
Playing with Maude

Miguel Palomino, Narciso Mart́ı-Oliet, and Alberto Verdejo

Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid
{miguelpt,narciso,alberto}@sip.ucm.es

Abstract. This paper is an introduction to rule-based programming in Maude. We illustrate in particular
the use of operator attributes to structure the state of a system, and the difference between equations and
rules. We use mathematical games and puzzles for our examples illustrating the expressive power of Maude.
Keywords: Rule-based programming, Maude, puzzles.

1 Presentation

Though not a formal branch of Mathematics, mathematical games and puzzles of all sorts
constitute an important subclass in the realm of mathematical problems, with a long tra-
dition and extensive literature [1,4,11,12]. Most of them have in common the fact that they
are easy to state and understand, which does not mean that a precise solution is always
trivial to find.

Here we make use of a collection of these problems to introduce Maude, a specification
language that efficiently implements rewriting logic [10], which includes equational logic as
a sublogic. We are not concerned with finding neat and concise mathematical solutions, but
rather we would like to find out how easy is to express those problems in the rewriting logic
formalism underlying Maude, and how far we can go in their resolution by the use of just
brute force and as less ingenuity as possible. In this regard, a clear conclusion is that many
of these problems can be represented/specified in Maude in a much simpler way than it
would be possible in other more conventional languages. Among the main reasons why the
rule-based programming paradigm supported by Maude allows so natural a representation
of many problems, we would like to mention:

• The syntax is user-definable to a great extent, which allows to choose the more ap-
propriate one for each problem. In particular, operators declared by the user can have
attributes like associativity and commutativity, which makes multiset rewriting trivial.
All the specifications in this paper make essential use of this feature.

• An expressive version of equational logic allows a (first-order) version of functional pro-
gramming to describe the static aspects of a system.

• The dynamic aspects are described by means of rules that represent the possible transi-
tions or changes in a system. Those rules need only specify the part of the system that
actually changes, which makes them quite simple. This corresponds to the fact that
rewriting logic is a logic very suitable for expressing concurrent action and change [7] in
which the frame problem [6] has been avoided.

• The transitive closure of the relation defined by the rules is automatically computed
by the Maude system. This, combined with the flexible search command, lets the user
explore all computations starting at a given state.

On the other hand, it is also true that some of these examples suffer from the state explosion
problem which makes it difficult to solve them just by checking all possible combinations.

Most of the problems introduced here are well-known and can be found (in some form
or another) in a number of sources: see [11] for a classic reference on the subject, [4] for
a delightful exposition on how to tackle these problems, [1] for an on-line presentation, or
even [12] for more algebraic ones. In many cases, a clear mathematical solution exists, but
not always, and anyway our goal is to show the ease with which Maude lends itself to the
specification of these problems, and to try to solve them without much thinking.

This paper is thus an introduction to rule-based programming in Maude by means of a
collection of puzzles showing the language’s expressive power. Even though current Maude
users no doubt will find the examples here to be very simple, those new to it may still find
them attractive and be encouraged to use Maude for more “serious” applications. Anyway,
even that would be too ambitious a goal: the main reason why this was written down was,
plain and simple, to have some fun. And we hope that you will have some fun while reading
it, too. All the examples can be downloaded from http://maude.sip.ucm.es/games.

2 A Brief Overview on Rewriting Logic and Maude

The motivation for this section is not to provide a crash course on rewriting logic and
Maude. On the contrary, we only intend to give the flavor of the underlying theory and
provide enough information so that the specifications of the examples in the next sections
can be understood. For a thorough treatment we refer the interested reader to the paper in
which rewriting logic was first presented [10], to the Maude manual [3], and to [9], where
many more papers on rewriting logic are referenced.

Rewriting logic was proposed by Meseguer as a unified model for concurrency in the
early nineties. Since then, it has proved its value as a logic of change as well as a logical
and semantic framework [8]. As a consequence of that success some implementations were
developed; the one we use is called Maude and can be obtained at http://maude.cs.uiuc.
edu free of charge.

The states (or configurations) of a system, its static part, are specified in rewriting logic
by means of an equational theory. The transitions, the dynamic part, are specified by means
of rules that rewrite some terms (representing parts of a system) into others.

To illustrate both these ideas and Maude syntax consider the following example. We have
some natural numbers written on a blackboard and we are allowed, at any given time, to
replace any two of them by their arithmetic mean. In this case the static part corresponds
to the representation of the blackboard and the numbers themselves. To represent the
numbers we have first to declare their sort (or type) and then write the well-known Peano
constructors.

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

Since we will also need to add numbers we declare an operator

op _+_ : Nat Nat -> Nat .

Note the use of Maude’s mixfix syntax, with indicating where the arguments are to be
written. Its behavior is defined inductively by means of the following two equations.

vars N M : Nat .

eq N + 0 = N .

eq N + s(M) = s(N + M) .

2

Division div would be defined analogously. As for the blackboard, it can be represented
as a (nonempty) multiset, or bag, of numbers.

sort Blackboard .

subsort Nat < Blackboard .

op __ : Blackboard Blackboard -> Blackboard [assoc comm] .

The subsort declaration tells Maude that a single number constitutes a valid represen-
tation for the blackboard. Multiset union is represented with empty syntax . Note that
this operator has two attributes, assoc and comm, so that terms of sort Blackboard are
considered modulo associativity and commutativity (e.g., s(0) 0 and 0 s(0) become in-
distinguishable).

Finally, the system’s dynamics is specified by the single rule

rl [replace] : N M => (N + M) div s(s(0)) .

The word in brackets after the keyword rl is the rule’s name and is optional. Note that it
is enough to specify the behavior of the two numbers that are going to be erased, without
considering the rest of the numbers in the blackboard.

The rewrite command can be used to execute the system, by means of an interpreter
which applies the rules (using a default internal strategy) and stops when no rule can be
applied.

Maude> rewrite s(s(s(s(s(s(0)))))) s(s(s(0))) s(s(0)) .

result NzNat: s(s(s(s(0))))

But the numbers chosen to be replaced by their mean can be selected arbitrarily, that
is, in a nondeterministic way, and this affects the final result. The search command can be
used to explore the computation tree. It receives the term to be rewritten, the relation used
to obtain final states (=>* for zero or more rewrites), and the final state (a new variable
N:Nat of sort Nat in this case). The computation tree is traversed in a breadth-first way.

Maude> search s(s(s(s(s(s(0)))))) s(s(s(0))) s(s(0)) =>* N:Nat .

Solution 1 (state 4)

N --> s(s(s(s(0))))

Solution 2 (state 5)

N --> s(s(s(0)))

No more solutions.

3 The Hopping Rabbits

Two teams of n rabbits each, wearing T-shirts marked with a cross and a circle respectively,
are placed facing each other on a row with 2n + 1 positions. The x-team occupies the first
n positions and the o-team the last n; the middle one is left empty. The goal is to swap
the positions of the teams (the players of each team are indistinguishable), with the rabbits
moving according to the rules of the game:

1. Rabbits from the x-team can only move rightward, and rabbits from the o-team can
only move leftward.

2. A rabbit is allowed to advance one position if that position is empty.
3. A rabbit can jump over a rival if the position behind it is free.

3

This puzzle is also known as the toads and frogs puzzle or traffic jam. It is possible to
generalize the puzzle so that the number of elements in each team is different [11].

We represent the state of the game as a nonempty list of rabbits, specified by means
of an associative append operator written with empty syntax __; note that associativity
is built into the list constructor __ using the attribute assoc. Each rabbit is represented
as a constant x or o, according to its team, and the constant free represents the empty
position.

The initial state of the game depends on the number n of rabbits in each team. This
is specified by means of an operator initial that builds the appropriate initial state, as
indicated in the equations below to define this operator. Notice how equations are used to
define the initial state, while rules are used to represent the transitions corresponding to
the legal moves in the game. As pointed out in the introduction, we use two logics, each for
a different purpose: equational logic for the static aspects of a system, and rewriting logic
for the dynamic aspects.

Since the rules need only specify the parts of the system that change, in this game we
only need to consider the positions adjacent to the free position. Thus there are four possible
legal moves, and each one is represented by a rule whose label identifies the corresponding
move.

The complete specification is then as follows; the second line imports the predefined
module NAT that specifies the natural numbers with the usual notation and arithmetic
operations [3, Section 7.2].

mod RABBIT-HOP is

protecting NAT .

sorts Rabbit RabbitList .

subsort Rabbit < RabbitList .

ops x o free : -> Rabbit .

op __ : RabbitList RabbitList -> RabbitList [assoc] .

op initial : Nat -> RabbitList .

var N : Nat .

vars L R : RabbitList .

var B : Rabbit .

eq initial(0) = free .

eq initial(s(N)) = x initial(N) o .

rl [xAdvances] : x free => free x .

rl [xJumps] : x o free => free o x .

rl [oAdvances] : free o => o free .

rl [oJumps] : free x o => o x free .

endm

Since we are interested in knowing how to reach the final position, and in general there
are several possible rules that can be applied in a given state, we use the search command.
The example below is with n = 3.

Maude> search initial(3) =>* o o o free x x x .

Solution 1 (state 71)

empty substitution

No more solutions.

4

The sequence of 15 steps leading to the final position can be obtained as follows, where
we only show the beginning of the output.

Maude> show path 71 .

state 0, RabbitList: x x x free o o o

===[rl x free => free x [label xAdvances] .]===>

state 1, RabbitList: x x free x o o o

===[rl free x o => o x free [label oJumps] .]===>

state 4, RabbitList: x x o x free o o

===[rl free o => o free [label oAdvances] .]===>

state 9, RabbitList: x x o x o free o

...

4 The Josephus Problem

As related in [11], Flavius Josephus was a famous Jewish historian who, during the Jewish-
Roman war in the first century, was trapped in a cave with a group of 40 Jewish soldiers
surrounded by Romans. Legend has it that, preferring death to being captured, the Jews
decided to gather in a circle and rotate a dagger around it so that every third remaining
person would commit suicide. Apparently, Josephus was too keen to live and quickly found
out the safe position.

The problem of finding that safe position can be modeled very easily in Maude. The
circle representation becomes a (circular) list once the beginning position is chosen. The
operator is used to build nonempty lists of (nonzero) natural numbers (sort NzNat in
Maude’s predefined module NAT) representing the original positions of the soldiers in the
circle; its associativity is specified with the attribute assoc. Though it is not explicitly
represented, we assume that the dagger is initially at position 1.

The idea then consists in continually taking the first two elements in the list and moving
them to the end of it while “killing” the third one; when only two are left, the one who
initially has the dagger has to commit suicide. Note that in this way the dagger remains
always implicitly located at the beginning of the list. Since we need to keep track of both the
actual start and end of the list, we enclose it using the operator {_}. In this way, rewriting
takes place only at the top of the term that represents the state.

As in the previous example, the operator initial and the corresponding equations are
used to build the initial state. Then the rules correspond to the system transitions; we have
got three rules for the cases when there are two, three, or more soldiers in the circle. Notice
that there is no rule corresponding to a single soldier list, because this is the situation in
which the last remaining soldier decides not to follow the rules of the game. In Maude
modules, several rules can have the same label, and comments are introduced with ---.

mod JOSEPHUS is

protecting NAT .

sorts Moriturem Circle .

subsort NzNat < Moriturem .

op __ : Moriturem Moriturem -> Moriturem [assoc] .

op {_} : Moriturem -> Circle .

op initial : NzNat -> Moriturem .

var M : Moriturem .

vars I1 I2 I3 N : NzNat .

5

eq initial(1) = 1 .

eq initial(s(N)) = initial(N) s(N) .

rl [kill] : { I1 I2 I3 M } => { M I1 I2 } .

rl [kill] : { I1 I2 I3 } => { I1 I2 } . --- This rule is necessary

--- because M cannot be empty

rl [kill] : { I1 I2 } => { I2 } .

endm

Had we been in the same position as Josephus (and had we had a laptop to run Maude
on it), we could have found out the safe spot by executing the command:

Maude> rewrite { initial(41) } .

result Circle: {31}

Note that at any moment until the end only one of the three rules can be applied, thus the
final state is reached deterministically.

It is also easy to modify the program so that every i-th person commits suicide, where
i is a parameter. The idea is the same, but because of the parameter now it is necessary to
explicitly represent the dagger. For that, we use the constructor dagger : NzNat NzNat

-> Moriturem, whose second argument stores the value of i while the first one acts as a
counter: each time an element is moved from the beginning of the list to the end, the first
argument is decreased by one; once it reaches 1, the element that is currently the head of
the list is “killed” (removed from the list).

mod JOSEPHUS-GENERALIZED is

protecting NAT .

sorts Moriturem Circle .

subsort NzNat < Moriturem .

op dagger : NzNat NzNat -> Moriturem .

op __ : Moriturem Moriturem -> Moriturem [assoc] .

op {_} : Moriturem -> Circle .

op initial : NzNat NzNat -> Moriturem .

var M : Moriturem .

vars I I1 I2 N : NzNat .

eq initial(1, I) = dagger(I, I) 1 .

eq initial(s(N), I) = initial(N, I) s(N) .

rl [kill] : { dagger(1, I) I1 M } => { dagger(I, I) M } .

rl [kill] : { dagger(s(N), I) I1 M } => { dagger(N, I) M I1 } .

rl [kill] : { dagger(N, I) I1 } => { I1 } . --- The last one throws the dagger away!

endm

Maude> rewrite { initial(41, 3) } .

result Circle: {31}

5 The Three Basins Puzzle

The following is a classic puzzle with a recent cameo in the 1995 Hollywood hit Die Hard:

With a Vengeance. In the movie, McClane and Zeus have to deactivate a bomb by placing
4 gallons of water on a balance. The supply of water is unlimited, but they only have three
basins with capacities of 3, 5, and 8 gallons, respectively.

6

The problem can be specified in Maude as follows. A basin is represented by means of the
constructor basin with two natural numbers as arguments: the first one is the basin capacity
and the second one is how much it is filled. We can think of a basin as an object with two
attributes. This way of thinking leads to an object-based style of programming, where objects
change their attributes as result of interacting with other objects; these interactions are
represented as rules on configurations that are nonempty multisets of objects [3, Chapter 8].
The multiset constructor is written with empty syntax and declared with attributes assoc
and comm. The constant initial defines the initial configuration.

At any given time we can either empty one of the basins, or fill it completely; the rules
empty and fill below take care of this. When there is enough space in one of the basins to
hold the current content of another, we can transfer all the water from this second one by
using rule transfer1. Note that this is a conditional rule (introduced with keyword crl),
with the condition at the end, after keyword if. The case when, after pouring one basin
over another, there is still some water left is dealt with by the conditional rule transfer2

(where the operator sd denotes the subtraction operation over natural numbers). These
last two rules could be combined into a single one, but the result would not be so clear.

mod DIE-HARD is

protecting NAT .

sorts Basin BasinSet .

subsort Basin < BasinSet .

op basin : Nat Nat -> Basin . --- Capacity / Content

op __ : BasinSet BasinSet -> BasinSet [assoc comm] .

op initial : -> BasinSet .

vars M1 N1 M2 N2 : Nat .

eq initial = basin(3, 0) basin(5, 0) basin(8,0) .

rl [empty] : basin(M1, N1) => basin(M1, 0) .

rl [fill] : basin(M1, N1) => basin(M1, M1) .

crl [transfer1] : basin(M1, N1) basin(M2, N2) =>

basin(M1, 0) basin(M2, N1 + N2) if N1 + N2 <= M2 .

crl [transfer2] : basin(M1, N1) basin(M2, N2) =>

basin(M1, sd(N1 + N2, M2)) basin(M2, M2) if N1 + N2 > M2 .

endm

We can now find out the shortest solution with the help of the search command, due
to the breadth-first way of searching (the argument [1] tells Maude to look only for one
solution). Notice that the pattern used after the arrow =>* represents any set of basins with
one of them having 4 gallons.

Maude> search [1] initial =>* basin(N:Nat, 4) B:BasinSet .

Solution 1 (state 75)

B:BasinSet --> basin(3, 3) basin(8, 3)

N:Nat --> 5

The sequence of actions that leads to the solution can be seen with show path 75, where
we omit part of the information about the rules used.

Maude> show path 75 .

state 0, BasinPack: basin(3, 0) basin(5, 0) basin(8, 0)

7

===[rl ... fill]===>

state 2, BasinPack: basin(3, 0) basin(5, 5) basin(8, 0)

===[crl ... transfer2]===>

state 9, BasinPack: basin(3, 3) basin(5, 2) basin(8, 0)

===[crl ... transfer1]===>

state 20, BasinPack: basin(3, 0) basin(5, 2) basin(8, 3)

===[crl ... transfer1]===>

state 37, BasinPack: basin(3, 2) basin(5, 0) basin(8, 3)

===[rl ... fill]===>

state 55, BasinPack: basin(3, 2) basin(5, 5) basin(8, 3)

===[crl ... transfer2]===>

state 75, BasinPack: basin(3, 3) basin(5, 4) basin(8, 3)

6 Crossing the Bridge

The four components of U2, the famous band of rock music, are in a tight situation. The
concert starts in 17 minutes and in order to get to the stage they must first cross an old
bridge through which only a maximum of two persons can walk over at the same time.
It is already dark and, because of the bad condition of the bridge, to avoid falling into
the darkness it is necessary to cross it with the help of a flashlight. Unfortunately, they
only have one. Knowing that Bono, Edge, Adam, and Larry take 1, 2, 5, and 10 minutes,
respectively, to cross the bridge, is there a way that they can make it to the concert on
time?

The current state of the group can be represented in Maude by a multiset consisting
of singers, the flashlight, and a watch to keep record of the time. The flashlight and the
singers have a Place associated to them, indicating whether their current position is to the
left or to the right of the bridge; each singer, in addition, also carries the time it takes him
to cross the bridge. As in the previous example, this specification follows an object-based
style of programming. We have an auxiliary operation changePos that is defined by means
of two equations.

The traversing of the bridge is modeled by two rewrite rules: the first one for the case in
which a single person crosses it, and the second one for when there are two. Note that for
somebody to be allowed to cross, their position relative to the bridge must be the same as
for the flashlight, which is represented by having the same variable P twice on the lefthand
side of the rules. Also, since __ is commutative, the condition in the second rule amounts
to no loss of generality.

mod U2 is

protecting NAT .

sorts Singer Object Group Place .

subsorts Singer Object < Group .

ops left right : -> Place .

op changePos : Place -> Place .

op flashlight : Place -> Object .

op watch : Nat -> Object .

op singer : Nat Place -> Singer .

op __ : Group Group -> Group [assoc comm] .

op initial : -> Group .

var P : Place .

vars M N N1 N2 : Nat .

8

eq initial = watch(0) flashlight(left)

singer(1, left) singer(2, left) singer(5, left) singer(10, left) .

eq changePos(left) = right .

eq changePos(right) = left .

rl [one-crosses] : watch(M) flashlight(P) singer(N, P) =>

watch(M + N) flashlight(changePos(P)) singer(N, changePos(P)) .

crl [two-cross] : watch(M) flashlight(P) singer(N1, P) singer(N2, P) =>

watch(M + N1) flashlight(changePos(P)) singer(N1, changePos(P))

singer(N2, changePos(P))

if N1 > N2 .

endm

A solution can now be found quickly by looking for a state in which all singers (and the
flashlight) are to the right of the bridge. Notice how the search command is invoked with
a such that clause that allows to introduce a condition that solutions have to fulfill.

Maude> search [1] initial =>* flashlight(right) watch(N:Nat) singer(1, right)

singer(2, right) singer(5, right) singer(10, right)

such that N:Nat <= 17 .

Solution 1 (state 402)

N --> 17

The solution takes exactly 17 minutes (a happy ending after all!) and the complete trace
can be shown as follows:

Maude> show path 402 .

state 0, Group: flashlight(left) watch(0) singer(1, left) singer(2, left)

singer(5, left) singer(10, left)

===[crl ... two-cross]===>

state 5, Group: flashlight(right) watch(2) singer(1, right) singer(2, right)

singer(5, left) singer(10, left)

===[rl ... one-crosses]===>

state 15, Group: flashlight(left) watch(3) singer(1, left) singer(2, right)

singer(5, left) singer(10, left)

===[crl ... two-cross]===>

state 71, Group: flashlight(right) watch(13) singer(1, left) singer(2, right)

singer(5, right) singer(10, right)

===[rl ... one-crosses]===>

state 158, Group: flashlight(left) watch(15) singer(1, left) singer(2, left)

singer(5, right) singer(10, right)

===[crl ... two-cross]===>

state 402, Group: flashlight(right) watch(17) singer(1, right) singer(2, right)

singer(5, right) singer(10, right)

After sorting out the information, it becomes clear that Bono and Edge have to be the first
to cross. Then Bono returns with the flashlight, which gives to Adam and Larry. Finally,
Edge takes the flashlight back to Bono and they cross the bridge together for the last time.

Note that, in order for the search command to stop, we need to tell Maude to look only
for one solution. Otherwise, it will continue exploring all possible combinations, increasingly
taking a larger amount of time, and it will never end.

9

7 The Looping Chips

In the next game, taken from [1], four chips of different colors have been placed in consecu-
tive places on a 12×1 board whose ends have been glued together. Each chip can be moved
5 places from its current location, either clockwise or counterclockwise, assuming the final
position is empty. The goal is to arrange the chips in reverse order, over the original four
squares.

The state is again represented by a multiset of Places, with each Place determined
by its position in the board and the color of the chip on it or e if empty1. As in previous
examples, places can be understood as objects and the state of the game at each moment is
given by a configuration of objects. The constants initial and final represent the initial
and final configurations.

There are two possible legal moves in the game, but taking advantage of the circularity
of the board, it is possible to represent both together in one rule, as shown below; notice
how the condition of the rule considers the two possible directions of the move.

mod CHIPS is

protecting NAT .

sorts Place Board Chip .

subsort Place < Board .

ops r b g y e : -> Chip .

op place : Nat Chip -> Place .

op __ : Board Board -> Board [assoc comm] .

ops initial final : -> Board .

eq initial = place(0,r) place(1,b) place(2,g) place(3,y)

place(4,e) place(5,e) place(6,e) place(7,e)

place(8,e) place(9,e) place(10,e) place(11,e) .

eq final = place(0,y) place(1,g) place(2,b) place(3,r)

place(4,e) place(5,e) place(6,e) place(7,e)

place(8,e) place(9,e) place(10,e) place(11,e) .

vars I J : Nat .

var C : Chip .

crl [move] : place(I,C) place(J,e) => place(I,e) place(J,C)

if ((I + 5) rem 12 == J) or ((J + 5) rem 12 == I).

endm

Then, we can use the command

Maude> search initial =>* B:Board such that B:Board == final .

No solution.

to prove that it is not possible, by using the allowed moves, to reverse the original order of
the chips. Notice that the constant final is not a pattern (because it can be reduced), and
therefore cannot be used after the arrow in the search command; the clause at the end
allows us to say the same.

1 In this example, we could also use a list representation for the state; this would simplify the representation
of places, but instead the corresponding rules would be more complex.

10

8 The Khun Phan Puzzle

The Khun Phan puzzle is one of those typical puzzles consisting of a rectangular board
over which some pieces can be slid. The goal is to move the pieces so as to reach a certain
configuration in which sometimes a picture becomes clear or other times a piece understood
as some character is freed from his guards. Figure 1 shows the initial configuration that we
will consider. The board is a 4× 5 rectangle, there is one 2× 2 piece, five rectangular pieces
of size 2×1, and four smaller squares with dimension 1×1; there are only two empty spaces
that must be used to slide the pieces. The goal we consider is to move the pieces so as to
put the big square in the position where the small ones are initially. An additional twist
would be to reach a completely symmetric position with respect to the original.

Fig. 1. Khun Phan puzzle

The state of the board is also represented as a multiset of pieces with the operator __.
There is a different constructor for each piece, bigsq, hrect, vrect, and smallsq, and
another one, empty, to indicate an empty space (that is considered to be just a special kind
of piece). These constructors take two natural numbers as arguments that correspond to
the coordinates of the upper left corner of the piece; the origin (1, 1) is located at the upper
left corner of the board.

The representation of the moves as rewrite rules is then immediate: each involves a piece
and at least one empty space. For each kind of piece there are four rules, corresponding to
the four possible directions. For example, moving the big square one position to the right is
captured by the rule Sqr below. Again we think of pieces as objects and rules as interactions
among them. The complete specification is as follows.

mod KHUN-PHAN is

protecting NAT .

sorts Piece Board .

subsort Piece < Board .

op __ : Board Board -> Board [assoc comm] .

ops empty bigsq smallsq hrect vrect : Nat Nat -> Piece .

op init : -> Board .

vars X Y : Nat .

eq initial = vrect(1,1) bigsq(2,1) vrect(4,1)

empty(1,3) hrect(2,3) empty(4,3)

vrect(1,4) smallsq(2,4) smallsq(3,4) vrect(4,4)

smallsq(2,5) smallsq(3,5) .

11

rl [sqr] : smallsq(X,Y) empty(s(X),Y) => empty(X,Y) smallsq(s(X),Y) .

rl [sql] : smallsq(s(X),Y) empty(X,Y) => empty(s(X),Y) smallsq(X,Y) .

rl [squ] : smallsq(X,s(Y)) empty(X,Y) => empty(X,s(Y)) smallsq(X,Y) .

rl [sqd] : smallsq(X,Y) empty(X,s(Y)) => empty(X,Y) smallsq(X,s(Y)) .

rl [Sqr] : bigsq(X,Y) empty(s(s(X)),Y) empty(s(s(X)),s(Y)) =>

empty(X,Y) empty(X,s(Y)) bigsq(s(X),Y) .

rl [Sql] : bigsq(s(X),Y) empty(X,Y) empty(X,s(Y)) =>

empty(s(s(X)),Y) empty(s(s(X)),s(Y)) bigsq(X,Y) .

rl [Squ] : bigsq(X,s(Y)) empty(X,Y) empty(s(X),Y) =>

empty(X,s(s(Y))) empty(s(X),s(s(Y))) bigsq(X,Y) .

rl [Sqd] : bigsq(X,Y) empty(X,s(s(Y))) empty(s(X),s(s(Y))) =>

empty(X,Y) empty(s(X),Y) bigsq(X,s(Y)) .

rl [hrectr] : hrect(X,Y) empty(s(s(X)),Y) => empty(X,Y) hrect(s(X),Y) .

rl [hrectl] : hrect(s(X),Y) empty(X,Y) => empty(s(s(X)),Y) hrect(X,Y) .

rl [hrectu] : hrect(X,s(Y)) empty(X,Y) empty(s(X),Y) =>

empty(X,s(Y)) empty(s(X),s(Y)) hrect(X,Y) .

rl [hrectd] : hrect(X,Y) empty(X,s(Y)) empty(s(X),s(Y)) =>

empty(X,Y) empty(s(X),Y) hrect(X,s(Y)) .

rl [vrectr] : vrect(X,Y) empty(s(X),Y) empty(s(X),s(Y)) =>

empty(X,Y) empty(X,s(Y)) vrect(s(X),Y) .

rl [vrectl] : vrect(s(X),Y) empty(X,Y) empty(X,s(Y)) =>

empty(s(X),Y) empty(s(X),s(Y)) vrect(X,Y) .

rl [vrectu] : vrect(X,s(Y)) empty(X,Y) => empty(X,s(s(Y))) vrect(X,Y) .

rl [vrectd] : vrect(X,Y) empty(X,s(s(Y))) => empty(X,Y) vrect(X,s(Y)) .

endm

Then we can use the command

Maude> search initial =>* B:Board bigsq(2,4) .

to get all possible 964 solutions to the game. The final state used, B:Board bigsq(2,4),
represents any final situation such that the upper left corner of the big square is at coor-
dinates (2, 4). No wonder it takes some time to find a solution: close examination of the
first one, corresponding to the shortest path leading to the final configuration due to the
breadth-first search, reveals that it consists of 112 moves!

Similarly, the command

Maude> search initial =>* vrect(1,1) smallsq(2,1) smallsq(3,1) vrect(4,1)

smallsq(2,2) smallsq(3,2)

empty(1,3) hrect(2,3) empty(4,3)

vrect(1,4) bigsq(2,4) vrect(4,4) .

No solution.

shows that it is not possible to reach a position symmetric to the initial one.

9 Crossing the River

A shepherd needs to transport to the other side of a river a wolf, a goat, and a cabbage.
He has only a boat with room for the shepherd himself and another item. The problem is
that in the absence of the shepherd the wolf would eat the goat, and the goat would eat
the cabbage.

12

We represent with constants left and right the two sides of the river. The shepherd
and his belongings are represented as objects with an attribute indicating the side of the
river in which each is located; the constant initial denotes the initial situation in which
we assume that all the objects are located in the left riverbank. The rules represent the ways
of crossing the river that are allowed by the capacity of the boat; an auxiliary operation
change is used to modify the corresponding attributes.

The interesting decision we have made in our specification is to use equations to represent
the facts that the wolf eats the goat when they are alone, or that the goat eats the cabbage.
Note that the statement of the problem is underspecified; it is not clear what exactly should
happen were the wolf, the goat, and the cabbage left alone. In the specification below we
have decided that the goat is not fast enough and gets eaten by the wolf before it can take a
bite of the cabbage. Note that we use conditional equations, introduced with keyword ceq.

mod RIVER-CROSSING is

sorts Side Group .

ops left right : -> Side .

op change : Side -> Side .

ops s w g c : Side -> Group .

op __ : Group Group -> Group [assoc comm] .

op initial : -> Group .

vars S S’ : Side .

eq change(left) = right .

eq change(right) = left .

ceq w(S) g(S) s(S’) = w(S) s(S’) if S =/= S’ .

ceq c(S) g(S) w(S’) s(S’) = g(S) w(S’) s(S’) if S =/= S’ .

eq initial = s(left) w(left) g(left) c(left) .

rl [shepherd-alone] : s(S) => s(change(S)) .

rl [wolf] : s(S) w(S) => s(change(S)) w(change(S)) .

rl [goat] : s(S) g(S) => s(change(S)) g(change(S)) .

rl [cabbage] : s(S) c(S) => s(change(S)) c(change(S)) .

endm

By using the command search we can confirm that there is only one way the shepherd
can safely take his belongings to the other side.

Maude> search initial =>* w(right) s(right) g(right) c(right) .

One might think about using rules instead of equations to represent the “eating transi-
tions,” but this would not be correct because it would allow paths in which the shepherd
leaves for example the goat and the cabbage alone and later comes back to find that the
cabbage is still there.

10 Dominoes on the Chessboard

We are given an 8 × 8 board and 31 dominoes, each of which can be used to cover exactly
two squares of the board. Is it possible to arrange the dominoes on the board so as to leave
uncovered the upper left and the lower right corners?

13

The answer is no, and a neat solution is given in [4, Chapter 1] among other places.
It is enough to imagine the board painted like a chessboard and realize that each domino
necessarily covers both a black and a white square: since the corners to be left uncovered
are of the same color, such a covering is not possible. This solution, however, requires
some ingenuity and, given our present lazy approach, that is not a desirable characteristic.
Therefore, we are going to model the problem in Maude and try to solve it by sheer force.

Again, the state of the board is represented as a multiset of squares. Each square has
three arguments: the first two are its coordinates (column/row) and the last one indicates
whether it is already covered or still empty. Since the position of the squares in the board
is fixed, the attribute comm for could be thought to be unnecessary. This, however, allows
a more homogeneous and simple presentation of the rules taking care of positioning the
dominoes both horizontally and vertically, by focusing only on those two squares involved
in placing the domino. Having the board represented as a list by removing the attribute
comm would force us to represent all the squares in between them in one of the rules.

mod CHESS-COVER is

protecting NAT .

sorts Status Pos Board State .

subsort Pos < Board .

ops e c : -> Status .

op sq : Nat Nat Status -> Pos .

op __ : Board Board -> Board [assoc comm] .

ops initial final : -> Board .

vars I J I1 J1 : Nat .

var B : Board .

eq initial = sq(1,1,e) sq(2,1,e) sq(3,1,e) sq(4,1,e) sq(5,1,e) ...

... sq(4,8,e) sq(5,8,e) sq(6,8,e) sq(7,8,e) sq(8,8,e) .

eq final = sq(1,1,e) sq(2,1,c) sq(3,1,c) sq(4,1,c) sq(5,1,c) ...

... sq(4,8,c) sq(5,8,c) sq(6,8,c) sq(7,8,c) sq(8,8,e) .

rl [hor] : sq(I,J,e) sq(s(I),J,e) => sq(I,J,c) sq(s(I),J,c) .

rl [ver] : sq(I,J,e) sq(I,s(J),e) => sq(I,J,c) sq(I,s(J),c) .

endm

Now, the command

Maude> search initial =>* B:Board such that B:Board == final .

should return the answer. This time, however, a state explosion problem occurs and in our
computer the program runs out of memory before producing any result. To solve it, we
are forced to use some ingenuity after all. Note that instead of placing the dominoes in an
arbitrary order we could do it starting either from the top of the board towards the bottom,
or from the left towards the right, or even in a diagonal manner beginning at the upper
left corner. The first two approaches still do not return an answer, but the third does. To
implement it, we need an auxiliary operator cDiag that checks whether all positions in the
board that come before a given square according to the diagonal order have been already
covered. Also, as we did in Section 4, we need to have full control of all the elements in the
board and for that we enclose it inside the constructor {_}.

14

ceq cDiag(I,J,sq(I1,J1,e) B) = false if (I1 + J1 < I + J) /\ (I1 + J1 >= 3) .

eq cDiag(I,J,B) = true [owise] .

crl [hor] : { B sq(I,J,e) sq(s(I),J,e) } => { B sq(I,J,c) sq(s(I),J,c) }

if cDiag(I,J,B) .

crl [ver] : { B sq(I,J,e) sq(I,s(J),e) } => { B sq(I,J,c) sq(I,s(J),c) }

if cDiag(I,J,B) .

The “otherwise” attribute, owise, is just a convenient way of specifying the behavior
of cDiag in all remaining cases without having to write equations for them. The result is
still an equational theory since the owise attribute is just a shorthand for a conditional
equation [3, Section 4.5.4].

Finally, the result of the command

Maude> search { initial } =>* { B:Board } such that B:Board == final .

No solution.

proves that such a covering is not possible.

11 By Way of Conclusion

We have specified several other games and puzzles, but we think that by now the pattern by
which these problems are modeled and solved in Maude should be clear. There are however
several advanced features available in Maude that can be useful in some examples, and that
we have not considered here with the idea of keeping an introductory level.

The first one is the possibility of using membership axioms [3, Chapter 4] to refine
the representation of the state. For example, the multiset constructor allows repetition of
elements, but this should be forbidden in some situations; as another example, in the Khun
Phan puzzle a piece cannot be stacked on top of another. In the puzzles above we have
not made use of this, but memberships are the right tool to make sure all the elements are
different.

Another important feature is the availability of a model checker for linear temporal logic
[3, Chapter 9]. For example, we have modeled the river crossing puzzle without the “eating
equations” by using the model checker instead of the search command to represent a safe
path by means of a temporal formula.

To gain some perspective we have also carried out a small comparison with other rule-
based programming languages, namely, ELAN [2], CHR [5], and ASF+SDF [13]. We ac-
knowledge beforehand that none of us is an expert in any of them, so our conclusions should
be taken with a grain of salt. ELAN, which is also based on rewriting logic, is the most sim-
ilar to Maude, offering a clear distinction between the statics and the dynamics of a system,
by means of two different kinds of rules. Like Maude, ELAN also supports rewriting mod-
ulo associativity and commutativity, though not modulo associativity only, so the examples
involving lists are more cumbersome to describe. The examples involving multiset rewriting
can be easily specified; however, since in most cases the rules are nonterminating and the
predefined search strategy in ELAN is depth-first, it cannot be used to find a solution (a
breadth-first strategy could be specified but by no means in a straightforward manner).
Regarding efficiency, for the only problem we were able to translate almost verbatim from
Maude, the Josephus problem in Section 4, the performance of the Maude interpreter was
much better than even the compiled ELAN version (in some of our experiments, Maude

15

finished within seconds while ELAN took several hours). On the other hand, after trying to
specify some of the games in CHR and ASF+SDF, as far as we know there is no distinction
between equations and rules and no support for equational attributes, both of which have
been essential in our examples. All this suggests to us that the representation of transition
systems in these two formalisms is not as natural and straightforward as in Maude. In
addition, breadth-first search in CHR seems to present the same problems as in ELAN.

As we mentioned in the introduction, the main goal of this paper was to have some fun
while introducing rule-based programming in Maude; we hope that our games have whetted
the appetite of the reader for more Maude applications.

References

1. A. Bogomolny. Interactive mathematics miscellany and puzzles. http://www.cut-the-knot.org/games.
shtml.

2. P. Borovanský, C. Kirchner, H. Kirchner and P.-E. Moreau. ELAN from the rewriting logic point of view
Theoretical Computer Science, 285(2):155–185, 2002.

3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. Maude manual
(version 2.1). http://maude.cs.uiuc.edu/manual/, 2004.

4. D. Fomin, S. Genkin, and I. Itenberg. Mathematical Circles: The Russian Experience, volume 7 of
Mathematical World. American Mathematical Association, 1996.

5. T. Frühwirth and S. Abdennadher. Essentials of Constraint Programming. Springer, 2003.
6. P. J. Hayes. What the frame problem is and isn’t. In Z. W. Pylyshyn, editor, The Robot’s Dilemma: The

Frame Problem in Artificial Intelligence, pages 123–137. Ablex Publishing Corp., 1987.
7. N. Mart́ı-Oliet and J. Meseguer. Action and change in rewriting logic. In R. Pareschi and B. Fronhöfer,

editors, Dynamic Worlds: From the Frame Problem to Knowledge Management, pages 1–53. Kluwer
Academic Press, 1999.

8. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic framework. In D. M. Gabbay
and F. Guenthner, editors, Handbook of Philosophical Logic, Second Edition, Volume 9, pages 1–87.
Kluwer Academic Publishers, 2002.

9. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic: Roadmap and bibliography. Theoretical Computer

Science, 285(2):121–154, 2002.
10. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer

Science, 96(1):73–155, 1992.
11. W. W. Rouse Ball and H. S. M. Coxeter. Mathematical Recreations and Essays. Dover, 1987.
12. D. O. Shklarsky, N. N. Chentzov, and I. M. Yaglom. The USSR Olympiad Problem Book. Dover, 1993.
13. A. van Deursen, J. Heering, and P. Klint. Language Prototyping: An Algebraic Specification Approach.

AMAST Series in Computing, 5, World Scientific, 1996.

16

