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Abstract

Strategies are a powerful mechanism to control rule application in rule-based systems. For instance, differ-
ent transition relations can be defined and then combined by means of strategies, giving rise to an effective
tool to define the semantics of programming languages. We have endowed the Maude MSOS Tool (MMT),
an executable environment for modular structural operational semantics, with the possibility of defining
strategies over its transition rules, by combining MMT with the Maude strategy language interpreter pro-
totype. The combination was possible due to Maude’s reflective capabilities. One possible use of MMT
with strategies is to execute Ordered SOS specifications. We show how a particular form of strategy can be
defined to represent an OSOS order and therefore execute, for instance, SOS specifications with negative
premises. In this context, we also discuss how two known techniques for the representation of negative
premises in OSOS become simplified in our setting.
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1 Introduction

Strategies are a powerful mechanism for the specification of programming languages

and systems. A strategy language describes how rules should be applied in a given

rule-based specification by means of a combination of basic strategies. In Maude’s

strategy language [7], our language of choice, a basic strategy specifies that a rule,

denoted by its label, can be applied possibly with a given substitution and using

given strategies to solve its premises, if any. Strategy combinators are tests, condi-

tionals, decomposition (i.e. a strategy applied to subterms), and search. Recursive

strategies can also be defined. Non-trivial examples where the Maude’s strategy

language has been used to implement structural operational semantics are the Eden
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language, that has several transition relations which can be specified and combined

by means of strategies [5], and the ambient calculus, where strategies [14] are used

to control communication, replication and termination.

We have endowed Modular SOS (MSOS) [10] specifications with strategies, by

putting together the Maude MSOS Tool (MMT) [2], an executable environment

for MSOS, with Maude’s strategy language (MSL) [7]. The combined tool, named

MMT+MSL, is implemented as a conservative extension of Maude’s extensible mod-

ule algebra implemented in Full Maude [4]. To illustrate the usefulness of our

proposal, we show how Ordered SOS (OSOS) [15] specifications can be directly rep-

resented in MMT+MSL, where the transition rules are the same and the order is

represented as a strategy. Then, using this representation, negative premises become

executable in MMT+MSL by the application of the techniques given in [15], and

yet, simplified. As a concrete example, we extend the modular SOS specification of

CCS with priorities.

This paper is organized as follows. Section 2 overviews Maude’s strategy lan-

guage, exemplifies the syntax for specifications accepted by MMT+MSL, using CCS

as example, and the implementation MMT+MSL in Full Maude. Section 3 explains

how Ordered SOS specifications can be represented as specifications in MMT+MSL.

Section 4 briefly recalls how negative premises can be represented in OSOS. Sec-

tion 5 extends the CCS specification in Section 2 with a priority operator. Section 6

concludes the paper with our final remarks.

2 MMT+MSL

2.1 Maude’s Strategy Language

Rewrite rules in rewriting logic need be neither confluent nor terminating. This the-

oretical generality requires some control when the specifications become executable,

because it must be ensured that the rewriting process does not go in undesired di-

rections. Maude’s strategy language can be used to control how rules are applied to

rewrite a term [7]. The simplest strategies are the constants ‘idle’, which always

succeeds by doing nothing, and ‘fail’, which always fails. The basic strategies

consist of the application of a rule (identified by the corresponding rule label) to

a given term, and with the possibility of providing a substitution for the variables

in the rule. In this case a rule is applied anywhere in the term where it matches

satisfying its condition. When the rule being applied is a conditional rule with

rewrites in the conditions, the strategy language allows to control how the rewrite

conditions are solved by means of search expressions. An operation ‘top’ to restrict

the application of a rule just to the top of the term is also provided. Basic strate-

gies are then combined so that strategies are applied to execution paths. Some

strategy combinators are the typical regular expression constructions: concatena-

tion (‘;’), union (‘|’), and iteration (‘*’ for 0 or more iterations, ‘+’ for 1 or more,

and ‘!’ for a ‘repeat until the end’ iteration). Another strategy combinator is a

typical ‘if-then-else’, but generalized so that the first argument is also a strategy.

By using this combinator, we can define many other useful strategy combinators
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as derived operations: for example a binary ‘orelse’ combinator that applies the

second argument strategy only if the first fails, and a unary ‘not’ combinator that

fails when its argument is successful and vice versa. The language also provides a

‘matchrew’ combinator that allows a term to be split in subterms, and specifies how

these subterms have to be rewritten. An extended ‘matchrew’, ‘xmatchrew’, is also

provided where rewriting modulo axioms associativity, commutativity, identity and

idempotency is considered, when declared. Recursion is also possible by giving a

name to a strategy expression and using this name in the strategy expression itself

or in other related strategies.

Using the Maude metalevel, we have implemented a prototype of the strategy

language as an extension of Full Maude [7]. Currently the language is being inte-

grated in the Maude system.

2.2 CCS in MMT+MSL

Modular SOS is a variant of SOS that allows for specifications to be made modular

by structuring the labels in the transition rules as extensible records. Semantic rules

for a given constructor use certain indices from the record structure, so that newly

added rules could range over (existing or) new indices, thus allowing that existing

rules are not changed when new semantic entities are required. Therefore, semantic

rules may be declared once and for all. For instance, rules for a functional fragment

may access an environment from the label structure while rules for an imperative

fragment may access the memory component.

MMT [1] is an executable environment for MSOS and was implemented as a

formal tool in the precise sense presented in [3], that is, as a realization of a seman-

tics preserving mapping between Modular SOS and rewriting logic. The modular

SOS definition formalism is the specification supported by MMT. It allows MSOS

specifications to be written in a quite succinct syntax that includes: support for

grammar specification in BNF like syntax, implicit module inclusion, “type dec-

laration” as alias for instantiated parameterized built-in types, automatic derived

set and list declarations for each explicitly declared set in the BNF or aliasing sec-

tions, automatic variable declarations by appending “primes” and numbers on the

set names, and explicit label structure declaration.

Let us discuss now how CCS can be specified and executed in MSDF. We also

present a strategy that solves the rules premises in depth-first search. Concrete

labels and process identifiers are declared to test the execution of our specification.

No runs are shown in the paper but the tool and this example can be downloaded

from http://maude-msos-tool.sf.net/mmt+msl/.

We follow the constructive approach for semantic descriptions proposed by

Mosses in [11] and thus present each construct as a separate module in MSDF.

The module ‘LABEL’ declares a set for action labels. The module ‘ACTION’ de-

clares the set ‘Action’ that includes labels and the (unobservable) ‘tau’ action.

(msos LABEL is (msos ACTION is

Label . Action .

Label ::= ~ Label | a | b | c . Action ::= Label | tau .

C. Braga, A. Verdejo / Electronic Notes in Theoretical Computer Science 175 (2007) 3–17 5

http://maude-msos-tool.sf.net/mmt+msl/


sosm) sosm)

The module ‘PROCESS’ declares the set of processes (‘Process’) and the idle

process (‘0’).

(msos PROCESS is

Process .

Process ::= 0 .

sosm)

The MSOS label structure used in the modules below has an index ‘trace’’

representing the process trace. The quote in ‘trace’’ has a meaning: in MSOS

terminology it is a write-only index, that is, it can only be updated.

Transition rules in MSDF represent quite directly standard mathematical nota-

tion for transition rules. A few explanations may clarify, however, the notation for

label patterns. Labels may have ellipsis (...) or a dash (-) to represent all the

indices in a label not explicitly mentioned. When ellipsis are used it means that

the part of the label it refers to may be changed in a transition. The dash is used

otherwise. When they occur more than once in the same rule, they refer to the

same subset of the indices. Metavariables, such as X1 and X2, may also be used to

refer to a subset of the indices of a label and are used to distinguish between two

sets of indices in the same rule.

The module ‘PREFIX’ declares an action prefix (‘;’) that adds an action to the

trace. Note that the set ‘Action*’, for a possibly empty set of actions, has not

been declared explicitly. It was automatically derived by the declaration of the set

‘Action’ in module ‘ACTION’, which was automatically imported by ‘PREFIX’.

(msos PREFIX is

Process ::= Action ; Process [prec 20] .

Label = {trace’ : Action*, ...} .

[prefix] (Action ; Process) : Process -{trace’ = Action,-}-> Process .

sosm)

Summation (‘+’) means simply to choose one of the processes to evolve. Note

that only one rule is needed since the operator is declared as commutative, with

keyword ‘comm’ in the BNF declaration.

(msos SUMMATION is

Process ::= Process + Process [assoc comm prec 30] .

Label = {trace’ : Action*, ...} .

Process1 -{...}-> Process1’

[sum] -- --------------------------------------------------

(Process1 + Process2) : Process -{...}-> Process1’ .

sosm)

Parallelism (‘||’) allows one process to evolve or both if they synchronize, that

is, one performs ‘Action’ and the other ‘~Action’. The CCS semantics does not

specify how synchronization behaves in the presence of side-effects. In our semantics

no side-effects may be produced while synchronizing. (This is the semantics for

synchronization in Reppy’s λcv, for instance, whose MSOS semantics is given in [9].)
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(msos PARALLELISM is see ACTION .

Process ::= Process || Process [assoc comm prec 25] .

Label = {trace’ : Action*, ...} .

Process1 -{...}-> Process1’

[par1] -- --------------------------------------------------------------

(Process1 || Process2) : Process -{...}-> Process1’ || Process2 .

Process1 -{trace’ = Action, -}-> Process1’ ,

Process2 -{trace’ = ~ Action, -}-> Process2’

[par2] -- --------------------------------------------------------------

(Process1 || Process2) : Process -{trace’ = tau, -}->

Process1’ || Process2’ .

sosm)

Relabeling (‘rel’) substitutes a performed action label by another one.

(msos RELABELLING is see ACTION .

Process ::= rel (Process, Label, Label) [prec 20] .

Label = {trace’ : Action*, ...} .

Process1 -{trace’ = Action1, ...}-> Process1’

[rel1] -- -------------------------------------------------------------

(rel (Process1, Action2, Action1)) : Process

-{trace’ = Action2, ...}-> Process1’ .

Process1 -{trace’ = ~ Action1, ...}-> Process1’

[rel2] -- -------------------------------------------------------------

(rel (Process1, Action2, Action1)) : Process

-{trace’ = ~ Action2, ...}-> Process1’ .

Process1 -{trace’ = Action3, ...}-> Process1’ ,

Action3 =/= Action1,

Action3 =/= ~ Action1

[rel3] -- -------------------------------------------------------------

(rel (Process1, Action2, Action1)) : Process

-{trace’ = Action3, ...}-> Process1’ .

sosm)

Finally, restriction (‘\’) of an action means that a process is allowed to evolve if

it does not signal the given action or its negation.

(msos RESTRICTION is see ACTION .

Process ::= Process \ Label [prec 25] .

Label = {trace’ : Action*, ...} .

Process1 -{trace’ = Label2, ...}-> Process1’ ,

Label2 =/= Label1,

Label2 =/= ~ Label1

[res] -- --------------------------------------------------------------

(Process1 \ Label1) : Process

-{trace’ = Label2, ...}-> Process1’ \ Label1 .

sosm)

MSDF is implemented in MMT as a conservative extension of Full Maude.

Therefore functional modules (for equational specifications) and system modules
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(for equational and rule-based specifications) in Maude may be used together with

MSDF specifications. Double-negation of labels are specified as an equation in

the functional module ‘LABEL-CONGRUENCE’ which is then combined with the above

MSDF modules in the ‘CCS’ system module.

(fmod LABEL-CONGRUENCE is (mod CCS is

inc LABEL . inc PROCESS . inc PREFIX . inc SUMMATION .

eq ~ ~ Label:Label = Label:Label . inc PARALLELISM . inc RELABELLING .

endfm) inc RESTRICTION . inc LABEL-CONGRUENCE .

endm)

Before we explain the details of the strategy module, a word is needed on how to

represent Modular SOS computations in Maude. Maude implements the rewriting

logic calculus which has four inference rules given by reflexivity (a term can be

rewritten to itself), transitivity (if t rewrites to t′ and t′ to t′′, then t rewrites to

t′′), congruence (a rule can be applied to the subterms of t), and substitution (a

rule can be applied to a kind preserving substitution). SOS does not have such

a calculus. The present authors, with others, have proposed several techniques

(e.g. [16,8]) to represent both modular and plain SOS computations in rewriting logic

and have implemented them in Maude. Using a strategy, however, these techniques

are not necessary since one has full control of the rule application. Reflexivity and

transitivity are controlled by basic strategies, that is, if a basic strategy is applied,

it represents one (rewriting) step. Congruence, however, needs to be controlled,

that is, the application of a basic strategy should be done at the top operator and

not on its subterms. That is why the ‘top’ strategy is applied. The substitution

inference rule is desired and therefore needs not to be controlled.

Instead of using the ‘top’ strategy, we could have also used the technique im-

plemented in MMT [8] to control Maude’s default rewriting strategy, which is es-

sentially a rewrite rule (labeled ‘step’) with extra configuration constructors that

impose a one-step rewrite for each rule application. It simplifies the strategy but

adds extra declarations related to the ‘step’ rule to the generated Maude module.

Thus, the choice for the ‘top’ operator produces cleaner Maude modules.

When applying a rule with premisses, the strategy should specify which is the

strategy applied to solve each premise. In order to make the strategy extensible, we

use a “abstract” strategy that will be instantiated later on. 3

(stratdef PREM-STRAT is

sop prem-strat .

endsd)

Another implementation detail is that here we make explicit that the strategy

‘prem-strat’ is applied in depth-first search to the premises of the transition rules.

Another alternative could be to use breadth-first search if infinite recursive processes

were allowed by using contexts.

The definition of the strategy is also modular. For each construct we define a

strategy that applies the semantic rules to the top of each term and applies the

3 What we really need is a parameterized strategy module, but the extension of the Maude strategy

language with parametric modules is currently under study.
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generic strategy on the premises, as explained above. We illustrate the strategy

definition below for the prefix and parallel constructs.

(stratdef PREFIX-STRAT is including PREFIX .

sop prefix-strat .

seq prefix-strat = top(prefix) .

endsd)

(stratdef PARALLELISM-STRAT is

including PARALLELISM . including PREM-STRAT .

sop parallelism-strat .

seq parallelism-strat = top(par1{dfs(prem-strat)})

| top(par2{dfs(prem-strat) dfs(prem-strat)}) .

endsd)

The complete strategy, specified in module ‘CCS-STRAT’, is given by the union

strategy ‘|’ of the basic strategies for each operator.

(stratdef CCS-STRAT is

inc CCS .

inc PREFIX-STRAT . inc SUMMATION-STRAT .

inc PARALLELISM-STRAT . inc RELABELLING-STRAT .

inc RESTRICTION-STRAT .

sop ccs-strat .

seq ccs-strat = prefix-strat

| summation-strat

| parallelism-strat

| relabelling-strat

| restriction-strat .

endsd)

Note that this strategy can be automatically generated by inspecting the seman-

tics rules. It reflects the MSOS derivation mechanism, but it is not CCS dependent.

Moreover, the strategy ccs-strat can only be used after concretizing the strategy

prem-strat as the following module does.

(stratdef CCS-STRAT+ is

including CCS-STRAT .

seq prem-strat = ccs-strat .

endsd)

This mechanism, that allows the modular definition of the strategies, will be

further exemplified below when CCS will be extended with a priority operator in

Section 5.

2.3 The Implementation of MMT+MSL

The current version of MMT+MSL relies on the prototypes for MMT and MSL

implemented in Full Maude. As we mentioned before, Full Maude implements an

extensible module algebra for Maude. It provides a basic infrastructure, that is, a

set of meta-functions, to extend Maude, that relies on Maude’s meta-programming

interface. (For instance, ‘metaParse’ produces a term out of a given list of identifiers

and a grammar.)

The Maude predefined ‘LOOP-MODE’ module defines a read-eval-print loop that
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should be extended in order to define a command-line interface for a Maude exten-

sion. It defines a triple containing the input (of sort ‘QidList’), the current state

of the system (of sort ‘State’), and the output (of sort ‘QidList’), given by the

infix operator ‘[ , , ] : QidList State QidList -> System’. The descent func-

tions above should then manipulate these values. This is what Full Maude does, as

described below.

In the reminder, we first comment on the general technique to extend Maude,

and then move to Full Maude. The following steps should be done: to define a

module M representing the syntax of the language that one wants to represent in

Maude; to define a meta-function that given a meta-term in the meta-representation

of M , produces a meta-term in the meta-representation of a Maude module; to

define an interface that encapsulates how commands in the language captured by

M are translated into commands over the Maude representation of M ; and how the

“answer” given by the Maude system is translated back into the language of M .

Full Maude provides an infrastructure to implement all these steps. There is

a parsing infrastructure to handle Maude-based modules; a transformation infras-

tructure that given a structured Maude module, that is, a Maude module with

inclusions, flattens it into a single Maude module; a database, that is, a term that

holds all the modules loaded in Full Maude, together with information necessary

to execute Full Maude’s commands (the database structure may be extended to

“cache” information that may be necessary for computing with (the representation

of) terms in M); and finally a pretty-printing infrastructure. This infrastructure is

already used by Full Maude to specify parameterized modules, and object-oriented

modules for instance.

MMT and MSL were implemented as Full Maude extensions individually. (Con-

crete details on how both tools have been implemented at the metalevel can be

found in [2,7].) The combination was straightforward: we wrote a few modules that

joined each of these parts, that is, parsing, transformation, database handling, and

pretty printing. The module ‘MMT+MSL-SIGN’ extends the module ‘STRAT-GRAMMAR’

(that itself extends Full Maude’s grammar with the one for strategies) with the

grammar for MSDF syntax defined in module ‘MSDF-SIGNATURE’.

fmod MMT+MSL-SIGN is

including META-STRAT-SIGN .

op MMT+MSL-GRAMMAR : -> FModule .

eq MMT+MSL-GRAMMAR = addImports((including ’MSDF-SIGNATURE .), STRAT-GRAMMAR) .

endfm

The module ‘MMT+MSL’ puts the Maude modules from both tools together. It

replaces Full Maude’s module for handling input and output since there can not be

non-determinism between Full Maude’s rules and MMT+MSL. First it includes the

extended grammar, then the database handling modules for MSL and MMT, the

predefined units for MMT and finally the loop mode module.

mod MMT+MSL is

pr MMT+MSL-SIGN . pr STRAT-DATABASE-HANDLING .

pr MMT-DATABASE-HANDLING . pr PREDEF-UNITS .

inc LOOP-MODE .
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Three rules handle the read-eval-print loop for MMT+MSL. The rule labeled

‘init’ below simply initializes Full Maude’s database with its default values and

adds a “banner” to the MMT+MSL. Full Maude’s database is the state of the

system declared by the ‘LOOP-MODE’ module. It uses Maude object-oriented no-

tation. The database structure was extended both by MSL and the MMT. The

attributes ‘state’, ‘stratDefs’, ‘results’, and ‘repeat’ are used by MSL to, re-

spectively, represent the search tree (either a stack, representing backtrack points,

for depth-first search or a queue, with unsolved terms, for breadth-first search), a

meta-module representing the strategy definitions, a set of terms representing the

solutions found so far, and a flag for the option of showing or not repeated results.

The attribute ‘step-flag’ is declared by MMT and holds the option to use MMT’s

built in technique to handle MSOS computations (the ‘step’ rule) or not.

rl [init] : init

=> [nil, < o : STRATDB | db : initial-db, input : nilTermList, output : nil,

default : ’CONVERSION, state : emptyP, step-flag : false,

stratDefs : none, results : emptyTermSet, repeat : false >,

(’\n ’\t ’\s ’\s ’\s ’\s ’\s ’\s ’\s

’MMT ’and ’Strategy ’Full ’Maude ’2.1.1 ’Combined ’\s ’\n)] .

Rule ‘in’ allows for both modules to be entered in MMT+MSL by invoking

‘metaParse’ with the combined grammar in module ‘MMT+MSL-GRAMMAR’. There is

another ‘in’ rule that handles syntax errors in the input.

crl [in] :

[QIL, < O : X@Database | input : nilTermList, output : nil, Atts >, QIL’]

=> [nil, < O : X@Database |

input : getTerm(metaParse(MMT+MSL-GRAMMAR, QIL, ’Input)),

output : nil, Atts >, QIL’]

if QIL =/= nil /\ metaParse(MMT+MSL-GRAMMAR, QIL, ’Input) : ResultPair .

Rule ‘out’ simply prints to the screen what was produced as output by Full

Maude.

crl [out] :

[QIL, < O : X@Database | output : QIL’, Atts >, QIL’’]

=> [QIL, < O : X@Database | output : nil, Atts >, (QIL’’ QIL’)]

if QIL’ =/= nil .

endm

Finally, the MMT+MSL tool can be used after loading into Maude the modules

implementing MMT and MSL and the two modules described above.

3 Representing Ordered SOS with Strategies

In this section we show how a Maude strategy can be defined to execute an ordered

SOS specification as defined in [15].

A set of rules with an ordering (any binary relation) is called ordered SOS

(OSOS) if it contains positive GSOS rules only (that is, no rule has negative

premises). In [15] it is shown that GSOS and OSOS have the same expressive
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power. A GSOS rule is an inference rule in the following form{
Xi

αij
→ Yij

}
i∈I,j∈Ji

{
Xk

βkl
�

}
k∈K,l∈Lk

f(X1, . . . ,Xn)
γ
→ C[X,Y]

where I and K are subsets of {1, . . . , n} and all Ji and Lk are finite subsets of IN;

X is the sequence X1, . . . ,Xn and Y is the sequence of all Yij; and C is a context.

For example, the following rules define the behavior of an hypothetical operator

f , for constants a and b:

X
a
→ Y

f(X)
a
→ f(Y )

r1

X
b
→ Y

f(X)
b
→ g(Y )

r2 {r1 < r2}

where the relation r1 < r2 between the rules specifies that the first rule (r1) is only

applied when the second rule (r2) cannot be applied. That is, the binary relation

on rules defines the order of their application when deriving transitions. So, a rule

r can be used to derive a transition if all its premises are valid and no rule higher

than r is applicable (it contains a premise which is not valid).

A Maude strategy can be used to take into account this order on rules. First,

inference rules are represented as SOS rules in MMT but their application will be

controlled by a strategy. The strategy makes use of the ‘top’ combinator to restrict

the application of the given strategy to the outermost term. The ‘not’ combinator

checks if the higher rules cannot be applied.

For the previous example with r1 < r2, the part of the strategy that tries to

apply r2 is simply top(r2{s}), where s is the abstract strategy to be used to solve

the premise. The part of the strategy regarding r1 is a bit more complex since it

has rules higher in the rule ordering. It is ‘not(top(r2{s})) ; top(r1{s})’, which

means that before applying r1 we have to know that r2 cannot be applied. The

strategy ‘not(top(r2{s}))’ succeeds if top(r2{s}) fails.

For an OSOS specification (Σ, A,R,<) the following algorithm builds the strat-

egy identified by s that controls the way rules in R should be applied. It uses a

function rules(f) to obtain the rules in R that define the behavior of the operator

f and a function higher(r) that returns all the rules r′ ∈ R such that r < r′.

strategy := ‘idle’

for each operator f ∈ Σ do

for each rule rf ∈ rules(f) do

if higher(rf ) = ∅ then

append ‘| top(rf{s})’ to the strategy

else

append ‘| not(union(higher(rf ))) ; top(rf{s})’ to the strategy

where union(r1, . . . , rn) = top(r1{s}) | ... | top(rn{s}).

The strategy ‘not(top(r1{s}) | ... | top(rn{s}))’ succeeds when none of the
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rules r1, . . . , rn can be applied. Note that if a given rule r has m > 1 premises then

the strategy s should be repeated m times within the curly brackets. If m = 0 then

r is not parameterized.

In [15] a transition relation →, that takes into account the ordering on rules, is

associated to a process language (Σ, A,R,<). Formally, →=
⋃

l<ω →l, where the

transitions in →l are defined as follows

p
α
→ p′ ∈→l if d(p) = l and ∃r ∈ R, ρ.

(
ρ(con(r)) = p

α
→ p′ and

ρ(pre(r)) ⊂
⋃

k<l →
k and ∀r′ ∈ higher(r).ρ(pre(r′)) �⊂

⋃
k<l →

k
)
.

Theorem 3.1 The transition relation induced by an OSOS specification is pre-

served by the associated SOS specification with the strategy built by the above algo-

rithm.

Proof sketch. By induction on the depth of the process term. The base case is

when the process is a constant, and therefore the rule r does not have any premise

and higher(r) = ∅. The strategy produced by the algorithm has r as one of its

alternatives. For the inductive case, since ∀r′ ∈ higher(r).ρ(pre(r′)) �⊂
⋃

k<l →k

holds, then by inductive hypothesis the strategy not(union(higher(r))) succeeds

since the application of each rule r′ fails; and also, ρ(pre(r)) ⊂
⋃

k<l →
k holds, thus

by inductive hypothesis the strategy that is applied to the premisses of r succeeds,

which makes the application of strategy r{s} successful. �

4 Representing Negative Premises

In this section we first recall how a GSOS specification with negative premises can

be represented in OSOS and then how a strategy can be used for that matter. We

adapt material from [15] while recalling how negative premises are represented in

OSOS.

For OSOS specifications with no constraints whatsoever regarding the rule or-

dering (besides being simply a binary relation among rules), given a rule with a

negative premise, a new rule is generated above the given rule in the rule order. Its

single premise is a positive version of the negative premise in the given rule. As for

its conclusion, it has the same left-hand side of the conclusion of the given rule, but

with process 0 on the right-hand side. Moreover, the generated rule should never

be enabled for a configuration where its premise holds, hence, it should be above

itself in the rule order.

Let us consider the specification for an hypothetical operator f given by the

following rule:

X
b
→ Y X

a
�

f(X)
b
→ t′

r1

This specification can be written in OSOS simply by removing the negative premise

from rule r1, declaring the rule r2 below, and an order where r2 is above r1. The
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specification then becomes as follows, where Y is a new variable in r2.

X
b
→ Y

f(X)
b
→ t′

r1

X
a
→ Y

f(X)
a
→ t′

r2 {r1 < r2, r2 < r2}

Our SOS specification with a strategy is then given by rules r1 and r2, as above,

together with the strategy ‘s = not(r2{s}) ; r1{s} | not(r2{s}) ; r2{s}’. (The

abstract strategy technique is not used here for simplicity.)

Clearly, the strategy ‘not(r2{s}) ; r2{s}’ is not necessary (since it always fails)

and the strategy could be simplified. Also, note that rule r2 is really never applied.

In the strategy ‘not(r2{s}) ; r1{s}’ the strategy ‘not’ only checks if the premises

hold. Another remark is that a rule for the operator f with the premise of r2 could

already exist in the original GSOS specification. In this case the specification is

called natural in [15]. Thus, from natural specifications is not necessary to generate

a new rule and the strategy could simply take the existing rule into account. Note

that to handle this case properly, the implementation of the function higher needs

to properly handle loops in the rule ordering.

OSOS specifications can be partial, meaning that its order is irreflexive and

transitive. (Partial OSOS specifications are also equivalent to GSOS specifications

according to [15].) Since the order has to be partial, the technique of having a

rule above itself can not be used. The technique to represent the negative premise

in partial OSOS relies on an extended action set with an error action and a rule

that restricts process evolution to processes that do not signal error. A rule is also

generated in the form of the one produced by the technique for non-partial OSOS,

which is also above the given rule in the rule order, but with the error action in the

conclusion. Also, the initial configuration should be augmented with the restriction

to error.

The specification for r1 in partial OSOS is given by the following three rules:

X
b
→ Y

f(X)
b
→ t′

r3

X
a
→ Y

f(X)
error
→ 0

r4 {r3 < r4}

X
α
→ Y

X\error
α
→ Y \error

r5 α �= error

where the initial configuration with process f(p) should be augmented with the

restriction to action error, as in f(p)\error .

In this case the strategy would be ‘s = not(r4{s}) ; r3{s} | r5{s}’. Again, a

simplification is possible, due to the same reason as for the non-partial case. Since

the strategy ‘not’ does not apply a rule, only checks for its premises, the conclusion

of r4 is irrelevant. Therefore there is neither a need to extend the action set with

the error action nor to add r5 to the rule set. With this simplification the resulting

strategy is ‘s = not(r4{s}) ; r3{s}’.

Both translations (including the generation of new rules and the corresponding

order) can be done automatically by inspecting the GSOS rules. Then the strategy
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can be generated as explained in Section 3. (The implementation of this transfor-

mation, however, is part of future work.)

5 CCS with Priority

5.1 A Priority Operator with Strategies

An example of the usage of negative premises is a priority operator θ [12], which

given a process P builds a new process that performs action α of P if P cannot

perform any action with a priority higher than α. This operator is specified by the

following rule scheme rθ.

X
α
→ X ′ ∀β>α X

β
�

θ(X)
α
→ θ(X ′)

rθ

Given a finite set of actions, the above scheme can be represented by many rules like

rθ but without the negative premise and with an ordering among them. An example

strategy for rθ is ‘s = not(rθc
{s} | rθb

{s}) ; rθa
{s} | not(rθc

{s}) ; rθb
{s} |

rθc
{s}’, given a set of action labels {a, b, c} with the ordering {a < b, a < c, b < c},

and the rules for the priority operator labeled rθa
, rθb

, and rθc
. (Again the abstract

strategy technique is not applied for simplicity.)

However, this specification can be further simplified. Strategies may be ap-

plied with a particular substitution. Thus, instead of having three rules, in this

example, we may specify a single rule rθ with an action variable that may be-

come bound to the three different label actions, thus giving rise to the strat-

egy ‘s = not(rθ[A ← c]{s} | rθ[A ← b]{s}) ; rθ[A ← a]{s} | not(rθ[A ←
c]{s}) ; rθ[A ← b]{s} | rθ[A ← c]{s}’, where ‘A’ is an action variable.

For arbitrary large (but finite) set of actions, the strategy could be parameter-

ized by a list of action labels representing the action labels above a given one. If

we consider the following function forall below that produces a strategy out of a

list of action labels, the strategy for an action label a with the function applica-

tion higher(a) returning a list of action labels, would be given by the expression

‘not(forall(higher(a))) ; rθ’.

forall rθ
(l, ls) = rθ[A ← l] | forall rθ

(ls)

forall rθ
(nil) = idle

5.2 CCS with the Priority Operator in MMT+MSL

The specification of CCS in Section 2.2 can be very easily extended, given the

representation of priorities as strategies in Section 5.1. First the syntax of processes

must be extended with the priority operator and the transition rule set must be

extended with a new transition rule for priorities as rθ in Section 5.1 but without

the negative premises as we explained before. The Maude module ‘CCS-PRI’, that

includes the ‘CCS’ module above and ‘PROCESS-WITH-PRIORITY’ is also defined.

(msos PROCESS-WITH-PRIORITY is
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Process ::= theta (Process) [prec 20] .

Label = {trace’ : Action*, ...} .

Process -{trace’ = Action, ...}-> Process’

[theta] -- --------------------------------------------------------------------

theta (Process) : Process -{trace’ = Action, ...}-> theta (Process’) .

sosm)

The strategy has to be extended with the new strategies to represent the negative

premises as explained in Section 5.1.

(stratdef PRI-STRAT is

including PREM-STRAT .

sop pri-strat .

seq pri-strat = not(top(theta[Action <- c]{dfs(prem-strat)}) |

top(theta[Action <- b]{dfs(prem-strat)}))

; top(theta[Action <- a]{dfs(prem-strat)})

| not(top(theta[Action <- c]{dfs(prem-strat)}))

; top(theta[Action <- b]{dfs(prem-strat)})

| top(theta[Action <- c]{dfs(prem-strat)})) .

endsd)

The module ‘CCS-PRI-STRAT’, that replaces ‘CCS-STRAT+’, combines the strategy

for basic CCS with the strategy for the priority operator, and establishes that the

premises should be rewritten using the new whole strategy is the following one:

(stratdef CCS-PRI-STRAT is

including CCS-STRAT . including PRI-STRAT .

sop ccs-pri .

seq ccs-pri = ccs-strat | pri-strat .

seq prem-strat = ccs-pri .

endsd)

6 Final Remarks

In [13] the authors present a prototype for GSOS specifications in Maude using the

meta-level. Our approach represents OSOS, which is equivalent to GSOS [15], using

the object level. Of course, it is still necessary to automate the translation from neg-

ative premises to orders and then to strategies. Moreover, to represent OSOS (and

therefore GSOS) is one possible application of strategies. Maude (with strategies)

could be used directly to represent any application with strategies, including OSOS.

However, if one wants to make its specifications modular, the rewrite theories would

have to be extended to cope with the modularity requirements.

The current version of the prototype does not support strategy module inclusion,

even though there is notation (and semantics) for them in [7]. All the strategy

definitions have to be declared in a single module. Part of our future work is to

fully support the strategy language. Besides the automation of the translation of

negative premises to strategies, a case study that we would like to approach in a near

future is the implementation of E-LOTOS semantics [6], where negative premises

are used in order to guarantee that urgent actions occur before time elapses.
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