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Abstract. Algorithmic skeletons are a well-known approach for imple-
menting parallel and distributed applications. Declarative versions typ-
ically use higher-order functions in functional languages. We show here
a different approach based on object-oriented parameterized modules in
Maude, that receive the operations needed to solve a concrete problem
as a parameter. Architectures are conceived separately from the skele-
tons that are executed on top of them. The object-oriented methodology
followed facilitates nesting of skeletons and the combination of architec-
tures. Maude analysis tools allow to check at different abstraction levels
properties of the applications built by instantiating a skeleton.
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1 Introduction

Most interesting computer systems today, as well as those of the future, are dis-
tributed in nature, including the Internet, cellular and PDA communications,
biological and bio-tech computations, international trade, multi-national corpo-
rate databases, and multi-user games. The main goal of a distributed computing
system is to connect users and resources in a transparent, open, and scalable
way. Ideally this arrangement is drastically more fault tolerant and more pow-
erful than many stand-alone computer systems.

Parallel algorithms divide the problem into subproblems, pass them to many
processors and collect the results back together at the end. An algorithmic skele-
ton [3,14] is an abstraction shared by a range of applications which can be exe-
cuted in a parallel way. The aim is to obtain generic schemes that allow parallel
programming where the user does not have to handle low level features like
communication and synchronization.

A skeleton can be executed on different architectures/topologies. However,
there is often a most suitable architecture for each skeleton that takes advantage
of the task distribution specified by it. In our implementation we have opted
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to separate the definition of the architectures from the skeletons, allowing us to
combine them in several ways.

Rewriting logic [10] was proposed in the early nineties as a unified model
for concurrency in which several well-known models of concurrent and distrib-
uted systems can be represented in a common framework. Maude [2] is a high
level, general purpose language and high performance system supporting both
equational and rewriting logic computations. It can be used to specify in a nat-
ural way a wide range of software models and systems, and since (most of) the
specifications are directly executable, Maude can also be used to prototype those
systems. It has already been used to specify and analyze distributed applications
and protocols [4,12]. The recently incorporated support in Maude for communi-
cation with external objects makes many other application areas (such as mobile
computing and distributed agents) ripe for system development in Maude.

We show here how distributed applications can be implemented in Maude by
means of object-oriented parameterized skeletons, that receive the operations
needed to solve a concrete problem as a parameter. These operations usually are
part of the sequential version of the concrete applications, thus encouraging code
reusability. The use of Maude allows us to have the description of the architec-
ture, the definition of the skeleton, and the implementation of the application
solving a problem in the same high-level language. Moreover, since Maude has
a well-defined semantics, we obtain a good basis for formal reasoning. Tools for
doing some kinds of this reasoning in an automatic way and the possibility to
define the properties the applications have to fulfill are also provided by Maude.

Typically, declarative implementations of skeletons are based on functional
languages (like Eden [9], GpH [16], or PMLS [11]) that naturally represent skele-
tons as higher-order functions. These languages also allow to prove skeletons
correctness [13]. Although rewriting logic is not a higher-order framework, the
parameterization features provided by Maude allow to achieve similar results.
From a “more practical” world, skeletons have recently been proposed for Java
in the JaSkel language [8]. It uses object-oriented features like inheritance and
abstract classes to present the skeletons in a hierarchical way that allows the
user to instantiate them with concrete applications. We follow a very similar
approach which provides an important advantage. The skeletons implemented,
analyzed, and proved correct in Maude can then be translated to a language
such as JaSkel with little effort.

Below we describe Maude’s main features, specially the object-oriented no-
tation used in the rest of the paper. How to implement different architectures
is shown in Section 2. Parameterized skeletons are described and instantiated
in Section 3. Section 4 shows how to check properties of the architectures and
the skeletons. Finally, we present some conclusions and future work. For more
detailed explanations of all the topics shown in this paper, see [15].

1.1 Maude

In Maude [2] the state of a system is formally specified as an algebraic data
type by means of an equational specification. In this kind of specification we
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can define new types (by means of keyword sort(s)); subtype relations between
types (subsort); operators (op) for building values of these types; and equations
(eq) that identify terms built with these operators.

The dynamic behavior of such a distributed system is then specified by rewrite
rules of the form t −→ t′ if C, that describe the local, concurrent transitions of
the system. That is, when a part of a system matches the pattern t and satisfies
the condition C, it can be transformed into the corresponding instance of the
pattern t′.

Regarding object-oriented specifications, classes are declared with the syntax
class C | a1:S1,. . ., an:Sn, where C is the class name, ai is an attribute
identifier, and Si is the sort of the values this attribute can have. An object is
represented as a term < O : C | a1 : v1, . . ., an : vn > where O is the
object’s name, belonging to a set Oid of object identifiers, and the vi’s are
the current values of its attributes. Messages are defined by the user for each
application (introduced with syntax msg).

In a concurrent object-oriented system the concurrent state, which is called a
configuration, has the structure of a multiset made up of objects and messages
that evolves by concurrent rewriting. The rewrite rules specify the behavior
associated with the messages. The general form of such rules is

M1 . . . Mn 〈O1 : F1 | atts1〉 . . . 〈Om : Fm | attsm〉

−→ 〈Oi1 : F ′
i1 | atts ′

i1〉 . . . 〈Oik : F ′
ik

| atts ′
ik

〉 〈Q1 : D1 | atts ′′
1 〉 . . . 〈Qp : Dp | atts ′′

p〉

M ′
1 . . . M ′

q if C

where k, p, q ≥ 0, and the Ms are message expressions. The result of applying a
rewrite rule is that the messages M1, . . . , Mn disappear; the state and possibly
the class of the objects Oi1 , . . . , Oik

may change; all the other objects Oj vanish;
new objects Q1, . . . , Qp are created; and new messages M ′

1, . . . , M
′
q are sent.

By convention, the only object attributes made explicit in a rule are those
relevant for that rule. We use here the Full Maude object-oriented notation [2].
However, the actual implementation of the skeletons is in Core Maude because
Full Maude does not support external objects. The complete Maude code can
be found in http://maude.sip.ucm.es/skeletons.

Maude modules can be parameterized with one or more parameters, each
of which is expressed by means of one theory that defines the interface of the
module, that is, the structure and properties required of an actual parameter.
Views are used to specify how a particular module is claimed to satisfy a theory.

Maude is reflective, that is, it can be represented into itself in such a way that
a module in Maude may be data for another Maude module. This functionality
has been efficiently implemented in the predefined module META-LEVEL, where
concepts such as reduction or rewriting are reified by means of functions.

2 Different Architectures

In this section we show how distributed configurations, made up of located
configurations, can be built in Maude, in such a way that the architecture

http://maude.sip.ucm.es/skeletons
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is transparent to the skeletons we will execute on top of it. Thus, the same
skeleton can be run over different architectures.

Each located configuration is executed in a Maude process, and they are
connected through sockets. Maude supports (bidirectional) sockets as external
objects, and offers messages for interacting with them. However, these sockets
do not preserve message boundaries, so we have extended their functionality by
implementing “buffered sockets” with this feature [15]. In the following sections
we present how we use these sockets to define different architectures.

A first approach to really distributed architectures in Maude was shown in [5].
However, those architectures were mixed with the applications. Here, we improve
our approach by implementing them in an application-independent way.

2.1 Common Infrastructure

In this section we show the elements that are common to all the architectures
we define below. They basically correspond to the way messages are redirected
to reach their addresses. The different parts among the architectures correspond
to the way the locations are connected.

We assume that each located configuration contains one and only one router,1

plus messages and possibly objects of other classes. The names of routers range
over the sort Loc (subsort of Oid), and have the form l(IP, N) with the string IP
the IP address of the host machine and N a number. We assume global uniqueness
of routers names in a distributed configuration. We can communicate the name
of a location by using the message new-socket.

Objects situated in a located configuration L must have as identifier a value
o(L, N) of sort Oid, where N is a number not used to name other objects in L.
All objects can communicate with each other by using the message to_:_, that
has as arguments the identifier of the addressee and a term of sort Contents.

msg new-socket : Loc -> Msg .
msg to_:_ : Oid Contents -> Msg .

Maude sockets can only transmit strings, so we must translate all the messages
into strings and convert them back once they are received. To do it in a general
way (independently of the concrete application) we use the reflective features of
Maude. Concretely, we use a (metarepresented) module with the definition of all
the operators used to construct messages that are going to be transmitted. But,
since each application (each skeleton, in our case) needs different messages, we
define a parameterized module, that receives as a parameter the syntax of the
transferred data in a module MOD required by the SYNTAX theory.

fth SYNTAX is
inc META-LEVEL . op MOD : -> Module .
endfth

The Router class (that will be specialized in the different architectures) is
defined as follows:
1 We identify the router and the location where it is.
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class Router | state : RouterState, port : Nat,
neighbors : Map{Loc,Oid}, defNeighbor : Maybe{Oid} .

where the predefined parametric sort Map{Loc,Oid} represents partial functions
from view Loc to view Oid (that identifies sockets in this case) and Maybe{Oid}
is a sort that adds a default value null to Oid. A router may be in states
idle, waiting-connection, or active, although other values can be added
in concrete architectures. The attribute port keeps information about the port
through which a server can offer its services or a client can ask for them. To solve
the routing problem we assume a very general approach consisting in having a
routing table in each router, that gives the socket through which a message must
be sent if one wants to reach a particular location. The neighbors attribute
maintains such a routing table as a map associating socket object identifiers
to location identifiers. As we will see, each concrete architecture will use the
new-socket message to update this attribute.

The following rule describes how a message is redirected through the appro-
priate socket. If a message is sent to an object o(L, N) and the message is in a
location L’, with L �= L’, that is directly connected to L (LSPF[L] �= undefined),
then the message is sent through the socket LSPF[L] after converting it to a string
with the function msg2string, that uses the MOD constant from the theory.

crl [redirect] :
to o(L, N) : C
< L’ : Router | state : active, neighbors : LSPF >

=> < L’ : Router | > Send(LSPF[L], L’, msg2string(to o(L, N) : C))
if L =/= L’ /\ LSPF[L] =/= undefined .

In case there is no socket associated to a particular location in the map
neighbors, there can be a default socket stored in the attribute defNeighbor.
Nevertheless, the value of the defNeighbor attribute may also be unspecified.

When a router sees a Received message that is not new-socket, it extracts
the string (by means of the function string2msg) putting a new message in the
configuration, and keeps listening with a new Receive message.

crl [Received] :
Received(L, SOCKET, DATA) < L : Router | >

=> < L : Router | > string2msg(DATA) Receive(SOCKET, L)
if not new-socket?(DATA) .

2.2 Star Architecture

The architecture we present here consists of a location with a server router, and
several locations with client routers. The server is connected to all clients, and
each client is connected only to the server. That is, we have a star network, with
the center redirecting the messages between the nodes.

We distinguish between the center and the nodes by declaring two subclasses
of Router: StarCenter, with no additional attributes; and StarNode, with
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an attribute center, that keeps the center’s IP address. These classes define
how the locations are connected by filling the neighbors and defNeighbor
attributes.

The center plays the server role from the point of view of the sockets so it
declares itself as a server socket, offering its services on port. Once it receives
a CreatedSocket message, it becomes active and sends a message indicating
that it is ready to accept clients through the server socket. In the rule below, in
addition to sending messages AcceptClient (to continue accepting clients) and
Receive (for receiving messages from the accepted client), the center sends to
the node the message new-socket communicating its identifier.

rl [AcceptedClient] :
AcceptedClient(L, SOCKET, IP, NEW-SOCKET)
< L : StarCenter | state : active >

=> < L : StarCenter | > AcceptClient(SOCKET, L) Receive(NEW-SOCKET, L)
Send(NEW-SOCKET, L, msg2string(new-socket(L))) .

When a new-socket message is received from a node with its name L’, it is
stored in the neighbors attribute.

crl [Received] :
Received(L, SOCKET, DATA)
< L : StarCenter | state : active, neighbors : LSPF >

=> < L : StarCenter | neighbors : insert(L’, SOCKET, LSPF) >
Receive(SOCKET, L)

if new-socket(L’) := string2msg(DATA) .

When a StarNode is created, it first tries to establish a connection with the
center by sending a message that uses the IP address and the port of the center,
reaching the state waiting-connection. The response is handled by the follow-
ing rule connected, where the node also sends the new-socket message right
after the socket is created. Nodes start listening with the Receive message.

rl [connected] :
CreatedSocket(L, SOCKET-MANAGER, SOCKET)
< L : StarNode | state : waiting-connection >

=> < L : StarNode | state : active > Receive(SOCKET, L)
Send(SOCKET, L, msg2string(new-socket(L))) .

Finally, nodes make the connection with the center the default one.

2.3 Ring Architecture

In a ring topology, each node is connected to two nodes, the previous and the
next one. We show here how to implement a unidirectional ring where each node
receives data from the previous one and sends data to the next one.

In this architecture, each node must be declared as a (Maude) server for the
previous one and as a (Maude) client of the next one. However, to declare a
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node as a client it needs another one working as a server, which is impossible
for the Maude instance that is first executed. We have decided to distinguish
between the last Maude instance executed (which knows that all other instances
are already running) and the other ones by declaring two subclasses of Router:

- RingNode defines the behavior of all the nodes but the last one.2 They first
declare themselves as servers and then wait until someone asks to be their
client. Once they have accepted a client, they try to be clients themselves of
the next node in the ring.

- RingLast defines the behavior of the last node, that asks the next one to be
its server, and then waits to be a server itself.

Both RingNode and RingLast will reach the same states, although in different
order (thus they need the same attributes), and will declare themselves as servers
at start-up, so we define first a superclass RingRouter containing the common
behavior. It is a subclass of Router with attributes nextIP and nextPort that
keep, respectively, the IP address and the port of the next node in the ring. The
port attribute inherited from class Router is the port used by the ring objects
to declare themselves as servers and accept clients through it. We also declare
new router states connecting2next and waiting4previous.

When a node is accepted as client, it keeps the socket in the attribute
defNeighbor, in order to use it to redirect all the messages, and reaches the
active state. In this architecture the neighbors attribute is not used; the ring
nodes are just connected by defNeighbor, thus obtaining a unidirectional ring.

2.4 Centralized Ring Architecture

We show here a special ring architecture, where in addition to the ring we have
a central server connected to each location, so we have a mixture of the two
previous architectures. We have tried to reuse them as much as possible. We use
the class StarCenter from the star architecture for the ring center; and we reuse
the classes RingNode and RingLast described above for the nodes in the ring.

We define a new class CRingRouter in charge of connecting to a central
server. We will combine the behavior of this new class with the classes RingNode
and RingLast from the ring architecture. This new class has new attributes
centerIP and centerPort, with the IP address and port of the center; new
states connecting2center and waiting4center; and rules for connecting to
the central node. When it is in connecting2center state, it tries to connect to
the center and reaches waiting4center. Once the connection has been created,
it sends a new-socket message and reaches the active state.

Now we look for a class that behaves as a CRingRouter and as a RingNode (or
as a RingLast, if it is the last node). To obtain it, we define a new class CRNode,
which is a subclass of both CRingRouter and RingNode (and a new class CRLast,
which is a subclass of CRingRouter and RingLast). These new classes behave
2 Although in a ring there is no “last” node, we refer to the order in which the nodes

must be started to be executed.
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as the corresponding nodes in the ring, and once they are connected behave as
clients of the center. However, we found the problem that all those classes finish
in the active state, so some of the rules could not be applied. We solve it by
renaming the active state in the ring nodes to connecting2center, so the rules
in CRingRouter can be applied after the ring connections has been established.

omod CENTRALIZED-RING-NODE{M :: SYNTAX} is
pr CENTRALIZED-RING{M} .
pr RING-NODE{M} * (op active to connecting2center) .
class CRNode | . subclass CRNode < CRingRouter RingNode .
endom

In the following section we will show how these architectures can be used to
execute skeletons on top of them. In [15], we also show how a concrete distributed
application can be implemented directly in Maude (without skeletons).

3 Parameterized Skeletons

An important characteristic of skeletons is their generality, that is, the possibility
of using them in different applications. For this, most skeletons are parameterized
by functions and have a polymorphic type. We accomplish this goal by means
of parameterized modules whose parameter includes the characterization of the
problem. We apply our methodology to three kinds of skeletons [14]:

Data-parallel skeletons: The source of parallelism is the distribution of data
between processors and the application of the same operation to all portions
of the data. We show the farm skeleton with and without fixed data.

Systolic skeletons: The systolic skeletons are used in algorithms in which par-
allel computation and global synchronization steps alternate. We show the
ring version of the systolic skeleton.

Task-parallel skeletons: The source of parallelism is the decomposition of a
task into different subtasks which can be done in parallel. These subtasks
need not be identical. We have implemented three task-parallel skeletons:
divide and conquer (shown here), branch and bound, and pipeline.

Indications of the most appropriate architecture for each skeleton will be given
in the following sections.

3.1 Farm Skeleton

We show here how to implement a skeleton with replicated workers and fixed
data. There is a master that initially sends the fixed data and some subproblems
to all the workers. Each time a task is finished by a worker, the subresult is sent
to the master, where it is combined with the partial result already computed,
and then new work is given to that worker, reducing the initial problem. Thus,
the tasks are delivered on demand, obtaining an even distribution of the work
to be done. In order to have a direct communication between the master and
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the workers the star architecture is the most appropriate one, with the master
located in the center and the workers in the nodes.

Each concrete application must define a module fulfilling the RW_FD-PROBLEM
theory, that requires the sorts FixData (containing the data common to all the
subproblems), Problem (refering to the initial problem), SubProblem (repre-
senting the smaller problems solved by the workers), Result (keeping the final
result), and SubResult (corresponding to the results obtained by the workers).

The operations required by the theory are: new-work, that extracts a new
subproblem from the current problem; reduce, that updates the current prob-
lem making it smaller; do-work, that given a subproblem and the fixed data
solves the former; combine, that merges the current (partial) result with a new
subresult, given the subproblem that was solved (this operation must be com-
mutative3, in the sense that the final result cannot depend on the order in which
the combinations are performed, because the subresults may arrive unordered);
and finished?, that checks if the problem has already been solved.

We declare the messages fixData and new-work for sending the fixed data
and new tasks to the workers, and finished for communicating the subresults
to the master.

The skeleton receives as another parameter the SYNTAX theory, that will be
used by the architecture. First, classes for the master and the workers are defined.
The workers have the list with unfinished subproblems (nextWorks), the fixed
data (fixData), that initially is null, and the master identifier.

class RW_FD-Worker | nextWorks : SubProblemList,
fixData : Maybe{FixData}, master : Oid.

The master stores the fixed data (fixData, that cannot be null), the current
unsolved problem, the partial result, the list of idle workers, and the number
of initial tasks assigned to each worker (numWorks).4

class RW_FD-Master | fixData : P$FixData, problem : P$Problem,
result : P$Result, workers : OidList, numWorks : Nat.

The first action the master must take is to deliver the fixed data and the
initial tasks to the workers:

rl [new-worker] :
< O : RW_FD-Master | fixData : FD, problem : P, workers : W OL,

numWorks : N >
=> < O : RW_FD-Master | problem : update(P, N), workers : OL >

(to W : fixData(FD)) sendTasks(W, P, N).

where sendTasks and update are equationally defined operations that generate
the messages with the initial tasks and reduce the problem accordingly. While
the list of unfinished tasks of a worker is not empty, it must do the following one
and send the subresult to the master.
3 This requirement is represented in the theory by means of an equation [15].
4 P$Sort means that Sort comes from the parameter P.
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rl [do-work] :
< W : RW_FD-Worker | fixData : FD, master : O, nextWorks : SP SPL >

=> < W : RW_FD-Worker | nextWorks : SPL >
to O : finished(W, SP, do-work(SP, FD)).

The other tasks of the master are to compose the subresults from the workers
and give them more work if it is possible.

Ray tracing instantiation. We can implement this well-known case study
by starting from part of the sequential implementation included in module
ROWTRACER [15] solving the problem for one row by means of function traceRow,
and extending it in such a way that it fulfills the requirements from theory
RW_FD-PROBLEM. The sort Pair is declared to define the initial problem (the
highest and the lowest y), while World defines the fixed data (the width of the
screen, the camera, and the list of figures). A partial function from floats (identi-
fying rows) to colored rows is used to represent the final result. To instantiate the
module we create a view [2] and define the mapping between sorts and operators
with different names from those in the theory:

view RayTracer from RW_FD-PROBLEM to RAYTRACING-PROBLEM is
sort Problem to Pair. sort SubProblem to Float.
sort Result to Map{Float,ColorRow}. sort SubResult to ColorRow.
sort FixData to World.
op do-work to trace-row. op new-work to sub-problem.
op combine(R:Result, SP:SubProblem, SR:SubResult) to

term insert(SP:Float, SR:ColorRow, R:Map{Float,ColorRow}).
endv

Finally, we instantiate the module RW_FD-SKELETON and use the star architec-
ture. RT-Syntax is a view that encapsulates the syntax of transmitted messages.

mod RAYTRACING-SKELETON is
pr RW_FD-SKELETON{RayTracer, RT-Syntax}.
pr STAR-ARCH-STAR-CENTER{RT-Syntax}.
pr STAR-ARCH-STAR-NODE{RT-Syntax}.
endm

Euler instantiation. In some problems the fixed data is not needed; we have
implemented a slightly modified skeleton to deal with this situation.

The Euler number ϕ(x) is the number of natural numbers smaller than x
that are relatively prime to x. We are interested in computing

∑n
i=1 ϕ(i). We

distribute the problem by considering as a single work to calculate each ϕ(i).
The only sort involved in this problem is Nat, so every sort in the skeleton is
mapped to it. The operations are very simple too: a new work of the problem N
is just N; we reduce the problem by subtracting 1; the work that must be done
is the function euler from module EULER; combining two results is just adding
them; and we have finished when the number reaches 0.
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view Euler from RW-PROBLEM to EULER is
sort Problem to Nat. sort SubProblem to Nat.
sort Result to Nat. sort SubResult to Nat.
op new-work(N:Problem) to term N:Nat.
op reduce(N:Problem) to term sd(N:Nat, 1). op do-work to euler.
op combine(R:Result,S:SubProblem,SR:SubResult) to term R:Nat + SR:Nat.
op finished?(N:Problem) to term (N:Nat == 0).
endv

Calculating ϕ(x) may be quite faster than communicating it, so it is possible
that most of the computation time is used in communication. To avoid this prob-
lem we can make the granularity of the works coarser by computing more than
one Euler number in each step. To do this we only need to make small changes
in the instantiation module, while obviously the skeleton remains unmodified.
We show here an example where we calculate the sum of 20 Euler numbers in
each step with a new function euler20.

view Euler20 from RW-PROBLEM to EULER20 is
...

op do-work to euler20.
op reduce(N:Problem) to term (if N:Nat > 20 then sd(N:Nat, 20)

else 0 fi).
endv

3.2 Systolic Skeleton

In this skeleton, a master divides the problem among all the workers, that are
organized in a circular list because they must share some data through it. When
the workers have both initial and shared data (the first shared data is produced
by the worker itself), they do their work, combine the partial result, and give
the new shared data to the next worker. When a worker finishes all its tasks, it
sends its subresult to the master, that will combine them in order.

We define a theory that requires the following sorts: Problem and Result
represent the initial and final data; SharedData corresponds to the data that is
passed by all the workers; and Pair is a wrapper of Result and SharedData.

The theory defines the following operations: divide splits the initial prob-
lem into a list of problems; initialSharedData extracts from the initial data
the shared one; do-work computes, given the initial and the shared data, a
partial result and the shared data to be communicated to the next worker;
combine, used by the workers, merges the current partial result with a new
one; combine-all, used by the master, merges all the partial results from the
workers; and finished? checks if the worker has finished all its tasks.

We need the following messages: initial-work communicates the initial data
to the workers; shared-data delivers the shared data to the next worker; and
finished sends a result to the master, once the worker has finished.

This skeleton uses the classes SWorker and SMaster with attributes that allow
the workers to keep the partial results and send and receive the shared data in
order, and the master to collect and combine the results in order.
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The first thing that must be done by the master is to divide the initial problem
into a list of problems, that are delivered to all the workers, which first store
each problem and extract the initial shared data. Once the worker has shared
data it can do a new work and send the updated shared data to the next worker,
forgetting its own. When the next shared data arrives, it is checked if the work
is not finished, in which case the worker keeps the shared data. Finally, when
the master has received all the results, it merges them.

In this case, the centralized ring architecture is the most appropriate one: the
workers are located in the ring nodes and the master in the center. Examples
can be found in [15].

3.3 Divide and Conquer

Divide and conquer algorithms clearly offer good potential for parallel evalu-
ation. It is not difficult to see that recursively defined subproblems may be
evaluated in parallel if sufficient processors are available. The whole execution
of a divide and conquer algorithm amounts to the evaluation of a dynami-
cally evolving tree of processes, one for each subproblem generated. However,
we show an implementation based on the replicated workers scheme, that al-
lows a balanced distribution of the leaves of the problem tree. This implemen-
tation is suitable when decomposition of the problems and the composition
of the results are irrelevant compared to the resolution of the subproblems.
The master divides the initial problem into subproblems, that are delivered to
the workers. The structure of the subproblems is kept in a tree in order to
be able to combine their subresults in the appropriate order and get the final
result.

We define a theory with operators that allow the skeleton to generate and solve
the problem tree. The sorts Problem and Result define the initial and final data.
The function divide splits a problem into a list of subproblems, finishing when
the problem isTrivial. Each trivial task is computed with solve. The function
combine merges a list of subresults into a new subresult.

Only two messages are used: finished communicates new results to the mas-
ter, while new-work transmits new tasks to the workers.

This skeleton defines the classes DCMaster and DCWorker, with attributes
that allow the master to keep the tree of results and the workers to transmit
the results with their corresponding identifier. First, the master must trans-
form the initial problem into a list of subproblems, and create the initial result
tree, that initially has all its nodes without data. Once the list of problems has
been calculated, the master must transmit the initial tasks to the workers. Even-
tually, a task is finished and sent to the server, that inserts it in the result tree,
merging the subresults if possible [15].

Since this skeleton is based on replicated workers, the most suitable architec-
ture for the applications that instantiate it (examples are shown in [15]) is the
star architecture. When the cost of the composition of the subresults is relevant,
a hierarchical architecture with more levels could be more convenient.
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4 Formal Analysis of Distributed Applications

Formal verification is the process of checking whether a design satisfies some
requirements (properties). In order to formally verify a distributed system, it
must first be converted into a simpler “verifiable” format. To do that in Maude,
we must be able to represent the whole system in one single term. We have
provided an algebraic specification of sockets [15] and represented the processes
(hosts in the distributed version) as objects of a class Process identified by the
name of the location it represents, and with a single attribute conf keeping the
configuration in that host separated from the others. The implementation of the
distributed applications can be executed using these “simulated” sockets without
changes. By doing this, we can check the properties of a system that is almost
equal to the distributed one. However, we can trust some of the components of
the whole system, and then abstract them, representing only the “suspicious”
elements. These different abstraction levels speed up the checking process.

Model checking [1] is used to formally verify finite-state concurrent systems.
It has several important advantages over mechanical theorem provers or proof
checkers; the most important is that the procedure is completely automatic. The
main disadvantage is the state space explosion, that can make it unfeasible to
model check a system except for very simple cases. For this reason, several state
space reduction techniques have been investigated. We use one based on the
idea of invisible transitions [7], that generalizes a similar notion in partial order
reduction techniques. By using this technique we can select a set of rewriting
rules that fulfill some properties (such as termination, confluence, and coherence)
and convert them into equations, thus reducing the number of states.

Maude’s model checker [6] allows us to prove properties on Maude specifi-
cations. The properties to be checked are described by using Linear Temporal
Logic (LTL) [1]. Then, the model checker can be used to check whether a given
initial state, represented by a Maude term, fulfills a given property. To use the
model checker we just need to make explicit two things: the intended sort of
states (Configuration in our case), and the relevant state predicates, that is,
the relevant atomic propositions. The latter are defined by means of equations
that specify when a configuration C satisfies a property P , C |= P .

Sometimes all the power ofmodel checking is not needed. Another Maude analy-
sis tool is the search command, that allows exploration (following a breadth-first
search strategy) of the reachable states in different ways. By using the search
command we can check invariants [2]. If an invariant holds, then we know that
something “bad” can never happen, namely, the negation ¬I of the invariant is
impossible. Thus, if the command search init =>* C such that not I(C) has no
solution, then I holds.

4.1 Analyzing Architectures

Architectures have been designed independently from the skeletons, and this
allows to check properties over them. We show here some simple properties of
the centralized ring architecture. Other properties on different architectures can
be proved using the same methodology.
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Using the model checker. We want to check the behavior of the centralized
ring when a node in the ring sends a message to another ring node. To study it
we use an initial configuration with one of the nodes in the ring with an object
and another with a message for it. Some of the nodes will be traversed by the
message and others never will be traversed (at least the center). We define the
property has-msg, that checks if a given location contains messages.

op has-msg : Loc -> Prop .
eq C < L : Process | conf : C’ (to O : CNT) > |= has-msg(L) = true .
eq C |= has-msg(L) = false [owise] .

We define the LTL formulas specifying the properties. The formula F(L) below
expresses that L receives a message exactly once, and then redirects it, where U
represents the until, ~ the negation, and [] the henceforth LTL operators.

eq F(L) = ~ has-msg(L) U (has-msg(L) /\ (has-msg(L) U [] ~ has-msg(L))) .

The formula F’(L) states that L never contains a message and F’’(L) states
that a message reaches L and stays there. They are defined in a similar way as
above. We check this property in an example with five nodes in the ring (l(ipi,
0), i ∈ 1..5), and a message from l(ip4, 0) to an object in the location l(ip2,
0), so it must traverse l(ip5, 0) and l(ip1, 0). The center l(ip0, 0) and
l(ip3, 0) must receive no message. Therefore we use the following command:

red modelCheck(init, F(l(ip4, 0)) /\ F(l(ip5, 0)) /\ F(l(ip1, 0)) /\
F’(l(ip0, 0)) /\ F’(l(ip3, 0)) /\ F’’(l(ip2, 0)) .

result Bool: true

Using the search command. We can check now that the connection between
each node in the ring and the center is direct. In the configuration above, we place
an object in the center and a message for it in the ring node l(ip4, 0). We con-
sider as an invariant (equationally defined) the property messages-invariant,
that states that all the nodes in the ring (except the one sending the message)
never contain a message in their configuration. The command to check the in-
variant is:

search init2 =>* C such that not messages-invariant(l(ip4, 0), C) .

4.2 Analyzing Skeletons

In order to check properties of the skeleton instantiations, we can consider the
sequential version of the concrete application as the specification of the prob-
lem and the distributed, skeleton version as the implementation. We use the
search command to analyze that in all possible executions of an instantiated
skeleton (which introduces nondeterminism) the final result obtained coincides
with the result of the deterministic sequential version. We define for each skele-
ton a getResult operation that, given a final configuration, returns the result
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kept in the master. We use it to compare the results from the sequential and the
distributed implementation, although the comparison can be non trivial [15].

In the Euler example, getResult returns a natural number, that we have to
compare with the result from the specification. The search command used is:

search initial(7) =>! C such that getResult(C) =/= sumEuler(7).

In the mergesort application, used to instantiate the divide and conquer skele-
ton, the postcondition is simple enough to avoid the use of the sequential version
to prove the correctness of the skeleton. We can define an ordered predicate that
checks if a list is sorted and has the same components as another and use it in
the search command:

search init(gen(1000)) =>! C s.t. not ordered(getResult(C), gen(1000)).

5 Conclusions

We have presented the implementation of some static architectures using sockets,
that Maude supports as external objects. We are currently developing more
complex, fault-tolerant architectures, where nodes can join and leave.

We have implemented several skeletons as parameterized modules that re-
ceive as parameters the operations solving each concrete problem. This allows
us to instantiate the same skeleton for a concrete problem in different ways, for
example varying its granularity.

From the Maude side, we show that truly distributed applications can be
implemented and that the recently incorporated support for parameterization
in Core Maude can be applied to more complex applications. From the point of
view of skeleton development, we describe a methodology to specify, prototype,
and check skeletons that can be later implemented in other languages such as
Java (we plan to study in the near future which is the best way to achieve this).

We have tested the skeletons with some examples, using three 2 GHz PowerPC
G5 and two 1.25 GHz PowerPC G4, obtaining a speed-up of 2.5. Although this
speed-up is not remarkable, we observed in the executions that all the processors
were always busy, so most of the time was wasted in manipulating the transmit-
ted data. We have to study how to improve the efficiency; the profiling feature
in Maude allows a detailed analysis of which rules are most expensive to execute
in a given application.

Mobile Maude [5], an extension of Maude allowing mobile computation, has
also been used to implement skeletons, where the master and the workers were
implemented as mobile objects that travelled through the architecture [15]. They
had an attribute with the concrete code of the application. Although the same
generality as in the work presented in this paper was obtained, the main draw-
back was lack of efficiency due to the reflection levels introduced.

Finally, we have started to study how our skeletons can be nested by using the
object-oriented inheritance features provided by Maude. We are also investigat-
ing how to prove properties of the skeletons independently of the instantiations,
by means of rule induction.
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12. Ölveczky, P., Meseguer, J., Talcott, C.: Specification and analysis of the AER/NCA
active network protocol suite in Real-Time Maude. Formal Methods in System
Design 29, 253–293 (2006)

13. Peña, R., Segura, C.: Reasoning about skeletons in Eden. In: Parallel Computing:
Current & Future Issues of High-End Computing, Proceedings of the International
Conference ParCo 2005, NIC Series 33, pp. 851–858 (2006)

14. Rabhi, F.A., Gorlatch, S.: Patterns and Skeletons for Parallel and Distributed
Computing. Springer, Heidelberg (2002)

15. Riesco, A., Verdejo, A.: Parameterized skeletons in Maude. TR 1/07, Dpto.
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