a σ-expansion m′ (i.e. m′|σ = m) that is

an N -model, and
5. for each N

σ

free
�� M ∈ DG, m is an N -model that is persistently σ-free

in Mod(N). The latter means that for each N -model m′ and each model
morphism h : m|σ → m′|σ, there exists a unique model morphism h# : m→
m′ with h#|σ = h.
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Complementary to definition links, which define the theories of related nodes,
we introduce the notion of a theorem link with the help of which we are able to
postulate relations between different theories. Theorem links are the central data
structure to represent proof obligations arising in formal developments. Again,
we distinguish between local and global theorem links (denoted by N

σ ����� ��� M

and N
σ ����� M respectively). We also need theorem links N

σ

hide θ
����� ��� M (where

for some Σ, θ : Σ → ΣN and σ : Σ → ΣM ) involving hiding. The semantics of
global theorem links is given by the next definition; the others do not occur in
our examples and we omit them.

Definition 3. Let DG be a development graph and N , M nodes in DG.
DG implies a global theorem link N

σ ����� ��� M (denoted DG |= N
σ ����� ��� M) iff

for all m ∈ Mod(M), m|σ ∈ Mod(N).

3 Rewriting Logic and Maude

Maude is an efficient tool for equational reasoning and rewriting. Methodolog-
ically, Maude specifications are divided into a specification of the data objects
and a specification of some concurrent transition system, the states of which are
given by the data part. Indeed, at least in specifications with initial semantics,
the states can be thought of as equivalence classes of terms. The data part is
written in a variant of subsorted conditional equational logic. The transition
system is expressed in terms of a binary rewriting relation, and also may be
specified using conditional Horn axioms.

Two corresponding logics have been introduced and studied in the literature:
rewriting logic and preordered algebra [13]. They essentially differ in the treat-
ment of rewrites: whereas in rewriting logic, rewrites are named, and different
rewrites between two given states (terms) can be distinguished (which corre-
sponds to equipping each carrier set with a category of rewrites), in preordered
algebra, only the existence of a rewrite does matter (which corresponds to equip-
ping each carrier set with a preorder of rewritability).

Rewriting logic has been announced as the logic underlying Maude [3]. Maude
modules lead to rewriting logic theories, which can be equipped with loose seman-
tics (fth/th modules) or initial/free semantics (fmod/mod modules). Although
rewriting logic is not given as an institution [6], a so-called specification frame (col-
lapsing signatures and sentences into theories)wouldbe sufficient for our purposes.

However, after a closer look at Maude and rewriting logic, we found out that
de facto, the logic underlying Maude differs from the rewriting logic as defined
in [13]. The reasons are:

1. In Maude, labels of rewrites cannot (and need not) be translated along sig-
nature morphisms. This means that e.g. Maude views do not lead to theory
morphisms in rewriting logic!
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2. Although labels of rewrites are used in traces of counterexamples, they play
a subsidiary role, because they cannot be used in the linear temporal logic
of the Maude model checker.

Specially the first reason completely rules out a rewriting logic-based integration
of Maude into Hets: if a view between two modules is specified, Hets definitely
needs a theory morphism underlying the view.1 However, the Maude user does
not need to provide the action of the signature morphism on labeled rewrites,
and generally, there is more than one possibility to specify this action.

The conclusion is that the most appropriate logic to use for Maude is pre-
ordered algebra [10]. In this logic, rewrites are neither labeled nor distinguished,
only their existence is important. This implies that Maude views lead to theory
morphisms in the institution of preordered algebras. Moreover, this setting also
is in accordance with the above observation that in Maude, rewrite labels are
not first-class citizens, but are mere names of sentences that are convenient for
decorating tool output (e.g. traces of the model checker). Labels of sentences
play a similar role in Hets, which perfectly fits here.

Actually, the switch from rewriting logic to preordered algebras has effects on
the consequence relation, contrary to what is said in [13]. Consider the following
Maude theory:

th A is
sorts S T .
op a : -> S .
eq X:S = a .
ops h k : S -> T .
rl [r] : a => a .
rl [s] : h(a) => k(a) .
endfth

This logically implies h(x) ⇒ k(x) in preordered algebra, but not in rewriting
logic, since in the latter logic it is easy to construct models in which the naturality
condition r; k(r) = h(r); s fails to hold.

Before describing how to encode Maude into Hets we briefly outline the
structuring mechanisms used in Maude specifications:

Module importation. In Maude, a module can be imported in three differ-
ent modes, each of them stating different semantic constraints: Importing
a module in protecting mode intuitively means that no junk and no con-
fusion are added; importing a module in extending mode indicates that
junk is allowed, but confusion is forbidden; finally, importing a module in
including mode indicates that no requirements are assumed.

Module summation. The summation module operation creates a new module
that includes all the information in its summands.

1 If the Maude designers would let (and force) users to specify the action of signature
morphisms on rewrite labels, it would not be difficult to switch the Hets integration
of Maude to being based on rewriting logic.
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Renaming. The renaming expression allows to rename sorts, operators (that
can be distinguished by their profiles), and labels.

Theories. Theories are used to specify the requirements that the parameters
used in parameterized modules must fulfill. Functional theories are mem-
bership equational specifications with loose semantics. Since the statements
specified in theories are not expected to be executed in general, they do not
need to satisfy the executability requirements.

Views. A view indicates how a particular module satisfies a theory, by mapping
sorts and operations in the theory to those in the target module, in such a
way that the induced translations on equations and membership axioms
are provable in the module. Note that Maude does not provide a syntax
for mapping rewrite rules; however, the existence of rewrites between terms
must be preserved by views.

4 Relating the Maude and CASL Logics

In this section, we will relate Maude and Casl at the level of logical systems.
The structuring level will be considered in the next section.

4.1 Maude

As already motivated in Section 3, we will work with preordered algebra se-
mantics for Maude. We will define an institution, that we will denote Maudepre ,
which can be, like in the case of Maude’s logic, parametric over the underlying
equational logic. Following the Maude implementation, we have used member-
ship equational logic [14]. Notice that the resulting institution Maudepre is very
similar to the one defined in the context of CafeOBJ [10,6] for preordered alge-
bra (the differences are mainly given by the discussion about operation profiles
below, but this is only a matter of representation). This allows us to make use
of some results without giving detailed proofs.

Signatures of Maudepre are tuples (K,F, kind : (S,≤) → K), where K is
a set (of kinds), kind is a function assigning a kind to each sort in the poset
(S,≤), and F is a set of function symbols of the form F = {Fk1...kn→x | ki, k ∈
K} ∪ {Fs1...sn→s | si, s ∈ S} such that if f ∈ Fs1...sn→s, there is a symbol
f ∈ Fkind(s1)...kind(sn)→kind(s). Notice that there is actually no essential differ-
ence between our putting operation profiles on sorts into the signatures and
Meseguer’s original formulation putting them into the sentences.

Given two signatures Σi = (Ki, Fi, kindi), i ∈ {1, 2}, a signature morphism
φ : Σ1 → Σ2 consists of a function φkind : K1 → K2 which preserves ≤1, a func-
tion between the sorts φsort : S1 → S2 such that φsort; kind2 = kind1;φkind and
the subsorts are preserved, and a function φop : F1 → F2 which maps operation
symbols compatibly with the types. Moreover, the overloading of symbol names
must be preserved, i.e. the name of φop(σ) must be the same both when map-
ping the operation symbol σ on sorts and on kinds. With composition defined
component-wise, we get the category of signatures.
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For a signature Σ, a model M interprets each kind k as a preorder (Mk,≤),
each sort s as a subsetMs ofMkind(s) that is equipped with the induced preorder,
with Ms a subset of Ms′ if s < s′, and each operation symbol f ∈ Fk1...kn,k

as a function Mf : Mk1 × . . . × Mkn → Mk which has to be monotonic and
such that for each function symbol f on sorts, its interpretation must be a
restriction of the interpretation of the corresponding function on kinds. For two
Σ-models A and B, a homomorphism of models is a family {hk : Ak → Bk}k∈K

of preorder-preserving functions which is also an algebra homomorphism and
such that hkind(s)(As) ⊆ Bs for each sort s.

The sentences of a signature Σ are Horn clauses built with three types of
atoms: equational atoms t = t′, membership atoms t : s, and rewrite atoms
t ⇒ t′, where t, t′ are F -terms and s is a sort in S. Given a Σ-model M , an
equational atom t = t′ holds in M if Mt = Mt′ , a membership atom t : s
holds when Mt is an element of Ms, and a rewrite atom t ⇒ t′ holds when
Mt ≤Mt′ . Notice that the set of variables X used for quantification is K-sorted.
The satisfaction of sentences extends the satisfaction of atoms in the obvious
way.

4.2 CASL

Casl, the Common Algebraic Specification Language [1,5], has been designed by
CoFI, the international Common Framework Initiative for algebraic specifica-
tion and development. Its underlying logic combines first-order logic and induc-
tion (the latter is expressed using so-called sort generation constraints, which
express term-generatedness of a part of a model; this is needed for the speci-
fication of the usual inductive datatypes) with subsorts and partial functions.
The institution underlying Casl is introduced in two steps: first, many-sorted
partial first-order logic with sort generation constraints and equality (PCFOL=)
is introduced, and then, subsorted partial first-order logic with sort generation
constraints and equality (SubPCFOL=) is described in terms of PCFOL=. In
contrast to Maude, Casl’s subsort relations may be interpreted by arbitrary in-
jections injs,t , not only by subsets. We refer to [5] for details. We will only need
the Horn Clause fragment of first-order logic. For freeness (see Sect. 5.1), we will
also need sort generation constraints, as well as the second-order extension of
Casl with quantification over predicates.

4.3 Encoding Maude in CASL

We now present an encoding of Maude into Casl. It can be formalized as a
so-called institution comorphism [11]. The idea of the encoding of Maudepre in
Casl is that we represent rewriting as a binary predicate and we axiomatize it
as a preorder compatible with operations.

Every Maude signature (K,F, kind : (S,≤) → K) is translated to the Casl
theory ((S′,≤′, F, P ), E), where S′ is the disjoint union of K and S, ≤′ extends
the relation ≤ on sorts with pairs (s, kind(s)), for each s ∈ S, rew ∈ Ps,s for
any s ∈ S′ is a binary predicate and E contains axioms stating that for any kind
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k, rew ∈ Pk,k is a preorder compatible with the operations. The latter means
that for any f ∈ Fs1..sn,s and any xi, yi of sort si ∈ S′, i = 1, .., n, if rew(xi, yi)
holds, then rew(f(x1, . . . , xn), f(y1, . . . , yn)) also holds.

Let Σi, i = 1, 2 be two Maude signatures and let ϕ : Σ1 → Σ2 be a Maude
signature morphism. Then its translation Φ(ϕ) : Φ(Σ1) → Φ(Σ2) denoted φ, is
defined as follows:

– for each s ∈ S, φ(s) := ϕsort(s) and for each k ∈ K, φ(k) := ϕkind(k).
– the subsort preservation condition of φ follows from the similar condition for
ϕ.

– for each operation symbol σ, φ(σ) := ϕop(σ).
– rew is mapped identically.

The sentence translation map for each signature is obtained in two steps. While
the equational atoms are translated as themselves, membership atoms t : s are
translated to Casl memberships t in s and rewrite atoms of form t ⇒ t′ are
translated as rew(t, t′). Then, any sentence of Maude of the form (∀xi : ki)H =⇒
C, where H is a conjunction of Maude atoms and C is an atom is translated as
(∀xi : ki)H ′ =⇒ C′, where H ′ and C′ are obtained by mapping all the Maude
atoms as described before.

Given a Maude signature Σ, a model M ′ of its translated theory (Σ′, E) is
reduced to a Σ-model denoted M where:

– for each kind k, define Mk = M ′
k and the preorder relation on Mk is rew;

– for each sort s, defineMs to be the image ofM ′
s under the injection injs,kind(s)

generated by the subsort relation;
– for each f on kinds, let Mf (x1, .., xn) = M ′

f(x1, .., xn) and for each f on
sorts of result sort s, let Mf (x1, .., xn) = injs,kind(s)(M ′

f (x1, .., xn)). Mf is
monotone because axioms ensure that M ′

f is compatible with rew.

The reduct of model homomorphisms is the expected one; the only thing worth
noticing is that hkind(s)(Ms) ⊆ Ns for each sort s follows from the Casl model
homomorphism condition of h.

Notice that the model reduct is an isomorphism of categories.

5 From Maude Modules to Development Graphs

We describe in this section how Maude structuring mechanisms described in
Section 3 are translated into development graphs. Then, we explain how these
development graphs are normalized to deal with freeness constraints.

Signature morphisms are produced in different ways; explicitly, renaming of
module expressions and views lead to signature morphisms; however, implicitly
we also find other morphisms: the sorts defined in the theories are qualified
with the parameter in order to distinguish sorts with the same name that will
be instantiated later by different ones; moreover, sorts defined (not imported)
in parameterized modules can be parameterized as well, so when the theory is
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instantiated with a view these sorts are also renamed (e.g. the sort List{X} for
generic lists can become List{Nat}).

Each Maude module generates two nodes in the development graph. The first
one contains the theory equipped with the usual loose semantics. The second one,
linked to the first one with a free definition link (whose signature morphism is
detailed below), contains the same signature but no local axioms and stands for
the free models of the theory. Note that Maude theories only generate one node,
since their initial semantics is not used by Maude specifications. When importing
a module, we will select the node used depending on the chosen importation
mode:

– The protecting mode generates a non-persistent free link between the cur-
rent node and the node standing for the free semantics of the included one.

– The extending mode generates a global link with the annotation PCons?,
that stands for proof-theoretic conservativity and that can be checked with
a special conservativity checker that is integrated into Hets.

– The including mode generates a global definition link between the current
node and the node standing for the loose semantics of the included one.

The summation module expression generates a new node that includes all the
information in its summands. Note that this new node can also need a node with
its free model if it is imported in protecting mode.

The model class of parameterized modules consists of free extensions of the
models of their parameters, that are persistent on sorts, but not on kinds. This
notion of freeness has been studied in [2] under assumptions like existence of
top sorts for kinds and sorted variables in formulas; our results hold under sim-
ilar hypotheses. Thus, we use the same non-persistent free links described for
protecting importation to link these modules with their corresponding theories.
Views do not generate nodes in the development graph but theorem links be-
tween the node corresponding to the source theory and the node with the free
model of the target. However, Maude views provide a special kind of mapping
between terms, that can in general map functions of different arity. When this
mapping is used we generate a new inner node extending the signature of the
target to include functions of the adequate arity.

We illustrate how to build the development graph with an example. Consider
the following Maude specifications:

fmod M1 is fmod M2 is

sort S1 . sort S2 .

op _+_ : S1 S1 -> S1 [comm] . endfm

endfm

th T is mod M3{X :: T} is

sort S1 . sort S4 .

op _._ : S1 S1 -> S1 . endm

eq V1:S1 . V2:S1 = V2:S1 . V1:S1 [nonexec] .

endth
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Fig. 1. Development Graph for Maude Specifications

mod M is view V from T to M is

ex M1 + M2 * (sort S2 to S) . op _._ to _+_ .

endm endv

Hets builds the graph shown in Fig. 1, where the following steps take place:

– Each module has generated a node with its name and another primed one
that contains the initial model, while both of them are linked with a non-
persistent free link. Note that theory T did not generate this primed node.

– The summation expression has created a new node that includes the theories
of M1 and M2, importing the latter with a renaming; this new node, since it
is imported in extending mode, uses a link with the PCons? annotation.

– There is a theorem link between T and the free (here: initial) model of M.
This link is labeled with the mapping defined in the view V.

– The parameterized module M3 includes the theory of its parameter with a
renaming, that qualifies the sort. Note that these nodes are connected by
means of a non-persistent freeness link.

It is straightforward to show:

Theorem 1. The translation of Maude modules into development graphs is
semantics-preserving.

Once the development graph is built, we can apply the (logic independent) cal-
culus rules that reduce global theorem links to local theorem links, which are in
turn discharged by local theorem proving [15]. This can be used to prove Maude
views, like e.g. “natural numbers are a total order.” We show in the next section
how we deal with the freeness constraints imposed by free definition links.

5.1 Normalization of Free Definition Links

Maude uses initial and free semantics intensively. The semantics of freeness is,
as mentioned, different from the one used in Casl in that the free extensions
of models are required to be persistent only on sorts and new error elements
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can be added on the interpretation of kinds. Attempts to design the translation
to Casl in such a way that Maude free links would be translated to usual free
definition links in Casl have been unsuccessful. We decided thus to introduce a
special type of links to represent Maude’s freeness in Casl. In order not to break
the development graph calculus, we need a way to normalize them. The idea is
to replace them with a semantically equivalent development graph in Casl. The
main idea is to make a free extension persistent by duplicating parameter sorts
appropriately, such that the parameter is always explicitly included in the free
extension.

For any Maude signatureΣ, let us define an extensionΣ# = (S#,≤#, F#, P#)
of the translation Φ(Σ) of Σ to Casl as follows:

– S# unites with the sorts of Φ(Σ) the set {[s] | s ∈ Sorts(Σ)};
– ≤# extends the subsort relation ≤ with pairs (s, [s]) for each sort s and

([s], [s′]) for any sorts s ≤ s′;
– F# adds the function symbols {f : [w] → [s]} for all function symbols on

sorts f : w → s;2

– P# adds the predicate symbol rew on all new sorts.

Now, we consider a Maude non-persistent free definition link and let σ : Σ →
Σ′ be the morphism labeling it.3 We define a Casl signature morphism σ# :
Φ(Σ) → Σ′#: on sorts, σ#(s) := σsort(s) and σ#([s]) := [σsort(s)]; on operation
symbols, we can define σ#(f) := σop(f) and this is correct because the operation
symbols were introduced in Σ′#; rew is mapped identically.

The normalization of Maude freeness is then illustrated in Fig.2. Given a free
non-persistent definition link M

σ

free
�� N, with σ : Σ → ΣN , we first take the

translation of the nodes to Casl (nodes M ′ and N ′) and then introduce a new
node, K, labeled with Σ#

N , a global definition link from M ′ to M ′′ labeled with
the inclusion ιN of ΣN in Σ#

N , a free definition link from M ′′ to K labeled with
σ# and a hiding definition link from K to N ′ labeled with the inclusion ιN .4

M
n.p.free

σ ��

��

N

��

M ′

ιN

��
M ′′

free

σ#
�� K

hide

ιn �� N ′

Fig. 2. Normalization of
Maude free links

Notice that the models of N are Maude reducts of
Casl models of K, reduced along the inclusion ιN .

The next step is to eliminate Casl free definition
links. The idea is to use then a transformation spe-
cific to the second-order extension of Casl to normal-
ize freeness. The intuition behind this construction is
that it mimics the quotient term algebra construction,
that is, the free model is specified as the homomorphic
image of an absolutely free model (i.e. term model).

We are going to make use of the following known
facts [18]:

2 [x1 . . . xn] is defined to be [x1] . . . [xn].
3 In Maude, this would usually be an injective renaming.
4 The arrows without labels in Fig.2 correspond to heterogeneous links from Maude

to CASL.
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Fact 1. Extensions of theories in Horn form admit
free extensions of models.

Fact 2. Extensions of theories in Horn form are monomorphic.

Given a free definition link M
σ

free
�� N, with σ : Σ → ΣN such that Th(M)

is in Horn form, replace it with M
incl �� K

incl

hide
�� N ′ , where N ′ has the same

signature as N , incl denotes inclusions and the node K is constructed as follows.
The signature ΣK consists of the signature ΣM disjointly united with a copy

of ΣM , denoted ι(ΣM ) which makes all function symbols total (let us denote
ι(x) the corresponding symbol in this copy for each symbol x from the signature
ΣM ) and augmented with new operations h : ι(s) →?s, for any sort s of ΣM

and makes : s→ ι(s), for any sort s of the source signature Σ of the morphism
σ labelling the free definition link.

The axioms ψK of the node K consist of:

– sentences imposing the bijectivity of make;
– axiomatization of the sorts in ι(ΣM ) as free types with all operations as

constructors, including make for the sorts in ι(Σ);
– homomorphism conditions for h:

h(ι(f)(x1, . . . , xn)) = f(h(x1), . . . , h(xn))

and

ι(p)(t1, . . . , tn) ⇒ p(h(t1), . . . , h(tn))

– surjectivity of homomorphisms:

∀y : s.∃x : ι(s).h(x) e= y

– a second-order formula saying that the kernel of h is the least partial pred-
icative congruence5 satisfying Th(M). This is done by quantifying over a
predicate symbol for each sort for the binary relation and one predicate
symbol for each relation symbol as follows:

∀{Ps : ι(s), ι(s)}s∈Sorts(ΣM ), {Pp:w : ι(w)}p:w∈ΣM

. symmetry ∧ transitivity ∧ congruence ∧ satThM =⇒ largerThenKerH

where symmetry stands for
∧

s∈Sorts(ΣM)

∀x : ι(s), y : ι(s).Ps(x, y) =⇒ Ps(y, x),

5 A partial predicative congruence consists of a symmetric and transitive binary rela-
tion for each sort and a relation of appropriate type for each predicate symbol.
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transitivity stands for
∧

s∈Sorts(ΣM)

∀x : ι(s), y : ι(s), z : ι(s).Ps(x, y) ∧ Ps(y, z) =⇒ Ps(x, z),

congruence stands for
∧

fw→s∈ΣM ∀x1 . . . xn : ι(w), y1 . . . yn : ι(w) .
D(ι(fw,s)(x̄)) ∧D(ι(fw,s)(ȳ)) ∧ Pw(x̄, ȳ) =⇒ Ps(ι(fw,s)(x̄), ι(fw,s)(ȳ))

and
∧

pw∈ΣM ∀x1 . . . xn : ι(w), y1 . . . yn : ι(w) .
D(ι(fw,s)(x̄)) ∧D(ι(fw,s)(ȳ)) ∧ Pw(x̄, ȳ) =⇒ Pp:w(x̄) ⇔ Pp:w(ȳ)

where D indicates definedness. satThM stands for

Th(M)[
e
= /Ps; p : w/Pp:w; D(t)/Ps(t, t); t = u/Ps(t, u) ∨ (¬Ps(t, t) ∧ ¬Ps(u, u))]

where, for a set of formulas Ψ , Ψ [sy1/sy′1; . . . ; syn/sy
′
n] denotes the simulta-

neous substitution of sy′i for syi in all formulas of Ψ (while possibly instan-
tiating the meta-variables t and u). Finally largerThenKerH stands for

∧
s∈Sorts(ΣM ) ∀x : ι(s), y : ι(s).h(x) e= h(y) =⇒ Ps(x, y)∧
∧pw∈ΣM∀x̄ : ι(w).ι(p : w)(x̄) =⇒ Pp:w(x̄)

Proposition 1. The models of the nodes N and N ′ are the same.

6 An Example: Reversing Lists

The example we are going to present is a standard specification of lists with
empty lists, composition and reversal. We want to prove that by reversing a list
twice we obtain the original list. Since Maude syntax does not support mark-
ing sentences of a theory as theorems, in Maude we would normally write a
view (PROVEIDEM in Fig. 3, left side) from a theory containing the theorem
(REVIDEM) to the module with the axioms defining reverse (LISTREV).

The first advantage the integration of Maude in Hets brings in is that we can
use heterogeneous Casl structuring mechanisms and the %implies annotation
to obtain the same development graph in a shorter way – see the right side of
Fig. 3. Notice that we made the convention in Hets to have non-persistent free-
ness for Maude specifications, modifying thus the usual institution-independent
semantics of the freeness construct.

For our example, the development calculus rules are applied as follows. First,
the library is translated to Casl; during this step, Maude non-persistent free
links are normalized. The next step is to normalize Casl free links, using Free-
ness rule. We then apply the Normal-Form rule which introduces normal forms
for the nodes with incoming hiding links (introduced at the previous step) and
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fmod MYLIST is

sorts Elt List .

subsort Elt < List .

op nil : -> List [ctor] .

op __ : List List -> List

[ctor assoc id: nil] .

endfm

fmod MYLISTREV is

pr MYLIST .

op reverse : List -> List .

var L : List .

var E : Elt .

eq reverse(nil) = nil .

eq reverse(E L) = reverse(L) E .

endfm

fth REVIDEM is

pr MYLIST .

op reverse : List -> List .

var L : List .

eq reverse(reverse(L)) = L .

endfth

view PROVEIDEM

from REVIDEM to MYLISTREV is

sort List to List .

op reverse to reverse .

endv

logic Maude
spec PROVEIDEM =

free
{sorts Elt List .
subsort Elt < List .
op nil : −> List [ctor] .
op : List List −> List

[ctor assoc id: nil] .
}

then {op reverse : List −> List .
var L : List . var E : Elt .
eq reverse(nil) = nil .
eq reverse(E L) = reverse(L) E .

} then %implies
{var L : List .
eq reverse(reverse(L)) = L .

}

Fig. 3. Lists with reverse, in Maude (left) and CASL (right) syntax

then Theorem-Hide-Shift rule which moves the target of any theorem link target-
ing a node with incoming hiding links to the normal form of the latter. Calling
then Proofs/Automatic, the proof obligation is delegated to the normal form
node.

In this node, we now have a proof goal for a second-order theory. It can be
discharged using the interactive theorem prover Isabelle/HOL [17]. We have set
up a series of lemmas easing such proofs. First of all, normalization of freeness
introduces sorts for the free model which are axiomatized to be the homomorphic
image of a set of the absolutely free (i.e. term) model. A transfer lemma (that
exploits surjectivity of the homomorphism) enables us to transfer any proof goal
from the free model to the absolutely free model. Since the absolutely free model
is term generated, we can use induction proofs here. For the case of datatypes
with total constructors (like lists), we prove by induction that the homomor-
phism is total as well. Two further lemmas on lists are proved by induction:
(1) associativity of concatenation and (2) the reverse of a concatenation is the
concatenation (in reverse order) of the reversed lists. This infrastructure then
allows us to demonstrate (again by induction) that reverse(reverse(L)) = L.
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While proof goals in Horn clause form often can be proved with induction,
other proof goals like the inequality of certain terms or extensionality of sets
cannot. Here, we need to prove inequalities or equalities with more complex
premises, and this calls for use of the special axiomatization of the kernel of the
homomorphism. This axiomatization is rather complex, and we are currently
setting up the infrastructure for easing such proofs in Isabelle/HOL.

7 Conclusions and Future Work

We have presented in this paper how Maude has been integrated into Hets, a pars-
ing, static analysis and proof management tool that combines various tools for dif-
ferent specification languages. To achieve this integration, we consider preordered
algebra semantics for Maude and define an institution comorphism from Maude
to Casl. This integration allows to prove properties of Maude specifications like
those expressed in Maude views. We have also implemented a normalization of the
development graphs that allows us to prove freeness constraints. We have used this
transformation to connectMaude to Isabelle [17], aHigher Order Logic prover, and
have demonstrated a small example proof about reversal of lists. Moreover, this
encoding is suited for proofs of e.g. extensionality of sets, which require first-order
logic, going beyond the abilities of existing Maude provers like ITP.

Since interactive proofs are often not easy to conduct, future work will make
proving more efficient by adopting automated induction strategies like rip-
pling [7]. We also have the idea to use the automatic first-order prover SPASS for
induction proofs by integrating special induction strategies directly into Hets.

We have also studied the possible comorphisms from Casl to Maude. We dis-
tinguish whether the formulas in the source theory are confluent and terminating
or not. In the first case, that we plan to check with the Maude termination [8]
and confluence checker [9], we map formulas to equations, whose execution in
Maude is more efficient, while in the second case we map formulas to rules.

Finally, we also plan to relate Hets’ Modal Logic and Maude models in order
to use the Maude model checker [3, Chapter 13] for linear temporal logic.
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Abstract

Maude modules can be understood as models that can be formally analyzed and verified with
respect to different properties expressing various formal requirements. However, Maude lacks the
formal tools to perform some of these analyses and thus they can only be done by hand. The
Heterogeneous Tool Set Hets is an institution-based combination of different logics and corresponding
rewriting, model checking, and proof tools. We present in this paper an integration of Maude into
Hets that allows to use the logics and tools already integrated in Hets with Maude specifications.
To achieve such integration we have defined an institution for Maude based on preordered algebras
and a comorphism between Maude and Casl, the central logic in Hets.

Keywords: rewriting logic, heterogeneous specifications, Maude, Casl
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1 Introduction

Maude [7] is a high-level language and high-performance system supporting both equational and rewriting
logic computation for a wide range of applications. Maude modules correspond to specifications in
rewriting logic, a simple and expressive logic which allows the representation of many models of concurrent
and distributed systems. The key point is that there are three different uses of Maude modules:

1. As programs, to implement some application. We may have chosen Maude because its features
make the programming task easier and simpler than other languages.

2. As formal executable specifications, that provide a rigorous mathematical model of an algorithm,
a system, a language, or a formalism. Because of the agreement between operational and mathe-
matical semantics, this mathematical model is at the same time executable. Therefore, we can use
it as a precise prototype of our system to simulate its behavior.

3. As models that can be formally analyzed and verified with respect to different properties express-
ing various formal requirements. For example, we may want to prove that our Maude module
terminates; or that a given function, equationally defined in the module, satisfies some properties
expressed as first-order formulas.

However, when we follow this last approach we find that, although Maude can automatically perform
analyses like model checking of temporal formulas or verification of invariants, other formal analyses have
to be done “by hand,” thus disconnecting the real Maude code from its logical meaning. Although some
efforts, like the Inductive Theorem Prover [9], have been dedicated to palliate this problem, they are
restricted to inductive proofs in Church-Rosser equational theories, and they lack the generality to deal
with all the features of Maude. Hence, it would be useful to connect Maude to other systems in a correct
and general way in order to these systems to prove properties in Maude specifications. Moreover, when
designing complex systems it is usually required to use different formalisms to define their different parts
such as databases, specifications, or real-time mechanisms. For this reason, it would also be interesting
to have a framework where different tools can be used and related to each other.

Since it is clear that no single language can suit all purposes, a original approach was followed to
develop the Common Algebraic Specification Language, Casl [1]. Its development was proposed by the
Common Framework Initiative for algebraic specification and development, CoFI [19], that wanted to
unify the different algebraic languages available, incorporating the main features of all these languages
and fixing its syntax and semantics. The aim of the initiative was to create a language for specification
of functional requirements; formal development of software; relation of specifications to informal require-
ments and implemented code; prototyping, theorem-proving, and formal testing; and tool interoperability.
Following these ideas Casl was designed as a language based on first-order logic and induction by means
of constructor constraints.

However, Casl was not thought as a standalone language, but as the heart of a family of languages,
some of them obtained by restricting Casl and some other obtained by extending it. Broadening this
idea, it is also possible to relate other languages independent from Casl with it; in this way it would
be possible to use other tools (and hence other logics) with Casl specifications and vice versa. This is
the aim of the Heterogeneous Tool Set (Hets) [29], an integration tool that combines different logics
and corresponding rewriting, model checking, and proof tools with Casl at his heart. The correctness of
the integration in this tool is granted because the tools introduced are formalized as institutions and the
translations (ideally to Casl or any of its sublogics) as institution comorphisms. The reasons for using
Hets are:

• It is formal, that is, it allows the user to reason about the mathematical properties of his speci-
fications. This feature makes it much more adequate for our purposes than the Unified Modeling
Language UML [3], probably the best known system of this kind.

• It is multilateral, in the sense that the specifications can be introduced in any of the logics supported
by Hets, while other approaches, like the Prosper toolkit [10], which provides several decision
procedures and model checkers based in the theorem prover HOL98 [33], only provide one logic,
and all specifications must be translated to it before using the tool.

• It focuses on codings between logics, unlike other approaches that focus on codings between theories
as OMDoc [20], an ontology language for mathematics. The former allows to reason about different
elements in different logics, while the latter only permits to reason about different elements in the
same logic.
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• Several tools have already been integrated into Hets, including the SAT solvers zChaff [24] and
MiniSat [15], the automated provers SPASS [39], Vampire [37], and Darwin [16], and the interactive
provers Isabelle [32] and VSE [2].

In this paper, we describe an integration of Maude into Hets from which we expect several benefits.
On the one hand, Maude will be the first dedicated rewriting engine that is integrated into Hets (so
far, only the rewriting engine of Isabelle is integrated, which however is quite specialized towards higher-
order proofs). On the other hand, certain features of the Maude module system like views lead to proof
obligations that cannot be checked with Maude—Hets will be the suitable framework to prove them,
using the above mentioned proof tools; with our approach, we cover arbitrary first-order properties (also
written in logics different from Maude), and open the door to automated induction strategies such as
those of ISAplanner [12].

The rest of the paper is organized as follows. After briefly introducing rewriting logic in Section 2 and
Hets in Section 3, Section 4 describes the institution we have defined for Maude and the comorphism
from this institution to Casl. Section 5 shows how development graphs for Maude specifications are built,
and then how they are normalized to deal with freeness constraints. Section 6 illustrates the integration
of Maude into Hets with the help of an example, while Section 7 outlines the implementation of the
integration. Section 8 concludes and outlines some future work.

2 Rewriting logic and Maude

As mentioned in the introduction, Maude modules are executable rewriting logic specifications. Rewriting
logic [22] is a logic of change very suitable for the specification of concurrent systems that is parameterized
by an underlying equational logic, for which Maude uses membership equational logic [5, 23], which, in
addition to equations, allows the statement of membership axioms characterizing the elements of a sort.
In the following sections we present both logics and how their specifications are represented as Maude
modules.

2.1 Membership equational logic

A signature in membership equational logic is a triple (K,Σ, S) (just Σ in the following), with K a set
of kinds, Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K a many-kinded signature, and S = {Sk}k∈K a pairwise disjoint
K-kinded family of sets of sorts. The kind of a sort s is denoted by [s]. We write TΣ,k and TΣ,k(X) to
denote respectively the set of ground Σ-terms with kind k and of Σ-terms with kind k over variables in
X, where X = {x1 : k1, . . . , xn : kn} is a set of K-kinded variables. Intuitively, terms with a kind but
without a sort represent undefined or error elements.

The atomic formulas of membership equational logic are either equations t = t′, where t and t′ are
Σ-terms of the same kind, or membership axioms of the form t : s, where the term t has kind k and
s ∈ Sk. Sentences are universally-quantified Horn clauses of the form (∀X)A0 ⇐ A1 ∧ . . . ∧ An, where
each Ai is either an equation or a membership axiom, and X is a set of K-kinded variables containing
all the variables in the Ai. A specification is a pair (Σ, E), where E is a set of sentences in membership
equational logic over the signature Σ.

Models of membership equational logic specifications are Σ-algebras A consisting of a set Ak for each
kind k ∈ K, a function Af : Ak1 × · · · × Akn

−→ Ak for each operator f ∈ Σk1...kn,k, and a subset
As ⊆ Ak for each sort s ∈ Sk. The meaning [[t]]A of a term t in an algebra A is inductively defined as
usual. Then, an algebra A satisfies an equation t = t′ (or the equation holds in the algebra), denoted
A |= t = t′, when both terms have the same meaning: [[t]]A = [[t′]]A. In the same way, satisfaction of a
membership is defined as: A |= t : s when [[t]]A ∈ As.

A membership equational logic specification (Σ, E) has an initial model TΣ/E whose elements are
E-equivalence classes of terms [t]. We refer to [5, 23] for a detailed presentation of (Σ, E)-algebras, sound
and complete deduction rules, as well as the construction of initial and free algebras.

2.2 Maude functional modules

Maude functional modules [7, Chapter 4], introduced with syntax fmod ... endfm, are executable mem-
bership equational specifications and their semantics is given by the corresponding initial membership
algebra in the class of algebras satisfying the specification. The membership equational logic specifica-
tions that we consider are assumed to satisfy the executability requirements of confluence, termination,
and sort-decreasingness.

4



In a functional module we can declare sorts (by means of keyword sort(s)); subsort relations between
sorts (subsort); operators (op) for building values of these sorts, giving the sorts of their arguments
and result, and which may have attributes such as being associative (assoc) or commutative (comm), for
example; memberships (mb) asserting that a term has a sort; and equations (eq) identifying terms. Both
memberships and equations can be conditional (cmb and ceq).

Maude does automatic kind inference from the sorts declared by the user and their subsort relations.
Kinds are not declared explicitly, and correspond to the connected components of the subsort relation.
The kind corresponding to a sort s is denoted [s]. For example, if we have sorts Nat for natural numbers
and NzNat for nonzero natural numbers with a subsort NzNat < Nat, then [NzNat] = [Nat].

An operator declaration like

op _div_ : Nat NzNat -> Nat .

is logically understood as a declaration at the kind level

op _div_ : [Nat] [Nat] -> [Nat] .

together with the conditional membership axiom

cmb N div M : Nat if N : Nat and M : NzNat .

A subsort declaration NzNat < Nat is logically understood as the conditional membership axiom

cmb N : Nat if N : NzNat .

2.3 Rewriting logic

Rewriting logic extends equational logic by introducing the notion of rewrites corresponding to transitions
between states; that is, while equations are interpreted as equalities and therefore they are symmetric,
rewrites denote changes which can be irreversible.

A rewriting logic specification, or rewrite theory, has the form R = (Σ, E,R), where (Σ, E) is an
equational specification and R is a set of rules as described below. From this definition, one can see that
rewriting logic is built on top of equational logic, so that rewriting logic is parameterized with respect to
the version of the underlying equational logic; in our case, Maude uses membership equational logic, as
described in the previous sections. A rule in R has the general conditional form1

(∀X) t⇒ t′ ⇐
n∧
i=1

ui = u′i ∧
m∧
j=1

vj : sj ∧
l∧

k=1

wk ⇒ w′k

where the head is a rewrite and the conditions can be equations, memberships, and rewrites; both sides
of a rewrite must have the same kind. From these rewrite rules, one can deduce rewrites of the form
t⇒ t′ by means of general deduction rules introduced in [22] (for a generalization see also [6]).

Models of rewrite theories are called R-systems. Such systems are defined as categories that possess
a (Σ, E)-algebra structure, together with a natural transformation for each rule in the set R. More intu-
itively, the idea is that we have a (Σ, E)-algebra, as described in Section 2.1, with transitions between the
elements in each set Ak; moreover, these transitions must satisfy several additional requirements, includ-
ing that there are identity transitions for each element, that transitions can be sequentially composed,
that the operations in the signature Σ are also appropriately defined for the transitions, and that we have
enough transitions corresponding to the rules in R. Then, if we keep in this context the notation A to
denote an R-system, a rewrite t ⇒ t′ is satisfied by A, denoted A |= t ⇒ t′, when there is a transition
[[t]]A →A [[t′]]A in the system between the corresponding meanings of both sides of the rewrite, where→A
will be our notation for such transitions.

The rewriting logic deduction rules introduced in [22] are sound and complete with respect to this
notion of model. Moreover, they can be used to build initial and free models; see [22] for details.

1There is no need for the condition listing first equations, then memberships, and then rewrites: this is just a notational
abbreviation, they can be listed in any order.
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2.4 Maude system modules

Maude system modules [7, Chapter 6], introduced with syntax mod ... endm, are executable rewrite
theories and their semantics is given by the initial system in the class of systems corresponding to the
rewrite theory. A system module can contain all the declarations of a functional module and, in addition,
declarations for rules (rl) and conditional rules (crl).

The executability requirements for equations and memberships in a system module are the same as
those of functional modules, namely, confluence, termination, and sort-decreasingness. With respect to
rules, the satisfaction of all the conditions in a conditional rewrite rule is attempted sequentially from
left to right, solving rewrite conditions by means of search; for this reason, we can have new variables in
such conditions but they must become instantiated along this process of solving from left to right (see
[7] for details). Furthermore, the strategy followed by Maude in rewriting with rules is to compute the
normal form of a term with respect to the equations before applying a rule. This strategy is guaranteed
not to miss any rewrites when the rules are coherent with respect to the equations [38, 7]. In a way
quite analogous to confluence, this coherence requirement means that, given a term t, for each rewrite
of it using a rule in R to some term t′, if u is the normal form of t with respect to the equations and
memberships in E, then there is a rewrite of u with some rule in R to a term u′ such that u′ =E t′ (that
is, the equation t′ = u′ can be deduced from E).

2.5 Advanced features

In addition to the modules presented thus far, we present in this section some other Maude features that
will be used throughout this paper. More information on these topics can be found in [7].

2.5.1 Module operations

To ease the specification of large systems, Maude provides several mechanisms to structure its modules.
We describe in this section these structuring mechanisms, that will be used later to build the development
graphs in Hets.

Maude modules can import other modules in three different modes:

• The protecting mode (abbreviated as pr) indicates that no junk and no confusion can be added
to the imported module, where junk refers to new terms in canonical form while confusion implies
that different canonical terms in the initial module are made equal by equations in the imported
module.

• The extending mode (abbreviated as ex) indicates that junk is allowed but confusion is forbidden.

• The including mode (abbreviated as inc) allows both junk and confusion.

More specifically, these importation modes do not import modules but module expressions that, in
addition to a single module identifier, can be:

• A summation of two module expressions ME 1 +ME 2, which creates a new module that includes all
the information in its summands.

• A renaming ME * (Renaming), where Renaming is a list of renamings. They can be renaming of
sorts:

sort sort1 to sort2 .

of operators, distinguishing whether it renames all the operators with the given identifier (when the
attributes are modified, only prec, gather, and format are allowed, see [7])

op id1 to id2 .

op id1 to id2 [atts] .

or it renames the operators of the given arity:

op id1 : arity -> coarity to id2 .

op id1 : arity -> coarity to id2 [atts] .
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or of labels:

label label1 to label2 .

2.5.2 Theories

Theories are used to declare module interfaces, namely the syntactic and semantic properties to be
satisfied by the actual parameter modules used in an instantiation. As for modules, Maude supports
two different types of theories: functional theories and system theories, with the same structure of
their module counterparts, but with a different semantics. Functional theories are declared with the
keywords fth ... endfth, and system theories with the keywords th ... endth. Both of them can
have sorts, subsort relationships, operators, variables, membership axioms, and equations, and can import
other theories or modules. System theories can also have rules. Although there is no restriction on the
operator attributes that can be used in a theory, there are some subtle restrictions and issues regarding
the mapping of such operators (see Section 2.5.3). Like functional modules, functional theories are
membership equational logic theories, but they do not need to be Church-Rosser and terminating.

For example, we can define a theory for some processes. First, we indicate that a sort for processes is
required:

fth PROCESS is

pr BOOL .

sort Process .

Then, we state that two operators, one updating the processes and another one checking whether a
process has finished, have to be defined:

op update : Process -> Process .

op finished? : Process -> Bool .

Finally, we require an operator _<_ over processes that is required to be irreflexive and transitive:

vars X Y Z : Process .

op _<_ : Process Process -> Bool .

eq X < X = false [nonexec label irreflexive] .

ceq X < Z = true if X < Y /\ Y < Z [nonexec label transitive] .

endfth

2.5.3 Views

We use views to specify how a particular target module or theory satisfies a source theory. In general,
there may be several ways in which such requirements might be satisfied by the target module or theory;
that is, there can be many different views, each specifying a particular interpretation of the source theory
in the target. In the definition of a view we have to indicate its name, the source theory, the target
module or theory, and the mapping of each sort and operator in the source theory. The source and target
of a view can be any module expression, with the source module expression evaluating to a theory and the
target module expression evaluating to a module or a theory. Each view declaration has an associated set
of proof obligations, namely, for each axiom in the source theory it should be the case that the axiom’s
translation by the view holds true in the target. Since the target can be a module interpreted initially,
verifying such proof obligations may in general require inductive proof techniques. Such proof obligations
are not discharged or checked by the system.

The mappings allowed in views are:

• Mappings between sorts:

sort sort1 to sort2 .

• Mappings between operators, where the user can specify the arity and coarity of the operators to
disambiguate them:
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op id1 to id2 .

op id1 : arity -> coarity to id2 .

• In addition to these mappings, the user can map a term term1, that can only be a single operator
applied to variables, to any term term2 in the target module, where the sorts of the variables in
the first term have been translated by using the sort mappings. Note that in that case the arity of
the operator in the source theory and the one in the target module can be different:

op term1 to term term2 .

Notice that we cannot map labels, and thus we cannot identify the statements in the theory with
those in the target module.

We can now create a view NatProcess from the theory PROCESS in the previous section to NAT, the
predefined module for natural numbers:

view NatProcess from PROCESS to NAT is

We need a sort in NAT to identify processes. We use Nat, the sort for natural numbers:

sort Process to Nat .

Since we identify now processes with natural numbers, we can update a process by applying the
successor function, which is declared as s_ in NAT:

op update to s_ .

We map the operator finished? in a different way: we create a term with this operator with a
variable as argument, and it is mapped to a term in the syntax of the target module. In that case we
consider a process has finished if it reaches 100:

op finished?(P:Process) to term P:Nat < 100 .

Since the NAT module already contains an operator _<_, it is not necessary to explicitly indicate the
corresponding mapping, i.e., identity mappings for sorts and operators can be omitted when defining
views.

2.5.4 Parameterized modules

Maude modules can be parameterized. A parameterized system module has syntax

mod M{X1 :: T1, . . . , Xn :: Tn} is ... endm

with n ≥ 1. Parameterized functional modules have completely analogous syntax.
The {X1 :: T1, . . . , Xn :: Tn} part is called the interface, where each pair Xi :: Ti is a parameter, each

Xi is an identifier—the parameter name or parameter label—, and each Ti is an expression that yields a
theory—the parameter theory. Each parameter name in an interface must be unique, although there is
no uniqueness restriction on the parameter theories of a module. The parameter theories of a functional
module must be functional theories.

In a parameterized module M , all the sorts and statement labels coming from theories in its interface
must be qualified by their names. Thus, given a parameter Xi :: Ti, each sort S in Ti must be qualified as
Xi$S, and each label l of a statement occurring in Ti must be qualified as Xi$l. In fact, the parameterized
module M is flattened as follows. For each parameter Xi :: Ti, a renamed copy of the theory Ti, called
Xi :: Ti is included. The renaming maps each sort S to Xi$S, and each label l of a statement occurring
in Ti to Xi$l. The renaming has no effect on importations of modules. Thus, if Ti includes a theory T ′,
when the renamed theory Xi :: Ti is created and included into M , the renamed theory Xi :: T ′ will also
be created and included into Xi :: Ti. However, the renaming will have no effect on modules imported
by either the Ti or T ′; for example, if BOOL is imported by one of these theories, it is not renamed,
but imported in the same way into M . Moreover, sorts declared in parameterized modules can also be
parameterized, and these may duplicate, omit, or reorder parameters.

The parameters in parameterized modules are bound to the formal parameters by instantiation. The
instantiation requires a view from each formal parameter to its corresponding actual parameter. Each such
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view is then used to bind the names of sorts, operators, etc. in the formal parameters to the corresponding
sorts, operators (or expressions), etc. in the actual target. The instantiation of a parameterized module
must be made with views explicitly defined previously.

We can define a parameterized module for multisets of the processes shown in Section 2.5.3. This
module defines the sort MSet{X} for multisets, which is a supersort of Process:

fmod PROCESS_MSET{X :: PROCESS} is

sort MSet{X} .

subsort X$Process < MSet{X} .

The constructors of multisets are empty for the empty multiset and the juxtaposition operator __ for
bigger multisets:

op empty : -> MSet{X} [ctor] .

op __ : MSet{X} MSet{X} -> MSet{X} [ctor assoc comm id: empty] .

We can also use the operators declared in the view. For example, we can remove a process from the
multiset if it is finished:

var P : X$Process .

var MS : MSet{X} .

ceq P MS = MS if finished?(P) .

endfm

We can use the view NatProcess to instantiate this parameterized module and create multisets of
processes identified as natural numbers.

fmod NAT_PROCSES_MSET is

pr PROCESS_MSET{NatProcess} .

endfm

3 Hets

The central idea of Hets [26, 28, 29, 30] is to provide a general logic integration and proof management
framework. One can think of Hets acting like a motherboard where different expansion cards can be
plugged in, the expansion cards here being individual logics (with their analysis and proof tools) as
well as logic translations. The benefit of plugging in a new logic and tool such as Maude into the Hets
motherboard is the gained interoperability with the other logics and tools available in Hets; for example,
we can now compose the translation from Maude to Casl with the corresponding translation to Isabelle
to prove properties in Maude specifications.

Figure 1 shows how, by adding up different tools for single logics, we obtain a bigger tool which
supports all of them by (i) providing a small set of mechanisms specific for each tool, (ii) relating the
logics in such a way that all of them are connected, and (iii) using these relations to translate the initial
specification to another logic where the required tool is available. The current logic graph for Hets
is depicted in Figure 2 (where different colors stand for different subgraphs and relations we are not
interested here), where each node corresponds to a different logic and the links are relations between
them. Note that, as sketched in the introduction, the central node of this graph is Casl; new logics are
expected to be translated to it in order to relate them with all the other logics in an easy and efficient
way.

Following the ideas shown in Figure 1, the work that needs to be done for such an integration is to
prepare both the Maude logic and tool so that it can act as an expansion card for Hets:

• On the side of the semantics, this means that the logic needs to be organized as an institution [18, 36].

• On the side of the tool, we must provide a parser and static analysis mechanisms for it, in such a
way that its specifications can be translated into a common framework, which in our case consists
of development graphs, a graphical representation of structured specifications.

Before describing how this aims have been achieved we present the Casl syntax and basic notions on
institutions and comorphisms.
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Figure 1: The Heterogeneous Tool Set

3.1 Casl

Since we intend to translate Maude specifications into Casl ones, it is worth to introduce the basic Casl
notions in order to understand the translated specifications. Casl [1, 31, 4] is an expressive language
for specifying requirements and design for conventional software based on both first-order logic and
induction, the latter by means of constructor constraints. It was designed as a general-purpose algebraic
specification language, subsuming many previous languages for formal specification, with the intention of
basing its design on a critical selection of concepts and constructs from existing specification languages.

In this section we will explain the Casl syntax needed to understand a translated Maude specification;
several other features, as well as shortcuts and variants of the syntax presented here, are explained
in [4]. A Casl specification, with syntax spec ... end allows declarations of sorts, subsorts, operations,
and predicates. As in the Maude case, sorts are interpreted as sets of terms, subsort declarations as
embeddings. For example, we could start the specification of natural numbers in the My_Nat module,
with sorts Zero, NzNat, and Nat (declared with sorts) and the standard subsorts (with syntax <) as
follows:

spec My_Nat =

sorts Zero < NzNat

sorts NzNat < Nat

Constructors are declared with the keyword type followed by the type identifier and ::=, while on the
righthand side we place the constructors of the type separated by |. Thus, we define natural numbers as
follows:

type Zero ::= 0

type NzNat ::= suc (Nat)

We can now define operators on these sorts with the keyword ops and indicating their arity and
coarity:

ops __+__, min, max: Nat * Nat -> Nat;

where __ (a double underscore) is a placeholder and allows the user to use mixfix notation in the usual
way.

We can also define predicates as follows with the keyword pred and indicating their arity:
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Figure 2: Current logic graph

preds __<=__, __>=__: Nat * Nat;

Casl distinguishes between Boolean functions and predicates, since the former can take three values
(true, false, and be undefined), while the latter can only take two: it holds or it does not hold.
Once operations and predicates have been defined, their behavior is defined by means of first-order logic
formulas, where the variables are universally quantified and that can be labeled by using annotations
with syntax %(label)%:

forall n,m : Nat

. 0 + n = n %(add1)%

. suc(n) + m = suc(n + m) %(add2)%

. min(n,m) = n when n <= m else m

. max(n,m) = m when n <= m else n

. 0 <= n

. suc(n) <= suc(m) <=> n <= m

. n >= m <=> m <= n

In addition to this kind of formulas, we can also use memberships of the form t in s, indicating that
the term t has sort s. For example, we could substitute the subsort declarations by:

forall n : Nat

. 0 in Zero

. not n = 0 => n in NzNat

Specifications can easily be extended with new declarations and axioms by using the keyword then.
Combining this feature and the %implies annotation we can state in Casl that a formula or part of the
specification (depending on the annotation being in a formula or in a then) is redundant and thus can be
proved true with the information previously introduced. For example, we can define a new specification
pointing out that addition is commutative by typing:

spec COMM_NAT =

My_Nat

then %implies

forall m,n : Nat
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. m + n = n + m

end

where we include the previous specification by writing its name after the equal, and where the %implies
annotation indicates that all the formulas coming after it (in that case only one) must hold given the
formulas in My_Nat, that is, it generates proof obligations.

3.2 Institutions and comorphisms

Before describing institutions we recall the notions of category, small category, dual category, functor, and
natural transformation [34].

A category C consists of:

• a class |C| of objects;

• a class hom(C) of morphisms (also known as arrows), between the objects;

• operations assigning to each morphism f an object dom(f), its domain, and an object cod(f), its
codomain (we write f : A→ B to indicate that dom(f) = A and cod(f) = B);

• a composition operator assigning to each pair of morphisms f and g, with cod(f) = dom(g), a
composite morphism g ◦ f : dom(f) → cod(g), satisfying the associative law: for any morphisms
f : A→ B, g : B → C, and h : C → D, h ◦ (g ◦ f) = (h ◦ g) ◦ f ; and

• for each object A, an identity morphism idA : A→ A satisfying the identity law: for any morphism
f : A→ B, idB ◦ f = f and f ◦ idA = f .

A category C is called small if both |C| and hom(C) are sets and not proper classes.
For each category C, its dual category Cop is the category that has the same objects as C and whose

arrows are the opposites of the arrows in C, that is, if f : A → B in C, then f : B → A in Cop .
Composite and identity arrows are defined in the obvious way.

Let C and D be categories. A functor F : C→ D is a map taking each C-object A to a D-object F(A)
and each C-morphism f : A→ B to a D-morphism F(f) : F(A)→ F(B), such that for all C-objects A
and composable C-morphisms f and g:

• F(idA) = idF(A),

• F(g ◦ f) = F(g) ◦ F(f).

A natural transformation η : F → G between functors F,G : A → B associates to each X ∈ |A|
a morphism ηX : F(X) → G(X) ∈ D called the component of η at X, such that for every morphism
f : X → Y ∈ A we have ηY ◦ F(f) = G(f) ◦ ηX .

It is worth mentioning two interesting categories: Set, the category whose objects are sets and whose
morphisms between sets A and B are all functions from A to B; and Cat, the category whose objects
are all small categories and whose morphisms are functors between them.

An institution consists of:

• a category Sign of signatures;

• a functor Sen : Sign→ Set giving a set Sen(Σ) of Σ-sentences for each signature Σ ∈ |Sign|;

• A functor Mod : Signop → Cat, giving a category Mod(Σ) of Σ-models for each signature
Σ ∈ |Sign|; and

• for each signature Σ ∈ |Sign|, a satisfaction relation |=Σ⊆ |Mod(Σ)| × Sen(Σ) between models
and sentences such that for any signature morphism σ : Σ → Σ′, Σ-sentence ϕ ∈ Sen(Σ) and
Σ′-model M ′ ∈ |Mod(Σ′)|:

M ′ |=Σ′ Sen(σ)(ϕ) ⇐⇒ Mod(σ)(M ′) |=Σ ϕ

which is called the satisfaction condition.
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It is also important to define, for our purposes in this work, the notion of institution comorphism [34].
Given two institutions I = (Sign,Mod,Sen, |=) and I ′ = (Sign′,Mod′,Sen′, |=′ ), an institution comor-
phism from I to I ′ consists of a functor Φ : Sign→ Sign′, a natural transformation α : Sen⇒ Φ; Sen′,
and a natural transformation β : Φ; Mod′ ⇒Mod (where F; G stands for functor composition in the dia-
grammatic order) such that the following satisfaction condition holds for each Σ ∈ |Sign|, ϕ ∈ |Sen(Σ′)|,
and M ′ ∈ |Mod′(Φ(Σ))|:

βΣ(M ′) |=Σ ϕ ⇐⇒ M ′ |=′Φ(Σ) αΣ(ϕ).

Institutions capture in a very abstract and flexible way the notion of a logical system, by leaving
open the details of signatures, models, sentences (axioms), and satisfaction (of sentences in models). The
satisfaction condition states that truth is invariant under change of notation (also called enlargement of
context), which is captured by the notion of signature morphism (which leads to translations of sentences
and reductions of models). See [18] for formal details.

Indeed, Hets has interfaces for plugging in the different components of an institution: signatures,
signature morphisms, sentences, and their translation along signature morphisms. Recently, even (some)
models and model reducts have been covered, although this is not needed here. Note, however, that the
model theory of an institution (including model reducts and the satisfaction condition) is essential when
relating different logics via institution comorphisms. The logical correctness of their use in multi-logic
proofs is ensured by model-theoretic means.

For proof management, Hets uses development graphs [27]. They can be defined over an arbitrary
institution, and they are used to encode structured specifications in various phases of the development.
Roughly speaking, each node of the graph represents a theory. The links of the graph define how theories
can make use of other theories. In this way, we represent complex specifications by representing each
component (e.g. each module) as a node in the development graph and the relation between them (e.g.
importations) as links.

A development graph is an acyclic, directed graph DG = 〈N ,L〉, where:

• N is a set of nodes. Each node N ∈ N is a pair (ΣN ,ΦN ) such that ΣN is a signature and
ΦN ⊆ Sen(ΣN ) is the set of local axioms of N .

• L is a set of directed links, so-called definition links, between elements of N . Each definition link
from a node M to a node N is either

– global (denoted M
σ +3 N), annotated with a signature morphism σ : ΣM → ΣN , or

– local (denoted M
σ // N), again annotated with a signature morphism σ : ΣM → ΣN , or

– hiding (denoted M
σ

hide
+3 N), annotated with a signature morphism σ : ΣN → ΣM going

against the direction of the link, or

– free (denoted M
σ

free
+3 N), annotated with a signature morphism σ : Σ → ΣM where Σ is a

subsignature of ΣM .

In addition to these links we add a new link, denoted M
σ

n.p.free
+3 N, that stands for non-persistent free links

and will be used when dealing with protecting importations in Maude modules. However, these nodes
are only used for Maude specifications and thus are nonstandard; we will show in Section 5.2 how these
links and the associated nodes are transformed into a new graph that only uses standard constructions.
Intuitively, these links indicate that no new elements can be added to the sorts, although they can be
added to the kind.

Given a node M in a development graph DG, its associated class ModDG(M) of models (or M -models
for short) is inductively defined to consist of those ΣM -models m for which

1. m satisfies the local axioms ΦM ,

2. for each N
σ +3 M ∈ DG, m|σ is an N -model,

3. for each N
σ // M ∈ DG, m|σ satisfies the local axioms ΦN ,

4. for each N
σ

hide
+3 M ∈ DG, m has a σ-expansion m′ (i.e. m′|σ = m) that is an N -model, and
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5. for each N
σ

free
+3 M ∈ DG, m is an N -model that is persistently σ-free in Mod(N). The latter

means that for each N -model m′ and each model morphism h : m|σ → m′|σ, there exists a unique
model morphism h# : m→ m′ with h#|σ = h.

Complementary to definition links, which define the theories of related nodes, we introduce the notion
of a theorem link with the help of which we are able to postulate relations between different theories.
Theorem links are the central data structure to represent proof obligations arising in formal developments.
Again, we distinguish between local and global theorem links (denoted by N

σ +3___ ___ M and N
σ //___ M

respectively). We also need theorem links N
σ

hide θ
+3___ ___ M (where for some Σ, θ : Σ→ ΣN and σ : Σ→ ΣM )

involving hiding. The semantics of theorem links is given as follows:
Let DG be a development graph and N , M nodes in DG.

• DG implies a global theorem link N
σ +3___ ___ M (denoted DG |= N

σ +3___ ___ M) iff for all m ∈ Mod(M),
m|σ ∈ Mod(N).

• DG implies a local theorem link N
σ //___ M (denoted DG ` N σ //___ M) iff for all m ∈ Mod(M),

m|σ |= φ for all φ ∈ ΦN .

• DG implies a hiding theorem link N
σ

hide θ
+3___ ___ M (denoted DG |= N

σ

hide θ
+3___ ___ M) iff for all m ∈ Mod(M),

m|σ has a θ-expansion to some N -model.

We refer to [28, 26] for more details on how to use development graphs.

4 Relating the Maude and Casl logics

In this section, we will relate Maude and Casl at the level of logical systems. The structuring level will
be considered in the next section by means of development graphs.

4.1 Maude

As we have seen in Section 2, Maude is an efficient tool for equational reasoning and rewriting. Method-
ologically, Maude specifications are divided into a specification of the data objects and a specification
of some concurrent transition system, the states of which are given by the data part. Two logics have
been introduced and studied in the literature for this binary relation: rewriting logic [22] and preordered
algebra [17]. They essentially differ in the treatment of rewrites: whereas in rewriting logic, rewrites are
named, and different rewrites between two given states (terms) can be distinguished (which corresponds
to equipping each carrier set with a category of rewrites), in preordered algebra, only the existence of a
rewrite does matter (which corresponds to equipping each carrier set with a preorder of rewritability).

Rewriting logic has been announced as the logic underlying Maude [7]. Maude modules lead to
rewriting logic theories, which can be equipped with loose semantics (fth/th specifications) or initial/free
semantics (fmod/mod specifications). Although rewriting logic is not given as an institution [11], a so-
called specification frame (collapsing signatures and sentences into theories) would be sufficient for our
purposes.

However, after a closer look at Maude and rewriting logic, we found out that de facto, the logic
underlying Maude differs from the rewriting logic as defined in [22]. The reasons are:

1. In Maude, labels of rewrites cannot (and need not) be translated along signature morphisms. This
means that e.g. Maude views do not lead to theory morphisms in rewriting logic!

2. Although labels of rewrites are used in traces of counterexamples, they play a subsidiary role,
because they cannot be used in the linear temporal logic of the Maude model checker.

Especially the first reason completely rules out a rewriting logic-based integration of Maude into Hets: if
a view between two modules is specified, Hets definitely needs a theory morphism underlying the view.2

2If the Maude designers would let (and force) users to specify the action of signature morphisms on rewrite labels, it
would not be difficult to switch the Hets integration of Maude to being based on rewriting logic. In that case the labels
would be taken into account, while the sentences would remain unchanged.
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However, the Maude user does not need to provide the action of the signature morphism on labeled
rewrites, and generally, there is more than one possibility to specify this action.

The conclusion is that, for the time being, the most appropriate logic to use for Maude is preordered
algebra [17]. In this logic, rewrites are neither labeled nor distinguished, only their existence is impor-
tant. This implies that Maude views lead to theory morphisms in the institution of preordered algebras.
Moreover, this setting also is in accordance with the above observation that in Maude rewrite labels are
not first-class citizens, but are mere names of sentences that are convenient for decorating tool output
(e.g. traces of the model checker). Labels of sentences play a similar role in Hets, which perfectly fits
here.

Actually, the switch from rewriting logic to preordered algebras has effects on the consequence relation,
contrary to what is said in [22]. Consider the following Maude theory:

th A is
sorts S T .
op a : -> S .
eq X:S = a .
ops h k : S -> T .
rl [r] : a => a .
rl [s] : h(a) => k(a) .
endth

This logically implies h(x)⇒ k(x) in preordered algebra, but not in rewriting logic, since in the latter
logic it is easy to construct models in which the naturality condition r; k(r) = h(r); s fails to hold.

Thus, we will work with preordered algebra semantics for Maude. We will define an institution,
that we will denote Maudepre , which can be, like in the case of Maude’s logic, parametric over the
underlying equational logic. Following the Maude implementation, we have used membership equational
logic [23]. Notice that the resulting institution Maudepre is very similar to the one defined in the context
of CafeOBJ [17, 11] for preordered algebra (the differences are mainly given by the discussion about
operation profiles below, but this is only a matter of representation). This allows us to make use of some
results without giving detailed proofs.

Signatures of Maudepre are tuples (K,F, kind : (S,≤) → K), where K is a set of kinds, kind is a
function assigning a kind to each sort in the poset (S,≤), and F is a set of function symbols of the form
F = {Fk1...kn→k | ki, k ∈ K} ∪ {Fs1...sn→s | si, s ∈ S} such that if f ∈ Fs1...sn→s, there is a symbol
f ∈ Fkind(s1)...kind(sn)→kind(s). Notice that there is actually no essential difference between our putting
operation profiles on sorts into the signatures and Meseguer’s original formulation putting them into the
sentences.

Given two signatures Σi = (Ki, Fi, kind i), i ∈ {1, 2}, a signature morphism φ : Σ1 → Σ2 consists
of a function φkind : K1 → K2 which preserves ≤1, a function between the sorts φsort : S1 → S2 such
that φsort ; kind2 = kind1;φkind and the subsorts are preserved, and a function φop : F1 → F2 which
maps operation symbols compatibly with the types. Moreover, the overloading of symbol names must
be preserved, i.e. the name of φop(σ) must be the same both when mapping the operation symbol σ on
sorts and on kinds. With composition defined component-wise, we get the category of signatures.

For a signature Σ, a model M interprets each kind k as a preorder (Mk,≤), each sort s as a subset
Ms of Mkind(s) that is equipped with the induced preorder, with Ms a subset of Ms′ if s < s′, and each
operation symbol f ∈ Fk1...kn,k as a function Mf : Mk1× . . .×Mkn

→Mk which has to be monotonic and
such that for each function symbol f on sorts, its interpretation must be a restriction of the interpretation
of the corresponding function on kinds. For two Σ-models A and B, a homomorphism of models is a
family {hk : Ak → Bk}k∈K of preorder-preserving functions which is also an algebra homomorphism and
such that hkind(s)(As) ⊆ Bs for each sort s.

The sentences of a signature Σ are Horn clauses of the form ∀X .A ⇐ A1 ∧ · · · ∧ An, where the
set of variables X used for quantification is K-sorted, built with three types of atoms: equational atoms
t = t′, membership atoms t : s, and rewrite atoms t⇒ t′, where t, t′ are Σ-terms and s is a sort in S.3

Given a Σ-model M and a valuation η = {ηk}k∈K , i.e., a K-sorted family of functions assigning
elements in M to variables, Mη

t is inductively defined as usual. An equational atom t = t′ holds in M
if Mη

t = Mη
t′ , a membership atom t : s holds when Mη

t is an element of Ms, and a rewrite atom t ⇒ t′

holds when Mη
t ≤M

η
t′ . Satisfaction of atoms is extended to satisfaction of sentences in the obvious way.

Finally, we use M,η |= A to indicate that the model M satisfies the sentence A under the valuation η.
3Note that this is slightly more general than Maude’s version, because rewrite conditions are allowed in equations and

membership axioms.
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We prove that the satisfaction condition holds for atoms, and then the extension to Horn clauses is
straightforward. To do so, we will use the following lemma:

Lemma 1 Given a signature morphism σ : Σ → Σ′, inducing the function σ : Sen(Σ) → Sen(Σ′) and
the functor |σ : Mod(Σ′) → Mod(Σ), a Σ′-model M , the sets of variables X = {x1 : k1, . . . , xl : kl}
and X ′ = {x1 : σ(k1), . . . , xl : σ(kl)}, with ki ∈ K, 1 ≤ i ≤ l, a valuation η : X →M |σ, which induces a
valuation η′ : X ′ →M with η′(x) = η(x), and a Σ-term t with variables in X, we have Mη′

σ(t) = (M |σ)ηt .

Proof. By structural induction on t. For t = x a variable on kinds it is trivial because σ(x) = x and
η(x) = η′(x). Similarly, for t = c a constant it is trivial by applying the definition of morphism to
operators. If t = f(t1, . . . , tn), then we have Mη′

σ(ti)
= (M |σ)ηti , 1 ≤ i ≤ n, by induction hypothesis, and

Mη′

σ(f(t1,...,tn)) = Mη′

σ(f)(σ(t1),...,σ(tn)) (by definition of σ on terms)

= Mσ(f)(M
η′

σ(t1), . . . ,M
η′

σ(tn)) (meaning of the term in the model)
= Mσ(f)((M |σ)ηt1 , . . . , (M |σ)ηtn) (by induction hypothesis)
= (M |σ)f ((M |σ)ηt1 , . . . , (M |σ)ηtn) (by definition of σ on models)
= (M |σ)ηf(t1,...,tn). (meaning of the term in the model)

ut

We can use this result, combined with the bijective correspondence between η and η′, to check the
satisfaction condition for a Σ-equation t = t′:

M |=Σ′ σ(t = t′) ⇐⇒ M |=Σ′ σ(t) = σ(t′)
⇐⇒ M,η′ |=Σ′ σ(t) = σ(t′) for all η′

⇐⇒ Mη′

σ(t) = Mη′

σ(t′) for all η′

⇐⇒ (M |σ)ηt = (M |σ)ηt′ for all η
⇐⇒ M |σ, η |=Σ t = t′ for all η
⇐⇒ M |σ |=Σ t = t′

and similarly for memberships and rules.

4.2 Casl

Casl, the Common Algebraic Specification Language [4, 31], has been designed by CoFI, the inter-
national Common Framework Initiative for algebraic specification and development. Its underlying logic
combines first-order logic and induction (the latter is expressed using so-called sort generation constraints,
which express term-generatedness of a part of a model; this is needed for the specification of the usual
inductive datatypes) with subsorts and partial functions. The institution underlying Casl is introduced
in two steps: first, many-sorted partial first-order logic with sort generation constraints and equality
(PCFOL=) is introduced, and then, subsorted partial first-order logic with sort generation constraints
and equality (SubPCFOL=) is described in terms of PCFOL= [25]. Basically this institution is composed
of:

• A subsorted signature Σ = (S,TF ,PF , P,≤S), where S is a set of sorts, TF and PF are two S∗×S-
sorted families TF = (TFw,s)w∈S∗,s∈S and PF = (PFw,s)w∈S∗,s∈S of total function symbols and
partial function symbols, respectively, such that TFw,s ∩ PFw,s = ∅, for each (w, s) ∈ S∗ × S,
P = (Pw)w∈S∗ a family of predicates, and ≤S is a reflexive and transitive subsort relation on the
set S. Given two signatures Σ = (S,TF ,PF , P ) and Σ′ = (S′,TF ′,PF ′, P ′), a signature morphism
σ : Σ→ Σ′ consists of:

– a map σS : S → S′ preserving the subsort relation,

– a map σFw,s : TFw,s ∪ PFw,s → TFσS∗ (w),σS(s) ∪ PF ′σS∗ (w),σS(s) preserving totality, for each
w ∈ S∗, s ∈ S, and

– a map σPw : Pw → P ′
σS∗ (w)

for each w ∈ S∗.

Identities and composition are defined in the obvious way.

With each subsorted signature Σ = (S,TF ,PF , P,≤S) we associate a many-sorted signature Σ̂,
which is the extension of the underlying many-sorted signature (S,TF ,PF , P ) with:
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– a total injection function symbol inj : s→ s′, for each pair of sorts s ≤S s′,
– a partial projection function symbol pr : s′ →? s, for each pair of sorts s ≤S s′, and

– a unary membership predicate symbol ∈s: s′, for each pair of sorts s ≤S s′.

Signature morphisms σ : Σ→ Σ′ are extended to signature morphisms σ̂ : Σ̂→ Σ̂′ by just mapping
the injections, projections, and memberships in Σ̂ to the corresponding injections, projections, and
memberships in Σ̂′.

For a subsorted signature Σ = (S,TF ,PF , P,≤S), we define overloading relations (also called
monotonicity orderings), ∼F and ∼P , for function and predicate symbols, respectively:

Let f : w1 → s1, f : w2 → s2 ∈ TF ∪ PF , then f : w1 → s1 ∼F f : w2 → s2 iff there exist w ∈ S∗
with w ≤S∗ w1 and w ≤S∗ w2 and s ∈ S with s1 ≤S s and s2 ≤S s.
Let p : w1, p : w2 ∈ P , then p : w1 ∼P p : w2 iff there exists w ∈ S∗ with w ≤S∗ w1 and w ≤S∗ w2.

• A set of subsorted Σ-sentences, that correspond to ordinary Σ̂-many-sorted sentences, that is, closed
many-sorted first-order Σ̂-formulas or sort generation constraints over Σ. Sentence translation along
a subsorted signature morphism σ is just sentence translation along the many-sorted signature
morphism σ̂.

• Subsorted Σ-models M are ordinary many-sorted Σ̂-models, which are composed of:

– a non-empty carrier set Ms for each sort s ∈ S,

– a partial function fM from Mw to Ms for each function symbol f ∈ TFw,s ∪ PFw,s, w ∈ S∗,
s ∈ S, the function being total if f ∈ TFw,s, and

– a predicate pM ⊆Mw for each predicate symbol p ∈ Pw, w ∈ S∗,

satisfying the following set of axioms Ĵ(Σ):

– inj (s,s)(x) e= x (identity), where e= stands for existential equation.

– inj (s,s′)(x) e= inj (s,s′)(x) =⇒ x
e= y for s ≤S s′ (embedding-injectivity),

– inj (s′,s′′)(inj s,s′(x)) e= inj (s,s′′)(x) for s ≤S s′ ≤S s′′ (transitivity),

– pr (s′,s)(inj (s,s′)(x)) e= x for s ≤S s′ (projection),

– pr (s′,s)(x) e= pr (s′,s)(y) =⇒ x
e= y for s ≤S s′ (projection-injectivity),

– ∈ss′ (x) ⇐⇒ pr (s′,s)(x) for s ≤S s′ (membership),

– inj (s′,s)(fw′,s′(inj s1,s′1(x1), . . . , inj sn,s′n
(xn))) =

inj (s′′,s)(fw′′,s′′(inj (s1,s′′1 )(x1), . . . , inj (sn,s′′n)(xn))) for fw′,s′ ∼F fw′′,s′′ , where w ≤ w′, w′′,
s′, s′′ ≤ s, w = s1, . . . , sn, w′ = s′1, . . . , s

′
n, and w′′ = s′′1 , . . . , s

′′
n (function-monotonicity),

and

– pw′(inj (s1,s′1)(x1), . . . , inj (sn,s′n)(xn)) ⇐⇒ pw′′(inj (s1,s′′1 )(x1), . . . , inj (sn,s′′n)(xn)) for pw′ ∼P
pw′′ , where w ≤ w′, w′′, w = s1 . . . sn, w′ = s′1 . . . s

′
n, and w′′ = s′′1 . . . s

′′
n (predicate-monotonicity).

• Satisfaction and the satisfaction condition are inherited from the many-sorted institution. Roughly
speaking, a formula ϕ is satisfied in a model M iff it is satisfied w.r.t. all variable valuations into
M .

More details on this institution can be found in [25].
In contrast to Maude, Casl’s subsort relations may be interpreted by arbitrary injections injs,t , not

only by subsets. We refer to [31] for details. We will only need the Horn clause fragment of first-order
logic. For freeness, we will also need sort generation constraints, as well as the second-order extension of
Casl with quantification over predicates; we show the details in Section 5.2.

17



4.3 Encoding Maude into Casl

We now present an encoding of Maude into Casl, which is formalized as an institution comorphism. The
idea of the encoding of Maudepre in Casl is that we represent rewriting as a binary predicate and we
axiomatize it as a preorder compatible with operations.

Every Maude signature Σ = (K,F, kind : (S,≤) → K) is translated to the Casl theory Φ(Σ) =
((S′,≤′, F, P ), E), where S′ is the disjoint union of K and S, ≤′ extends the relation ≤ on sorts with
pairs (s, kind(s)), for each s ∈ S, rew ∈ Ps,s for any s ∈ S′ is a binary predicate and E contains
axioms stating that for any kind k, rew ∈ Pk,k is a preorder compatible with the operations. The latter
means that for any f ∈ Fs1...sn,s and any xi, yi of sort si ∈ S′, i = 1, . . . , n, if rew(xi, yi) holds, then
rew(f(x1, . . . , xn), f(y1, . . . , yn)) also holds.

Let Σi, i = 1, 2 be two Maude signatures and let ϕ : Σ1 → Σ2 be a Maude signature morphism. Then
its translation Φ(ϕ) : Φ(Σ1)→ Φ(Σ2) denoted φ, is defined as follows:

• for each s ∈ S, φ(s) = ϕsort(s) and for each k ∈ K, φ(k) = ϕkind(k).

• the subsort preservation condition of φ follows from the similar condition for ϕ.

• for each operation symbol σ, φ(σ) = ϕop(σ).

• rew is mapped identically.

The sentence translation map for each signature is obtained in two steps. While the equational atoms
are translated as themselves, membership atoms t : s are translated to Casl memberships t in s and
rewrite atoms of the form t ⇒ t′ are translated as rew(t, t′). Then, any sentence of Maude of the form
(∀xi : ki)H =⇒ C, where H is a conjunction of Maude atoms and C is an atom is translated as
(∀xi : ki)H ′ =⇒ C ′, where H ′ and C ′ are obtained by mapping all the Maude atoms as described
before.

Given a Maude signature Σ, a model M ′ of its translated theory (Σ′, E) is reduced to a Σ-model
denoted M where:

• for each kind k, define Mk = M ′k and the preorder relation on Mk is rew ;

• for each sort s, define Ms to be the image of M ′s under the injection inj s,kind(s) generated by the
subsort relation;

• for each f on kinds, let Mf (x1, . . . , xn) = M ′f (x1, . . . , xn) and for each f on sorts of result sort s,
let Mf (x1, . . . , xn) = inj s,kind(s)(M ′f (x1, . . . , xn)). Mf is monotone because axioms ensure that M ′f
is compatible with rew .

The reduct of model homomorphisms is the expected one.
Let Σ be a Maude signature, M ′, N ′ be two Φ(Σ)-models (in Casl) and let h′ : M ′ → N ′ be a model

homomorphism. Let us denote M = βΣ(M ′), N = βΣ(N ′) and let us define h : M → N as follows: for
any kind k of Σ, hk = h′k (this is correct because the domain and the codomain match, by definition of
M and N). We need to show that h is indeed a Maude model homomorphism. For this, we need to show
three things:

1. hk is preorder preserving for any kind k.

Assume x ≤Mk y. By definition, the preorder on Mk is the one given by rew , so this means Mrew (x, y)
holds. By the homomorphism condition for h′ we have Nrew (h′(x), h′(y)) holds, which means by
definition of the preorder on N that h′(x) ≤Nk h′(y).

2. h is an algebra homomorphism.

This follows directly from the definition of Mf where f is an operation symbol and from the
homomorphism condition for operation symbols for h′.

3. for any sort s, hkind(s)(Ms) ⊆ Ns.
By definition, Ms = inj s,kind(s)(M ′s). By the homomorphism condition for inj s,kind(s), which is an
explicit operation symbol in Casl, we have that

hkind(s)(Ms) = hkind(s)(inj s,kind(s)(M
′
s)) = inj s,kind(s)(hs(M

′
s)).

Since hs(M ′s) ⊆ N ′s by definition, we have that inj s,kind(s)(hs(M ′s)) ⊆ inj s,kind(s)(N ′s), which by
definition is Ns.
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5 Building development graphs

We describe in this section how Maude structuring mechanisms described in Section 2 are translated
into development graphs. Then, we explain how these development graphs are normalized to deal with
freeness constraints.

5.1 Creating the development graph

We describe here how Maude modules, theories, and views are translated into development graphs,
illustrating it with an example.

5.1.1 Modules

Each Maude module generates two nodes in the development graph. The first one contains the theory
equipped with the usual loose semantics. The second one, linked to the first one with a free definition link
(whose signature morphism is detailed in Section 5.2), contains the same signature but no local axioms
and stands for the free models of the theory. Note that Maude theories only generate one node, since
their initial semantics is not used by Maude specifications.

The model class of parameterized modules consists of free extensions of the models of their parameters,
that are persistent on sorts, but not on kinds. This notion of freeness has been studied in [5] under
assumptions like existence of top sorts for kinds and sorted variables in formulas; our results hold under
similar hypotheses. We use non-persistent free links to link these modules with their corresponding
theories.

5.1.2 Module expressions

Maude module expressions allow to combine and modify the information contained in Maude modules:

• When the module expression is a simple identifier the development graph remains unchanged.

• The summation of the module expressions ME 1 and ME 2 generates a new node in the development
graph (ME 1 + ME 2) with the union of the information in both summands. A definition link is also
created between the original expressions and the resulting one.

• The renaming expression ME ∗ (R) creates a morphism with the information given in R that will be
used to label the link between the node standing for the module expression and the node importing
it.

5.1.3 Importations

As explained above, each Maude module generates two nodes in the development graph; when importing
a module, we will select between these nodes depending on the chosen importation mode:

• The protecting mode generates a non-persistent free link between the current node and the node
standing for the free semantics of the included one. We use the same links for the parameters in
parameterized modules.

• The extending mode generates a global link with the annotation PCons?, that stands for proof-
theoretic conservativity and that can be checked with a special conservativity checker that is inte-
grated into Hets.

• The including mode generates a global definition link between the current node and the node
standing for the loose semantics of the included one.

5.1.4 Views

Maude views have a theory as source and either a module or a theory as target. All the sorts and the
operators declared in the source theory have to be mapped to sorts and operators in the target.

As seen in Section 2.5.3, a particular case of mapping between operators is the mapping between terms,
that has the general form op e to term t. Since this shortcut allows to map operators with different
profiles, in these cases it generates an auxiliary node with the signature of the target specification extended
by an extra operator of the appropriate arity; this node will be used as new target.
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Figure 3: Development graph for Maude specifications

Views generate a theorem link between the theory and the module satisfying it. Note that an instan-
tiation generates some implicit morphisms and modifies the ones stated in the views, see Section 2.5 for
details:

• Sorts and labels are qualified by the parameter name in order to distinguish different labels/sorts
with the same name defined in different theories. Thus, the mapping indicated by the view (more
specifically, the source sorts) is modified depending on the name of the parameter.

• As explained in Section 2.5.4, parameterized modules can define parameterized sorts, that is, sorts
that use the parameters as part of the sort name and hence they are modified by the mapping in the
view. Moreover, when the target of a view is a theory the identifiers of these sorts are extended with
the name of the view and the name of the new parameter. Thus, the sort morphism is extended
with these new renamings.

5.1.5 An example of development graph

We illustrate how to build the development graph with an example. Consider the following Maude
specification:

fmod M1 is fmod M2 is

sort S1 . sort S2 .

op _+_ : S1 S1 -> S1 [comm] . endfm

endfm

th T is mod M3{X :: T} is

sort S1 . sort S4 .

op _._ : S1 S1 -> S1 . endm

eq V1:S1 . V2:S1 = V2:S1 . V1:S1 [nonexec] .

endth

mod M is view V from T to M is

ex M1 + M2 * (sort S2 to S) . op _._ to _+_ .

endm endv

Hets builds the graph shown in Figure 3, where the following steps take place:

• First, the modules in the predefined Maude prelude generate their own graph. These nodes can be
used by the ones of the current specification, like the BOOL node in the image (where the node has
rectangular form because it hides part of its structure, like the modules it imports).

• Each module has generated a node with its name and another primed one that contains the initial
model, while both of them are linked with a non-persistent free link (in blue in the illustration).
Note that theory T did not generate this primed node.

• The summation expression has created a new node that includes the theories of M1 and M2, importing
the latter with a renaming; this new node, since it is imported in extending mode, uses a link with
the PCons? annotation. This is the (unfortunately blurry) label in the link from {M2 + M1} to M.

20



• There is a theorem link (red link in the figure) between T and the free (here, initial) model of M.
This link is labeled with the mapping defined in the view V, namely op _._ to _+_ ..

• The parameterized module M3 includes the theory of its parameter with a renaming, that qualifies
the sort. Note that these nodes are connected by means of a non-persistent free link.

It is straightforward to show:

Theorem 1 The translation of Maude modules into development graphs is semantics-preserving.

Once the development graph is built, we can apply the (logic independent) calculus rules that reduce
global theorem links to local theorem links, which are in turn discharged by local theorem proving [27].
This can be used to prove Maude views, like “natural numbers are a total order.” For example, we
can automatically prove the view V above correct by using the first-order automated provers SPASS or
Vampire.

We show in the next section how we deal with the freeness constraints imposed by free definition links.

5.2 Normalization of free definition links

Maude uses initial and free semantics intensively. The semantics of freeness is, as mentioned, different
from the one used in Casl in that the free extensions of models are required to be persistent only on
sorts and new error elements can be added on the interpretation of kinds. As explained before, attempts
to design the translation to Casl in such a way that Maude free links would be translated to usual free
definition links in Casl have been unsuccessful, and thus we decided to use non-persistent free links.
Hence, in order not to break the development graph calculus, we need a way to normalize them, by
replacing them with a semantically equivalent development graph in Casl. The main idea is to make a
free extension persistent by duplicating parameter sorts appropriately, such that the parameter is always
explicitly included in the free extension.

For any Maude signature Σ, let us define an extension Σ# = (S#,≤#, F#, P#) of the translation
Φ(Σ) of Σ to Casl as follows:

• S# adds the sorts of Φ(Σ) to the set {[s] | s ∈ Sorts(Σ)};

• ≤# extends the subsort relation ≤ with pairs (s, [s]) for each sort s and ([s], [s′]) for any sorts s ≤ s′;

• F# adds the function symbols {f : [w]→ [s]} for all function symbols on sorts f : w → s;4 and

• P# adds the predicate symbol rew on all new sorts.

Now, we consider a Maude non-persistent free definition link and let σ : Σ → Σ′ be the morphism
labeling it.5 We define a Casl signature morphism σ# : Φ(Σ) → Σ′#: on sorts, σ#(s) = σsort(s) and
σ#([s]) = [σsort(s)]; on operation symbols, we can define σ#(f) = σop(f) and this is correct because the
operation symbols were introduced in Σ′#; rew is mapped identically.

The normalization of Maude freeness is then illustrated in Figure 4. Given a non-persistent free
definition link M

σ

n.p.free
+3 N, with σ : Σ → ΣN , we first take the translation of the nodes to Casl (nodes

M ′ and N ′), and create the node M ′′, an extension (the morphism ι is a renaming to make the signature
distinct from M) of M ′ where the signature has been extended with sorts [s] for each sort s ∈ ΣM , such
that s ≤ [s] and [s] ≤ [s′] if s ≤ s′; function symbols have been extended with f : [w] → [s] for each
f : w → s ∈ ΣM ; and new rew predicates have been added for these sorts. Then, we introduce a new
node, K, labeled with Σ#

N , a free definition link from M ′′ to K labeled with σ# and a hiding definition
link from K to N ′ labeled with the inclusion ιN .6

Notice that the models of N are Maude reducts of Casl models of K, reduced along the inclusion
ιN .

Now we show how to eliminate Casl free definition links in a logic-independent way. The idea is to
use a transformation specific to the second-order extension of Casl to normalize freeness. The intuition
behind this construction is that it mimics the quotient term algebra construction, that is, the free model
is specified as the homomorphic image of an absolutely free model (i.e. term model).

We are going to make use of the following known facts [35]:
4[s1 . . . sn] is defined to be [s1] . . . [sn].
5In Maude, this would usually be an injective renaming.
6The arrows without labels in Figure 4 correspond to heterogeneous links from Maude to Casl.
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Figure 4: Normalization of Maude free links

Fact 1 Extensions of theories in Horn form admit free extensions of models.

Fact 2 Extensions of theories in Horn form are monomorphic.7

Given a free definition link M
σ

free
+3 N, with σ : Σ→ ΣN such that Th(M) is in Horn form, replace

it with M
incl +3 K

incl

hide
+3 N ′ , where N ′ has the same signature and axioms as N , incl denote inclusions

and the node K is constructed as follows.
The signature ΣK consists of the signature ΣM disjointly united with a copy of ΣM , denoted ι(ΣM )

which makes all function symbols total (let us denote ι(f) the corresponding symbol in this copy for each
symbol f from the signature ΣM ) and augmented with new operations h : ι(s) →? s, for any sort s of
ΣM and makes : s → ι(s), for any sort s of the source signature Σ of the morphism σ labelling the free
definition link.

The axioms ψK of the node K consist of:

• sentences imposing the bijectivity of make;

• axiomatization of the sorts in ι(ΣM ) as free types with all operations as constructors, including
make for the sorts in ι(Σ);

• homomorphism conditions for h:

h(ι(f)(x1, . . . , xn)) = f(h(x1), . . . , h(xn))

and

ι(p)(t1, . . . , tn)⇒ p(h(t1), . . . , h(tn))

• surjectivity of homomorphisms:

∀y : s.∃x : ι(s).h(x) e= y

• a second-order formula saying that the kernel of h (ker(h)) is the least partial predicative congru-
ence8 satisfying Th(M). This is done by quantifying over a predicate symbol for each sort for the
binary relation and one predicate symbol for each relation symbol as follows:

∀{Ps : ι(s), ι(s)}s∈Sorts(ΣM ), {Pp:w : ι(w)}p:w∈ΣM

. symmetry ∧ transitivity ∧ congruence ∧ satThM =⇒ largerThanKerH

where symmetry stands for ∧
s∈Sorts(ΣM )

∀x : ι(s), y : ι(s).Ps(x, y) =⇒ Ps(y, x),

7That is, if N is an extension of K under a morphism σ, then every K-model has a σ-expansion to an N -model that is
unique up to isomorphism.

8A partial predicative congruence consists of a symmetric and transitive binary relation for each sort and a relation of
appropriate type for each predicate symbol.
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transitivity stands for∧
s∈Sorts(ΣM )

∀x : ι(s), y : ι(s), z : ι(s).Ps(x, y) ∧ Ps(y, z) =⇒ Ps(x, z),

congruence is the conjunction of∧
fw→s∈ΣM ∀x1 . . . xn : ι(w), y1 . . . yn : ι(w) .

D(ι(fw,s)(x̄)) ∧D(ι(fw,s)(ȳ)) ∧ Pw(x̄, ȳ) =⇒ Ps(ι(fw,s)(x̄), ι(fw,s)(ȳ))

and ∧
pw∈ΣM ∀x1 . . . xn : ι(w), y1 . . . yn : ι(w) .

D(ι(fw,s)(x̄)) ∧D(ι(fw,s)(ȳ)) ∧ Pw(x̄, ȳ) =⇒ Pp:w(x̄)⇔ Pp:w(ȳ)

where D indicates definedness. satThM stands for

Th(M)[ e= /Ps; p : w/Pp:w;D(t)/Ps(t, t); t = u/Ps(t, u) ∨ (¬Ps(t, t) ∧ ¬Ps(u, u))]

where, for a set of formulas Ψ, Ψ[sy1/sy
′
1; . . . ; syn/sy′n] denotes the simultaneous substitution of

sy′i for syi in all formulas of Ψ (while possibly instantiating the meta-variables t and u). Finally
largerThanKerH stands for∧

s∈Sorts(ΣM ) ∀x : ι(s), y : ι(s).h(x) e= h(y) =⇒ Ps(x, y)∧
∧pw∈ΣM∀x̄ : ι(w).ι(p : w)(x̄) =⇒ Pp:w(x̄)

Proposition 1 The models of the nodes N and N ′ are the same.

Proof. Let n be an N -model. To prove that n is also an N ′-model, we need to show that it has a
K-expansion.

Let us define the following ΣK model, denoted k:

• on ΣM , k coincides with n;

• on ι(ΣM ), the interpretation of sorts and function symbols is given by the free types axioms (i.e.,
sorts are interpreted as set of terms, operations ι(f) map terms t1, . . . , tn to the term ι(f)(t1, . . . , tn)).
We define the interpretation of predicates after defining h;

• make assigns to each x the term make(x);

• the homomorphism h is defined inductively as follows:

– h(make(x)) = x, if x ∈ ns and s ∈ Sorts(Σ);

– h(make(t)) = h(t), otherwise;

– h(ι(f)(t1, . . . , tn)) is defined iff f(h(t1), . . . , h(tn)) is defined in n and then h(ι(f)(t1, . . . , tn)) =
f(h(t1), . . . , h(tn));

• for predicates in ι(ΣM ) we define ι(p)(t1, . . . , tn) iff p(h(t1), . . . , h(tn)).

Notice that the first three types of axioms of the node K hold by construction and also notice that
ker(h) satisfies Th(M) because n is an M -model. The surjectivity of h and the minimality of ker(h) are
exactly the “no junk” and the “no confusion” properties of the free model n.

For the other inclusion, let n′ be a model of N ′, n0 be its Σ-reduct and k′ a K-expansion of n′.
Using the fact that the theory of M is in Horn form, we get an expansion of n0 to a σ-free model n. We
have seen that all free models are also models of N ′ and moreover we have seen that ker(kh) is the least
predicative congruence satisfying Th(M). The free types axioms of K fix the interpretation of ι(ΣM )
and therefore ker(k′h) and ker(kh) are both minimal on the same set, and must be the same. This and
the surjectivity of kh and k′h allow us to define easily an isomorphism between n and n′ and because n′

is isomorphic with a free model it must be free as well.
ut
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6 An example: Reversing lists

The example we are going to present is a standard specification of lists with empty lists, concatenation,
and reversal. We want to prove that by reversing a list twice we obtain the original list. Since Maude
syntax does not support marking sentences of a theory as theorems, the methodology to state proof
obligations in Maude would normally be to write a view (PROVEIDEM in Figure 5, left side) from a
theory containing the theorem (REVIDEM) to the module with the axioms defining reverse (LISTREV).

fmod MYLIST is

sorts Elt List .

subsort Elt < List .

op nil : -> List [ctor] .

op __ : List List -> List

[ctor assoc id: nil] .

endfm

fmod MYLISTREV is

pr MYLIST .

op reverse : List -> List .

var L : List .

var E : Elt .

eq reverse(nil) = nil .

eq reverse(E L) = reverse(L) E .

endfm

fth REVIDEM is

pr MYLIST .

op reverse : List -> List .

var L : List .

eq reverse(reverse(L)) = L .

endfth

view PROVEIDEM from REVIDEM

to MYLISTREV is

sort List to List .

op reverse to reverse .

endv

logic Maude
spec PROVEIDEM =

free
{sorts Elt List .
subsort Elt < List .
op nil : −> List [ctor] .
op : List List −> List [ctor assoc id: nil] .
}

then {op reverse : List −> List .
var L : List . var E : Elt .
eq reverse(nil) = nil .
eq reverse(E L) = reverse(L) E .
} then %implies

{var L : List .
eq reverse(reverse(L)) = L .
}

Figure 5: Lists with reverse, in Maude (left) and Casl (right) syntax.

The first advantage that the integration of Maude in Hets brings in is that we can use heterogeneous
Casl structuring mechanisms and the %implies annotation to obtain the same development graph in
a shorter way—see the right side of Figure 5, whose development graph is shown in Figure 6, where
the blue link9 stands for freeness and the red one10 for proof obligations, and only the rightmost node
has name, while all the others are intermediate nodes introduced by the Hets constructors (free, used
to indicate that the specification is free, and then, used to import the previous specification without
assuming anything about it) used to structure the specification.

Figure 6: Development graph for the lists example

For our example, the development calculus rules are applied as follows.11 First, the whole graph is
translated to Casl; during this step, Maude non-persistent free links are normalized. The next step
is to normalize Casl free links, using the Freeness rule. We then apply the Normal-Form rule which
introduces normal forms for the nodes with incoming hiding links (introduced at the previous step) and
then the Theorem-Hide-Shift rule which moves the target of any theorem link targeting a node with
incoming hiding links to the normal form of the latter. Finally, calling Automatic the development graph

9The leftmost link, if you are reading a black-and-white paper.
10The one starting in PROVEIDEM.
11All the rules listed below are accessible in the Edit/Proof menu.
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Figure 7: Development graph for the lists example after the transformation rules

in Figure 7 is obtained, where the proof obligation has been delegated to the normal form node (the red
node in the upper right corner).

In this node, we now have a proof goal for a second-order theory. It can be discharged using the
interactive theorem prover Isabelle/HOL [32]. We have set up a series of lemmas easing such proofs, and
that can be adapted to other proofs over Maude specifications. First of all, normalization of freeness
introduces sorts for the free model which are axiomatized to be the homomorphic image of a set of the
absolutely free (i.e. term) model. A transfer lemma (that exploits surjectivity of the homomorphism)
enables us to transfer any proof goal from the free model to the absolutely free model. Since the absolutely
free model is term generated, we can use induction proofs here. For the case of datatypes with total
constructors (like lists), we prove by induction that the homomorphism is total as well. Once these
lemmas have been proved we prove the main theorem; to do that, two further lemmas on lists are proved
by induction: (1) associativity of concatenation and (2) the reverse of a concatenation is the concatenation
(in reverse order) of the reversed lists. This infrastructure then allows us to prove (again by induction)
that reverse(reverse(L)) = L.

While proof goals in Horn clause form often can be proved by induction, other proof goals like the
inequality of certain terms or extensionality of sets cannot. Here, we need to prove inequalities or
equalities with more complex premises, and this calls for use of the special axiomatization of the kernel
of the homomorphism. This axiomatization is rather complex, and we are currently setting up the
infrastructure for easing such proofs in Isabelle/HOL.

6.1 An easier proof: Revisiting our initial example

Recalling the example in Section 5.1.5, we stated in a theory T that an operator _._ over the sort S1
fulfilling the equation

eq V1:S1 . V2:S2 = V2:S1 . V1:S2 [nonexec] .

was required. We mapped this operator by means of a view to another one with syntax _+_ and declared
with the commutativity attribute comm, and thus we want to check that this view is correct. This
easy proof can be automatically discarded by using provers such as SPASS just by transforming the
development graph with the Automatic command, that “pushes” proof obligations to the appropriate
nodes. We show in Figure 8 how it was proved (the + symbol indicates it was proved) by just using the
Run button. This straightforward strategy can be applied to most Maude views (such as the ones from
theories requiring different orders over the elements), making these proofs straightforward.

Of course, this proof can also be done in Isabelle. The code needed to prove it is:

theorem Ax1 :

"ALL (v1 :: kind_S1). ALL (v2 :: kind_S1). v1 +’’ v2 = v2 +’’ v1"

apply auto

apply (rule comm_Plus’_kind_S1)

done

where the theorem was introduced by Hets and comm_Plus’_kind_S1 is the axiom automatically gen-
erated by the system for the commutative operator _+_ in M1.

7 Implementation

We describe in this section how the integration described in the previous sections has been implemented.
We have used Maude to parse Maude modules, taking advantage of the reflective capabilities of rewriting
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Figure 8: Axiom proved by SPASS

logic [8], while the rest of the system has been implemented in Haskell, the implementation language
of Hets. Section 7.1 shows the abstract syntax used to represent Maude modules in Haskell, while
Section 7.2 presents how these data structures are generated in Maude. Section 7.3 shows how Maude
signatures, sentences, and morphisms are obtained, Section 7.4 explains how they are introduced into
a development graph, and Section 7.5 describes the implementation of the comorphism between Maude
and Casl. Finally, Section 7.6 outlines how the freeness constraints are implemented.

7.1 Abstract syntax

In this section we show how the abstract syntax for Maude specifications is defined in Haskell. This
abstract syntax is based in the Maude grammar presented in [7, Chapter 24].

The main datatype of this abstract syntax is Spec, that distinguishes between the different specifica-
tions available in Maude: modules, theories, and views. Although both modules and theories contain the
same information, their semantics are different and need different constructors:

data Spec = SpecMod Module

| SpecTh Module

| SpecView View

deriving (Show, Read, Ord, Eq)

A Module is composed of the identifier of the module, a list of parameters, and a list of statements:

data Module = Module ModId [Parameter] [Statement]

deriving (Show, Read, Ord, Eq)

while a View is composed of a module identifier, the source and target module expressions, and a list of
renamings:

data View = View ModId ModExp ModExp [Renaming]

deriving (Show, Read, Ord, Eq)

The Parameter type contains the identifier of the parameter, a sort (used as the parameter identifier),
and its type (which is a module expression):
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data Parameter = Parameter Sort ModExp

deriving (Show, Read, Ord, Eq)

A Statement can be any of the Maude statements: importation, sort, subsort, and operator declara-
tions, and equation, membership axiom, and rule statements:

data Statement = ImportStmnt Import

| SortStmnt Sort

| SubsortStmnt SubsortDecl

| OpStmnt Operator

| EqStmnt Equation

| MbStmnt Membership

| RlStmnt Rule

deriving (Show, Read, Ord, Eq)

Importations consist of a module expression qualified by the type of import:

data Import = Including ModExp

| Extending ModExp

| Protecting ModExp

deriving (Show, Read, Ord, Eq)

A subsort declaration keeps single relations between sorts, being the first one the subsort and the
second one the supersort:

data SubsortDecl = Subsort Sort Sort

deriving (Show, Read, Ord, Eq)

Operator declarations are composed of the identifier of the operator, a list of types giving the arity
of the operator, a type for its coarity, and a list of attributes:

data Operator = Op OpId [Type] Type [Attr]

deriving (Show, Read, Ord, Eq)

Membership statements consist of a term, its sort, a list of conditions, and a list of statement at-
tributes:

data Membership = Mb Term Sort [Condition] [StmntAttr]

deriving (Show, Read, Ord, Eq)

Equations and rules share the same elements: the lefthand and righthand terms of the statement, a
list of conditions, and a list of statement attributes:

data Equation = Eq Term Term [Condition] [StmntAttr]

deriving (Show, Read, Ord, Eq)

data Rule = Rl Term Term [Condition] [StmntAttr]

deriving (Show, Read, Ord, Eq)

We distinguish between the following module expressions:

• A single identifier:

data ModExp = ModExp ModId

• A summation, that keeps the two module expressions involved:

| SummationModExp ModExp ModExp

• A renaming, that contains the module expression renamed and the list of renamings:

| RenamingModExp ModExp [Renaming]
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• An instantiation, composed of the module instantiated and the list of view identifiers applied:

| InstantiationModExp ModExp [ViewId]

deriving (Show, Read, Ord, Eq)

The Renaming type distinguishes the different renamings available in Maude:

• Renaming of sorts, that indicates that the first sort identifier is changed to the second one:

data Renaming = SortRenaming Sort Sort

• Renaming of labels, where the first label is renamed to the second one:

| LabelRenaming LabelId LabelId

• Renaming of operators, that can be of three kinds: renaming of operators without profile, with
profile, or a map between terms, as explained in Section 2.5.3:

| OpRenaming1 OpId ToPartRenaming

| OpRenaming2 OpId [Type] Type ToPartRenaming

| TermMap Term Term

deriving (Show, Read, Ord, Eq)

where ToPartRenaming specifies the new operator identifier and the new attributes:

data ToPartRenaming = To OpId [Attr]

deriving (Show, Read, Ord, Eq)

The Condition type distinguishes between the different conditions available in Maude, namely equa-
tional conditions, membership conditions, matching conditions, and rewriting conditions:

data Condition = EqCond Term Term

| MbCond Term Sort

| MatchCond Term Term

| RwCond Term Term

deriving (Show, Read, Ord, Eq)

We define the type Qid, a synonym of Token that will be used for identifiers:

type Qid = Token

Terms are always represented in prefix notation. Notice that the case of an operator applied to a list
of terms is slightly different to the Maude grammar because it also includes the type of the term. It will
be used later in the implementation to rename operators whose profile has been specified:

data Term = Const Qid Type

| Var Qid Type

| Apply Qid [Term] Type

deriving (Show, Read, Ord, Eq)

Finally, Type distinguishes between sorts and kinds:

data Type = TypeSort Sort

| TypeKind Kind

deriving (Show, Read, Ord, Eq)
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7.2 Maude parsing

In this section we explain how the Maude specifications introduced in Hets are parsed in order to obtain
a term following the abstract syntax described in the previous section. We are able to implement this
parsing in Maude itself thanks to Maude’s metalevel [7, Chapter 14], a module that allows the programmer
to use Maude entities such as modules, equations, or rules as usual data by efficiently implementing the
reflective capabilities of rewriting logic [8].

The function haskellify receives a module (the first parameter stands for the original module, while
the second one contains the flattened one) and returns a list of quoted identifiers creating an object of
type Spec, that can be read by Haskell since this data type derives the class Read:

op haskellify : Module Module -> QidList .

ceq haskellify(M, M’) =

’SpecMod ’‘( ’Module haskellifyHeader(H) ’ ’

’‘[ haskellifyImports(IL) comma(IL, SS)

haskellifySorts(SS) comma(IL, SS, SSDS)

haskellifySubsorts(SSDS) comma(IL, SS, SSDS, ODS)

haskellifyOpDeclSet(M’, ODS) comma(IL, SS, SSDS, ODS, MAS)

haskellifyMembAxSet(M’, MAS) comma(IL, SS, SSDS, ODS, MAS, EqS)

haskellifyEqSet(M’, EqS) ’‘] ’‘) ’\n ’@#$endHetsSpec$#@ ’\n

if fmod H is IL sorts SS . SSDS ODS MAS EqS endfm := M .

This function prints the keyword SpecMod and uses the haskellify auxiliary functions to print the
different parts of the module. The functions comma introduce a comma whenever it is necessary. Since all
the “haskellify” functions are very similar, we describe them by using haskellifyImports as example.
This function traverses all the imports in the list and applies the auxiliary function haskellifyImport
to each of them:

op haskellifyImports : ImportList -> QidList .

eq haskellifyImports(nil) = nil .

eq haskellifyImports(I IL) = ’ImportStmnt ’ ’‘( haskellifyImport(I) ’‘)

comma(IL) haskellifyImports(IL) .

This auxiliary function distinguishes between the importation modes, using the appropriate keyword
for each of them:

op haskellifyImport : Import -> QidList .

eq haskellifyImport(protecting ME .) = ’Protecting haskellifyME(ME) .

eq haskellifyImport(including ME .) = ’Including haskellifyME(ME) .

eq haskellifyImport(extending ME .) = ’Extending haskellifyME(ME) .

where haskellifyME is in charge of printing the module expression. When it is just an identifier, it prints
it preceded by the word ModId:

op haskellifyME : ModuleExpression -> QidList .

eq haskellifyME(Q) = ’ ’‘( ’ModExp ’ ’‘( ’ModId qid2token(Q) ’‘) ’‘) ’ .

The summation module expression recursively prints the summands, and uses the keyword SummationModExp
to indicate the type of module expression:

eq haskellifyME(ME + ME’) = ’ ’‘( ’SummationModExp haskellifyME(ME)

haskellifyME(ME’) ’‘) ’ .

To print a renaming we recursively apply haskellifyME for the inner module expression and then
we use the auxiliary function haskellifyMaps to print the renamings. In this case we use the constant
no-module as argument because it will only be used when parsing mappings from views, since it may be
needed to parse terms:

eq haskellifyME(ME * (RNMS)) = ’ ’‘( ’RenamingModExp haskellifyME(ME)

’‘[ haskellifyMaps(no-module, no-module, RNMS) ’‘] ’‘) ’ .

Finally, an instantiation is printed by using an auxiliary function haskellifyPL in charge of the
parameters:

eq haskellifyME(ME {PL}) = ’ ’‘( ’InstantiationModExp haskellifyME(ME)

’‘[ haskellifyPL(PL) ’‘] ’‘) ’ .
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7.3 Logic

Once the Maude modules have been translated into their abstract syntax, we must implement the type
classes Language and Logic provided by Hets, that define the types needed to represent each logic as an
institution and the comorphisms between them. In the following section we describe the most important
of these datatypes, while more details about them can be found in [21].

7.3.1 Signature

The signature defines types for the sorts, kinds, subsort relations, operators, and sentences, and a map
relating each sort to its corresponding kind:

type SortSet = SymbolSet

type KindSet = SymbolSet

type SubsortRel = SymbolRel

type OpDecl = (Set Symbol, [Attr])

type OpDeclSet = Set OpDecl

type OpMap = Map Qid OpDeclSet

type Sentences = Set Sentence

type KindRel = Map Symbol Symbol

These types are used to define Sign, that stands for Maude signatures:

data Sign = Sign {

sorts :: SortSet,

kinds :: KindSet,

subsorts :: SubsortRel,

ops :: OpMap,

sentences :: Sentences,

kindRel :: KindRel

} deriving (Show, Ord, Eq)

The function fromSpec extracts the signature from a module:

fromSpec :: Module -> Sign

This type class also provides functions to join and intersect signatures:

union :: Sign -> Sign -> Sign

intersection :: Sign -> Sign -> Sign

7.3.2 Sentences

The type for sentences distinguishes between membership axioms, equations, and rules:

data Sentence = Membership Membership

| Equation Equation

| Rule Rule

deriving (Show, Read, Ord, Eq)

The sentences can be extracted from a module with fromSpec, that uses an auxiliary function to
obtain them from the statements:

fromSpec :: Module -> [Sentence]

fromSpec (Module _ _ stmts) = fromStatements stmts

This auxiliary function generates the sentences inferred from the operator attributes such as assoc
or comm with fromOperator, while the rest of statements are translated identically:

fromStatements :: [Statement] -> [Sentence]

fromStatements stmts = let

convert stmt = case stmt of

OpStmnt op -> fromOperator op

MbStmnt mb -> [Membership mb]

EqStmnt eq -> [Equation eq]

RlStmnt rl -> [Rule rl]

_ -> []

in concatMap convert stmts

30



fromOperator traverses the attributes and generates the appropriate sentence for each of them:

fromOperator :: Operator -> [Sentence]

fromOperator (Op op dom cod attrs) = let

name = getName op

first = head dom

second = head $ tail dom

convert attr = case attr of

Comm -> commEq name first second cod

Assoc -> assocEq name first second cod

Idem -> idemEq name first cod

Id term -> identityEq name first term cod

LeftId term -> leftIdEq name first term cod

RightId term -> rightIdEq name first term cod

_ -> []

in concatMap convert attrs

We show how the sentence for commutativity is created; the rest of them are produced analogously.
The function commEq generates two variables of the given sort, which are provided as arguments to the
operator in different order, thus creating two terms that are made equal by means of an equation:

commEq :: Qid -> Type -> Type -> Type -> [Sentence]

commEq op ar1 ar2 co = [Equation $ Eq t1 t2 [] []]

where v1 = mkVar "v1" $ type2Kind ar1

v2 = mkVar "v2" $ type2Kind ar2

t1 = Apply op [v1, v2] $ type2Kind co

t2 = Apply op [v2, v1] $ type2Kind co

7.3.3 Morphisms

To define the Maude morphisms we first declare maps for sorts, kinds (induced from the previous maps),
operators, and labels as map of symbols, a generic identifier for the different data that appears in Maude
modules:

type SortMap = SymbolMap

type KindMap = SymbolMap

type OpMap = SymbolMap

type LabelMap = SymbolMap

We create our morphisms by adding to these data types the source and target signatures:

data Morphism = Morphism {

source :: Sign,

target :: Sign,

sortMap :: SortMap,

kindMap :: KindMap,

opMap :: OpMap,

labelMap :: LabelMap

} deriving (Show, Ord, Eq)

Morphisms can be obtained from a list of renamings with fromSignRenamings:

fromSignRenamings :: Sign -> [Renaming] -> Morphism

The type class also provides functions to join and compose morphisms:

union :: Morphism -> Morphism -> Morphism

compose :: Morphism -> Morphism -> Result Morphism

and to generate an inclusion morphism, that is, an identity morphism between two signatures:
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inclusion :: Sign -> Sign -> Morphism

inclusion src tgt = Morphism {

source = src,

target = tgt,

sortMap = Map.empty,

kindMap = Map.empty,

opMap = Map.empty,

labelMap = Map.empty

}

7.4 Development graph

We describe in this section the main functions used to draw the development graph for Maude specifica-
tions. The most important function is anaMaudeFile, that receives a record of all the options received
from the command line (of type HetcatsOpts) and the path of the Maude file to be parsed and returns a
pair with the library name and its environment. This environment contains two development graphs, the
first one containing the modules used in the Maude prelude and another one with the user specification:

anaMaudeFile :: HetcatsOpts -> FilePath -> IO (Maybe (LibName, LibEnv))

anaMaudeFile _ file = do

(dg1, dg2) <- directMaudeParsing file

let ln = emptyLibName file

lib1 = Map.singleton preludeLib $

computeDGraphTheories Map.empty $ markFree Map.empty $

markHiding Map.empty dg1

lib2 = Map.insert ln

(computeDGraphTheories lib1 $ markFree lib1 $

markHiding lib1 dg2) lib1

return $ Just (ln, lib2)

This environment is computed with the function directMaudeParsing, that receives the path in-
troduced by the user and returns a pair of development graphs. These graphs are obtained with the
function maude2DG, that receives the predefined specifications (obtained with predefinedSpecs) and the
user defined specifications (obtained with traverseSpecs):

directMaudeParsing :: FilePath -> IO (DGraph, DGraph)

directMaudeParsing fp = do

ml <- getEnvDef "MAUDE_LIB" ""

if null ml then error "environment variable MAUDE_LIB is not set" else do

ns <- parse fp

let ns’ = either (const []) id ns

(hIn, hOut, hErr, procH) <- runMaude

exitCode <- getProcessExitCode procH

case exitCode of

Nothing -> do

hPutStrLn hIn $ "load " ++ fp

hFlush hIn

hPutStrLn hIn "."

hFlush hIn

hPutStrLn hIn "in Maude/hets.prj"

psps <- predefinedSpecs hIn hOut

sps <- traverseSpecs hIn hOut ns’

(ok, errs) <- getErrors hErr

if ok

then do

hClose hIn

hClose hOut

hClose hErr

return $ maude2DG psps sps

else do

hClose hIn

hClose hOut

hClose hErr
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error errs

Just ExitSuccess -> error "maude terminated immediately"

Just (ExitFailure i) -> error $ "calling maude failed with exitCode: " ++ show i

The function maude2DG first computes the data structures associated to the predefined specifications
and then uses them to compute the development graph related to the specifications introduced by the
user. These data structures are computed with insertSpecs:

maude2DG :: [Spec] -> [Spec] -> (DGraph, DGraph)

maude2DG psps sps = (dg1, dg2)

where (_, tim, vm, tks, dg1) = insertSpecs psps emptyDG Map.empty

Map.empty Map.empty [] emptyDG

(_,_, _, _, dg2) = insertSpecs sps dg1 tim Map.empty vm tks emptyDG

Before describing this function, we briefly explain the data structures used during the generation of
the development graph:

• The type ParamSort defines a pair with a symbol representing a sort and a list of tokens indi-
cating the parameters present in the sort, so for example the sort List{X, Y} generates the pair
(List{X, Y}, [X,Y]):

type ParamSort = (Symbol, [Token])

• The information of each node introduced in the development graph is stored in the tuple ProcInfo,
that contains the following information:

– The identifier of the node.

– The signature of the node.

– A list of symbols standing for the sorts that are not instantiated.

– A list of triples with information about the parameters of the specification, namely the name
of the parameter, the name of the theory, and the list of not instantiated sorts from this theory.

– A list with information about the parameterized sorts.

type ProcInfo = (Node, Sign, Symbols, [(Token, Token, Symbols)], [ParamSort])

• Each ProcInfo tuple is associated to its corresponding module expression in the TokenInfoMap
map:

type TokenInfoMap = Map.Map Token ProcInfo

• When a module expression is parsed a ModExpProc tuple is returned, containing the following
information:

– The identifier of the module expression.

– The TokenInfoMap structure updated with the data in the module expression.

– The morphism associated to the module expression.

– The list of sorts parameterized in this module expression.

– The development graph thus far.

type ModExpProc = (Token, TokenInfoMap, Morphism, [ParamSort], DGraph)

• When parsing a list of importation statements we return a ParamInfo tuple, containing:

– The list of parameter information: the name of the parameter, the name of the theory, and
the sorts that are not instantiated.

– The updated TokenInfoMap map.

– The list of morphisms associated with each parameter.
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– The updated development graph.

type ParamInfo = ([(Token, Token, Symbols)], TokenInfoMap, [Morphism], DGraph)

• Data about views is kept in a separated way from data about theories and modules. The ViewMap
map associates to each view identifier a tuple with:

– The identifier of the target node of the view.

– The morphism generated by the view.

– The list of renamings that generated the morphism.

– A Boolean value indicating whether the target is a theory (True) or a module (False).

type ViewMap = Map.Map Token (Node, Token, Morphism, [Renaming], Bool)

• Finally, we describe the tuple InsSpecRes, used to return the data structures updated when a
specification or a view is introduced in the development graph. It contains:

– Two values of type TokenInfoMap. The first one includes all the information related to the
specification, including the one from the predefined modules, while the second one only contains
information related to the current development graph.

– The updated ViewMap.

– A list of tokens indicating the theories introduced thus far.

– The new development graph.

type InsSpecRes = (TokenInfoMap, TokenInfoMap, ViewMap, [Token], DGraph)

The function insertSpecs traverses the specifications updating the data structures and the develop-
ment graph with insertSpec:

insertSpecs :: [Spec] -> DGraph -> TokenInfoMap -> TokenInfoMap -> ViewMap -> [Token] -> DGraph

-> InsSpecRes

insertSpecs [] _ ptim tim vm tks dg = (ptim, tim, vm, tks, dg)

insertSpecs (s : ss) pdg ptim tim vm ths dg = insertSpecs ss pdg ptim’ tim’ vm’ ths’ dg’

where (ptim’, tim’, vm’, ths’, dg’) = insertSpec s pdg ptim tim vm ths dg

The behavior of insertSpec is different for each type of Maude specification. When the introduced
specification is a module, the following actions are performed:

• The parameters are parsed:

– The list of parameter declarations is obtained with the auxiliary function getParams.

– These declarations are processed with processParameters, that returns a tuple of type
ParamInfo described above.

– Given the parameters names, we traverse the list of sorts to check whether the module defines
parameterized sorts with getSortsParameterizedBy.

– The links between the theories in the parameters and the current module are created with
createEdgesParams.

• The importations are handled:

– The importation statements are obtained with getImportsSorts. Although this function also
returns the sorts declared in the module, in this case they are not needed and its value is
ignored.

– These importations are handled by processImports, that returns a list containing the infor-
mation of each parameter.

– The definition links generated by the imports are created with createEdgesImports.
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• The final signature is obtained with sign_union_morphs by merging the signature in the current
module with the ones obtained from the morphisms from the parameters and the imports.

insertSpec :: Spec -> DGraph -> TokenInfoMap -> TokenInfoMap -> ViewMap -> [Token] -> DGraph

-> InsSpecRes

insertSpec (SpecMod sp_mod) pdg ptim tim vm ths dg = (ptimUp, tim5, vm, ths, dg6)

where ps = getParams sp_mod

(il, _) = getImportsSorts sp_mod

up = incPredImps il pdg (ptim, tim, dg)

(ptimUp, timUp, dgUp) = incPredParams ps pdg up

(pl, tim1, morphs, dg1) = processParameters ps timUp dgUp

top_sg = Maude.Sign.fromSpec sp_mod

paramSorts = getSortsParameterizedBy (paramNames ps) (Set.toList $ sorts top_sg

ips = processImports tim1 vm dg1 il

(tim2, dg2) = last_da ips (tim1, dg1)

sg = sign_union_morphs morphs $ sign_union top_sg ips

ext_sg = makeExtSign Maude sg

nm_sns = map (makeNamed "") $ Maude.Sentence.fromSpec sp_mod

sens = toThSens nm_sns

gt = G_theory Maude ext_sg startSigId sens startThId

tok = HasName.getName sp_mod

name = makeName tok

(ns, dg3) = insGTheory dg2 name DGBasic gt

tim3 = Map.insert tok (getNode ns, sg, [], pl, paramSorts) tim2

(tim4, dg4) = createEdgesImports tok ips sg tim3 dg3

dg5 = createEdgesParams tok pl morphs sg tim4 dg4

(_, tim5, dg6) = insertFreeNode tok tim4 morphs dg5

When the specification inserted is a theory the process varies slightly:

• Theories cannot be parameterized in Core Maude, so the parameter handling is not required.

• The specified sorts have to be qualified with the parameter name when used in a parameterized
module. These sorts are extracted with getImportsSorts and kept in the corresponding field of
TokenInfoMap.

insertSpec (SpecTh sp_th) pdg ptim tim vm ths dg = (ptimUp, tim3, vm, tok : ths, dg3)

where (il, ss1) = getImportsSorts sp_th

(ptimUp, timUp, dgUp) = incPredImps il pdg (ptim, tim, dg)

ips = processImports timUp vm dgUp il

ss2 = getThSorts ips

(tim1, dg1) = last_da ips (tim, dg)

sg = sign_union (Maude.Sign.fromSpec sp_th) ips

ext_sg = makeExtSign Maude sg

nm_sns = map (makeNamed "") $ Maude.Sentence.fromSpec sp_th

sens = toThSens nm_sns

gt = G_theory Maude ext_sg startSigId sens startThId

tok = HasName.getName sp_th

name = makeName tok

(ns, dg2) = insGTheory dg1 name DGBasic gt

tim2 = Map.insert tok (getNode ns, sg, ss1 ++ ss2, [], []) tim1

(tim3, dg3) = createEdgesImports tok ips sg tim2 dg2

The introduction of views into the development graph follows these steps:

• The function isInstantiated checks whether the target of the view is a theory or a module. This
value will be used to decide whether the sorts have to be qualified when this view is used.

• A morphism is generated between the signatures of the source and target specifications.

• If there is a renaming between terms the function sign4renamings generates the extra signature
and sentences needed. These values, kept in new_sign and new_sens are used to create an inner
node with the function insertInnerNode.
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• Finally, a theorem link stating the proof obligations generated by the view is introduced between
the source and the target of the view with insertThmEdgeMorphism.

insertSpec (SpecView sp_v) pdg ptim tim vm ths dg = (ptimUp, tim3, vm’, ths, dg4)

where View name from to rnms = sp_v

(ptimUp, timUp, dgUp) = incPredView from to pdg (ptim, tim, dg)

inst = isInstantiated ths to

tok_name = HasName.getName name

(tok1, tim1, morph1, _, dg1) = processModExp timUp vm dgUp from

(tok2, tim2, morph2, _, dg2) = processModExp tim1 vm dg1 to

(n1, _, _, _, _) = fromJust $ Map.lookup tok1 tim2

(n2, _, _, _, _) = fromJust $ Map.lookup tok2 tim2

morph = fromSignsRenamings (target morph1) (target morph2) rnms

morph’ = fromJust $ maybeResult $ compose morph1 morph

(new_sign, new_sens) = sign4renamings (target morph1) (sortMap morph) rnms

(n3, tim3, dg3) = insertInnerNode n2 tim2 tok2 morph2 new_sign new_sens dg2

vm’ = Map.insert (HasName.getName name) (n3, tok2, morph’, rnms, inst) vm

dg4 = insertThmEdgeMorphism tok_name n3 n1 morph’ dg3

We describe now the main auxiliary functions used above. Module expressions are parsed following
the guidelines outlined in Section 5.1.2:

• When the module expression is a simple identifier its signature and its parameterized sorts are
extracted from the TokenInfoMap and returned, while the generated morphism is an inclusion:

processModExp :: TokenInfoMap -> ViewMap -> DGraph -> ModExp -> ModExpProc

processModExp tim _ dg (ModExp modId) = (tok, tim, morph, ps, dg)

where tok = HasName.getName modId

(_, sg, _, _, ps) = fromJust $ Map.lookup tok tim

morph = Maude.Morphism.inclusion sg sg

• The parsing of the summation expression performs the following steps:

– The information about the module expressions is recursively computed with processModExp.

– The signature of the resulting module expression is obtained with the union of signatures.

– The morphism generated by the summation is just an inclusion.

– A new node for the summation is introduced with insertNode.

– The target signature of the obtained morphisms is substituted by this new signature with
setTarget.

– These new morphisms are used to generate the links between the summation and its summands
in insertDefEdgeMorphism.

processModExp tim vm dg (SummationModExp modExp1 modExp2) = (tok, tim3, morph, ps’, dg5)

where (tok1, tim1, morph1, ps1, dg1) = processModExp tim vm dg modExp1

(tok2, tim2, morph2, ps2, dg2) = processModExp tim1 vm dg1 modExp2

ps’ = deleteRepeated $ ps1 ++ ps2

tok = mkSimpleId $ concat ["{", show tok1, " + ", show tok2, "}"]

(n1, _, ss1, _, _) = fromJust $ Map.lookup tok1 tim2

(n2, _, ss2, _, _) = fromJust $ Map.lookup tok2 tim2

ss1’ = translateSorts morph1 ss1

ss2’ = translateSorts morph1 ss2

sg1 = target morph1

sg2 = target morph2

sg = Maude.Sign.union sg1 sg2

morph = Maude.Morphism.inclusion sg sg

morph1’ = setTarget sg morph1

morph2’ = setTarget sg morph2

(tim3, dg3) = insertNode tok sg tim2 (ss1’ ++ ss2’) [] dg2

(n3, _, _, _, _) = fromJust $ Map.lookup tok tim3

dg4 = insertDefEdgeMorphism n3 n1 morph1’ dg3

dg5 = insertDefEdgeMorphism n3 n2 morph2’ dg4
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• The renaming module expression recursively parses the inner expression, computes the morphism
from the given renamings with fromSignRenamings, taking special care of the renaming of the
parameterized sorts with applyRenamingParamSorts. Once the values are computed, the final
morphism is obtained from the composition of the morphisms computed for the inner expression
and the one computed from the renamings:

processModExp tim vm dg (RenamingModExp modExp rnms) = (tok, tim’, comp_morph, ps’, dg’)

where (tok, tim’, morph, ps, dg’) = processModExp tim vm dg modExp

morph’ = fromSignRenamings (target morph) rnms

ps’ = applyRenamingParamSorts (sortMap morph’) ps

comp_morph = fromJust $ maybeResult $ compose morph morph’

• The parsing of the instantiation module expression works as follows:

– The information of the instantiated parameterized module is obtained with processModExp.

– The parameter names are obtained by applying fstTpl, that extracts the first component of
a triple, to the information about the parameters of the parameterized module.

– Parameterized sorts are instantiated with instantiateSorts, that returns the new parame-
terized sorts, in case the target of the view is a theory, and the morphism associated.

– The view identifiers are processed with processViews. This function returns the token iden-
tifying the list of views, the morphism to be applied from the parameterized module, a list of
pairs of nodes and morphisms, indicating the morphism that has to be used in the link from
each view, and a list with the updated information about the parameters due to the views
with theories as target.

– The morphism returned is the inclusion morphism.

– The links between the targets of the views and the expression are created with updateGraphViews.

processModExp tim vm dg (InstantiationModExp modExp views) =

(tok’’, tim’’, final_morph, new_param_sorts, dg’’)

where (tok, tim’, morph, paramSorts, dg’) = processModExp tim vm dg modExp

(_, _, _, ps, _) = fromJust $ Map.lookup tok tim’

param_names = map fstTpl ps

view_names = map HasName.getName views

(new_param_sorts, ps_morph) = instantiateSorts param_names

view_names vm morph paramSorts

(tok’, morph1, ns, deps) = processViews views (mkSimpleId "") tim’

vm ps (ps_morph, [], [])

tok’’ = mkSimpleId $ concat [show tok, "{", show tok’, "}"]

sg2 = target morph1

final_morph = Maude.Morphism.inclusion sg2 sg2

(tim’’, dg’’) = if Map.member tok’’ tim

then (tim’, dg’)

else updateGraphViews tok tok’’ sg2 morph1 ns tim’ deps dg’

We present the function insertNode to describe how the nodes are introduced into the development
graph. This function receives the identifier of the node, its signature,12 the TokenInfoMap map, a list
of sorts, and information about the parameters, and returns the updated map and the new development
graph. First, it checks whether the node is already in the development graph. If it is in the graph, the
current map and graph are returned. Otherwise, the extended signature is computed with makeExtSign
and used to create a graph theory that will be inserted with insGTheory, obtaining the new node
information and the new development graph. Finally, the map is updated with the information received
as parameter and the node identifier obtained when the node was introduced:

insertNode :: Token -> Sign -> TokenInfoMap -> Symbols -> [(Token, Token, Symbols)]

-> DGraph -> (TokenInfoMap, DGraph)

insertNode tok sg tim ss deps dg = if Map.member tok tim

then (tim, dg)

12Note that when the function insertNode is used there are no sentences.
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else let

ext_sg = makeExtSign Maude sg

gt = G_theory Maude ext_sg startSigId noSens startThId

name = makeName tok

(ns, dg’) = insGTheory dg name DGBasic gt

tim’ = Map.insert tok (getNode ns, sg, ss, deps, []) tim

in (tim’, dg’)

The function insertDefEdgeMorphism describes how the definition links are introduced into the
development graph. It receives the identifier of the source and target nodes, the morphism to be used
in the link, and the current development graph. The morphism is transformed into a development
graph morphism indicating the current logic (Maude) and the type (globalDef) and is introduced in the
development graph with insLEdgeDG:

insertDefEdgeMorphism :: Node -> Node -> Morphism -> DGraph -> DGraph

insertDefEdgeMorphism n1 n2 morph dg = snd $ insLEdgeDG (n2, n1, edg) dg

where mor = G_morphism Maude morph startMorId

edg = globDefLink (gEmbed mor) SeeTarget

Theorem links are introduced with insertThmEdgeMorphism in the same way, but specifying with
globalThm that the link is a theorem link. This function receives as extra argument the name of the view
generating the proof obligations, that is used to name the link:

insertThmEdgeMorphism :: Token -> Node -> Node -> Morphism -> DGraph -> DGraph

insertThmEdgeMorphism name n1 n2 morph dg = snd $ insLEdgeDG (n2, n1, edg) dg

where mor = G_morphism Maude morph startMorId

edg = defDGLink (gEmbed mor) globalThm

(DGLinkView name $ Fitted [])

The function insertFreeEdge receives the names of the nodes and the TokenInfoMap and builds an
inclusion morphism to use it in the FreeOrCofreeDefLink link:

insertFreeEdge :: Token -> Token -> TokenInfoMap -> DGraph -> DGraph

insertFreeEdge tok1 tok2 tim dg = snd $ insLEdgeDG (n2, n1, edg) dg

where (n1, _, _, _, _) = fromJust $ Map.lookup tok1 tim

(n2, sg2, _, _, _) = fromJust $ Map.lookup tok2 tim

mor = G_morphism Maude (Maude.Morphism.inclusion Maude.Sign.empty sg2) startMorId

dgt = FreeOrCofreeDefLink NPFree $ EmptyNode (Logic Maude)

edg = defDGLink (gEmbed mor) dgt SeeTarget

7.5 Comorphism

We show in this section how the comorphism from Maude to Casl described in Section 4 is implemented.
The function in charge of computing the comorphism is maude2casl, that returns the Casl signature
and sentences given the Maude signature and sentences:

maude2casl :: MSign.Sign -> [Named MSentence.Sentence] -> (CSign.CASLSign,

[Named CAS.CASLFORMULA])

This function splits the work into different stages:

• The function rewPredicates generates the rew predicates for each sort to simulate the rewrite
rules in the Maude specification.

• The function rewPredicatesSens creates the formulas associated to the rew predicates created
above, stating that they are reflexive and transitive.

• The Casl operators are obtained from the Maude operators:

– The function translateOps splits the Maude operator map into a tuple of Casl operators
and Casl associative operators, (which are required for parsing purposes).

– Since Casl does not allow the definition of polymorphic operators, these operators are removed
from the map with deleteUniversal and for each one of these Maude operators we create a
set of Casl operators with all the possible profiles with universalOps.
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• Casl sentences are obtained from the Maude sentences and from predefined Casl libraries:

– In the computation of the Casl formulas we split Maude sentences in equations defined without
the owise attribute, equations defined with owise, and the rest of statements with the function
splitOwiseEqs.

– The equations defined without the owise attribute are translated as universally quantified
equations, as shown in Section 4, with noOwiseSen2Formula.

– Equations with the owise attribute are translated using a negative existential quantification, as
we will show later, with the function owiseSen2Formula. This function requires as additional
parameter the definition of the formulas defined without the owise attribute, in order to state
that the equations defined with owise are applied when the rest of possible equations cannot.

– The rest of statements, namely memberships and rules, are translated with the function
mb_rl2formula.

– There are some built-in operators in Maude that are not defined by means of equations. To
allow the user to reason about them we provide some libraries with the definitions of these
operators as Casl formulas, obtained with loadLibraries.

• Finally, the Casl symbols are created:

– The kinds are translated to symbols with kinds2syms.

– The operators are translated with ops2symbols.

– The symbol predicates are obtained with preds2syms.

maude2casl msign nsens = (csign { CSign.sortSet = cs,

CSign.sortRel = sbs’,

CSign.opMap = cops’,

CSign.assocOps = assoc_ops,

CSign.predMap = preds,

CSign.declaredSymbols = syms }, new_sens)

where csign = CSign.emptySign ()

ss = MSign.sorts msign

ss’ = Set.map sym2id ss

mk = kindMapId $ MSign.kindRel msign

sbs = MSign.subsorts msign

sbs’ = maudeSbs2caslSbs sbs mk

cs = Set.union ss’ $ kindsFromMap mk

preds = rewPredicates cs

rs = rewPredicatesSens cs

ops = deleteUniversal $ MSign.ops msign

ksyms = kinds2syms cs

(cops, assoc_ops, _) = translateOps mk ops

cops’ = universalOps cs cops $ booleanImported ops

rs’ = rewPredicatesCongSens cops’

pred_forms = loadLibraries (MSign.sorts msign) ops

ops_syms = ops2symbols cops’

(no_owise_sens, owise_sens, mbs_rls_sens) = splitOwiseEqs nsens

no_owise_forms = map (noOwiseSen2Formula mk) no_owise_sens

owise_forms = map (owiseSen2Formula mk no_owise_forms) owise_sens

mb_rl_forms = map (mb_rl2formula mk) mbs_rls_sens

preds_syms = preds2syms preds

syms = Set.union ksyms $ Set.union ops_syms preds_syms

new_sens = concat [rs, rs’, no_owise_forms, owise_forms,

mb_rl_forms, pred_forms]

The rew predicates are declared with the function rewPredicates, that traverses the set of sorts
applying the function rewPredicate:

rewPredicates :: Set.Set Id -> Map.Map Id (Set.Set CSign.PredType)

rewPredicates = Set.fold rewPredicate Map.empty
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This function defines a binary predicate using as identifier the constant rewID and the sort as type
of the arguments:

rewPredicate :: Id -> Map.Map Id (Set.Set CSign.PredType)

-> Map.Map Id (Set.Set CSign.PredType)

rewPredicate sort m = Map.insertWith (Set.union) rewID ar m

where ar = Set.singleton $ CSign.PredType [sort, sort]

Once these predicates have been declared, we have to introduce formulas to state their properties.
The function rewPredicatesSens accomplishes this task by traversing the set of sorts and applying
rewPredicateSens:

rewPredicatesSens :: Set.Set Id -> [Named CAS.CASLFORMULA]

rewPredicatesSens = Set.fold rewPredicateSens []

This function generates the formulas for each sort:

rewPredicateSens :: Id -> [Named CAS.CASLFORMULA] -> [Named CAS.CASLFORMULA]

rewPredicateSens sort acc = ref : trans : acc

where ref = reflSen sort

trans = transSen sort

We describe the formula for reflexivity, being the formula for transitivity analogous. A new variable
of the required sort is created with the auxiliary function newVar, then the qualified predicate name is
created with the rewID constant and applied to the variable. Finally, the formula is named with the
prefix rew_refl_ followed by the name of the sort:

reflSen :: Id -> Named CAS.CASLFORMULA

reflSen sort = makeNamed name $ quantifyUniversally form

where v = newVar sort

pred_type = CAS.Pred_type [sort, sort] nullRange

pn = CAS.Qual_pred_name rewID pred_type nullRange

form = CAS.Predication pn [v, v] nullRange

name = "rew_refl_" ++ show sort

The function translateOps traverses the map of Maude operators, applying to each of them the
function translateOpDeclSet:

translateOps :: IdMap -> MSign.OpMap -> OpTransTuple

translateOps im = Map.fold (translateOpDeclSet im) (Map.empty, Map.empty, Set.empty)

Since the values in the Maude operator map are sets of operator declarations, the auxiliary function
translateOpDeclSet has to traverse these sets, applying translateOpDecl to each operator declaration:

translateOpDeclSet :: IdMap -> MSign.OpDeclSet -> OpTransTuple -> OpTransTuple

translateOpDeclSet im ods tpl = Set.fold (translateOpDecl im) tpl ods

The function translateOpDecl receives an operator declaration, that consists of all the operators
declared with the same profile at the kind level. The function traverses these operators, transforming
them into Casl operators with the function ops2pred and returning a tuple containing the operators,
the associative operators, and the constructors:

translateOpDecl :: IdMap -> MSign.OpDecl -> OpTransTuple -> OpTransTuple

translateOpDecl im (syms, ats) (ops, assoc_ops, cs) = case tl of

[] -> (ops’, assoc_ops’, cs’)

_ -> translateOpDecl im (syms’, ats) (ops’, assoc_ops’, cs’)

where sym = head $ Set.toList syms

tl = tail $ Set.toList syms

syms’ = Set.fromList tl

(cop_id, ot, _) = fromJust $ maudeSym2CASLOp im sym

cop_type = Set.singleton ot

ops’ = Map.insertWith (Set.union) cop_id cop_type ops

assoc_ops’ = if any MAS.assoc ats

then Map.insertWith (Set.union) cop_id cop_type assoc_ops

else assoc_ops

cs’ = if any MAS.ctor ats

then Set.insert (Component cop_id ot) cs

else cs
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As said above, Maude equations that are not defined with the owise attribute are translated to
Casl with noOwiseSen2Formula. This function extracts the current equation from the named sentence,
translates it with noOwiseEq2Formula and creates a new named sentence with the resulting formula:

noOwiseSen2Formula :: IdMap -> Named MSentence.Sentence -> Named CAS.CASLFORMULA

noOwiseSen2Formula im s = s’

where MSentence.Equation eq = sentence s

sen’ = noOwiseEq2Formula im eq

s’ = s { sentence = sen’ }

The function noOwiseEq2Formula distinguishes whether the equation is conditional or not. In both
cases, the Maude terms in the equation are translated into Casl terms with maudeTerm2caslTerm, and a
strong equation is used to create a formula. If the equation has no conditions this formula is universally
quantified and returned as result, while if it has conditions each of them generates a formula and their
conjunction, computed with conds2formula, will be used as premise of the equational formula:

noOwiseEq2Formula :: IdMap -> MAS.Equation -> CAS.CASLFORMULA

noOwiseEq2Formula im (MAS.Eq t t’ [] _) = quantifyUniversally form

where ct = maudeTerm2caslTerm im t

ct’ = maudeTerm2caslTerm im t’

form = CAS.Strong_equation ct ct’ nullRange

noOwiseEq2Formula im (MAS.Eq t t’ conds@(_:_) _) = quantifyUniversally form

where ct = maudeTerm2caslTerm im t

ct’ = maudeTerm2caslTerm im t’

conds_form = conds2formula im conds

concl_form = CAS.Strong_equation ct ct’ nullRange

form = createImpForm conds_form concl_form

maudeTerm2caslTerm is defined for each Maude term:

• Variables are translated into qualified Casl variables, and their type is translated to the corre-
sponding type in Casl:

maudeTerm2caslTerm :: IdMap -> MAS.Term -> CAS.CASLTERM

maudeTerm2caslTerm im (MAS.Var q ty) = CAS.Qual_var q ty’ nullRange

where ty’ = maudeType2caslSort ty im

• Constants are translated as functions applied to the empty list of arguments:

maudeTerm2caslTerm im (MAS.Const q ty) = CAS.Application op [] nullRange

where name = token2id q

ty’ = maudeType2caslSort ty im

op_type = CAS.Op_type CAS.Total [] ty’ nullRange

op = CAS.Qual_op_name name op_type nullRange

• The application of an operator to a list of terms is translated into another application, translating
recursively the arguments into valid Casl terms:

maudeTerm2caslTerm im (MAS.Apply q ts ty) = CAS.Application op tts nullRange

where name = token2id q

tts = map (maudeTerm2caslTerm im) ts

ty’ = maudeType2caslSort ty im

types_tts = getTypes tts

op_type = CAS.Op_type CAS.Total types_tts ty’ nullRange

op = CAS.Qual_op_name name op_type nullRange

The conditions are translated into a conjunction with conds2formula, that traverses the conditions
applying cond2formula to each of them, and then creates the conjunction of the obtained formulas:

conds2formula :: IdMap -> [MAS.Condition] -> CAS.CASLFORMULA

conds2formula im conds = CAS.Conjunction forms nullRange

where forms = map (cond2formula im) conds
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• Both equality and matching conditions are translated into strong equations:

cond2formula :: IdMap -> MAS.Condition -> CAS.CASLFORMULA

cond2formula im (MAS.EqCond t t’) = CAS.Strong_equation ct ct’ nullRange

where ct = maudeTerm2caslTerm im t

ct’ = maudeTerm2caslTerm im t’

cond2formula im (MAS.MatchCond t t’) = CAS.Strong_equation ct ct’ nullRange

where ct = maudeTerm2caslTerm im t

ct’ = maudeTerm2caslTerm im t’

• Membership conditions are translated into Casl memberships by translating the term and the sort:

cond2formula im (MAS.MbCond t s) = CAS.Membership ct s’ nullRange

where ct = maudeTerm2caslTerm im t

s’ = token2id $ getName s

• Rewrite conditions are translated into formulas by using both terms as arguments of the corre-
sponding rew predicate:

cond2formula im (MAS.RwCond t t’) = CAS.Predication pred_name [ct, ct’] nullRange

where ct = maudeTerm2caslTerm im t

ct’ = maudeTerm2caslTerm im t’

ty = token2id $ getName $ MAS.getTermType t

kind = Map.findWithDefault (errorId "rw cond to formula") ty im

pred_type = CAS.Pred_type [kind, kind] nullRange

pred_name = CAS.Qual_pred_name rewID pred_type nullRange

The equations defined with the owise attribute are translated with owiseSen2Formula, that traverses
them and applies owiseEq2Formula to the inner equation:

owiseSen2Formula :: IdMap -> [Named CAS.CASLFORMULA] -> Named MSentence.Sentence

-> Named CAS.CASLFORMULA

owiseSen2Formula im owise_forms s = s’

where MSentence.Equation eq = sentence s

sen’ = owiseEq2Formula im owise_forms eq

s’ = s { sentence = sen’ }

This function receives all the formulas defined without the owise attribute and, for each formula with
the same operator in the lefthand side as the current equation (obtained with getLeftApp), it generates
with existencialNegationOtherEqs a negative existential quantification stating that the arguments do
not match or the condition does not hold that is used as premise of the equation:

owiseEq2Formula :: IdMap -> [Named CAS.CASLFORMULA] -> MAS.Equation -> CAS.CASLFORMULA

owiseEq2Formula im no_owise_form eq = form

where (eq_form, vars) = noQuantification $ noOwiseEq2Formula im eq

(op, ts, _) = fromJust $ getLeftApp eq_form

ex_form = existencialNegationOtherEqs op ts no_owise_form

imp_form = createImpForm ex_form eq_form

form = CAS.Quantification CAS.Universal vars imp_form nullRange

The translation from sorts, operators, and predicates to symbols works in a similar way to the trans-
formations shown above, so we only describe how the predicate symbols are obtained. The function
preds2syms traverses the map of predicates and inserts each obtained symbol into the set with pred2sym:

preds2syms :: Map.Map Id (Set.Set CSign.PredType) -> Set.Set CSign.Symbol

preds2syms = Map.foldWithKey pred2sym Set.empty

This function traverses the set of predicate types and creates the symbol corresponding to each one
with createSym4id:

pred2sym :: Id -> Set.Set CSign.PredType -> Set.Set CSign.Symbol -> Set.Set CSign.Symbol

pred2sym pn spt acc = Set.fold (createSym4id pn) acc spt

createSym4id generates the symbol and inserts it into the accumulated set:

createSym4id :: Id -> CSign.PredType -> Set.Set CSign.Symbol -> Set.Set CSign.Symbol

createSym4id pn pt acc = Set.insert sym acc

where sym = CSign.Symbol pn $ CSign.PredAsItemType pt

42



7.6 Freeness constraints

We describe here how the freeness constraints introduced in Section 5.2 have been implemented. This
implementation has been performed for general Casl theories, so it is not specific to Maude specifications.
Since this transformation is quite complex, we focus in this section on the second-order formula for the
kernel of h (the functions added for each ι(s)). As explained before, this formula is split into several
subformulas:

• The formula for symmetry of each sort is implemented by the function symmetry_ax. It first
generates two fresh variables, v1 and v2, of the given sort, and a binary predicate ps ranging in this
sort; then we create the righthand (rhs) and lefthand (lhs) sides of the implication, that finally is
universally quantified and returned:

symmetry_ax :: SORT -> CASLFORMULA

symmetry_ax s = quant

where free_sort = mkFreeName s

v1@(Qual_var n1 _ _) = newVarIndex 1 free_sort

v2@(Qual_var n2 _ _) = newVarIndex 2 free_sort

pt = Pred_type [free_sort, free_sort] nullRange

name = phiName s

ps = Qual_pred_name name pt nullRange

lhs = Predication ps [v1, v2] nullRange

rhs = Predication ps [v2, v1] nullRange

inner_form = Implication lhs rhs True nullRange

vd = [Var_decl [n1, n2] free_sort nullRange]

quant = Quantification Universal vd inner_form nullRange

• The formulas for transitivity are generated with transitivity_ax, that works in a similar way
to the function above: it first creates the fresh variables v1, v2, and v3, which are used in the
ps predicate to build the formulas fst_form (Φ(v1, v2)), snd_form (Φ(v2, v3)), and thr_form
(Φ(v1, v3)). The first two formulas are put together in the conjunction conj and imply the third
one in imp. Finally, the formula is universally quantified and returned as quant:

transitivity_ax :: SORT -> CASLFORMULA

transitivity_ax s = quant

where free_sort = mkFreeName s

v1@(Qual_var n1 _ _) = newVarIndex 1 free_sort

v2@(Qual_var n2 _ _) = newVarIndex 2 free_sort

v3@(Qual_var n3 _ _) = newVarIndex 3 free_sort

pt = Pred_type [free_sort, free_sort] nullRange

name = phiName s

ps = Qual_pred_name name pt nullRange

fst_form = Predication ps [v1, v2] nullRange

snd_form = Predication ps [v2, v3] nullRange

thr_form = Predication ps [v1, v3] nullRange

conj = mk_conj [fst_form, snd_form]

imp = Implication conj thr_form True nullRange

vd = [Var_decl [n1, n2, n3] free_sort nullRange]

quant = Quantification Universal vd imp nullRange

• Formulas stating congruence are more complex. The function congruence_ax computes the axioms
for each operator identifier by using the auxiliary function congruence_ax_aux:

congruence_ax :: Id -> Set.Set OpType -> [CASLFORMULA] -> [CASLFORMULA]

congruence_ax name sot acc = set_forms

where set_forms = Set.fold ((:) . (congruence_ax_aux name)) acc sot

This auxiliary function, after renaming the operator and the sorts to obtain the free identifiers,
creates the arrays of variables, xs and ys, and the two terms where they are applied, fst_term and
snd_term. Definedness formulas of the form D(t) are built as Ps(t, t) in fst_form and snd_form,
while the third part of the conjunction is built with congruence_ax_vars (not shown here) and kept
in vars_forms. These formulas are put together as a conjunction and used in the final implication,
which is returned once it is universally quantified:
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congruence_ax_aux :: Id -> OpType -> CASLFORMULA

congruence_ax_aux name ot = cong_form’

where OpType _ args res = ot

free_name = mkFreeName name

free_args = map mkFreeName args

free_res = mkFreeName res

free_ot = Op_type Total free_args free_res nullRange

free_os = Qual_op_name free_name free_ot nullRange

lgth = length free_args

xs = createVars 1 free_args

ys = createVars (1 + lgth) free_args

fst_term = Application free_os xs nullRange

snd_term = Application free_os ys nullRange

phi = phiName res

pt = Pred_type [free_res, free_res] nullRange

ps = Qual_pred_name phi pt nullRange

fst_form = Predication ps [fst_term, fst_term] nullRange

snd_form = Predication ps [snd_term, snd_term] nullRange

vars_forms = congruence_ax_vars args xs ys

conj = mk_conj $ fst_form : snd_form : vars_forms

concl = Predication ps [fst_term, snd_term] nullRange

cong_form = Implication conj concl True nullRange

cong_form’ = quantifyUniversally cong_form

• The formulas for satThM are obtained by applying free_formula, which performs the substitutions
shown in Section 5.2, to the formulas in the current theory:

sat_thm_ax :: [Named CASLFORMULA] -> CASLFORMULA

sat_thm_ax forms = final_form

where forms’ = map (free_formula . sentence) forms

final_form = mk_conj forms’

• Finally, largerThanKerH formulas are computed with larger_than_ker_h. We split the work
between the function ltkh_sorts, in charge of the formulas related to the sorts, and ltkh_preds,
in charge of the formulas related to the predicates:

larger_than_ker_h :: Set.Set SORT -> Map.Map Id (Set.Set PredType) -> CASLFORMULA

larger_than_ker_h ss mis = conj

where ltkhs = ltkh_sorts ss

ltkhp = ltkh_preds mis

conj = mk_conj (ltkhs ++ ltkhp)

We describe how the ltkh_sorts function works. This function traverses all the sorts and applies
ltkh_sort to each of them:

ltkh_sorts :: Set.Set SORT -> [CASLFORMULA]

ltkh_sorts = Set.fold ((:) . ltkh_sort) []

This auxiliary function creates variables of the given sort and uses them in the homomorphism
function. The terms thus obtained are used in an existential equation to create the premise of
the implication, while the conclusion is a predicate with these variables as arguments. Finally, the
formula is universally quantified and returned:

ltkh_sort :: SORT -> CASLFORMULA

ltkh_sort s = imp’

where free_s = mkFreeName s

v1 = newVarIndex 1 free_s

v2 = newVarIndex 2 free_s

phi = phiName s

pt = Pred_type [free_s, free_s] nullRange

ps = Qual_pred_name phi pt nullRange
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ot_hom = Op_type Partial [free_s] s nullRange

name_hom = Qual_op_name homId ot_hom nullRange

t1 = Application name_hom [v1] nullRange

t2 = Application name_hom [v2] nullRange

prem = Existl_equation t1 t2 nullRange

concl = Predication ps [v1, v2] nullRange

imp = Implication prem concl True nullRange

imp’ = quantifyUniversally imp

8 Concluding remarks and future work

We have presented how Maude has been integrated into Hets, a parsing, static analysis, and proof man-
agement tool that combines various tools for different specification languages. To achieve this integration,
we consider preordered algebra semantics for Maude and define an institution comorphism from Maude
to Casl. This integration allows to prove properties of Maude specifications like those expressed in
Maude views. We have also implemented a normalization of the development graphs that allows us to
prove freeness constraints. We have used this transformation to connect Maude to Isabelle [32], a Higher
Order Logic prover, and have demonstrated a small example proof about reversal of lists. Moreover, this
encoding is suited for proofs of e.g. extensionality of sets, which require first-order logic, going beyond
the abilities of existing Maude provers like ITP.

Since interactive proofs are often not easy to conduct, future work will make proving more efficient
by adopting automated induction strategies like rippling [12]. We also have the idea to use the automatic
first-order prover SPASS for induction proofs by integrating special induction strategies directly into
Hets.

We have also studied the possible comorphisms from Casl to Maude. We distinguish whether the
formulas in the source theory are confluent and terminating or not. In the first case, that we plan to
check with the Maude termination [13] and confluence checker [14], we map formulas to equations, whose
execution in Maude is more efficient, while in the second case we map formulas to rules.

Finally, we also plan to relate Hets’ Modal Logic and Maude models in order to use the Maude model
checker [7, Chapter 13] for linear temporal logic.
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