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Abstract. RDF looks like the first step to build the Semantic Web vi-
sion. Our long-term goal is to have a sound way to verify and validate
the semantic web interactions that applications and agents may develop
in a distributed environment. The first step for reaching this goal is to
provide a useful semantic support to RDF itself. Based on this formal
support, properties may be analyzed, as well as transformations and ver-
ifications can be performed. In this paper we propose an intuitive and
formal semantics for RDF by means of a translation of RDF documents
into executable object-oriented modules in the formal language Maude.
This translation provides a semantics for RDF documents and allows
programs managing them to be expressed in the same formalism, since
Maude specifications are executable. Moreover, due to the reflective fea-
tures of Maude, this translation can be implemented in Maude itself.
Finally, translated RDF documents are integrated in an agent applica-
tion written in Mobile Maude, that is, the same framework is used for
both translating RDF documents and expressing the programs that ma-
nipulate them.
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1 Introduction

The current human-centered web is still largely encoded in HTML. Over the
past few years, XML has been proposed as an alternative encoding which is
intended also for efficient machine processing. It has become the standard for
the exchange of information on the Internet. However, it is not a final solution
because it only gives support for syntactic representation of information, but not
for its meaning. RDF (Resource Description Framework) [12] and RDFS (RDF
Schema) [5] represent an attempt to resolve these deficiencies by building on top
of XML, although they are still a bit limited for knowledge representation.
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Tim Berners-Lee conceives the Semantic Web as a layered architecture [3].
At the lowest level RDF provides a simple data model and a standardized syntax
for metadata (data about data) about web resources by providing the language
for writing down factual statements. The next layer is the schema layer where
the definition of concrete vocabularies is given by means of the RDF Schema
language. The final layer is the logical layer given by a formal knowledge repre-
sentation language. It is important that each layer is an extension of RDF.

Our long-term goal is to have a sound way to verify and validate the Semantic
Web interactions that service agents may develop in a distributed environment,
for example as part of web services management. This will enable the possibility
of reasoning about the information that is being exchanged allowing all the
involved partners to have a common understanding. One first step for reaching
this goal is to provide a formal, intuitive, and executable semantics to RDF and
RDFS. The “official” model-theoretic semantics for RDF and RDFS is presented
in [11] (more on this at the end of next section).

We propose in this paper an alternative semantic support to RDF by means
of Maude, which is a formal language based on a first-order rewriting logic [7,
16] with well-defined syntax, formal models, and corresponding soundness and
completeness theorems. Maude provides an executable language integrated in a
global framework including functional elements and concurrency facilities. Using
these facilities mobile agents and other advanced elements may be managed as
natural elements into the logic of Maude. Maude includes in the same declarative
framework both logic and control, which is a key difference with respect to other
logic-based languages. We use the language Maude for:

– giving semantics to RDF documents by translating them into executable
object-oriented Maude modules;

– implementing this translation; and
– implementing the applications that make use of the translated documents.

Under this formalized approach, RDF documents can be easily translated
into Maude modules and therefore they may be data for Maude applications,
as we show in Sections 4 and 5. Translating RDF documents into Maude allows
their integration with web agents also defined in Maude. Hence, the development
of web agents and their behavior is fully integrated and formally defined in a
simple framework, as we will see in Section 5. One of the key features of our
approach is that it is object-oriented, so the full power of object-orientation is
supported, including inheritance.

In Section 2 RDF and RDFS are briefly introduced. In Section 3 the language
Maude is presented by showing its syntax and key features. We pay special at-
tention to object-oriented Maude modules. In Section 4 we describe the proposed
translation that provides a semantics for RDF and RDFS documents, and how
this translation is implemented by using Maude itself. A case study is presented
in Section 5, where the translation is used by agents in a mobile system. We
conclude with some comments on future work in Section 6.
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2 RDF and RDFS: Syntax and Semantics

The Resource Description Framework (RDF) [19] is a general-purpose language
for representing information in the World Wide Web. It provides a common
framework for expressing this information in such a way that it can be exchanged
between applications without loss of meaning, by providing a simple way to state
properties of web resources, that is, objects that are uniquely identifiable by a
Uniform Resource Identifier (URI) [18].

RDF is based on the idea that the things we want to describe have properties
which have values (which can be literals or other resources), and that resources
can be described by making statements that specify those properties and values.
A statement has three components: a specific resource (subject), a property
(predicate), and the value of this property for that resource (object). A collection
of these statements that refers to the same resource is called a description. A
concrete machine-readable syntax using XML is defined in [12]. For example,
the following RDF document describes a laser printer:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:ps="http://printers.org/schema/">

<ps:LaserPrinter about="http://HPprinters/HPLaserJet1100" >

<ps:PrinterTechnology>Laser Jet</ps:PrinterTechnology>

<ps:PrinterResolution>600 dpi</ps:PrinterResolution>

<ps:Price>399</ps:Price>

</ps:LaserPrinter>

</rdf:RDF>

In order to uniquely identify properties and their meaning, RDF uses the
XML namespaces mechanism [4]. Meaning in RDF is expressed through reference
to a schema (see below). For example, in the previous example the resource
LaserPrinter and the property Price are imported from http://printers.
org/schema. The statements in a Description refer to the resource determined
from the about attribute (interpreted as a URI).

Two important RDF concepts are containers, used to hold collections of
resources, and reification, used for making statements about other statements
(for a more detailed explanation of these two concepts we refer to [12]).

RDF user communities require the ability to say certain things about certain
kinds of resources. The declaration of these properties (attributes) and kinds
of resources (classes) is done by means of an RDF schema (RDFS) [5]. This
mechanism provides a basic type system for use in RDF models. Instead of
defining a class in terms of the properties its instances may have, an RDF schema
will define properties in terms of the classes of resources to which they apply.

The following RDFS document1 describes a class of printers with a subclass
of laser printers, and a printer property, namely, its price (the rest of properties
could be defined in the same way):

1 We use &rdfsns; as an abbreviation of http://www.w3.org/2000/01/rdf-schema.
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<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="Printer">

<rdfs:subClassOf rdf:resource="&rdfsns;#Resource"/>

</rdfs:Class>

<rdfs:Class rdf:ID="LaserPrinter">

<rdfs:subClassOf rdf:resource="#Printer"/>

</rdfs:Class>

<rdfs:Property rdf:ID="Price">

<rdfs:domain rdf:resource="#Printer"/>

<rdfs:range rdf:resource="&rdfsns;#Literal"/>

</rdfs:Property>

...

</rdf:RDF>

The domain property is used to indicate the class on whose members a prop-
erty can be used. The range property is used to indicate the class that the values
of a property must be members of.

In [11] a model-theoretic semantics for RDF and RDFS is presented. The
semantic definition translates an RDF graph into a logical expression “with the
same meaning.” Basically, a graph arc is mapped to an atomic assertion and the
complete graph is mapped to the existential closure of the conjunction of the
translations of all the arcs in the graph. Also a notion of entailment in RDF is
studied. A similar approach is followed in [10] where an axiomatization for RDF
is provided by specifiying a mapping of a set of descriptions into a logical theory
expressed in first-order predicate calculus. This translation not only specifies the
intended meaning of the descriptions, but also produces a representation of the
descriptions from which inferences can automatically be made using traditional
automatic theorem provers and problem solvers. Although these approaches have
different important strengths of their own, they are not well suited for directly
executing a system.

In our approach we translate into a formal language, but where the transla-
tions can be executed. So we gain both the advantages of moving into a formal
world where properties can be formally verified, and the advantages of being
able to implement prototypes with which we get confidence of our systems spec-
ifications and implementations. The fact of having executable specifications is
important not from the point of view of RDF documents that specify data, but
from using the same framework both for translating RDF documents and for
expressing the programs that manipulate them.

3 Rewriting Logic and Maude

Maude [7] is a high level, general purpose language and high performance sys-
tem based on rewriting logic [16], a logic of change in which deduction directly
corresponds to the change [13]. Among the advantages of rewriting logic, we may
emphasize the following:



Transforming Information in RDF to Rewriting Logic 231

– It has a simple formalism, with only a few rules of deduction that are easy
to understand and justify;

– It is very flexible and expressive, capable of representing change in systems
with very different structure;

– It allows user-definable syntax, with complete freedom to choose the opera-
tors and structural properties appropriate for each problem;

– It is intrinsically concurrent, representing concurrent change and supporting
reasoning about such change;

– It supports modelling of concurrent object-oriented systems in a simple and
direct way;

– It has a semantics based on initial models that support a “no junk, no con-
fusion” version of the closed world assumption;

– It is realizable in a wide spectrum logical language (Maude) supporting exe-
cutable specification and programming.

In rewriting logic the state of a system is formally specified as an algebraic
data type by means of an equational specification. In this kind of specifications
we can define new types (by means of keyword sort(s)); subtype relations be-
tween types (subsort); operators (op) for building values of these types, giving
the types of their arguments and result, and which may have attributes such as
being associative (assoc) or commutative (comm), for example; and equations
(eq) that identify terms built with these operators. The following functional
module (with syntax fmod...endfm) defines the natural numbers with an addi-
tion operation:

fmod NAT is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

op _+_ : Nat Nat -> Nat [assoc comm].

vars N M : Nat .

eq 0 + N = N .

eq s(N) + M = s(N + M) .

endfm

Equations are assumed to be confluent and terminating, that is, we can use
the equations to reduce a term t to a unique, canonical form t′ that is equivalent
to t (they represent the same value). The Maude system does not check these
properties of equational specifications, but there are related tools that can be
used for that purpose.

The dynamic behavior of such a distributed system is then specified by
rewrite rules of the form t −→ t′, that describe the local, concurrent transi-
tions of the system. That is, when a part of a system matches the pattern t, it
can be transformed into the corresponding instance of the pattern t′. Rewrite
rules are included in system modules (with syntax mod...endm). For example,
the next module defines nondeterministic natural numbers and nondeterministic
choice. A module can import, or include, the definitions of another module by
means of keyword inc.
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mod ND-NAT is

inc NAT .

sort NdNat .

subsort Nat < NdNat .

op _?_ : NdNat NdNat -> NdNat [assoc comm].

var N : Nat . var ND : NdNat .

eq N ? N = N .

rl [choice] : N ? ND => N .

endm

A set of natural numbers is regarded as a nondeterministic natural number
of sort NdNat, that is, a number that could be anyone of those in the set. The
operation _?_ denotes the union of nondeterministic natural numbers, which
is associative and commutative, and obeys also an idempotence equation. The
choice rule provides nondeterministic choice.

Rewriting logic has revealed itself to be a general and flexible logical and
semantic framework [14], in which many different logics, models of computation,
and a wide range of languages can be represented, can be given a precise seman-
tics, and can be executed. In this paper we claim that it can also be used to give
semantics to metadata description frameworks such as RDF.

One of the main properties of Maude (and rewriting logic) is that it is reflec-
tive, that is, Maude can be represented into itself in such a way that a program
(or module) M in Maude may be data for another Maude program, which can
modify M , obtain information about it, or ask to execute it.

In Maude, key functionality of this reflective power has been efficiently imple-
mented in the functional module META-LEVEL, where Maude terms are reified as
elements of a data type Term, Maude modules are reified as terms in a data type
Module, the process of reducing a term to normal form is reified by a function
metaReduce, and the process of rewriting (executing) a term by applying the
rewrite rules of a module is reified by a function metaRewrite [7]. We use these
features in the implementation of the translation from RDF into object-oriented
Maude modules, and when the translation is used in an example about a mobile
agent system in Section 5.2.

3.1 Object-Oriented Specification in Maude

In an object-oriented Maude module (a special kind of system module, with syn-
tax omod...endom) classes are declared with the syntax class C | a1:S1,. . .,
an:Sn, where C is the class name, ai is an attribute identifier, and Si is the sort
of the values this attribute can have. An object in a given state is represented
as a term < O : C | a1 : v1, . . ., an : vn >, where O is the object’s name
(belonging to a set Oid of object identifiers), and the vi’s are the current values of
its attributes. Messages are defined by the user for each application (introduced
with syntax msg). Subclass relations can also be defined, with syntax subclass.

In a concurrent object-oriented system the concurrent state, which is called
a configuration, has the structure of a multiset made up of objects and messages
that evolves by concurrent rewriting (modulo the multiset structural axioms of
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Table 1. RDF concepts translated into Maude.

RDF/RDFS Maude

RDF document Object-oriented module
Class Class
Resource Object
Property Attribute
Container Abstract data type
URI Object identifier

associativity, commutativity, and identity) using rules that describe the effects
of communication events between some objects and messages. The rewrite rules
in the module specify in a declarative way the behavior associated with the
messages. The general form of such rules is

M1 . . . Mn 〈O1 : F1 | atts1〉 . . . 〈Om : Fm | attsm〉
−→ 〈Oi1 : F ′

i1 | atts ′
i1〉 . . . 〈Oik : F ′

ik
| atts ′

ik
〉

〈Q1 : D1 | atts ′′
1 〉 . . . 〈Qp : Dp | atts ′′

p〉
M ′

1 . . . M ′
q if C

where k, p, q ≥ 0, the Ms are message expressions, i1, . . . , ik are different numbers
among the original 1, . . . , m, and C is a rule condition. The result of applying a
rewrite rule is that the messages M1, . . . , Mn disappear; the state and possibly
the class of the objects Oi1 , . . . , Oik

may change; all the other objects Oj vanish;
new objects Q1, . . . , Qp are created; and new messages M ′

1, . . . , M
′
q are sent.

We will use this kind of system modules to provide the semantics for RDF
documents and to implement the examples.

Later, in Section 5.2 we will integrate the translated RDF documents in an
agent application written using Mobile Maude. This extension of Maude provides
some new concepts related with mobility (mobile objects and processes) that are
expressed in Maude itself, as explained in Section 5.1.

4 RDF/RDFS Translation into Maude

The main pieces in an RDF document are resources, properties, containers, URIs,
and classes. We identified which elements of a Maude module could correspond
naturally to these RDF pieces. The principal result is that Maude object-oriented
modules are a good choice to represent RDF documents in Maude by giving them
the natural, intuitive meaning. Table 1 shows the correspondence between RDF
pieces and Maude elements.

In this section we describe the translation of RDF (including reification and
containers) and RDFS documents into object-oriented modules in Maude. The
driving idea is that an RDF description of a resource will be translated into an
object in Maude.

Maude modules are used for describing RDF schemas. Those modules will be
included in the translation of any particular RDF document using the predefined
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vocabulary. The following module defines the basic vocabulary for RDFS. It
defines a data type for URI references and declares that they can be used as
object identifiers (Oid). A class for resources is defined with several attributes.
Every described resource will be an instance of this class, although we have
used the same relaxed idea used by RDF of what an instance is. An object
O is an instance of class C if it is declared as belonging to this class and it
only has attributes defined for this class (or any of its superclasses), but not
all the attributes have to be initialized. Apart from this consideration, all the
power of object-orientation is supported, including inheritance (as explained
in Section 5.2). URI references and instances of the class of resources are put
together in a general type Resource. A class for properties is defined, and it is
declared as a subclass of resources. There is also a data type for representing
literals, which uses the predefined type of quoted identifiers (Qid).

omod http://www.w3.org/2000/01/rdf-schema is

inc QID .

sorts URI Resource . subsort URI < Oid .

op uri : Qid -> URI .

class ResourceClass | comment : Literal, label : Literal,

seeAlso : Resource, isDefinedBy : Resource .

subsorts URI ResourceClass < Resource .

class Property .

subclass Property < ResourceClass .

sort Literal .

op literal : Qid -> Literal .

endom

There is another module defining the predefined vocabulary for RDF. A
class Statement is declared for representing RDF statements, that is, a reified
statement will be represented as an instance of this class. The class has three
attributes: subject, predicate, and object. The module also declares classes
for the different RDF containers by giving precise definitions of what they mean.
For example, there is a class for bag containers which are described in [12] as
“unordered lists of resources or literals.” In Maude, we can define what this
exactly means by defining a data type for multisets of resources and literals, with
a constant operator mt for the empty multiset and a union operator _&_ which is
declared to be associative, commutative, and with the empty multiset as identity
element. There are similar classes for sequences and alternatives, although in
each case the union operator is defined in a different way. For example, the
union operator for sequences is declared as associative and with identity the
empty sequence, but it is not declared as commutative, because a sequence is
“an ordered list of resources or literals” [12].

omod http://www.w3.org/1999/02/22-rdf-syntax-ns is

inc http://www.w3.org/2000/01/rdf-schema .

class Statement | subject : Resource, predicate : Property,

object : Resource .

*** containers
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class Container . subclass Container < Resource .

class Bag | val : BVal . subclass Bag < Container .

sort BVal . subsorts Literal Resource < BVal .

op mt : -> BVal .

op _&_ : BVal BVal -> BVal [assoc comm id: mt] .

...

endom

The translation of a user-defined RDF document into an object-oriented mod-
ule of Maude is summarized in Table 1. Let us see some examples for illustrating
the translation of user-defined RDF documents. The RDF document describ-
ing a laser printer in Section 2 is translated into the following object-oriented
module in Maude:

omod example is

inc http://www.w3.org/1999/02/22-rdf-syntax-ns .

inc http://printers.org/schema .

op http://HPprinters/HPLaserJet1100 : -> Object .

eq http://HPprinters/HPLaserJet1100 =

< uri(’http://HPprinters/HPLaserJet1100) : LaserPrinter |

PrinterTechnology : literal(’Laser‘Jet),

PrinterResolution : literal(’600‘dpi),

Price : literal(’399) > .

endom

The two namespaces used in the RDF document have been translated to
module inclusions. The resource has been translated to an object constant and
one equation defining it. This object has three attributes whose values are liter-
als.

Anonymous resources are also supported and translated to object constants
as above, although instead of a URI we use a local identifier to name them.
Container descriptions are translated to objects of a class like the class Bag
commented above, and the enumerated items are included in its attribute as a
value built by using the corresponding union operator.

The RDFS description of printers in Section 2 is translated as follows:

omod Printers is

inc http://www.w3.org/1999/02/22-rdf-syntax-ns .

inc http://www.w3.org/2000/01/rdf-schema .

class Printer | Price : Literal,

PrinterTechnology : Literal,

PrinterResolution : Literal .

subclass Printer < ResourceClass .

class LaserPrinter .

subclass LaserPrinter < Printer .

endom

The namespaces have been translated into module inclusions, as above. The
RDFS class declarations have been translated into Maude class declarations,
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and the subclass properties have been translated into subclass declarations in
the Maude module. When a subclass relation is declared as subclass C < C′,
the class C is the subclass and the class C′ is the superclass. The effect of a
subclass declaration is that the attributes, messages, and rules of the superclass
are inherited by the subclass. The property Price, with domain Printer and
range Literal, has been translated into an attribute declaration of class Printer
whose values can be of sort Literal. The other two properties are translated
similarly.

By using the reflective features of rewriting logic and Maude, and moving up
to the metalevel, where Maude modules become data that can be manipulated,
we can equationally define operations that perform the translation described
above in an automatic way. These operations traverse the elements of an RDF
value and build the module step by step by including the translation of each
element, as explained by means of examples above. The complete Maude code
implementing this translation together with the predefined modules described
above can all be found in http://www.ucm.es/sip/alberto/semantic-web.

5 Case Study

In this section we present a simple application of the translation process. The
proposed translation has been used in an example where a buyer agent visits
several sellers which give him their printers information in RDF. The buyer
keeps the price of the cheapest printer. The example has been implemented
using Mobile Maude, a Maude extension that supports mobile computation.

5.1 Mobile Maude

The flexibility of rewriting logic for representing very different styles of com-
munication, either synchronous or asynchronous, its facility for supporting dis-
tributed, concurrent object-oriented systems, and its reflective capabilities for
supporting metaprogramming and dynamic reconfiguration, make it a very suit-
able formalism for the specification of distributed systems based on mobile
agents, on which the proof of properties about security, correctness, and per-
formance, can be based.

Mobile Maude [8] is an extension of the Maude language supporting mo-
bile computation. It is appropriate for the specification and prototyping of dis-
tributed systems based on mobile agents, where data, states, and programs can
be moved. Moreover, it has a formal basis for the development of security mod-
els and the verification of properties for such models. The key entities in Mobile
Maude are processes and mobile objects. Both are defined as classes in Maude.
Processes are computational environments where mobile objects evolve and com-
municate with each other. Mobile objects are created inside a process, they can
move to another process, they can operate inside a process, and they can send
(receive) messages to (from) other mobile objects in the same process or in other
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to O3

O3

O1 O2

P1 P2

Fig. 1. A view of processes and mobile objects.

processes2. This is illustrated in Figure 1, where there are two processes (P1 and
P2) and three mobile objects (O1, O2, and O3). Mobile object O3 is moving
from process P1 to process P2, while the object O2 has just sent a message
addressed to the moving object O3.

Processes and mobile objects are defined in Maude as classes P and MO, re-
spectively. The class P of processes is declared as follows:

class P | cnt : Nat, cf : Configuration, guests : Set[Mid],

forward : PFun[Nat, Tuple[Pid, Nat]] .

The main attribute is cf, the configuration of guest mobile objects. The
attribute guests is the set of identifiers of mobile objects that currently reside
in the process; cnt is the counter of mobile objects created in the process; and
forward is a function used to locate the mobile objects created in the process.
The names of processes range over the sort Pid, whereas the names of mobile
objects range over the sort Mid and have the form o(PI,N), where PI is the
name of the object’s parent process, that is, the process where it was created,
and N is a number that distinguishes the children of PI.

The class MO of mobile objects is defined as follows:

class MO | mod : Module, s : Term, p : Pid,

hops : Nat, gas : Nat, mode : Mode .

The mobile object’s module that defines a mobile object behavior must be
object-oriented, and mod is the metarepresentation of that module. The term s
is the metarepresentation of the actual configuration of the mobile object; this
configuration has the following form: C & C’, where C’ is the outgoing messages
tray (a multiset of outgoing messages) and C contains the state of the mobile
object (as defined in the module mod) and a multiset of unprocessed incoming
messages. The rest of the attributes in the class are: p, the identifier of the
process where the mobile object currently is; hops, a natural number indicating
the number of hops between processes that the object has performed so far; gas,
a natural number that limits the rewrite steps that the object can do; and mode,
that indicates if the process is active or not.
2 Some mobile agents languages, as Cardelli’s Ambient Calculus [6], forbid this last

kind of communication, allowing only communications inside the same process.
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Messages in the configuration and in the module may be of any form, but
those being pulled in or out of the mobile object must have a specific form. In
particular, messages getting in and out of mobile objects must be of one of the
following forms:

– to MID : MSG, to send the message content MSG to the object whose identifier
is MID. The MSG part is built with user-defined syntax.

– go(PID), to go to the process whose identifier is PID.
– go-find(MID, PID), to go to the process where the object MID is, trying as

first alternative the process PID.
– newo(MOD, OBJ, OID), to create a mobile object where MOD is the metarep-

resentation of the module where the object is defined, OBJ is the initial state
of the object to be created, and OID is its identifier.

When a mobile object wants to deliver messages of this kind it puts them in its
outgoing messages tray.

The complete Mobile Maude system code, plus some related information, can
be found in http://maude.cs.uiuc.edu/maude1/mobile-maude.

The code describing the behavior of mobile objects is called application code.
In the next section we will present several examples of this kind of code.

In [9] a case study using Mobile Maude is presented, and it is shown how an
object-oriented specification in Maude can be made mobile. An ambitious wide
area application, namely the reviewing system for a conference, going from its
announcement to the edition of the proceedings, is specified and implemented.
Such example was proposed by Cardelli in [6] as a challenge for any wide area
language to demonstrate its usability, although it was previously used by dif-
ferent authors. Mobile Maude was used successfully to implement this system.
Moreover, the Maude formal specification of Mobile Maude was used to execute
the example. This case study and the possibility of executing it allowed us to test
different alternatives both in the language and in the specification of the sys-
tem. Although in the actual specification RDF documents are not used (different
agents communicate with each other with a pre-established small vocabulary),
it can be easily modified in such a way that agents communicate by means of
RDF documents. Then the translation presented in this paper could be used by
the agents to translate and understand the received information.

5.2 Buying Printers

In this example we have two different classes of mobile objects: sellers and buyers.
Although in the simple example described here sellers do not move, they have
to be mobile objects because they communicate with other mobile objects, so
they have to be recognized as mobile objects by the Mobile Maude system.
There is another class of objects, the comparers, that are used by buyers to
compare printers. These are not mobile objects, as described below. A buyer
visits several sellers. The buyer asks each seller he visits for the description of
the seller’s printer. The seller sends this description in RDF format, which the
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buyer translates and gives to his comparer, that keeps the price of the cheapest
printer.

First we define the sellers. They are static agents whose behavior is defined
in the following module. The class Seller has an attribute description with
the RDF description of the printer it sells, using the schema in Section 2. When
a seller receives a description request, it sends the description in RDF form.

omod SELLER is

inc RDF-SYNTAX .

class Seller | description : RDF .

op get-printer-description : Oid -> Contents .

op printer-description : RDF -> Contents .

vars S B : Oid . var D : RDF .

rl [get-des] : (to S : get-printer-description(B))

< S : Seller | description : D > & none

=> < S : Seller | > & (to B : printer-description(D)) .

endom

Note how the seller’s state is described in rule get-des by means of the _&_
operator in order to separate the inner state and incoming messages from the
outgoing messages. Due to that we can use this module to build mobile objects
in Mobile Maude.

Before defining the buyers, we define the class Comparer whose instances
are able to compare different printers, keeping the price of the cheapest printer.
When a comparer is near a printer, it looks the price of the printer, and compares
it with the best printer it knows, updating its knowledge if necessary. Note
that the printer object disappears, because it does not represent a real printer,
but a printer information, that is useless after the comparer has looked up its
information.

omod COMPARER is

inc Printers .

inc DEFAULT[Nat] .

class Comparer | best : Default[Nat] .

var P C : Oid . var Q : Qid . var N : Nat .

var Atts Atts’ : AttributeSet .

rl [compare] : < P : Printer | Price : literal(Q), Atts >

< C : Comparer | best : N, Atts’ >

=> < C : Comparer | best : if (convert(Q) < N) then

convert(Q) else N fi, Atts’ > .

endom

A comparer is not a mobile object of Mobile Maude. It does not move inde-
pendently, and cannot send or receive messages from other mobile objects. It is
a Maude object that will travel inside a buyer’s attribute, as we will see below.

Note how the variable Atts of sort AttributeSet is used in the printer
object. By using this variable, the rule can be applied to any printer with at
least an attribute Price; if the printer has more attributes, they will be caught
by the variable Atts.
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This style of programming is quite useful for the Semantic Web. If a seller
has defined its own RDF schema, extending the one presented in Section 2 by
defining a subclass of printers with new properties which are important for him,
it will send printer descriptions with some properties unknown for our comparer.
But the above implementation will also be useful in this case, because the extra
properties (attributes) will be caught by the variable Atts.

Finally, we define the buyers. The module BUYER describes the behavior of
a buyer agent. It has a list IPs with the addresses of the sellers. It has to visit
all the sellers, asking each one for the description of the printers. The buyer has
an attribute app-state with the current state of its comparer, metarepresented.
It has to be metarepresented because the buyer wants to be able to execute
the comparer. Each time it receives a new description, it translates the RDF
description into a Maude module M with a Printer object. It puts this object
together with the current state of its comparer, and asks to rewrite them (by
using metaRewrite, see Section 3) in the Maude module obtained by joining M
with the module containing the comparer code.

omod BUYER is

inc RDF-Translation .

sort Status .

ops onArrival asking done : -> Status .

class Buyer | IPs : List[Oid], status : Status, app-state : Term .

op get-printer-description : Oid -> Contents .

op printer-description : RDF -> Contents .

var PD : RDF . var Ss : List[Oid] . vars B S : Oid .

var PI : Pid . var N : Nat . var T : Term .

rl [move] : < B : Buyer | IPs : o(PI,N) + Ss, status : done > & none

=> < B : Buyer | status : onArrival > & go-find(o(PI,N),PI) .

rl [onArrival] : < B : Buyer | IPs : S + Ss, status : onArrival > & none

=> < B : Buyer | status : asking > &

(to S : get-printer-description(B)) .

rl [new-des] : (to B : printer-description(PD))

< B : Buyer | IPs : S + Ss, app-state : T, status : asking >

=> < B : Buyer | IPs : Ss, app-state : metaRewrite(

addDecls(up(COMPARER), translate(’Printer,PD)),

’__[T,extractResources(translate(’MOD,PD))],0), status : done > .

endom

The first rewrite rule, move, handles the travels of the buyer: if it has finished
in the current process (its status is done) and there is at least one seller name
in the IPs attribute, it asks the system to take it to the host where the seller
is. On arrival, the buyer asks the seller for the printer description, giving the
seller’s name. When the RDF description arrives, the buyer translates it to
Maude, extracts the resource corresponding to the printer description, puts it
together with the comparer, and asks to rewrite the result in the module with
the comparer’s behavior, which will change the comparer’s state.

The full code of this example can be found in http://www.ucm.es/sip/
alberto/semantic-web.
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GET 
Information

PUT 
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Fig. 2. DF ↔ Maude translations.

6 Conclusions and Future Work

In this paper we presented the first results of a translation from RDF/RDFS
to the language Maude. This translation produces a formal version of the orig-
inal RDF/RDFS data, without requiring any extra information in the original
RDF/RDFS documents, thus preserving compatibility with other approaches.
We think this approach offers a sound way for formalizing the Semantic Web.

A key point for success of our translation model is to integrate the approach
using Maude with the real Web, as described in Figure 2, where an agent with
Mobile Maude code interacts with usual Internet services by getting the RDF file
that contains all the required information. Then an RDF2Maude translation will
be carried out. After operating, one or more result files will be produced. These
files will be translated into RDF by a Maude2RDF translation. This approach
will allow the formalized service to interact with the usual Web applications and
services. Maude has already been integrated with real Web applications in [1, 2].

The work presented here is the first step to allow a formal model for Web
services. This promising area will be enriched with the Semantic Web services
approach by enriching not only the services with a semantic definition over RDF
or OWL-S [15], but also allowing to access a specification of the dynamic seman-
tics of the operations carried out by this service.

We plan to carry out further research in order to integrate our work with the
OWL specification [17] and specially with OWL-S, to extend it on a formal way
in order to enable a possible wide future of new formal Semantic Web services.
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