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Abstract. We describe a formal tool based on a symbolic semantics
for Full LOTOS, where specifications without restrictions in their data
types can be executed. The reflective feature of rewriting logic and the
metalanguage capabilities of Maude make it possible to implement the
whole tool in the same semantic framework, and have allowed us to im-
plement the LOTOS operational semantics, to integrate it with ACT
ONE specifications, and to build an entire environment with parsing,
pretty printing, and input/output processing of LOTOS specifications.
Our aim has been to implement a formal tool that can be used by every-
one without knowledge of the concrete implementation, but where the
semantics representation is at so high level that can be understood and
modified by everyone that knows about operational semantics.
Keywords: Full LOTOS, symbolic semantics, rewriting logic, Maude,
meta-language.

1 Introduction

The formal description technique LOTOS [15] was developed within ISO for
the formal specification of open distributed systems. Its behaviour description
part is based on process algebras, borrowing ideas from CCS and CSP, and the
mechanism to define and to deal with data types is based on ACT ONE.! LOTOS
became an international standard (IS-8807) in 1989. Since its standardization,
LOTOS has been used to describe hundreds of systems, and most of this success
is due to the existence of tools where specifications can be executed, compared,
and analyzed.

The standard defines LOTOS semantics by means of labelled transition sys-
tems, where each data variable is instantiated by every possible value. That is the
reason why most of the tools ignore or restrict the use of data types. Calder and
Shankland [3] have defined a symbolic semantics for LOTOS which gives mean-
ing to symbolic, or data parameterised processes (see Section 1.1) and avoids
infinite branching.

* Research supported by CICYT project Desarrollo Formal de Sistemas Basados en
Agentes Mdoviles (T1C2000-0701-C02-01).

! The union of the behaviour and data type description parts is known as Full LOTOS.
We use in this paper the term LOTOS to refer to the whole language.



In the last two decades a lot of work has been done regarding LOTOS im-
plementations [13,12,10,8, 16]. In this paper we focus on the use of rewriting
logic [19, 20] and particularly the Maude language and system [6] to implement a
formal tool based on a symbolic semantics where LOTOS specifications without
restrictions in their data types can be executed.

1.1 LOTOS symbolic semantics

The implementation of the LOTOS symbolic semantics given here is entirely
based on the work presented in [3]. A symbolic semantics for LOTOS is given by
associating a symbolic transition system with each LOTOS behaviour expres-
sion P. Following [14], Calder and Shankland define symbolic transition systems
(STS) as transition systems which separate the data from process behaviour by
making the data symbolic. STS are labelled transition systems with variables,
both in states and transitions, and conditions which determine the validity of a
transition.

Definition 1. A symbolic transition system consists of:

— A (nonempty) set of states. Each state T is associated with a set of free
variables, denoted fo(T).

— A distinguished initial state, Ty.

— A set of transitions written as T b oo, T', where « is a simple or struc-
tured event and b is a Boolean expression, such that fu(T") C fo(T) U fo(a)
and fu(b) C fo(T)U fo(a).

In the symbolic semantics, open behaviour expressions label states (for ex-
ample, h!z ; stop), and transitions offer variables, under some conditions; these
conditions determine the set of values which may be substituted for variables.

In [3] the intuition and key features of this semantics are presented, together
with axioms and inference rules for each LOTOS operator. We will present some
of them, together with their representation in Maude, in Section 2.2.

1.2 Rewriting logic and Maude as a metalanguage

Rewriting logic was introduced by Meseguer [19] as a unified model of concur-
rency in which several well-known models of concurrent systems can be repre-
sented in a common framework. Since then much work has been done on the
use of rewriting logic as a logical and semantic framework [18], in which many
different logics, models of computation, and a wide range of languages, includ-
ing formal specification languages like LOTOS, can be represented, can be given
a precise semantics, and can be executed. Maude is a high-level language and
high-performance system supporting both equational and rewriting logic com-
putation [6]. We use in this paper Maude 2.0 [7], a new version with greater
generality and expressiveness. In particular, Maude 2.0 allows rewrite condi-
tions which are essential for the LOTOS semantics implementation presented
here, as we will see.



Maude should be viewed as a metalanguage [5] in which the syntax and
semantics of all these models and languages can be formally defined, and in
which entire environments for such languages can be built (including parsers,
execution environments, pretty printing, and input/output). We will see how an
environment of this kind has been built for LOTOS in Section 4.

Reflection is the main feature to achieve these powerful metalanguage func-
tionalities. Rewriting logic is reflective [4], that is, there is a finitely presented
rewrite theory U that is universal in the sense that we can represent any finitely
presented rewrite theory R (including U itself) and any terms ¢,¢' in R as terms
R and t,t in U, and we then have the following equivalence:

Rt —t & UF(RT) — (R,).

Intuitively, this means that we can work with theories as data at the metalevel,
combining and manipulating them, and controlling the rewriting process.

In Maude, key functionality of the universal theory U has been efficiently
implemented in the functional module META-LEVEL, where Maude terms are
reified as elements of a data type Term, Maude modules are reified as terms
in a data type Module, the process of reducing a term to normal form is reified
by a function metaReduce, and the process of applying a rule of a system module
to a subject term is reified by a function metaApply [6]. These basic operations
can be combined to build strategies [4] that control the process of rewriting.

If we want to use rewriting logic as a semantic framework and Maude as a
metalanguage to implement our language, the first thing we have to do is to
represent the language £ in question in rewriting logic by a mapping of the form

@ : L — RWlLogic.

In our present case for LOTOS, the map @ is essentially an identity map, pre-
serving the original structure of the formulas, and mirroring each semantic rule
by a corresponding rewrite rule. We will show this representation in Section 2.

Then, we would like to ezecute modules written in that representation. As we
will see in Section 2.3 the obtained representation is itself executable, although
without values, apart from the predefined Booleans. The LOTOS symbolic se-
mantics is parameterized over the set of values and data expressions. Thus, if we
want to build a usable formal tool, we need more, we need to handle data types,
specified using ACT ONE [11].

Instead of defining a data type for representing ACT ONE modules in Maude
and operations to represent the reduction process in ACT ONE, we have im-
plemented an automatic translation from ACT ONE modules into functional
modules in Maude, and we are then able to use the high-performance Maude
reduction engine in a conservative way. We will present in Section 3 this trans-
lation, and in Section 3.1 how the modules are extended to be used by the
semantics.

In Section 4 we will show how the semantics implementation and the ACT
ONE modules translation are integrated to build an entire environment for our
formal tool, where LOTOS specifications with complete freedom in their data



types and (possibly recursive) process definitions, can be entered and executed
by means of a user interface that completely hides the concrete implementation
details. We compare in Section 5 our tool with others like the Concurrency
Workbench [8] and CADP [16]. Finally, we present some conclusions and future
work in Section 6.

2 LOTOS symbolic semantics in Maude

In order to implement the LOTOS symbolic semantics in Maude, we interpret
a LOTOS transition T ——2— T” as a rewriting logic rewrite T — {b}{a}T".
Since the rewriting logic arrow has no labels, we write them as part of the
righthand side term.

In this way, the operational semantics rules become conditional rewrite rules
where the premises become the rule condition, as shown in Section 2.2, and a
transition is possible if and only if the corresponding rewrite can be made in the
rewrite theory representing the semantics, as shown in Section 2.2. This method
was used in [18] to represent the operational semantics for Milner’s CCS, and
in [9] to map action semantics into rewriting logic.

By following a different approach, we presented in [24] an implementation of
the CCS operational semantics. There, CCS transitions P — P’ are represented
as terms, and the CCS semantic rules are translated into rewrite rules where the
representation of the conclusion is rewritten to the set of representations of the
premises. In this way, we start with a transition to be proved valid and work
backwards using the rewriting process, maintaining a set of transitions that
have to be fulfilled in order to prove the correctness of the initial transition.
This transition can be rewritten to the empty set if and only if it is a valid
transition in the CCS semantics. This method has been used for representing
LOTOS in [22].

The approach followed in this paper has several advantages. The implemen-
tation is closer to the mathematical, logical presentation of the semantics. An
operational semantics rule establishes that the transition in the conclusion is pos-
sible if the transitions in the premises are possible, and that is the interpretation
of a conditional rewrite rule with rewrite conditions. The alternative approach
needs auxiliary structures like the multisets of statements to be proved valid,
which forced us to implement at the metalevel a search strategy that checks if
a given multiset can be reduced to the empty set. Now, the necessity of search-
ing appears in the rewrite conditions but the Maude system, which is able to
handle these conditions, solves the problem. We will compare these two different
approaches again in Section 5.

2.1 LOTOS syntax

There are two different syntax: the concrete syntax used by the specifier (see [23],
for full details), and the abstract syntax used by the semantics implementation
and introduced in this section. It is defined in the Maude functional module



LOTOS-SYNTAX, which includes DATAEXP-SYNTAX. We use the predefined quoted
identifiers to build LOTOS variable, sort, gate, and process identifiers. Booleans
are the only predefined data type. LOTOS syntax is extended in a user-definable
way when ACT ONE data types specifications are used. Values of these data
types will extend the type DataExp below. We will see how it is done in Section 3.

fmod DATAEXP-SYNTAX is protecting QID .
sort VarId . op V : Qid -> VarId .
sort DataExp .
subsort VarId < DataExp . *** A LOTOS variable is a data expression.
subsort Bool < DataExp . *** Booleans are a predefined data type.
endfm

fmod LOTOS-SYNTAX is protecting DATAEXP-SYNTAX .
sorts SortId Gateld Procld .
op S : Qid -> SortId . op G : Qid -> GateIld . op P : Qid -> ProcId .
sort BehExp .
op stop : -> BehExp .
op exit(_) : ExitParam -> BehExp .

op _;_ : Action BehExp -> BehExp [prec 35]
op _[]_ : BehExp BehExp -> BehExp [prec 40]
op _I[_1l_ : BehExp GateIdList BehExp -> BehExp .

op hide_in_ : GateIdList BehExp -> BehExp [prec 40]

[ ]

endfm

2.2 LOTOS symbolic semantics

First, we define Contexts, which are used to keep the definitions of processes
introduced in a LOTOS specification. In order to execute a process instantiation,
the process definition has to be looked for in the context. The actual context is
built when the LOTOS specification is entered to the tool (we will see how it is
done in Section 4.1). In the semantics, a constant context is assumed, and it
represents the collection of process definitions. We could say that the semantics
is parameterized over this constant, that will be instantiated when a concrete
specification is used.

fmod CONTEXT is protecting LOTOS-SYNTAX .
sort Context .
op context : -> Context .

[ ]

endfm

Now, we can implement the LOTOS symbolic semantics. First we show some
operations used in the semantics definition that present problems when imple-
menting them, and how we have solved these problems in Maude.

In the semantics, a set new-var of fresh variable names is assumed. As
said in [3], strictly speaking, any reference to this set requires a context, i.e.



the variable names occurring so far. Instead of messing up the implementation
with this other context, we have preferred to use a predefined Maude utility
imported from module ORACLE, where a constant NEWQ is defined. Each time NEWQ
is rewritten, it is rewritten to a different quoted identifier. With the following
definition, we have the set of fresh variable names.

op new-var : —> Varld .
eq new-var = V(NEWQ)

A (data) substitution is written as [z/x] where z is substituted for z. It seems
to be easy to implement equationally, and we present below some equations
showing how the substitution operation distributes over the syntax of behaviour
expressions. However, if we want to allow user-definable data expressions by
means of an ACT ONE specification, we cannot completely define this operation
now, because we do not know at this point the syntax of data expressions.
We will describe in Section 3.1 how the module containing the new syntax is
automatically extended to define this operation on new data expressions.

op _[_/_]1 : BehExp DataExp VarId -> BehExp .

op _[_/_]1 : DataExp DataExp VarId -> DataExp .

eq stop [E’ / E] = stop .

eqg ! E1 ; P[E” /E]l =g ! (E1[E’ / E]) ; (P[E’ / ED)
eq P1 [1 P2 [E’ / E] = (P1[E’ / E]) [1 (P2[E’ / ED)

[ ]

Also a function vars is used to obtain the variables occurring in a behaviour
expression. And we have the same problem, that is, we cannot define it com-
pletely at this level since data expressions syntax is user-definable. We will see
in Section 3.1 how it is defined automatically for new data expressions.

op vars : BehExp -> VarSet .

op vars : DataExp -> VarSet .

eq vars(stop) = mt .

eq vars(g 7 x : S ; P) = x U vars(P)
eq vars(P1 []1 P2) = vars(P1) U vars(P2)
eq vars(x) = x .

[ ]

Now we can define the symbolic transitions. As said above, a transition
T o, T’, where T and T" are behaviour expressions, b is a transition condi-
tion, and « is an event, will be represented as a rewrite T — {b}{a}T’, where
the righthand side term is of sort TCondEventBehExp.

sort TCondEventBehExp .
op {_}_}_ : TransCond Event BehExp -> TCondEventBehExp .

We present some LOTOS symbolic semantics rules and their representation
as rewrite rules in Table 1 (the complete set of rules can be found in [23]). We also
show the inference rules to ease the comparison between the mathematical and



prefix axioms

P %2, p rl A ; P => {true}{A}P .
. rl g 0 ; P => {true}{g eOf£(0)}P .
gdy...dpp 55 p rl g 0 [SP] ; P => {SP}g eOf£(0)}P .
gds...dsPlp X 2P p o op eOff : Offer -> EOffer .
eq e0ff(! E) = E .
FE;ifd; =E; eq e0ff(? x : S) =x .
here B = : d
e {<”i1fdi = TS eq e0ff(0 0’) = e0f£(0) e0f£f(0’)

choice range rules
Plgi/g] =—"— P’

choice g in [g1,...,gn] [] P 22> P’

for each g; € {g1,...,9n}

crl choice g in [GIL][] P => {b}{a}P’
if select(GIL) => gi /\ Plgi / gl => {b}al}P’
sort GateId? . subsort Gateld < GateId? .
op select : GateldList -> GateId? .
rl select(g) => g .
rl select(g, GIL) => g .
rl select(g, GIL) => select(GIL)

hide rules
P b « P/

hide ¢1,...,¢n in P -2 hide ¢1,...,gn in P’

name(a) € {g1,...,9n}

Pb [e] P/

hide g1,...,g» in P -2 hide ¢1,...,gn in P’

name(a) € {g1,...,9n}

crl hide GIL in P => {b}{i}hide GIL in P’
if P => {b}{a}P’ /\ (name(a) in GIL)

crl hide GIL in P => {b}{a}hide GIL in P’
if P => {b}{a}P’ /\ not(name(a) in GIL)

general parallelism rules (not synchronising)

P P

name(a) € {g1,...,9n,0}

Pif[g1s- s ga] | P2 27— Pio|[g,...,gu]| P2 !

where « = gE1...E,, 0 = 01...0n, dom(o;) are disjoint, and

o [2z:/2:) if E; = x;, x; € vars(P2) and z; € new-var.
T otherwise

crl P1 |[GIL]| P2 => {b sp(a,vars(P2))}{a sp(a,vars(P2))}
((P’ sp(a,vars(P2))) |[GIL]| P2)
if P1 => {b}{a}P’ /\ not(name(a) in (GIL, delta))

Table 1. Some semantics rules, and their implementation in Maude.



Maude representations. The inference rules are not exactly the ones presented
in [3] because we have generalized them to allow multiple event offers at an
action.

The rules for the prefix operator show how axioms are represented as rewrite
rules without conditions. The choice range rule shows how nondeterministic elec-
tions can be made by using rewrite rules. The hide rules show how side conditions
in the inference rules are added as conditions in the rewrite rules. Finally, the
general parallelism rule shows how external definitions can be used, as the one
defining the substitution (not shown in figure).

After having implemented all the semantics rules for behaviour expressions,
we have the following conservativity result: Given a LOTOS behaviour expres-
sion P, there are a transition condition b, an event a, and a behaviour expression
P’ such that

PbaPl

if and only if P can be rewritten into {b}{a}P’ using the presented rules.

In [3], it is also defined the concept of a term, which consists of an STS,
T, paired with a substitution, o, and written as T,. Transitions between terms
are also defined. We have implemented these transitions as we have done for
behaviour expressions (see [23]).

2.3 Execution example

By using the search Maude command, that looks for all the rewrites of a given
term that match a given pattern, we can find all the possible transitions of a
behaviour expression.

Maude> search
G(’g) ; GCh) ; stop
Il GCg) 1
(G(’a) ; stop [1 G(’g) ; stop) => X:TCondEventBehExp .
Solution 1 (state 1)
X:TCondEventBehExp --> {true}{G(’a)}G(’g) ; G(’h) ; stop |[GCg)]| stop
Solution 2 (state 2)
X:TCondEventBehExp --> {true}{G(’g)}G(°h) ; stop |[G(°’g)]| stop
No more solutioms.

Maude> search G(’h) ; stop |[G(’g)]| stop => X:TCondEventBehExp .
Solution 1 (state 1)

X:TCondEventBehExp --> {true}{G(’h)}stop |[G(’g)]| stop

No more solutioms.

But we cannot use data expressions, apart from the predefined Booleans,
because we have not introduced any ACT ONE specification, and we have to
write identifiers using the abstract syntax. But these specifications are part of
a Full LOTOS specification, and therefore, user-definable. We will see in the
following sections how we give semantics to ACT ONE specifications and how
they can be integrated with the previous LOTOS semantics implementation.



3 ACT ONE modules translation

We want to be able to introduce into our tool ACT ONE specifications, which
will be then translated internally to Maude functional modules.

Thus, we have to define ACT ONE syntax first. In Maude, the syntax defini-
tion for a language L is accomplished by defining a data type Grammar ., which
can be done with very flexible user-definable mizfir syntax, that can mirror the
concrete syntax of L. Particularities at the lexical level of £ can be accommo-
dated by user-definable bubble sorts, that tailor the adequate notions of token
and identifier to the language in question. Bubbles correspond to pieces of a
module in a language that can only be parsed once the grammar introduced by
the signature of the module is available [5]. This is specially important when
L has user-definable syntax, as it is our case with ACT ONE. The grammar of
ACT ONE can be found in [23].

After having defined the module with ACT ONE syntax, we can use function
metaParse from META-LEVEL, which receives as arguments the representation
of a module M and the representation of a list of tokens and it returns the
metarepresentation of the parsed term (a parse tree that may have bubbles) of
that list of tokens for the signature of M.

The next step consists in defining an operation translate that receives the
parsed term and returns a functional module with the same semantics as the
introduced ACT ONE specification.

. . metaParse translate
QidList ————  GrammaracTt oNg ——— FModule

Notice that we start with a QidList (a list of quoted identifiers). It is obtained
from the user input (see Section 4.2).

With our translation we achieve the following result: Given an ACT ONE
specification SP, and terms t and ¢’ in SP, we have

SPEt=t <<= MEty =ty

where M = translate(metaParse(ACTONE-GRAMMAR,SP)), and ¢y and t), are
the representations of ¢ and ' in M.

We do not show here the implementation of the translation (it can be found
in [23]), but we show an example in Figure 1. Notice that when an ACT ONE
sort declaration for sort 7' is found, it is not only translated into a Maude
sort declaration for sort T', but we also have to declare type T as a subsort of
sort DataExp (since values of the declared type could be used in a behaviour
expression to be communicated) and the sort of LOTOS variables VarId has to
be declared as a subsort of type T (since LOTOS variables could be used to
build data expressions of this type). This is done in this way because we want
to integrate ACT ONE modules with LOTOS specifications, but the translation
is useful by itself, since it provides us with a tool in Maude where ACT ONE
specifications can be entered and executed.



type Naturals is fmod Naturals is

sorts Nat including DATAEXP-SYNTAX .
opns sorts Nat .
0 : -> Nat subsort VarId < Nat .
s : Nat -> Nat subsort Nat < DataExp .
_+_ : Nat, Nat -> Nat op 0 : -> Nat .
eqns op s : Nat -> Nat .
forall x, y : Nat op _+_ : Nat Nat -> Nat .
ofsort Nat eq 0 + x:Nat = x:Nat .
0+x=x; eq s(x:Nat) + y:Nat =
s(x) +y=s+y ; s(x:Nat + y:Nat)
endtype endfm

Fig. 1. The ACT ONE specification on the left is translated into the functional module
on the right.

3.1 Module extensions

In Section 2.2 we saw that the operation that performs the syntactic substitution
and the operation that extracts the variables occurring in a behaviour expression
were not completely defined. The reason why we cannot define them completely
when defining the semantics is the same in both cases: the presence of data
expressions with user-definable syntax.

Now that we know the ACT ONE specification and we have translated it to
a functional module, we can define these operations on data expressions using
the new syntax. Due to the metaprogramming features of Maude, we can do it
automatically. We have defined operations that take a module M and return the
same module M but where equations defining the substitution and extraction
of variables over expressions built using the signature in M have been added.

For example, if the operation addOperVars is applied to the module Naturals
above, it adds the following equations:2

eq vars(0) = mt .
eq vars(s(vi:Nat)) = vars(vl:Nat)
eq vars(vl:Nat + v2:Nat) = vars(vl:Nat) U vars(v2:Nat)

4 Building the user interface for LOTOS

We want to implement a formal tool where complete LOTOS specifications (with
an ACT ONE data types specification, a main behaviour expression, and process
definitions) are entered and executed. In order to execute or simulate the speci-
fication, we want to be able to traverse the symbolic transition system generated
for the main behaviour expression by using the symbolic semantics instantiated

2 In Maude 2.0 a variable is an identifier composed of a name, followed by a colon,
followed by a sort name. In this way, variables do not have to be declared in variable
declarations, although they are still allowed for convenience.



with the data types given in ACT ONE and the given process definitions. We
present here only the main ideas used in our implementation; full details can be
found in [23].

The following module defines the commands of our tool.

fmod LOTOS-TOOL-SIGN is protecting LOTOS-SIGN .
sort LotosCommand .

op show process . : -> LotosCommand .
op show tramnsitions . : -> LotosCommand .
op show transitions of_. : BehExp -> LotosCommand .
op cont_. : MachineInt -> LotosCommand .
op cont . : -> LotosCommand .
op show state . : -> LotosCommand .
endfm

The first command is used to show the current process, that is, the be-
haviour expression used if we omit it in the rest of commands. The second and
third commands are used to show the possible transitions (defined by the sym-
bolic semantics) of the current or explicitly given process, that is, they start the
execution of a process. The fourth command is used to continue the execution
with one of the possible transitions, the one indicated in the argument of the
command. Command cont is a shorthand for cont 1. The sixth command is
used to show the current state of execution, that is, the current condition, trace
and possible next transitions.

4.1 Tool state handling

In our tool, the persistent state of the system is given by a single object which
maintains the tool state. This object has the following attributes:

— semantics, to keep the actual module where behaviour expressions can be
executed, that is, the module LOTOS-SEMANTICS in Section 2.2 extended with
the syntax and semantics for new data expressions;

— lotosProcess, to keep the behaviour expression that labels the node in the
symbolic transition system that has been reached during the execution;

— transitions, to keep the set of possible transitions from lotosProcess;

— trace, to keep the sequence of events performed in the path from the root
of the STS to the current node;

— condition, to keep the conjuntion of transition conditions in that path; and

— input and output, to handle the communication with the user.

We declare the following class by using the notation for classes in object-
oriented modules [6]:

class ToolState | semantics : Module, lotosProcess : Term,
transitions : TermSeq, trace : Term, condition : Term,
input : QidList, output : QidList .



Then we describe by means of rewrite rules the behaviour of the tool when
a LOTOS specification or the different commands are entered into the system.
For example, there is a rule which processes a LOTOS specification entered to
the system. We allow LOTOS specifications with four arguments: the name of
the specification, an ACT ONE specification defining the data types to be used,
the main behaviour expression, and a list of process definitions (either the ACT
ONE specification or the list of processes can be empty). No local declarations are
allowed. When a specification is entered, the semantics attribute is set to a new
module built as follows: first, the ACT ONE part of the specification is translated
to a functional module; then, equations defining the extraction of variables and
substitution are added (as explained in Section 3.1); the resulting module is
joined with the metarepresentation of module LOTOS-SEMANTICS; and, finally,
an equation defining the constant context (Section 2.2) with the definitions of
processes given in the specification is added. The lotosProcess attribute is also
updated to the behaviour expression in the introduced specification (after having
converted it to a term of sort BehExp), and the rest of attributes are initialized.

Tool commands are handled by rules as well. For example, there is a rule
that handles the show transitions command. It modifies the transitions
attribute by using an operation which receives a module with the semantics
implementation (extended with the syntax and semantics of data expressions)
and a term t representing a behaviour expression, and returns the sequence of
terms representing the possible transitions of . It uses the operation metaSearch
that represents at the metalevel the search command used in Section 2.3.

4.2 The LOTOS tool environment

Input/output of specifications and of commands is accomplished by the prede-
fined module LOOP-MODE [6], that provides a generic read-eval-print loop. This
module has an operator [_,_,_] that can be seen as a persistent object with
an input and output channel (the first and third arguments, respectively), and
a state (given by its second argument). We have complete flexibility for defining
this state. In our tool we use an object of the ToolState class. When something
is written in the Maude prompt enclosed in parentheses it is placed in the first
slot of the loop object, as a list of quoted identifiers. Then it is parsed by using
the adequate grammar, and the parsed term is put in the input attribute of the
tool state object. Finally, the rules describing the tool state handling process it.
The output is handled in the reverse way, that is, the list of quoted identifiers
placed in the third slot of the loop is printed on the terminal.

4.3 Execution example

This is an example of an interaction with the LOTOS tool. Although we use here
a very simple example, we have used the tool to execute larger examples [23],
including the Alternating Bit Protocol and the Sliding Window Protocol (with
more than 550 lines of code) [21]. Our tool has proved itselt quite practical,
giving the answer to the entered commands in few milliseconds.



Maude> (specification SPEC
type Naturals is
[as shown above]

endtype
behaviour
h!o0; stop [ (C g! (s(0)) ; stop
Il g1l
g?x: Nat ; h! (x+ s(0)) ; stop )
endspec)

Maude> (show transitions .)

Trace : nil

Condition : true

TRANSITIONS :

1. {true}{h O}stop

2. {x = s(0)}{g s(0)}stop I[g]ll h ! s(s(0)); stop

Maude> (cont 2 .)

Trace : g s(0)

Condition : x = s(0)

TRANSITIONS :

1. {true} h s(s(0))}stop |[g]| stop

Maude> (cont .)

Trace :(g s(0))(h s(s(0)))
Condition : x = s(0)

No more transitions .

5 Comparison with other tools

As we said in the introduction of Section 2, we have implemented a similar tool by
using a different approach, where transitions are represented as terms [22]. The
main differences (besides the semantics representation, which is quite different)
are found in the things that are done in the object level (level of the semantics
representation) and the metalevel (by using reflection). In [22], a search operation
defined at the metalevel is used to check if a transition is possible. It traverses
a tree with all the possible rewrites of a term, moving continuously between the
object level and the metalevel. In the implementation described in this paper,
the search occurs completely at the object level, which makes it quite faster
(and simpler). The fact of moving continuosly between the two levels allows us
in [22] to define more things at the metalevel, like the substitution operation
and extraction of variables, defined used the syntax of Terms at the metalevel.
Here we follow a different approach as explained in Section 3.1, which we think
is much more elegant and more general.

The Concurrency Workbench of the New Century (CWB-NC) [8] is an au-
tomatic verification tool where systems in several specification languages can be
executed and analyzed. Regarding LOTOS, CWB-NC accepts Basic LOTOS,



because it does not support value-passing process algebras. The design of the
system exploits the language-independence of its analysis routines by localizing
language-specific procedures, which enables users to change the system descrip-
tion language by using the Process Algebra Compiler, that translates the opera-
tional semantics definitions into SML code. We have followed a similar approach,
although we have tried to maintain the semantics representation at as high level
as possible, although being executable. We have also implemented the seman-
tics of the Hennessy-Milner modal logic for CCS and the subset of FULL [2]
corresponding to this logic for LOTOS. Both implementations follow the same
idea, using an operation to calculate the one-step successors of a process which
in its turn uses the operational semantics definitions. Thus, the implementation
of the analyzing algorithm, that is, the representation in Maude of the modal
logic semantics, is the same in both cases, obtaining similar achievements than
in the CWB-NC on keeping separated the language-specific features from the
general ones.

The Caesar/Aldebaran Development Package (CADP) [16] is a toolbox for
protocol engineering, with several functionalities, from interactive simulation (as
we do in our tool) to formal verification. In order to support different specifica-
tion languages, CADP uses low-level intermediate representations, which forces
the implementer of a new semantics to write compilers that generate these repre-
sentations. CADP has already been used to implement FULL [1], although with
the severe restrictions to finite types and to the standard semantics of LOTOS
instead of the symbolic one.

6 Conclusions and future work

We have presented a new example of how rewriting logic and Maude can be used
as a semantic framework and metalanguage, where entire environments and tools
for the execution of formal specification languages can be built. In this process,
reflection plays a decisive role.

We have implemented the LOTOS symbolic semantics in Maude by repre-
senting transitions as rewrites and by representing the semantics rules as condi-
tional rewrite rules where the transitions in the premises become the conditions.
This approach is different from the one used in [22,24], and presents several
advantages as explained in Sections 2 and 5.

In addition, we have implemented a translation from ACT ONE specifications
to Maude functional modules, which allows as to execute these specifications in
Maude by using its high-performance reduction engine. These functional modules
are integrated with the semantics, obtaining an implementation of the LOTOS
symbolic semantics with user-definable data types.

Finally, we have implemented in Maude a user interface for our tool that al-
lows the user not to use Maude directly, but instead a tool built on Maude whose
input is a LOTOS specification and where the specification can be executed by
means of commands that traverse the corresponding labelled transtition system.



Based on the symbolic semantics used in this paper, a symbolic bisimula-
tion [3] and a modal logic FULL [2] have been defined. We plan to extend our
tool so that we can check if two processes are bisimilar, or if a process satisfies
a given modal logic formula. We have already implemented a subset of FULL
without data values, and we have integrated it with our tool. The part of the
logic with data values deserves more study, and we think that some kind of
theorem proving will be needed. Rewriting logic and Maude have been proved
highly valuable also for these subjects [4].
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