
Electronic Notes in Theoretical Computer Science 71 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume71.html 19 pages

Implementing CCS in Maude 2 ?

Alberto Verdejo and Narciso Mart́ı-Oliet

Dpto. de Sistemas Informáticos y Programación
Universidad Complutense de Madrid. Spain

{alberto,narciso}@sip.ucm.es

Abstract

This paper describes in detail how to bridge the gap between theory and practice in a
new implementation of the CCS operational semantics in Maude, where transitions
become rewrites and inference rules become conditional rewrite rules with rewrites
in the conditions, as made possible by the new features in Maude 2.0. We implement
both the usual transition semantics and the weak transition semantics where internal
actions are not observed, and on top of them we also implement the Hennessy-
Milner modal logic for describing processes. We compare this implementation with
a previous one where transitions become judgements and inference rules become
rewrites, and also comment on extensions to the LOTOS language.

1 Introduction

In the context of proposing rewriting logic as a logical and semantic framework,
the paper [10] illustrated several different ways of mapping inference systems
into rewriting logic. A very general possibility is to map an inference rule of
the form S1...Sn

S0
into a rewrite rule of the form S1 . . . Sn −→ S0 that rewrites

multisets of judgements Si. This mapping is correct from an abstract point
of view, but thinking in terms of executability of the rewrite rules, it is more
appropriate to consider rewrite rules of the form S0 −→ S1 . . . Sn that still
rewrite multisets of judgements but go from the conclusion to the premises,
so that rewriting with these rewrite rules corresponds to searching for a proof
in a bottom-up way. Again this mapping is correct, and in both cases the
intuitive idea is that the rewriting relation corresponds to the horizontal bar
separating conclusion from premises in the typical textbook presentation of
inference rules.

These mappings can be applied to a wide variety of inference systems,
as detailed in [10], including sequent systems for logics and also structural

? Research supported by CICYT project Desarrollo Formal de Sistemas Basados en
Agentes Móviles (TIC2000–0701–C02–01).

c©2002 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume71.html

Verdejo and Mart́i-Oliet

operational semantics definitions for languages. However, in the operational
semantics case, judgements Si typically have the form of some kind of transi-
tion Pi → Qi between states so that it makes sense to consider the possibility
of mapping this transition relation between states to a rewriting relation be-
tween terms representing the states. When thinking this way, an inference
rule of the form

P1 → Q1 . . . Pn → Qn

P0 → Q0

becomes a conditional rewrite rule of the form

P0 −→ Q0 if P1 −→ Q1 ∧ . . . ∧ Pn −→ Qn,

where the condition includes rewrites.

Rules of this form were already considered by Meseguer in the seminal
paper [11] on rewriting logic. At the logical level, this mapping is again cor-
rect, but one must be careful to take into account in the mapping additional
information appearing in the transitions of the operational semantics. For
example, in structural operational semantics for process algebras it is essen-
tial for the transitions to have some labelling information that provides the
mechanism for synchronization. How to solve these details in the particular
case of Milner’s CCS [12] was already shown in [10]. Moreover, the papers
[4,8] showed the good properties of this semantic mapping for CCS.

With the availability of the first release of the Maude system in 1999 [6], we
undertook the project of carefully implementing in a fully executable way the
CCS operational semantics in order to practically assess the ideas summarized
above that theoretically were elegant and correct. The first problem we en-
countered was that the first Maude release did not allow conditional rules with
rewrites in the conditions, that were restricted to Boolean conditions. This
did not allow us at that time to consider the approach based on transitions
as rewrites, and we were restricted to the approach based on inference rules
as rewrites (also known as transitions as judgements in this situation). Even
in this case, a number of problems had to be solved, namely the occurrence
of new variables in righthand sides of rules, and how to control the nondeter-
minism in the application of rules. These problems were solved by means of
Maude’s reflective capabilities, 1 as described in [20] and summarized below
in Section 3. Maude’s metalevel features allowed us to bridge some impor-
tant gaps between theory and practice in a fully executable implementation
of CCS operational semantics, and later in some bigger implementations for
more complex languages.

Now, the recent availability of implementations for Maude 2.0 [7] have
made it possible to reconsider the approach based on transitions as rewrites,
because Maude 2.0 allows indeed conditional rules with rewrites in the condi-
tions, where those rewrites are solved at execution time by means of a built-in

1 Different uses of those reflective capabilities in yet another implementation of CCS as
well as in implementing tile systems have also been studied in [5,2].

2

Verdejo and Mart́i-Oliet

search mechanism. 2 Thus, we have been able to undertake a continuation of
our previous project by carefully reimplementing in a fully executable way the
CCS operational semantics considering transitions as rewrites and using con-
ditional rules with rewrites in the conditions. This paper describes in detail
the results obtained in this second implementation and compares both imple-
mentations. We advance here that the second implementation is somewhat
simpler because it is closer to the mathematical textbook presentation of the
operational semantics. However, there is still the need to bridge some gaps
between theory and practice, and in this case the new frozen attribute avail-
able in Maude 2.0 has also played an important role, as described in detail
in Section 4.2. The declaration of an operator as frozen forbids rewriting its
arguments, thus providing another way of controlling the rewriting process.

Although in this paper we describe the implementation of the CCS op-
erational semantics as a concrete case study, the presented techniques are
quite general and applicable to operational semantics for different languages.
Specifically, we have successfully used them to implement also a symbolic
semantics for LOTOS [18], as well as all the evaluation (big step) and compu-
tation (small step) semantics presented by Hennessy in [9] for imperative and
functional programming languages.

This paper is organized as follows. After a quick review of CCS syntax and
operational semantics in Section 2, we summarize the main ideas of our first
executable implementation in Section 3. Section 4 reviews the new Maude 2.0
features that we need in our implementation, and describes in detail how to
specify the semantics by means of conditional rules with rewrites in conditions,
in a fully executable way. The mechanisms are extended to a weak transition
semantics were internal actions are not observed, and then to an implementa-
tion of the Hennessy-Milner modal logic for describing processes, which is an
essential ingredient of our implementation project. Section 5 compares both
implementations, and Section 6 concludes describing some related work, in-
cluding the extension to LOTOS and an implementation of the semantics in
Isabelle.

2 CCS

We give a very brief introduction to Milner’s Calculus of Communicating
Systems, CCS [12]. We assume a set A of names ; the elements of the set
A = {a | a ∈ A} are called co-names, and the members of the (disjoint)
union L = A ∪ A are labels naming ordinary actions. The function a 7→ a is

2 Braga’s thesis [1] describes an extension of Maude implemented using the reflective fea-
tures of Maude itself that also allows conditional rules with rewrites in the conditions, and
that has been used to build an interpreter for MSOS specifications in the context of Mosses’s
modular structural operational semantics [13]. The obvious advantages of Maude 2.0 are its
generality and efficiency. Concerning our work in this paper, we do not know whether the
MSOS interpreter has been used to execute a specification of the CCS operational semantics.

3

Verdejo and Mart́i-Oliet

α.P
α−→ P

P
α−→ P ′

P + Q
α−→ P ′

P
α−→ P ′

P [f]
f(α)−→ P ′[f]

P
α−→ P ′

P |Q α−→ P ′|Q
P

a−→ P ′ Q
a−→ Q′

P |Q τ−→ P ′|Q′

P
α−→ P ′

P\L α−→ P ′\L
α 6∈ L ∪ L

P
α−→ P ′

X
α−→ P ′

X =def P

Fig. 1. CCS operational semantics rules

extended to L by defining a = a. There is a special action called silent action
and denoted τ , intended to represent internal behaviour of a system, and in
particular the synchronization of two processes by means of complementary
actions a and a. Then the set of actions is L ∪ {τ}. The set of processes is
intuitively defined as follows:

• 0 is the inactive process that does nothing.

• If α is an action and P is a process, α.P is the process that performs α and
subsequently behaves as P .

• If P and Q are processes, P + Q is the process that may behave as either
P or Q.

• If P and Q are processes, P |Q represents P and Q running concurrently
with possible communication via synchronization of the pair of ordinary
actions a and a.

• If P is a process and f : L → L is a (finite) relabelling function such that
f(a) = f(a), P [f] is the process that behaves as P but with the actions
relabelled according to f , assuming f(τ) = τ .

• If P is a process and L ⊆ L is a (finite) set of ordinary actions, P\L is the
process that behaves as P but with the actions in L ∪ L prohibited.

• If P is a process, X is a process identifier, and X =def P is a defining
equation where P may recursively involve X, then X is a process that
behaves as P .

This intuitive explanation can be made precise in terms of the structural
operational semantics shown in Figure 1, that defines a labelled transition sys-
tem for CCS processes. To simplify the presentation, we have already assumed
that the operators for summation and parallel composition are commutative
and associative, thus using a more abstract syntax and eliminating the need
for symmetric cases in the corresponding rules.

We define the CCS syntax in Maude, which is nearly common for both
implementations of the semantics described in the following sections. The
only difference is that all the non-constant operators for building processes
have been defined as frozen, a new feature of Maude 2.0 used only in our

4

Verdejo and Mart́i-Oliet

second implementation. We will explain the reason for this in Section 4.2.

fmod CCS-SYNTAX is including QID .
sorts Label Act ProcessId Process .
subsorts Qid < Label < Act .
subsorts Qid < ProcessId < Process .
op ~_ : Label -> Label .
eq ~ ~ L:Label = L:Label .
op tau : -> Act .
op 0 : -> Process .
op _._ : Act Process -> Process [frozen prec 25] .
op _+_ : Process Process -> Process [frozen assoc comm prec 35] .
op _|_ : Process Process -> Process [frozen assoc comm prec 30] .
op _[_/_] : Process Label Label -> Process [frozen prec 20] .
op __ : Process Label -> Process [frozen prec 20] .

endfm

We represent full CCS, including (possibly recursive) process definitions by
means of contexts. We have defined these contexts together with operations
to work with them in a module CCS-CONTEXT (see Appendix A). It includes a
constant context used to keep the definitions of the process identifiers used
in each CCS specification.

3 Transitions as judgements

We summarize here the main ideas used in our first implementation of the
CCS operational semantics where transitions become judgements and infer-
ence rules become rewrites [20].

The CCS transition judgement P
a−→ P ′ is represented in Maude by the

term P -- a ->P ′ of sort Judgement, and the CCS operational semantics rules
are translated into rewrite rules where the representation of the conclusion
is rewritten to the set of representations of the premises, as the following
examples show:

crl [res] : P \ L -- A -> P’ \ L
=> ------------------------

P -- A -> P’ if (A =/= L) and (A =/= ~ L) .

rl [pref] : A . P -- A -> P
=> --------------------

emptyJS .

In this way, we start with a transition to be proved valid and we work
backwards using the rewriting process, maintaining the set of transitions that
have to be fulfilled in order to prove the correctness of the initial transition.
The initial transition can be rewritten to the empty set if and only if it is a
valid transition in the CCS operational semantics.

However, we found two problems while working with this approach. 3 The

3 These problems are intrinsically related to the approach itself and not to the version of
Maude used in the implementation.

5

Verdejo and Mart́i-Oliet

first one is that sometimes new variables appear in the premises which are
not present in the conclusion. Rules of this kind cannot be directly used by
the Maude default interpreter; they can only be used at the metalevel using
a strategy to instantiate the extra variables. The second problem is that
sometimes several rules can be applied to rewrite a judgement, but in general,
not all of the possibilities lead to an empty set of judgements. So we have
to deal with the whole computation tree of possible rewrites of a judgement,
searching if one of the branches leads to emptyJS.

In [20] we presented solutions to these problems by modifying the semantics
representation (at the object level) and controlling the rewriting process by
means of a strategy at the metalevel.

The presence of new variables was solved by using explicit metavariables
[15], which make explicit the lack of knowledge that new variables in the right-
hand side of a rewrite rule represent. The semantics with explicit metavari-
ables has to bind them to concrete values when these values become known.
Thus, we introduced in the semantics representation mechanisms to deal with
these bindings and propagate them to the rest of judgements where the bound
metavariable may be present. The modified representation also has rules with
new variables in the righthand side, but now they are localized. The strategy
that controls the rewriting process (see below) is in charge of instantiating
these variables in order to build new metavariables.

The problem of nondeterministic application of rewrite rules was solved by
a general search strategy defined at the metalevel. The strategy traverses the
conceptual tree of all possible rewrites of a term, built by using the rewrite
rules representing the semantics, searching for the term representing the empty
set of judgements. If it is found, the transition represented at the root of this
tree is a valid CCS transition.

We also extended the semantics implementation by including metavariables
as processes (before that, we only needed metavariables as actions). If we start
the search strategy with a judgement where the process in the righthand side
of the CCS transition is a metavariable, like in P -- a --> ?P, and the search
reaches the empty set, then the metavariable ?P has to be bound to one of
the one-step successors of the process in the lefthand side, P, after performing
action a. By extending the search strategy to find not only the first way to
reach the empty set, but all the possible ways, we implemented a function that
returns all the successors of a process after performing a given action. This
function was then used to implement the Hennessy-Milner modal logic for CCS
processes [16], by following the same techniques for dealing with new variables
and with nondeterminism as in the CCS semantics, that is, by defining rewrite
rules that rewrite a modal logic judgement P |= Φ into the set of judgements
which have to be satisfied (as specified by the logic semantics) [20]. The
search strategy has to be used again, now to check if a modal logic judgement
is true. Each time the strategy is used, the module with the rewrite rules that
defines the search tree has to be metarepresented. Thus, we obtained three

6

Verdejo and Mart́i-Oliet

levels of representation. The CCS semantics rules are in the first level. They
are controlled by the search strategy at the second level, where the function
that returns all the successors of a process and the modal logic semantics are
defined. Finally, the modal logic semantics is controlled by the search strategy
at the third level.

4 Transitions as rewrites

After reviewing some of the new features of Maude 2.0, we describe the new
implementation of the CCS operational semantics where transitions become
rewrites and inference rules become conditional rewrite rules.

4.1 Maude 2.0

Maude 2.0 is the new version of Maude, whose key features are: greater gen-
erality and expressiveness; efficient support for a wider range of programming
applications; and usability as a key component for developing internet pro-
gramming and mobile computing systems [7]. We briefly summarize here the
new features used in the following sections.

Rewrite rules can take the most general possible form in the variant of
rewriting logic built on top of membership equational logic. That is, they can
be of the form

t → t′ if (
∧
i

ui = vi) ∧ (
∧
j

wj : sj) ∧ (
∧
k

pk → qk)

with no restriction on which new variables may appear in the righthand side
or in the condition. Conditions in rules are formed by an associative con-
junction connective /\, allowing equations (both ordinary equations t = t’,
and matching equations t := t’ where new variables occurring in t become
instantiated by matching [7]), memberships (t : s), and rewrites (t => t’)
as conditions. In that full generality the execution of a system module will
require strategies that control at the metalevel the instantiation of the ex-
tra variables in the condition and in the righthand side. However, a quite
general class of system modules, called admissible modules, are executable
by Maude 2.0’s default interpreter. Essentially, the admissibility requirement
ensures that all the extra variables will become instantiated by matching [7].

When executing a conditional rule, the satisfaction of all its conditions
is attempted sequentially from left to right; but notice that, besides the fact
that many matches for the equational conditions may be possible due to the
presence of equational axioms, we also have to deal with the fact that solving
rewrite conditions requires search, including searching for new solutions when
previous ones fail to satisfy subsequent conditions. Therefore, the default in-
terpreter supports search computations. The search command looks for all
the rewrites of a given term that match a given pattern satisfying some con-
dition (we will see some examples in the following section). Search is reified

7

Verdejo and Mart́i-Oliet

at the metalevel by means of the function metaSearch (used in Section 4.4),
which receives as arguments the metarepresented module to work in, the start-
ing term for search, the pattern to search for, a side condition, the kind of
search (which may be ’* for zero or more rewrites, ’+ for one or more rewrites,
and ’! for only matching normal forms), the depth of search, and the required
solution number. It returns the term matching the pattern, its type, and the
substitution produced by the match.

Another Maude 2.0 feature is the frozen attribute. When an operator is
declared as frozen, its arguments cannot be rewritten by rules (we will explain
why we use this operator in the following section). Note that using this at-
tribute effectively changes the semantics of the frozen operator by disallowing
the congruence proof rule.

4.2 Implementation of CCS operational semantics

In order to implement the CCS semantics in Maude with transitions as rewrites,
we want to interpret a CCS transition P

a−→ P ′ as a rewriting logic rewrite.
However, rewrites have no labels, which are essential in the CCS semantics;
therefore, we are going to make the label a part of the resulting term, obtain-
ing in this way a rewrite of the form P −→ {a}P ′, where {a}P ′ is a value of
sort ActProcess, a supersort of Process (see below what this exactly means
in this case). The following module, which is an admissible module [7] and
therefore directly executable, includes the CCS semantics implementation.

mod CCS-SEMANTICS is protecting CCS-CONTEXT .
sort ActProcess .
subsort Process < ActProcess .
op {_}_ : Act ActProcess -> ActProcess [frozen] .
vars L M : Label . var A : Act .
vars P P’ Q Q’ : Process . var X : ProcessId .
*** Prefix
rl [pref] : A . P => {A}P .
*** Summation
crl [sum] : P + Q => {A}P’ if P => {A}P’ .
*** Composition
crl [par] : P | Q => {A}(P’ | Q) if P => {A}P’ .
crl [par] : P | Q => {tau}(P’ | Q’) if P => {L}P’ /\ Q => {~ L}Q’ .
*** Relabelling
crl [rel] : P[M / L] => {M}(P’[M / L]) if P =>{L}P’ .
crl [rel] : P[M / L] => {~ M}(P’[M / L]) if P =>{~ L}P’ .
crl [rel] : P[M / L] => {A}(P’[M / L]) if P =>{A}P’ /\ A =/= L /\ A =/= ~ L .
*** Restriction
crl [res] : P \ L => {A}(P’ \ L) if P => {A}P’ /\ A =/= L /\ A =/= ~ L .
*** Definition
crl [def] : X => {A}P if (X definedIn context) /\ def(X,context) => {A}P .

endm

In this semantic representation, the rewrite rules have the property of
being sort-increasing, i.e., in a rewrite t −→ t′, the least sort of t′ is bigger
than the least sort of t. If we restrict ourselves to terms that are well formed

8

Verdejo and Mart́i-Oliet

in the sense that they can be assigned a sort (and not only a kind), one rule
cannot be applied unless the resulting term is well formed, that is, it has a
sort. For example, although A . P −→ {A}P is a correct transition, we cannot
derive (A . P) | Q −→ ({A}P) | Q because the righthand side term is not
well formed. In this way, rewrites are only allowed to happen at the top of a
process term, and not inside the term.

But the sort-increasing mechanism is not enough in the current Maude 2.0
system if we have rewrite conditions and infinite processes (those with an infi-
nite number of successors). If we have the rewrite condition P => {A}Q, then
P is tried to be rewritten in any possible way, and the result is matched against
the pattern {A}Q. For instance, if P is of the form (A . P’) | Q’, it is also
rewritten to ({A}P’) | Q’ although then the result is rejected. The problem
appears when we have recursive processes, because the built-in search that
tries to satisfy the rewrite condition can become infinite and not terminate.
For example, if P’ above is recursive, P’ = A . P’, then P is rewritten to
({A}P’) | Q’, ({A}{A}P’) | Q’, etc., although all these results are going to
be rejected because they are not well formed. Our solution to this problem
has been to declare all the syntax operators as frozen, which prevents the
arguments of the corresponding operator from being rewritten by rules; see
module CCS-SYNTAX in Section 2.

However, the problem still appears when we want to know all the possible
rewrites of the above process P’ which are of the form {A}Q (as we do in Sec-
tion 4.4 to implement the modal logic semantics). In this case, P’ is rewritten
to {A}P’, but also to {A}{A}P’, {A}{A}{A}P’, etc., and only the first rewrite
matches the pattern {A}Q. Thus, we have to declare also the operator {_}_

as frozen. In summary, we use the frozen attribute to avoid an infinite loop
in the search process when we know that the search would be unsuccessful,
although the search may be unsuccessful for two different reasons: either be-
cause the built terms are not well formed, as in ({A}P’) | Q’, and that is
the reason why the syntax operators are frozen; or because the terms do not
match the given pattern, as in {A}{A}P’, and that is the reason why {_}_ is
frozen.

A disadvantage is that with the shape of rewrite rules in CCS-SEMANTICS

and all the constructor operators being declared as frozen, we have lost the
ability of proving that a process can perform a sequence of actions, or trace,
because the rules can only be used to obtain one-step successors. The congru-
ence rule of rewriting logic cannot be used because the operators are frozen,
and the transitivity rule cannot be used because all the rules rewrite to some-
thing of the form {A}Q, and there is no rule with this pattern in the lefthand
side. This is not a problem if we want to use the semantics only in the defini-
tion of the modal logic semantics, because there only one-step successors are
needed.

However, we can solve this by extending the semantics with rules that

9

Verdejo and Mart́i-Oliet

generate the transitive closure of the CCS transitions as follows:

sort TProcess .
subsort TProcess < ActProcess .
op [_] : Process -> TProcess [frozen] .
crl [refl] : [P] => {A}Q if P => {A}Q .
crl [tran] : [P] => {A}AP if P => {A}Q /\ [Q] => AP .

Notice how we use the dummy operator [_]. If we did not use it in the
lefthand side of the above rules, the lefthand side of both the head of the rule
and the rewrites in conditions would be variables that match any term and
then the rule itself could be used in order to solve its first condition, giving rise
to an infinite loop. In addition, the dummy operator has also been declared
as frozen in order to avoid useless rewrites like for example [A . P] −→
[{A}P].

The obtained representation of CCS, with these two last rules, is seman-
tically correct in the sense that given a CCS process P , there are processes
P1, . . . , Pk such that

P
a1−→ P1

a2−→ · · · ak−→ Pk

if and only if [P] can be rewritten into {a1}{a2}...{ak}Pk (see [10]).

By using the Maude 2.0 search command, we can find all the possible
one-step successors of a process.

Maude> search ’a . ’b . 0 | ~ ’a . 0 => AP:ActProcess .
Solution 1 (state 1)
AP:ActProcess --> {~ ’a}0 | ’a . ’b . 0

Solution 2 (state 2)
AP:ActProcess --> {’a}’b . 0 | ~ ’a . 0

Solution 3 (state 3)
AP:ActProcess --> {tau}0 | ’b . 0

No more solutions.

If we add the following equation to the module CCS-SEMANTICS, defining
the recursive process ’Proc in the CCS context, we prove that ’Proc can
perform the trace ’a ’b ’a:

eq context = ’Proc =def ’a . ’b . ’Proc .

Maude> search [1] [’Proc] => {’a}{’b}{’a}X:Process .
Solution 1 (state 5)
X:Process --> ’b . ’Proc

We have asked Maude to search if there is one [1] way in which the term
[’Proc] can be rewritten into the pattern {’a}{’b}{’a}X:Process. The
search command performs a breadth-first search in the conceptual tree of all
possible rewrites of term [’Proc], and since there is a solution, it finds it.
However, if we ask to search for more solutions, the search does not terminate,

10

Verdejo and Mart́i-Oliet

because the search tree is infinite.

[’Proc]

{’a}’b.’Proc {’a}{’b}’Proc {’a}{’b}{’a}’b.’Proc . . .

. . .

��������������)

�
�

�
�

�	

@
@

@
@
@R

4.3 Extension to weak transition semantics

Another important transition relation defined in CCS, P
a

=⇒ P ′, does not
observe τ transitions [12]. It is defined as follows:

P
τ−→∗ Q Q

a−→ Q′ Q′ τ−→∗ P ′

P
a

=⇒ P ′

where
τ−→∗ denotes the reflexive, transitive closure of

τ−→, which is defined in
the following way for a general action a

P
a−→∗ P

P
a−→ P ′ P ′ a−→∗ P ′′

P
a−→∗ P ′′

In [19], we implemented this semantics by following the method explained
in Section 3, by defining new kinds of judgements and rewrite rules that rewrite
the conclusion to the premises. We had to add metavariables as processes since
new process variables appear in the premises.

Now we want to implement it following the alternative approach described
in Section 4.2 by representing the new transitions also as rewrites, that is, a
transition P

a−→∗ P will be represented as a rewrite P −→ {a}∗ P ′ and a
transition P

a
=⇒ P ′ will be represented as a rewrite P −→ {{a}}P ′. We have

to introduce dummy operators again to prevent to use the new rewrite rules
in the wrong way in the verification of the rewrite conditions. The proposed
implementation is as follows:

sorts Act*Process ObsActProcess .
op {_}*_ : Act Process -> Act*Process [frozen] .
op {{_}}_ : Act Process -> ObsActProcess [frozen] .
sort WProcess .
subsorts WProcess < Act*Process ObsActProcess .
op |_| : Process -> WProcess [frozen] .
op <_> : Process -> WProcess [frozen] .
rl [refl*] : | P | => {tau}* P .
crl [tran*] : | P | => {tau}* R if P => {tau}Q /\ | Q | => {tau}* R .
crl [weak] : < P > => {{A}}P’ if | P | => {tau}* Q /\

Q => {A}Q’ /\ | Q’ | => {tau}* P’ .

Notice that both the new semantics operators, {_}*_ and {{_}}_, as well
as the dummy operators, |_| and <_>, are declared as frozen, for the same
reasons already explained in Section 4.2.

11

Verdejo and Mart́i-Oliet

P |= tt

P |= Φ1 ∧ Φ2 iff P |= Φ1 and P |= Φ2

P |= Φ1 ∨ Φ2 iff P |= Φ1 or P |= Φ2

P |= [K]Φ iff ∀Q ∈ {P ′ | P a−→ P ′ ∧ a ∈ K} . Q |= Φ

P |= 〈K〉Φ iff ∃Q ∈ {P ′ | P a−→ P ′ ∧ a ∈ K} . Q |= Φ

P |= [[K]]Φ iff ∀Q ∈ {P ′ | P a=⇒ P ′ ∧ a ∈ K} . Q |= Φ

P |= 〈〈K〉〉Φ iff ∃Q ∈ {P ′ | P a=⇒ P ′ ∧ a ∈ K} . Q |= Φ

Fig. 2. Modal logic satisfaction relation

We can use the search command to look for all the weak successors of a
given process after performing action ’a.

Maude> search < tau . ’a . tau . ’b . 0 > => {{ ’a }}AP:ActProcess .
Solution 1 (state 2)
AP:ActProcess --> tau . ’b . 0

Solution 2 (state 3)
AP:ActProcess --> ’b . 0

No more solutions.

4.4 Hennessy-Milner modal logic

We want to implement now the Hennessy-Milner modal logic for describing
local capabilities of CCS processes [16]. Formulas are as follows:

Φ ::= tt | ff | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [K]Φ | 〈K〉Φ | [[K]]Φ | 〈〈K〉〉Φ
where K is a (finite) set of actions. The satisfaction relation describing when
a process P satisfies a property Φ, P |= Φ, is inductively defined in Figure 2.

Since the definition of the satisfaction relation uses the transitions of CCS,
we could try to implement it at the same level, with rules like the following
ones:

rl [and] : P |= Phi /\ Psi => true if P |= Phi => true /\ P |= Psi => true .
rl [dia] : P |= < A > Phi => true if P => {A}Q /\ Q |= Phi => true .

These rules are correct and they exactly represent what the satisfaction
relation of the modal logic expresses. For example, the condition of the second
rule represents that there exists a process Q such that P

a−→ Q and Q |= Φ,
which is the definition of the diamond modal operator. That is because the
variable Q is existentially quantified in the rule condition. But we find a
problem with the definition of the box modal operator, because it uses a
universal quantifier over the possible transitions of a process. If we want
to work with all the possible one-step rewrites of a term, we need to go up
to the metalevel. By using the operation metaSearch, we have defined an
operation succ that returns all the (metarepresented) successors of a process
after performing actions in a given finite set.

12

Verdejo and Mart́i-Oliet

The definition of the operation succ in the module SUCC below uses two
auxiliary functions. The evaluation of allOneStep(T,N,X) returns all the one-
step rewrites of term T (skipping the first N solutions) that match the pattern
X by using rules in module MOD (the metarepresentation of CCS-SEMANTICS).
The evaluation of filter(F,TS,AS) returns the metarepresented processes P
such that the term F[A,P] is in TS and A is in AS. In order to look for the
term A in the term set AS, we compare terms in module MOD. That is because
different metarepresented terms, like ’’a.Qid and ’’a.Act, can represent the
same action in module CCS-SEMANTICS. The operation filter is used in the
definition of succ(T,TS) to remove from all the successors of process T, those
processes that are reached by performing an action not in the set TS.

Having defined these operations in a so general form, we can implement the
operation wsucc that returns all the weak successors with the same operations.

fmod SUCC is including META-LEVEL .
op MOD : -> Module .
eq MOD = [’CCS-SEMANTICS] .
sort TermSet .
subsort Term < TermSet .
op mt : -> TermSet .
op _U_ : TermSet TermSet -> TermSet [assoc comm id: mt] .
op _isIn_ : Term TermSet -> Bool .
op allOneStep : Term MachineInt Term -> TermSet .
op filter : Qid TermSet TermSet -> TermSet .
op succ : Term TermSet -> TermSet .
op wsucc : Term TermSet -> TermSet .
var M : Module . var F : Qid . vars T T’ X : Term .
var N : MachineInt . vars TS AS : TermSet .
eq T isIn mt = false .
eq T isIn (T’ U TS) =

(getTerm(metaReduce(MOD, ’_==_[T,T’])) == ’true.Bool) or (T isIn TS) .
eq filter(F, mt, AS) = mt .
ceq filter(F, X U TS, AS) =

(if T isIn AS then T’ else mt fi) U filter(F, TS, AS)
if F[T,T’] := X .

eq allOneStep(T,N,X) =
if metaSearch(MOD, T, X, nil, ’+, 1, N) == failure then mt
else getTerm(metaSearch(MOD, T, X, nil, ’+, 1, N)) U

allOneStep(T, N + 1, X) fi .
eq succ(T,TS) = filter((’‘{_‘}_),

allOneStep(T, 0, ’AP:ActProcess), TS) .
eq wsucc(T,TS) = filter((’‘{‘{_‘}‘}_),

allOneStep(’<_>[T], 0, ’OAP:ObsActProcess), TS) .
endfm

Using the operations succ and wsucc we have equationally implemented
the satisfaction relation of the modal logic. Notice how the semantics for the
modal operators is defined by unfolding to a conjunction or disjunction where
the successors of the given process are used.

13

Verdejo and Mart́i-Oliet

fmod MODAL-LOGIC is protecting SUCC .
sort HMFormula .
ops tt ff : -> HMFormula .
ops _/_ _\/_ : HMFormula HMFormula -> HMFormula .
ops <_>_ ‘[_‘]_ : TermSet HMFormula -> HMFormula .
ops <<_>>_ ‘[‘[_‘]‘]_ : TermSet HMFormula -> HMFormula .
ops forall exists : TermSet HMFormula -> Bool .
op _|=_ : Term HMFormula -> Bool .
var P : Term . vars K PS : TermSet . vars Phi Psi : HMFormula .
eq P |= tt = true .
eq P |= ff = false .
eq P |= Phi /\ Psi = P |= Phi and P |= Psi .
eq P |= Phi \/ Psi = P |= Phi or P |= Psi .
eq P |= [K] Phi = forall(succ(P, K), Phi) .
eq P |= < K > Phi = exists(succ(P, K), Phi) .
eq P |= [[K]] Phi = forall(wsucc(P, K), Phi) .
eq P |= << K >> Phi = exists(wsucc(P, K), Phi) .
eq forall(mt, Phi) = true .
eq forall(P U PS, Phi) = P |= Phi and forall(PS, Phi) .
eq exists(mt, Phi) = false .
eq exists(P U PS, Phi) = P |= Phi or exists(PS, Phi) .

endfm

Using two examples from [16], we show how we can prove in Maude that
a modal formula is satisfied by a CCS process. The first example deals with
a vending machine ’Ven defined in a CCS context as follows:

eq context = (’Ven =def ’2p . ’VenB + ’1p . ’VenL) &
(’VenB =def ’big . ’collectB . ’Ven) &
(’VenL =def ’little . ’collectL . ’Ven) .

The process ’Ven may accept, initially, a 2p or 1p coin. If a 2p coin is
deposited, the big button may be pressed, and a big item can be collected. If
a 1p coin is deposited, the little button may be pressed, and a little item
can be collected. After an item is collected, the vending machine goes back
to the initial state.

It satisfies that after a coin is deposited and a button is pressed, an item
(big or little) can be collected.

Maude> red ’’Ven.Qid |= [’’1p.Act + ’’2p.Act] [’’big.Act + ’’little.Act]
< ’’collectB.Act + ’’collectL.Act > tt .

result Bool: true

The second example deals with a railroad crossing system specified as
follows:

eq context = (’Road =def ’car . ’up . ~ ’ccross . ~ ’down . ’Road) &
(’Rail =def ’train . ’green . ~ ’tcross . ~ ’red . ’Rail) &
(’Signal =def ~ ’green . ’red . ’Signal + ~ ’up . ’down . ’Signal) &
(’Crossing =def ((’Road | (’Rail | ’Signal))

\ ’green \ ’red \ ’up \ ’down)) .

The system consists of three components: Road, Rail, and Signal. Ac-
tions car and train represent the approach of a car and a train, up opens

14

Verdejo and Mart́i-Oliet

the gates for the car, ccross is the car crossing, down closes the gates, green
is the receipt of a green signal by the train, tcross is the train crossing, and
red sets the light red.

The process ’Crossing satisfies that when a car and a train arrive to the
crossing, exactly one of them has the possibility to cross it.

Maude> red ’’Crossing.Qid |= [[’’car.Act]] [[’’train.Act]]
((<< ’~_[’’ccross.Act] >> tt) \/ (<< ’~_[’’tcross.Act] >> tt)) .

result Bool: true
Maude> red ’’Crossing.Qid |= [[’’car.Act]] [[’’train.Act]]

((<< ’~_[’’ccross.Act] >> tt) /\ (<< ’~_[’’tcross.Act] >> tt)) .
result Bool: false

Maude 2.0 takes 0.5 seconds in solving the last command. With the first
implementation in Maude, it takes 10 minutes. The profit is considerable. We
compare these two implementations in the following section.

5 Comparison of both approaches

We think that the second implementation has several advantages. This imple-
mentation is closer to the mathematical, logical presentation of the semantics.
An operational semantics rule establishes that the transition in the conclusion
is possible if the transitions in the premises are possible, and that is precisely
the interpretation of a conditional rewrite rule with rewrite conditions. The
first approach needs auxiliary structures like the multisets of judgements to
be proved valid and mechanisms like the generation of new metavariables and
their propagation when their concrete values become known. This forced us
to implement at the metalevel a search strategy that checks if a given multiset
can be reduced to the empty set and generates new metavariables each time
they are needed. It is the necessity of new metavariables what makes the
strategy unavoidable.

Even if we used Maude 2.0 with the previous semantics implementation,
we could not use the search command of Maude 2.0, because it cannot han-
dle rewrite rules with new variables in the righthand side whenever they are
not bound in any of the conditions, and that is what happens in the first
implementation [20]. In the second implementation the necessity of searching
appears in the rewrite conditions but the Maude 2.0 system solves the prob-
lem, because it is able to handle these conditions together with new variables
bound in some condition.

There are also differences found in the things that are done at the object
level (level of the semantics representation) and at the metalevel (by using
reflection). In the first implementation, the search strategy traverses the con-
ceptual tree with all the possible rewrites of a term, moving continuously
between the object level and the metalevel. In the implementation described
in this paper, the search occurs completely at the object level, which makes
it quite faster and simpler.

15

Verdejo and Mart́i-Oliet

6 Related work

Following the two approaches described in this paper, we have also imple-
mented a symbolic semantics for Full LOTOS [3], which is considerably more
complicated than the CCS one. In the first implementation, where transitions
are represented as judgements, we improved the ideas presented in Section 3
in several directions, specially regarding efficiency. We changed the sets of
judgements to sequences of judgements in order to avoid multiple matchings
modulo commutativity. This means that judgements will be ordered, and they
will be proved from left to right. We also changed the search strategy, in or-
der to try to rewrite each time only the first judgement. Since it has to check
that all the judgements can be rewritten to the empty sequence, if the first
judgement cannot be rewritten, it does not need to rewrite the rest of judge-
ments, and it can drop all the sequence. Of course, this may affect the way
premises are written in a semantic rule; the reduction of a judgement should
not require bindings produced by a later (on the right) judgement. The second
implementation [18], where transitions are represented as rewrites, does not
need improvements regarding efficiency.

In the LOTOS symbolic semantics, the concept of syntactic substitution
is used, where a LOTOS variable or data expression is substituted for an-
other variable within a process expression. We cannot equationally define this
operation completely when we are implementing the semantics, because the
LOTOS syntax includes syntax for data expressions, which is user-definable.
In the first implementation, this operation was defined at the metalevel, where
a common, known syntax is used, the syntax for metarepresented terms. The
fact of moving continuously between the object level and the metalevel when
searching, that is, when proving a transition valid, allows the interleaving of
the rewrite rules application at the object level (where rewrite rules represent
the semantics), and the reduction of terms with substitutions at the metalevel
(by means of equations defined there). Also a function to extract the vari-
ables in a process expression is used by the semantics, which presents the
same problem and solution. In the second implementation we cannot use the
same solution, because the search occurs completely at the object level, and
sometimes the variables occurring in a process have to be known to check the
condition of a rewrite. That is, we cannot go up to the metalevel, reduce the
term, and go back to the object level to continue with the interrupted rule
application. User-defined data expressions are included in the framework in
both implementations by translating ACT ONE specifications into functional
modules in Maude. It is in this translation where we solve the problem in the
second implementation, by automatically adding equations that define at the
object level the substitution and extraction of variables operations over new
data expressions [18].

We have used Isabelle [14], a theorem prover and generic system for imple-
menting logical formalisms, to represent the CCS semantics and the Hennessy-

16

Verdejo and Mart́i-Oliet

Milner modal logic, in order to compare this framework with ours. Isabelle
has been designed as a logical framework and theorem prover, and therefore
offers several automatic tools that help prove theorems, and which add a lot of
power. In Maude, we only use the rewrite rules that define the semantics and
the search that (blindly) uses them, being able to prove both sentences about
CCS and the modal logic. Isabelle uses a higher-order logic to metarepresent
the user logics. It is in this metalogic where resolution takes places. Due to
the reflective property of rewriting logic, we can lower down this upper level,
representing higher-order concepts in a first-order framework. In a sense, this
comparison can be summarized by saying that we have shown in our CCS ex-
ample how higher-order techniques can be used in a first-order framework by
means of reflection; that is, reflection provides a first-order system like Maude
with most of the power of a higher-order system like Isabelle.

As we said in the introduction, the techniques presented in this paper are
quite general. Moreover, the second approach is a practical one, leading to rea-
sonably efficient implementations. We have used it to implement a symbolic
semantics for LOTOS [18]. It is also applicable to other kinds of operational
semantics, from evaluation (big step) to computation (small step) semantics.
We have successfully used it to implement all the different semantics pre-
sented by Hennessy in [9] for both imperative and functional programming
languages. It has also been used in [17] to obtain an executable specification
of an asynchronous version of the π-calculus.

All our work on Maude as an executable semantic framework can be found
in the web page http://dalila.sip.ucm.es/~alberto/esf.

Acknowledgements

We would like to thank Roberto Bruni for his comments on a previous version
of this paper, Steven Eker for all his help and explanations in using the new
version of Maude, and José Meseguer for encouraging and supporting all our
research on executable semantic frameworks.

References

[1] C. Braga. Rewriting Logic as a Semantic Framework for Modular Structural
Operational Semantics. PhD thesis, Departamento de Informática, Pontif́ıcia
Universidade Católica do Rio de Janeiro, Brazil, Sept. 2001.

[2] R. Bruni. Tile Logic for Synchronized Rewriting of Concurrent Systems. PhD
thesis, Dipartimento di Informatica, Università di Pisa, 1999. Technical Report
TD-1/99. http://www.di.unipi.it/phd/tesi/tesi_1999/TD-1-99.ps.gz.

[3] M. Calder and C. Shankland. A symbolic semantics and bisimulation
for Full LOTOS. In M. Kim, B. Chin, S. Kang, and D. Lee, editors,
Proceedings of FORTE 2001, 21st International Conference on Formal

17

http://dalila.sip.ucm.es/~alberto/esf
http://www.di.unipi.it/phd/tesi/tesi_1999/TD-1-99.ps.gz

Verdejo and Mart́i-Oliet

Techniques for Networked and Distributed Systems, pages 184–200. Kluwer
Academic Publishers, 2001.

[4] G. Carabetta, P. Degano, and F. Gadducci. CCS semantics via proved
transition systems and rewriting logic. In C. Kirchner and H. Kirchner,
editors, Proceedings Second International Workshop on Rewriting Logic and
its Applications, WRLA’98, Pont-à-Mousson, France, September 1–4, 1998,
volume 15 of Electronic Notes in Theoretical Computer Science, pages 253–272.
Elsevier, 1998. http://www.elsevier.nl/locate/entcs/volume15.html.

[5] M. Clavel. Reflection in Rewriting Logic: Metalogical Foundations and
Metaprogramming Applications. CSLI Publications, 2000.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and J. F. Quesada. Maude: Specification and programming in rewriting
logic. Manual distributed as documentation of the Maude system, Computer
Science Laboratory, SRI International. http://maude.csl.sri.com/manual,
Jan. 1999.

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
J. F. Quesada. Towards Maude 2.0. In K. Futatsugi, editor, Proceedings Third
International Workshop on Rewriting Logic and its Applications, WRLA 2000,
Kanazawa, Japan, September 18–20, 2000, volume 36 of Electronic Notes in
Theoretical Computer Science, pages 297–318. Elsevier, 2000. http://www.
elsevier.nl/locate/entcs/volume36.html.

[8] P. Degano, F. Gadducci, and C. Priami. A causal semantics for CCS via
rewriting logic. Theoretical Computer Science, 275(1–2):259–282, 2002.

[9] M. Hennessy. The semantics of programming languages: an elementary
introduction using structural operational semantics. John Willey & Sons, 1990.

[10] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic
framework. Technical Report SRI-CSL-93-05, SRI International, Computer
Science Laboratory, Aug. 1993. To appear in D. Gabbay, ed., Handbook of
Philosophical Logic, Second Edition, Volume 9. Kluwer Academic Publishers,
2002. http://maude.csl.sri.com/papers.

[11] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[12] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[13] P. Mosses. Foundations of modular SOS. In M. Kutylowski, L. Pacholksi, and
T. Wierzbicki, editors, Mathematical Foundations of Computer Science 1999,
24th International Symposium, MFCS’99 Szklarska Poreba, Poland, September
6–10, 1999, Proceedings, volume 1672 of Lecture Notes in Computer Science,
pages 70–80. Springer-Verlag, 1999. The full version appears as Technical
Report RS-99-54, BRICS, Dept. of Computer Science, University of Aarhus.

[14] L. C. Paulson. Isabelle: a generic theorem prover, volume 828 of Lecture Notes
in Computer Science. Springer-Verlag, 1994.

18

http://www.elsevier.nl/locate/entcs/volume15.html
http://maude.csl.sri.com/manual
http://www.elsevier.nl/locate/entcs/volume36.html
http://www.elsevier.nl/locate/entcs/volume36.html
http://maude.csl.sri.com/papers

Verdejo and Mart́i-Oliet

[15] M.-O. Stehr and J. Meseguer. Pure type systems in rewriting logic. In Proc. of
LFM’99: Workshop on Logical Frameworks and Meta-Languages, Paris, France,
Sept. 1999.

[16] C. Stirling. Modal and temporal logics for processes. In F. Moller and
G. Birtwistle, editors, Logics for Concurrency: Structure vs Automata, volume
1043 of Lecture Notes in Computer Science, pages 149–237. Springer-Verlag,
1996.

[17] P. Thati, K. Sen, and N. Mart́ı-Oliet. An executable specification of
asynchronous pi-calculus semantics and may testing in Maude 2.0. In
F. Gadducci and U. Montanari, editors, Proceedings Fourth International
Workshop on Rewriting Logic and its Applications, WRLA 2002, Pisa, Italy,
September 19–21, 2002, volume 71 of Electronic Notes in Theoretical Computer
Science, pages 217–237. Elsevier, 2002. http://www.elsevier.nl/locate/
entcs/volume71.html.

[18] A. Verdejo. Building tools for LOTOS symbolic semantics in Maude. In
Proceedings FORTE 2002, Lecture Notes in Computer Science. Springer-Verlag,
2002.

[19] A. Verdejo and N. Mart́ı-Oliet. Executing and verifying CCS in Maude.
Technical Report 99-00, Dpto. Sistemas Informáticos y Programación,
Universidad Complutense de Madrid, Feb. 2000.

[20] A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude. In T. Bolognesi
and D. Latella, editors, Formal Methods For Distributed System Development.
FORTE/PSTV 2000, pages 351–366. Kluwer Academic Publishers, 2000.

A CCS contexts

fmod CCS-CONTEXT is including CCS-SYNTAX .
sort Context .
op _=def_ : ProcessId Process -> Context [prec 40] .
op nil : -> Context .
op _&_ : [Context] [Context] -> [Context] [assoc comm id: nil prec 42] .
op _definedIn_ : ProcessId Context -> Bool .
op def : ProcessId Context -> [Process] .
op context : -> Context .
vars X X’ : ProcessId .
var P : Process .
vars C C’ : Context .
cmb (X =def P) & C : Context if not(X definedIn C) .
eq X definedIn nil = false .
eq X definedIn (X’ =def P & C’) = (X == X’) or (X definedIn C’) .
eq def(X, (X’ =def P) & C’) = if X == X’ then P else def(X, C’) fi .

endfm

19

http://www.elsevier.nl/locate/entcs/volume71.html
http://www.elsevier.nl/locate/entcs/volume71.html

	Introduction
	CCS
	Transitions as judgements
	Transitions as rewrites
	Maude 2.0
	Implementation of CCS operational semantics
	Extension to weak transition semantics
	Hennessy-Milner modal logic

	Comparison of both approaches
	Related work
	References
	CCS contexts

