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The two levels of data and actions on those data provided by the separation between equations and
rules in rewriting logic are completed by a third level of strategies to control the application of
those actions. This level is implemented on top of Maude as a strategy language, which has been
successfully used in a wide range of applications. First we summarize the Maude strategy language
design and review some of its applications; then, we describe a new case study, namely the description
of completion procedures as transition rules + control, as proposed by Lescanne.

1 Introduction

Strategies are pervasive in Computer Science; we have, among many others, control strategies, reduction
strategies, deduction strategies, rewriting strategies, narrowing strategies, theorem-proving strategies, e-
learning strategies, etc. This is just a reflection of the fact that strategies are essential ingredients in game
and problem-solving. In general, in many settings we can identify three levels in the development of the
solution for a given problem:

• definition of the data involved in the problem,

• identification of the basic actions that manipulate those data, and

• strategies to specify how those basic actions must be used to reach the desired solution.

For example, in the setting of business process modeling, those three levels correspond to the data
(clients, reservations, money, etc.), the business activities or web services involved, and the composi-
tion of such activities or services to design more complex interactions through languages such as BPEL
[12] and BPMN [13].

Since its introduction by Meseguer in the early nineties [39], rewriting logic addressed the separation
between the first two levels above by distinguishing at the logic level equations from rules. Equations
are used to define data (possibly including states), while rules are used to define transitions, activities,
actions, and so on, that use data and allow to move from one state to another. Different specification
languages are directly based on rewriting logic, including ELAN [9, 8] and Maude [20, 19]; in those
languages, the distinction between equations and rules is emphasized by requiring, although both are
implemented in terms of rewriting, equations to be confluent and terminating (and thus, any reduction
strategy will give rise to the same unique result), while rules need not be either confluent or terminating.
Then, if the user is interested in controlling the application of rules to avoid undesired directions, either
the control is introduced into the rules in an ad hoc way depending on the problem, or it is necessary to
introduce somehow the third level above to control the rule application by means of strategies. In the
case of ELAN, this was part of its design, so that strategies become an essential part of the ELAN system,
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which provides a basic set of strategies which can be used when writing rewrite rules, in such a way that
at the specification level it is not enforced a separation between rules and strategies. On the other hand,
in the case of Maude, for a while the introduction of explicit strategies was avoided by means of its direct
access to the metalevel. Indeed, the Maude system provides rewrite commands for getting only an
execution path, as well as a search command for exploring all possible execution paths from a starting
term [19]; if one is interested in the results of only some execution paths satisfying some constraints,
these can typically be specified at the metalevel, where both equations and rules become simply more
data and can be manipulated in different ways. Even more, several strategy languages at the metalevel
have been considered for different applications, such as, for example [21] for completion.

Taking into account our own previous experience designing strategy languages in Maude, and also
from the experience of other languages like the already mentioned ELAN, TOM [7], and Stratego [47, 48]
we decided to design a strategy language for Maude [36], to be used at the object level instead of at the
metalevel, thus avoiding the need to know this more complex framework, and completing at the same
time in the case of Maude the third level in problem solving as described above.

The Maude strategy language allows the definition of strategy expressions that control the way a term
is rewritten. Differently from ELAN, our design was based on a strict separation between the rewrite
rules and the strategy expressions, that are provided in separate modules. Thus, in our language it is not
possible to use strategy expressions in the rewrite rules of a system module. A strategy is described as
an operation that, when applied to a given term, produces a set of terms as a result, given that the process
is nondeterministic in general. The basic strategies consist of the application of a rule (identified by the
corresponding rule label) to a given term, and allowing variables in a rule to be instantiated before its
application by means of a substitution. For conditional rules, rewrite conditions can be controlled also by
means of strategies. Basic strategies are combined by means of, among others, typical regular expression
constructions (concatenation, union, and iteration), if-then-else, combinators to control the way subterms
of a given term are rewritten, and recursion [36].

Since its proposal, the language has been successfully applied to a wide range of examples, from
operational semantics representations to the formalization of web services; in particular, in the context of
business process modelling that we have mentioned above, the Maude strategy language has been used
to represent in Maude fragments of BPEL [38] and also of BPMN [25].

In the first part of this paper, after a quick introduction to Maude, we summarize the Maude strategy
language design, by reviewing its syntax and set-theoretic semantics in Section 3, and then survey the
main applications in Section 4. In the second part of the paper, Section 5, we present a new case study,
namely the description of completion procedures as transition rules + control, as proposed by Lescanne
in [32]. Equational systems are represented as data that is going to be manipulated by rewrite rules imple-
menting the completion inference rules, following a well-known approach. In order to get a completion
algorithm, one needs to apply these rules in a controlled way. In his paper, Lescanne does this by means
of CAML programs, while our approach is more abstract, emphasizing the fact that inference rules do
not change at all in the different algorithms.

2 Maude in a nutshell

In Maude the state of a system is formally specified as an algebraic data type by means of an equational
specification. Maude uses a very expressive version of equational logic, namely membership equational
logic [11]. In this kind of specifications we can define new types (by means of the keyword sort);
subtype relations between types (subsort); operators (op) for building values of these types, giving
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the types of their arguments and result, and which may have attributes as being associative (assoc)
or commutative (comm), for example; equations (eq) that identify terms built with these operators; and
memberships (mb) t : s stating that the term t has sort s. Both equations and memberships can be condi-
tional. Conditions are formed by a conjunction (written /\) of equations and memberships. Equations
are assumed to be confluent and terminating, that is, we can use the equations from left to right to reduce
a term t to a unique (modulo the operator attributes such as associativity or commutativity) canonical
form t ′ that is equivalent to t, i.e. they represent the same value.

The dynamic behavior of a system is specified by rewrite rules of the form

l : t −→ t ′ if (
∧

i

ui = vi)∧ (
∧

j

w j : s j)∧ (
∧
k

pk −→ qk)

that describe the local, concurrent transitions of the system. That is, when part of a system matches the
pattern t and the conditions are fulfilled, it can be transformed into the corresponding instance of the
pattern t ′.

2.1 Crossing the river

This example is taken from [20, Section 7.8], although the presentation here is slightly different.
A shepherd needs to transport to the other side of a river a wolf, a goat, and a cabbage. He has only

a boat with room for the shepherd himself and another item. The problem is that in the absence of the
shepherd the wolf would eat the goat, and the goat would eat the cabbage.

We represent with constants left and right the two sides of the river. The shepherd and his belong-
ings are represented as objects with an attribute indicating the side of the river in which each is located
and are grouped together with a multiset operator __. The rules represent how the wolf or the goat eat
and the ways of crossing the river allowed by the capacity of the boat; an auxiliary change operation is
used to modify the corresponding attributes.

mod RIVER-CROSSING is

sorts Side Group .

ops left right : -> Side .

op change : Side -> Side .

ops s w g c : Side -> Group . --- shepherd, wolf, goat, cabbage

op __ : Group Group -> Group [assoc comm] .

vars S S’ : Side .

eq change(left) = right .

eq change(right) = left .

crl [wolf-eats] : w(S) g(S) s(S’) => w(S) s(S’) if S =/= S’ .

crl [goat-eats] : c(S) g(S) s(S’) => g(S) s(S’) if S =/= S’ .

rl [shepherd-alone] : s(S) => s(change(S)) .

rl [wolf] : s(S) w(S) => s(change(S)) w(change(S)) .

rl [goat] : s(S) g(S) => s(change(S)) g(change(S)) .

rl [cabbage] : s(S) c(S) => s(change(S)) c(change(S)) .

endm

We want to know if there is a way the shepherd can safely take his belongings to the other side. But
if we search if a state where everybody is on the right is reachable from a state where everybody is on
the left, we cannot be sure that an intermediate state where, for example, the wolf has the posibility of
eating but it has not eaten, is also reached. That is, with the rewrite or search commands of Maude we
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cannot ensure that the priority of the first two rules is taken into account. In Section 3.9 we will present
a strategy that ensures that priority.

3 The Maude strategy language

In this section we describe the syntax of our strategy language and its set-theoretic semantics. A strategy
is described as an operation that, when applied to a given term, produces a set of terms as a result,
given that the process is nondeterministic in general. If the strategy fails (it cannot be applied to the
given term), the empty set of results is returned. Otherwise, we say that the strategy succeeds (possibly
returning several results). For the strategies of a rewrite theory R with signature Σ we have a function

@ : Strat×TΣ(X)−→P(TΣ(X)),

where TΣ(X) denotes the set of Σ-terms with variables in X . This function has an obvious extension to a
function

@ : Strat×P(TΣ(X))−→P(TΣ(X)),

where, if σ ∈ Strat and U ⊆ TΣ(X), we have σ @U =
⋃

t∈U σ @ t.

3.1 Idle and fail

The simplest strategies are the constants idle and fail. The first always succeeds, but without mod-
ifying the term t to which it is applied, that is, idle@ t = {t}, while the second always fails, that is,
fail@ t = /0.

3.2 Basic strategies

The basic strategies consist of the application of a rule (identified by the corresponding rule label) to a
given term. Rule variables can be instantiated before its application by means of a substitution, that is,
a mapping of variables to terms, so that the user has more control on the way the rule is applied. In
case of conditional rules, the default breadth-first search strategy is used for checking the rewrites in the
condition. Therefore, if l is a rule label, s a substitution, and t a term, the semantics of l[s]@ t is the set
of terms to which t rewrites in one step using the rule with label l instantiated by substitution s anywhere
where it matches and satisfies the rule’s condition. The substitution can be omitted if it is empty.

For conditional rules, rewrite conditions can be controlled by means of strategy expressions. A strat-
egy expression of the form l[s]{σ1 . . .σn} denotes a basic strategy that applies anywhere in a given state
term the rule l with variables instantiated by means of the substitution s and using σ1, . . . ,σn as strat-
egy expressions to check the rewrites in the condition of l. The number of rewrite condition fragments
appearing in the condition of rule l must be exactly n for the expression to be meaningful.

3.3 Top

The most common case allows applying a rule anywhere in a given term, as explained above, but we
also provide an operation to restrict the application of a rule only to the top of the term, because in some
examples like structural operational semantics, the only interesting or allowed rewrite steps happen at the
top. top(β) applies the basic strategy β only at the top of a given state term. Note, however, that even
applying a rule at the top is nondeterministic due to the possibility of multiple matches, because matching
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takes place modulo the equational attributes of the operators, such as associativity, commutativity, or
identity.

3.4 Tests

Tests are considered as strategies that check a property on a state, so that the strategy applied to a state
is successful when the test is true on such a state, and the strategy fails when the test is false; moreover,
in the first case the state is not changed. That is, for τ a test and t a term, τ @ t will evaluate to {t} if τ

succeeds on t, and to /0 if it fails, so that τ acts as a filter on its input.
Since matching is one of the basic steps that take place when applying a rule, the strategies that

test some property of a given state term are based on matching. As in applying a rule, we distinguish
between matching anywhere and matching only at the top of a given term. amatch ρ s.t. C is a
test that, when applied to a given state term t ′, is successful if there is a subterm of t ′ that matches the
pattern ρ (that is, matching is allowed anywhere in the state term) and then the condition C is satisfied
with the substitution for the variables obtained in the matching, and fails otherwise. match ρ s.t. C
corresponds to matching only at the top. When the condition C is simply true, it can be omitted.

3.5 Regular expressions

Basic strategies can be combined so that strategies are applied to execution paths. The first strategy
combinators we consider are the typical regular expression constructions: concatenation, union, and
iteration. The concatenation operator is associative and the union operator is associative and conmutative.
This commutativity of union provides a form of nondeterminism in the way the solutions are found.

If σ , σ ′ are strategy expressions and t is a term, then (σ ;σ ′)@ t = σ ′@ (σ @ t), (σ |σ ′)@ t =
(σ @ t)∪ (σ ′@ t), and σ +@ t =

⋃
i≥1 σ i @ t, where σ1 = σ and σn = (σ ;σn−1) for n > 1. Of course,

σ *= idle|σ +. For example, a strategy of the form σ ;τ (with τ a test) will filter out all those results
from σ that do not satisfy the test τ .

3.6 Conditional strategy and its derivations

Our next strategy combinator is a typical if-then-else, but generalized so that the first argument is also a
strategy following ideas from Stratego [48] and ELAN [10].

The behavior of the strategy expression σ ? σ ′ : σ ′′ is as follows: in a given state term, the strategy
σ is evaluated; if σ is successful, the strategy σ ′ is evaluated in the resulting states, otherwise σ ′′ is
evaluated in the initial state. That is

(σ ? σ
′ : σ

′′)@ t = if (σ @ t) 6= /0 then σ
′@ (σ @ t) else σ

′′@ t fi.

Note that, as mentioned above, in general the first argument is a strategy expression and not just a test.
Since a test is a strategy, we have the particular case τ ? σ ′ : σ ′′ for a test τ where evaluation coincides
with the typical Boolean case distinction: σ ′ is evaluated when the test τ is true and σ ′′ when the test is
false, taking into account that a test fails when false.

Using the conditional combinator, we can define many other useful strategy combinators as derived
operations. σ orelse σ ′ evaluates σ in a given state; if such evaluation is successful, its results are the
final ones, but if it fails, then σ ′ is evaluated in the initial state.

σ orelse σ
′ = σ ? idle : σ

′
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ρ = g(...ρ1...ρn...) −→ g(... ... ...)

matching substitution

t = f(... g(... ...)... ...) −→ f(... g(... ...)... ...)

σ1 σn rewriting of subterms

Figure 1: Behavior of the amatchrew combinator.

Using the conditional combinator, we can define many other useful strategy combinators as derived
operations. σ orelse σ ′ evaluates σ in a given state; if such evaluation is successful, its results are the
final ones, but if it fails, then σ ′ is evaluated in the initial state.

σ orelse σ ′ = σ ? idle : σ ′

not(σ) reverses the result of evaluating σ , so that not(σ) fails when σ is successful and vice versa.

not(σ)= σ ? fail : idle

An interesting use of not(σ) is the following “normalization” (or “repeat until the end”) operation σ !:

σ != σ * ; not(σ)

try(σ) evaluates σ in a given state; if it is successful, the corresponding result is given, but if it
fails, the initial state is returned.

try(σ)= σ ? idle : idle

Evaluation of test(σ) checks the success/failure result of σ , but it does not change the given initial
state.

test(σ)= not(σ) ? fail : idle

Notice that test(σ)= not(not(σ)).

3.7 Rewriting of subterms

With the previous combinators we cannot force the application of a strategy to a specific subterm of the
given initial term. We can have more control over the way different subterms of a given state are rewritten
by means of the amatchrew combinator.

When the strategy amatchrew ρ s.t. C by ρ1 using σ1,. . ., ρn using σn is applied to a
state term t, first a subterm of t that matches the pattern ρ and satisfies C is selected. Then, the patterns
ρ1, . . . ,ρn (which must be disjoint subterms of ρ), instantiated appropriately, are rewritten as described
by the strategy expressions σ1, . . . ,σn, respectively. The results are combined in ρ and then substituted
in t, in the way illustrated in Figure 1.

The strategy expressions σ1, . . . ,σn can make use of the variables instantiated in the matching, thus
taking care of information extracted from the state term (see, for example, the strategies in Section 5.1).

The version matchrew works in the same way, but performing matching only at the top. In both
cases, the condition can be omitted when it is true.

The congruence operators used in ELAN and Stratego [10, 43] are special cases of the matchrew
combinator, as shown in [31].
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substituted in t, in the way illustrated in Figure 1.

The strategy expressions σ1, . . . ,σn can make use of the variables instantiated in the matching, thus
taking care of information extracted from the state term (see, for example, the strategies in Section 5.1).

The version matchrew works in the same way, but performing matching only at the top. In both
cases, the condition can be omitted when it is true.
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3.8 Strategy modules and commands

Given a Maude system module M, the user can write one or more strategy modules to define strategies
for M. Such strategy modules have the following form:

smod STRAT is

protecting M .

including STRAT1 . ... including STRAT j .

strat sid1 : T11 ... T1m @ K1 .

sd sid1(ρ11,...,ρ1m) := σ1 .

...

strat sidn : Tn1 ... Tnp @ Kn .

sd sidn(ρn1,...,ρnp) := σn .

csd sidn(ρ ′n1,...,ρ ′np) := σ ′n if C .

endsm

where M is the system module whose rewrites are being controlled, STRAT1, . . . ,STRAT j are imported
strategy submodules, sid1, . . . ,sidn are identifiers, and σ1, . . . ,σn are strategy expressions (over the lan-
guage of labels provided by M), where the identifiers can appear, thus allowing (mutually) recursive
definitions. A strategy identifier can have data arguments, that are terms built with the syntax defined in
the system module M. When a strategy identifier is declared (with the keyword strat), the types of its
arguments (if any) are specified between the symbols : and @. After the symbol @, the type of the terms
to which this strategy can be applied is also specified. A strategy definition (introduced with the keyword
sd) associates a strategy expression (on the righthand side of the symbol :=) with a strategy identifier
(on the lefthand side) with patterns as arguments, used to capture the values passed when the strategy is
invoked. These strategy definitions can be conditional (with keyword csd). A strategy module can be
parametric (see [23] for details).

3.9 Example

Here we show how to control by means of strategies the rewriting in module RIVER-CROSSING from
Section 2.1. In [20] the first two rules were presented as equations in order to force Maude to apply
them before any other rule if it is possible. But besides the fact that that solution introduced a coherence
problem that had to be solved, it changed the semantics of the problem. Here we can guarantee the
priority of these two rules by means of strategies. The eating strategy below performs all possible
eatings; the oneCrossing strategy applies one of the other rules once; and the allCE strategy returns all
the possible reachable states where eating has had the higher priority. That is, allCE ensures that when
someone can eat, it eats for sure; we cannot recover from a disaster situation. Finally, if the strategy
solve applied to the initial state (where we assume that all the objects are located on the left riverbank)
returns a solution, it means that there is a safe way in which the shepherd can transport all his belongings
to the other side of the river.

smod RIVER-CROSSING-STRAT is

protecting RIVER-CROSSING .

strat eating : @ Group .

sd eating := (wolf-eats | goat-eats) ! .

strat oneCrossing : @ Group .

sd oneCrossing := shepherd-alone | wolf | goat | cabbage .
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strat allCE : @ Group .

sd allCE := (eating ; oneCrossing) * .

strat solve : @ Group .

sd solve := allCE ; match (s(right) w(right) g(right) c(right)) .

endsm

3.10 Implementations of the strategy language

Using the metalevel mechanisms provided by the Maude system as a metalanguage, we have imple-
mented a prototype of the Maude strategy language [36]. The metalevel features of Maude allow the
definition of operations to work with modules and computations as objects, as is the case with strategies.
The prototype works internally with a labelled version of the computation tree obtained by applying a
strategy to a term. The prototype is completed with a user interface providing commands to load mod-
ules, execute strategy expressions on states, and show results. The prototype and some examples can be
obtained from http://maude.sip.ucm.es/strategies.

After validating the language experimentally and reaching a mature language design, a direct imple-
mentation of our strategy language at the C++ level, at which the Maude system itself is implemented,
is currently being developed [23]. This will make the language a stable new feature of Maude and will
allow a more efficient execution.

In the meantime, we have advanced on the semantic foundations of the Maude strategy language
in [37]. We have shown that a strategy language S can be seen as a rewrite theory transformation
R 7→S (R) such that S (R) provides a way of executing R in a controlled way. One such theory trans-
formation for the Maude strategy language is presented in detail in [37], providing in this way a rewriting
semantics for the strategy language; since this rewriting semantics is executable, we obtained a different
metalevel implementation. We also studied in [37] some general requirements for strategy languages.
Some of these requirements, like soundness and completeness with respect to the rewrites in R, are ab-
solute requirements that every strategy language should fulfill. Other more optional requirements, that
we call monotonicity and persistence, represent the fact that no solution is ever lost. A future research
direction is the increased performance of strategy evaluations through parallelism. The point is that in
S (R) a term σ @ t (where strategy σ is being applied to term t) incrementally evaluates to a (possibly
nested) set data structure, so that the natural concurrency of rewriting logic is directly exploitable in
S (R) by applying different rules in different places of this data structure where solutions are generated.
This naturally suggests a distributed implementation of strategy languages.

4 Some applications

We briefly present in this section several research areas where Maude’s strategy language has been ap-
plied successfully.

Operational semantics Rewriting logic and Maude are a very well-known semantic framework [35,
41]. By using strategies, the semantics representations can be made more simple and powerful, by
separating the representation of the semantic rules from the mechanism used to control how they have to
be applied. A simple example with Milner’s CCS semantics is illustrated in [36].

http://maude.sip.ucm.es/strategies
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In the ambient calculus [17] an ambient is a place limited by a boundary where computations take
place. Its contents are a parallel composition of sequential processes and subambients; communication
between processes is local, through a blackboard. The operational semantics for the ambient calculus
consists of a set of structural congruence rules and a set of reduction rules, which can be represented
in Maude by using strategies, as detailed in [42]. It gives us some congruence rules for free (as the
commutativity and associativity of some operators), and the rest of the congruence rules are implemented
as Maude equations. The reduction rules are then represented as rewrite rules in Maude. However, the
reduction relation of the calculus is not a congruence for all the operators. This means that we cannot
freely use the rewrite rules, as Maude would apply them anywhere in a term; and we do not want them to
be applied after some operators. This is one of the reasons why the definition of a strategy that controls
the application of these rules is necessary.

Eden [33] is a parallel extension of the functional language Haskell. On behalf of parallelism, Eden
overrides Haskell’s pure lazy approach, combining a non-strict functional application with eager process
creation and communication. The operational semantics of Eden [26] is defined by means of a two-
level transition system: the lower level handles local effects within processes, whereas the upper level
describes the effects global to the whole system, like process creation and data communication. Then,
the global evolution of the system is described by iteration of the scheduling rules and the sequential
composition of other transitions. Thus the definition of the semantics itself imposes an order in the
application of the semantic rules and the use of strategies is mandatory. The representation in Maude
all of these rules and relations is studied in [28]. Most of the semantic rules are represented as rewrite
rules and the transition relations that are defined as the concatenation or repetition of other relations
are defined by means of strategies. But there are a few semantic rules that are more abstract in their
mathematical formulation so they cannot be directly translated to rewrite rules. They are represented
as (usually recursive) strategies that combine other strategies or rewrite rules. All of Eden’s operational
semantics has been represented at a quite abstract level, independently from factors such as the eagerness
degree in the creation of new processes or the speculation degree. It was used to analyze algorithmic
skeletons implemented in Eden in [27].

Modular structural operational semantics (MSOS) is a framework that allows structural operational
semantics specifications to be made modular in the sense of not imposing the redefinition of transition
rules when an extension is made. MSOS can be implemented in Maude in a quite precise way [14, 40].
The Maude MSOS Tool [18], an executable environment for modular structural operational semantics,
has been endowed with the possibility of defining strategies over its transition rules, by combining the
Maude MSOS Tool with the Maude strategy language in [15]. One advantage of this combination is the
possibility of executing Ordered SOS specifications [46], including negative premises.

Membrane systems A membrane consists of a multiset w of objects, a set R of evolution rules (which
are ordered by a priority relation), and a control mechanism C describing the way in which the rules
are used to modify the multiset w in an evolution step. Control mechanisms can be given by maximally
parallel rewriting, maximally parallel rewriting with priorities, and maximally parallel rewriting with
promoters and/or inhibitors. In [1] it is shown how Maude can be used to specify membrane systems
and how the control mechanisms in membranes can be described by using strategies. The strategy-based
rewrite semantics thus defined preserves the maximal concurrency expressed by the maximal parallel
application of the evolution rules [34]. This framework has been improved with the notion of strategy
controllers [2], which allow to reason at the higher level of computation given by the evolution of the
membrane systems. The intuition behind a strategy controller is that it decides which strategy is applied
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in the current state. A prototype has been developed [2] by extending the implementation at the metalevel
of Maude’s strategy language [37].

Multi-agent systems One of the challenges in the design and development of multi-agent systems is to
coordinate and control the behavior of individual agents. There are different approaches, from low level
ones (e.g., channel-based coordination) to high level ones (e.g., normative artifacts). These normative
artifacts observe the actions performed by individual agents, determine their effects in the environment
(which is shared by all individual agents), determine the violations caused by performing the actions, and
possibly, impose sanctions. In [5, 3], the semantics of norm-based organization artifacts is specified by
using Maude and its strategy language. Strategies are used as an alternative way to implement different
normative artifacts without changing the semantics of the normative language. Thus, the normative multi-
agent system is executed with respect to the transition rules which give the semantics of the normative
language. However, how the system changes is described at an upper level by strategically instrumenting
the transition rules. By using strategies there is a clear separation between executions and control. Timed
choreographies are also considered in [4].

Other applications Maude’s strategy language has also been applied to solve sudoku puzzles in [44];
to formalize web services composition in [38]; to execute a rewriting logic representation of neural
networks and the backpropagation learning algorithm in [45]; to present a rule-based approach for the
design of dynamic software architectures in [16]; and to develop a specification of the connection method
(a goal-directed proof procedure that requires a careful control over clause copies) for first-order logic in
[29]. Of course, there are surely more examples we are not aware of yet.

5 Completion

A completion procedure is a method used in equational logic to build from a set of (unordered) identities
E an equivalent canonical set of rewrite rules R, i.e. a confluent, noetherian and interreduced set of
rules used to compute normal forms. A basic completion procedure can be given by firstly orienting
the identities in E (using a provided reduction order on terms) and then iteratively computing all critical
pairs of the rewrite system obtained so far and adding to it oriented versions of all the non-joinable
ones. In order to avoid the huge number of rules that this basic procedure usually generates, rules can
be simplified by reducing them with the help of other rules. Following Bachmair and Dershowitz [6],
that method can be described by a set of inference rules (Figure 2) that covers a wide range of different
specific completion procedures. A specific completion procedure is obtained from that set of rules by
fixing a strategy for rule application.

The inference rules work on pairs (E,R) where E is a finite set of identities (input identities or critical
pairs that have not yet been transformed into rules) and R is a finite set of terminating rewrite rules.1 The
goal is to transform an initial pair (E0, /0) into a pair ( /0,R) such that R is convergent and equivalent to E0.

The inference rule DEDUCE derives an identity that is a direct consequence of rules in R, and adds
it to E. A special, common case is adding a critical pair of R to E. The rule ORIENT takes an identity
that can be ordered with the help of > and adds the corresponding rule to R. The rule DELETE removes
a trivial identity, and the rule SIMPLIFY-IDENTITY uses R to reduce identities. Both rules can be used
together to remove joinable critical pairs. The rule R-SIMPLIFY-RULE reduces the righthand side of a

1Termination of R is ensured by a reduction order > that is given as an input to the completion procedure.
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DEDUCE
E,R

E ∪{s≈ t},R if s←R u→R t

ORIENT
E ∪{s≈ t},R
E,R∪{s→ t} if s > t

DELETE
E ∪{s≈ s},R

E,R

SIMPLIFY-IDENTITY
E ∪{s≈ t},R
E ∪{u≈ t},R if s→R u

R-SIMPLIFY-RULE
E,R∪{s→ t}
E,R∪{s→ u} if t→R u

L-SIMPLIFY-RULE
E,R∪{s→ t}
E ∪{u≈ t},R if s =→R u

Figure 2: Inference rules for completion.

rule. Since, by assumption, termination of R can be shown using >, we know that s→R t →R u implies
s > t > u. For this reason, s→ u can be kept as a rule. However, when reducing the lefthand side of a
rule s→ t to u, it is not clear whether u > t is satisfied. Thus, the rule L-SIMPLIFY-RULE adds u≈ t as
an identity. The notation s =→R u is used to express that s is reduced by a rule l→ r ∈ R such that l cannot
be reduced by s→ t.

As mentioned above, specific completion procedures can be obtained from the inference rules in
Figure 2 by fixing a strategy for rule application. In the following sections we show how to use Maude’s
strategy language to represent several completion procedures described by Lescanne in [32]. ELAN [8]
has also been used to prototype completion algorithms in [31] by using strategies and constraints. Even
Maude has already been used to represent Huet’s completion algorithm [30], by using strategies defined
at the metalevel in [21].

In [32] several algorithms for completion are presented using the functional programming language
CAML. The main differences among the algorithms are the data structures on which the transition rules
operate, and the control that describes the way the transitions rules are invoked. Here, we redo this
work in Maude by using the proposed strategy language: the data structure is the term being rewritten,
inference rules (transition rules in Lescanne’s terminology) are represented as rewrite rules, and the
control is represented as strategies applying the rules in a directed way. We consider three algorithms,
as described by Lescanne: N-Completion, S-Completion, and ANS-Completion. Each algorithm is a
refinement of the previous one, obtained by adding more components to the data structure, adapting the
transition rules, and changing the control with the idea of making the algorithm more efficient. In this
presentation we do not deal with the two unfailing completion algorithms also presented by Lescanne.
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5.1 N-completion

N-completion is a first improvement of the overly abstract inference rules in order to take the computation
of critical pairs into account. For this algorithm, the data structure has three components:

• E is a set of identities, either given identities or computed critical pairs,2

• T is a set of rules whose critical pairs have not been computed yet, and

• R is another set of rules whose critical pairs have already been computed (marked rules in Huet’s
terminology [30]).

The transition rules correspond to the inference rules but adapted to these three components. They
are represented in Maude as follows:

mod N-COMPLETION is

pr CRITICAL-PAIRS .

sort System .

op <_,_,_> : RlS RlS EqS -> System . *** < R, T, E >

var E : EqS . var r : Rl . vars R T : RlS . vars s t u : Term .

rl [Deduce] : < R, T, E > => < R, T, E s =. t > . *** if s <-- u --> t

crl [Orient] : < R, T, E s =. t > => < R, T s -> t, E > if s > t .

rl [Delete] : < R, T, E s =. s > => < R, T, E > .

crl [Simplify] : < R, T, E s =. t > => < R, T, E u =. t >

if u := reduce(s, R T) .

crl [R-Simplify] : < R s -> t, T, E > => < R s -> u, T, E >

if u := reduce(t, R T) .

crl [R-Simplify] : < R, T s -> t, E > => < R, T s -> u, E >

if u := reduce(t, R T) .

crl [L-Simplify] : < R s -> t, T, E > => < R, T, E u =. t >

if u := reduce>(s -> t, R T) .

crl [L-Simplify] : < R, T s -> t, E > => < R, T, E u =. t >

if u := reduce>(s -> t, R T) .

rl [move] : < R, r T, E > => < r R, T, E > .

endm

The included module CRITICAL-PAIRS contains functions, defined at the metalevel, that compute
critical pairs of a set of rules, or the reductions →R (reduce) and =→R (reduce>). Observe that the
inference rule R-SIMPLIFY-RULE gives rise to two rewrite rules: one where the righthand side of a rule
in the set R is simplified and another one where the righthand side of a rule in T is simplified. The same

2The fact that an identity is an unordered pair is represented in Maude by using an operator _=._ with the commutative
attribute.
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happens with L-SIMPLIFY-RULE. The rewrite rule move will be used by the strategy to move a rule from
set T to set R.3

The algorithm N-completion has essentially three steps, namely success, when T and E are empty,
computing critical pairs after simplification of the rules, when E is empty, and orienting an identity into
a rule after simplification of the identities, when E is not empty. In the orientation part, it could happen
that by simplification all the identities disappear. In this case, one does nothing, that is just translated
by a recursive call. This algorithm can be succinctly expressed by the following strategy module (the
strategy identifier declarations have been omitted):
smod N-COMPLETION-STRAT is

protecting N-COMPLETION .

sd N-COMP := success orelse deduce orelse orient .

sd success := match < R, mtRlS, mtEqS > .

sd deduce := match < R, r T, mtEqS > ;

deduction ;

simplify-rules ;

N-COMP .

sd deduction := matchrew < R, r’ T, E > by

< R, r’ T, E > using (add-crit-pairs(CP(r’, R r’)) ;

move[r <- r’]) .

sd add-crit-pairs(mtEqS) := idle .

sd add-crit-pairs(s1 =. t1 E) := Deduce[s <- s1 ; t <- t1] ; add-crit-pairs(E) .

sd simplify-rules := (L-Simplify | R-Simplify) ! .

sd orient := match < R, T, e E > ;

simplify-eqs ;

( (match < R, T, mtEqS > ; N-COMP)

orelse (Orient ; N-COMP) ) .

sd simplify-eqs := (Delete | Simplify) ! .

endsm

5.1.1 Example

Let us consider the following set of equations

{ g(x,y)≈ a,g(x,y)≈ h(x,y),h(x,y)≈ f (x),h(x,y)≈ f (y) }
and the lexicographic path order induced by the precedence g > h > f > a. The basic completion
procedure uses ORIENT to generate the rules

{ g(x,y)→ a,g(x,y)→ h(x,y),h(x,y)→ f (x),h(x,y)→ f (y) }
and then DEDUCE to compute the critical pairs a ≈ h(x,y) and f (x) ≈ f (y). We can reproduce this
behavior by using some of the previous strategies

3That is because the only way a strategy can modify the term being rewritten is by means of rewrite rules.
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Maude> (srew < mtRlS, mtRlS, eqs > using Orient ! .)

result System :

< mtRlS, ’g[’x:S,’y:S] -> ’a.S ’g[’x:S,’y:S] -> ’h[’x:S,’y:S]

’h[’x:S,’y:S] -> ’f[’x:S] ’h[’x:S,’y:S] -> ’f[’y:S], mtEqS >

Maude> (cont using deduction ! ; Delete ! .)

result System :

< ’g[’x:S,’y:S] -> ’a.S ’g[’x:S,’y:S] -> ’h[’x:S,’y:S]

’h[’x:S,’y:S] -> ’f[’x:S] ’h[’x:S,’y:S] -> ’f[’y:S],

mtRlS, ’a.S =. ’h[’x1:S,’y1:S] ’f[’x1:S] =. ’f[’y1:S] >

where srew is the command for applying a strategy to a given term; the constant eqs represents the
above set of equations; cont is the command used to apply a strategy to the term returned by the previous
application; and all the terms are metarepresented.

The basic completion procedure continues by trying to simplify and orient these critical pairs, but the
terms in f (x)≈ f (y) are irreducible and cannot be compared with any reduction order. So, the procedure
fails. However, a ≈ h(x,y) can be oriented and used to compute new critical pairs that allow to reduce
f (x)≈ f (y) to a trivial identity. The N-completion procedure is able to find this solution.

Maude> (srew < mtRlS, mtRlS, eqs > using N-COMP .)

result System :

< ’f[’x:S] -> ’a.S ’g[’x:S,’y:S] -> ’a.S ’h[’x:S,’y:S] -> ’a.S, mtRlS, mtEqS >

5.2 S-completion

The main aim of orienting identities is to use them to simplify whenever it is possible. However, N-
completion makes a bad use of simplification. S-completion is an improvement of N-completion where
a rule is used for simplification as soon as it has been generated. When an identity is oriented into a rule,
it enters a set S where it is used to simplify all the other identities and rules. Thus, the data structure has
now four components:

• E is a set of identities, like in N-completion,

• S is a (singleton or empty) set of oriented identities (rules) that are used to simplify other rules,

• T is a set of rules already used for simplifying, but whose critical pairs have not been computed
yet, and

• R is another set of rules whose critical pairs have already been computed, like in N-completion.

The only difference with the N-completion is the set S through which a rule has to go before entering
T . The rewrite rules are modified to express this fact. We only show the rule that really changes (Orient)
and a new rule that is used by the strategy to join the sets T and S. The rest of the rules are only modified
by including the new set S.

mod S-COMPLETION is

pr CRITICAL-PAIRS .

sort System .

op <_,_,_,_> : RlS RlS RlS EqS -> System . *** < R, T, S, E >

crl [Orient] : < R, T, S, E s =. t > => < R, T, S s -> t, E > if s > t .

rl [concatT&S] : < R, T, S, E > => < R, T S, mtRlS, E > .
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[...]

endm

The simplification step is clearly distinguished from the three others. It is performed when S is not
empty. The completion process ends when there are no more identities or rules in E, S or T . Again, we
only show the strategies that really change.

smod S-COMPLETION-STRAT is

sd S-COMP := success orelse simplify-rules orelse deduce orelse orient .

sd success := match < R, mtRlS, mtRlS, mtEqS > .

sd simplify-rules := match < R, T, r S, E > ;

(L-Simplify | R-Simplify) ! ;

concatT&S ;

S-COMP .

sd deduce := match < R, r T, mtRlS, mtEqS > ;

deduction ;

S-COMP .

[...]

endsm

5.3 ANS-completion

S-completion computes all the critical pairs between all rules in R and one rule in T . In order to apply
simplification as soon as possible, it is better to compute the critical pairs between one rule in R and one
rule in T at a time. A new set C is created to contain one rule extracted from T with which critical pairs
with rules in R are computed. To keep track of the rules whose critical pairs are computed with the rule
in C, R is split into two sets, A (for already computed) and N (for not yet computed). The data structure
has now six components:

• E is a set of identities, like in S-completion,

• S is a set of simplifying rules, like in S-completion,

• T is a set of rules coming from S and waiting to enter C,

• C is a set that contains at most one rule and whose critical pairs are computed with one in N,

• N is the part of R whose critical pairs have not been computed with C but whose critical pairs with
A∪N have been computed, and

• A is a set whose critical pairs with A∪N∪C have been computed.

The transition rules are trivially adapted to work with this new data structure, and two new rules are
added. Rule AC2N joins the sets A and C with N and rule fillC extracts the smallest rule in T and puts
it in C.

mod ANS-COMPLETION is

pr CRITICAL-PAIRS .
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sort System .

op <_,_,_,_,_,_> : RlS RlS RlS RlS RlS EqS -> System . *** < A, N, C, T, S, E >

[...]

rl [AC2N] : < A, N, C, T, S, E > => < mtRlS, A N C, mtRlS, T, S, E > .

crl [fillC] : < A, N, C, T, S, E > => < mtRlS, A N, r, T’, S, E >

if r := least-rule(T) /\

r T’ := T .

endm

The procedure has now six parts, namely success, simplification, orientation, deduction, internal
deduction, and beginning of a new loop of computation of critical pairs. Deduction computes the critical
pairs between the smallest rule in N and the rule in C, whereas internal deduction computes the critical
pairs obtained by superposing the rule in C on itself.

smod ANS-COMPLETION-STRAT is

sd ANS-COMP := success orelse

simplify-rules orelse

orient orelse

deduce orelse

internal-deduction orelse

new-loop .

sd success := match ( < A, N, mtRlS, mtRlS, mtRlS, mtEqS > ) .

sd deduce := match (< A, r N, r’, T, mtRlS, mtEqS >) ;

deduction ;

ANS-COMP .

sd deduction := matchrew < A, r’ N, r’’, T, S, E > s.t. r’ := least-rule(r’ N) by

< A, r’ N, r’’, T, S, E > using (add-crit-pairs(CP(r’’, r’)) ;

move[r <- r’]) .

sd internal-deduction := ( matchrew < A, mtRlS, r’, T, mtRlS, mtEqS > by

< A, mtRlS, r’, T, mtRlS, mtEqS > using (add-crit-pairs(CP(r’, r’)) ;

AC2N) ) ;

ANS-COMP .

sd new-loop := fillC ; ANS-COMP .

[...]

endsm

6 Concluding remarks

As another application of the Maude strategy language, we have described completion procedures as
transition rules + control, following Lescanne’s proposal [32]. Our version, using rewrite rules and
declarative strategies instead of CAML programs, is more abstract and emphasizes the fact that inference
rules do not change at all in the different algorithms.
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This new case study on top of a growing list of applications throughout the world, has confirmed that
the design of the Maude strategy language is good enough to handle a variety of algorithms based on the
transition rules + control paradigm, using Lescanne’s words, or simply data + actions + strategies, using
the well-known three-level approach to problem solving.

As part of ongoing work, we are studying the integration of the strategies and model-checking fea-
tures of Maude. Properties of rewriting systems expressed in linear temporal logic can be studied in
Maude with the help of its integrated model checker [24, 20]. This tool checks the temporal properties
fulfilled by a transition system by considering all the possible executions from a given state; however,
as described in this paper, we can be interested in using the Maude strategy language to control those
executions and possibly to restrict them, thus modifying the transition system. Thus, we plan to study
how to model check temporal formulas satisfied by systems controlled by strategies, thus combining the
advantages of two quite useful Maude features for the specification of systems: model checking at the
property level and strategies at the execution level.
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[10] Peter Borovanský, Claude Kirchner, Hélène Kirchner & Christophe Ringeissen (2001): Rewriting with
Strategies in ELAN: A Functional Semantics. International Journal of Foundations of Computer Science
12(1), pp. 69–95. Available at http://dx.doi.org/10.1142/S0129054101000412.
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[36] Narciso Martı́-Oliet, José Meseguer & Alberto Verdejo (2004): Towards a Strategy Language for Maude.
In Narciso Martı́-Oliet, editor: Proceedings of the Fifth International Workshop on Rewriting Logic and
its Applications, WRLA 2004, Barcelona, Spain, March 27-April 4, 2004, Electronic Notes in Theoretical
Computer Science 117, Elsevier, pp. 417–441. Available at http://dx.doi.org/10.1016/j.entcs.
2004.06.020.

http://dx.doi.org/10.1007/3-540-44829-2_16
http://dx.doi.org/10.1016/j.entcs.2007.02.051
http://dx.doi.org/10.1016/j.entcs.2009.05.019
http://dx.doi.org/10.1016/j.entcs.2009.05.019
http://dx.doi.org/10.1016/0022-0000(81)90002-7
http://dx.doi.org/10.1016/0022-0000(81)90002-7
http://dx.doi.org/10.1007/3-540-59200-8_79
http://dx.doi.org/10.1016/j.entcs.2009.03.038
http://dx.doi.org/10.1016/j.entcs.2004.06.020
http://dx.doi.org/10.1016/j.entcs.2004.06.020


36 Basic completion strategies as another application of the Maude strategy language
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José M. Molina, editors: Proceedings of the International Symposium on Distributed Computing and Artifi-
cial Intelligence, DCAI 2008, University of Salamanca, Spain, October 22-24, 2008, Advances in Soft Com-
puting 50, Springer, pp. 424–433. Available at http://dx.doi.org/10.1007/978-3-540-85863-8_50.

[46] Irek Ulidowski & Iain Phillips (2002): Ordered SOS Process Languages for Branching and Eager Bisimula-
tions. Information and Computation 178, pp. 180–213.

[47] Eelco Visser (2001): Stratego: A Language for Program Transformation Based on Rewriting Strategies.
In Aart Middeldorp, editor: Rewriting Techniques and Applications, 12th International Conference, RTA
2001, Utrecht, The Netherlands, May 22-24, 2001, Proceedings, Lecture Notes in Computer Science 2051,
Springer, pp. 357–362.

[48] Eelco Visser (2004): Program Transformation with Stratego/XT: Rules, Strategies, Tools, and Systems in
StrategoXT-0.9. In C. Lengauer, editor: Domain-Specific Program Generation, Lecture Notes in Computer
Science 3016, Springer, pp. 216–238.

http://dx.doi.org/10.1016/j.entcs.2009.05.022
http://doi.acm.org/10.1145/1874590.1874605
http://doi.acm.org/10.1145/1874590.1874605
http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://dx.doi.org/10.1007/978-3-540-27815-3_29
http://dx.doi.org/10.1007/978-3-540-27815-3_29
http://dx.doi.org/10.1016/j.tcs.2006.12.018
http://dx.doi.org/10.1016/j.entcs.2005.06.041
http://dx.doi.org/10.1016/j.entcs.2007.06.009
http://dx.doi.org/10.1007/978-3-540-85863-8_50

	1 Introduction
	2 Maude in a nutshell
	2.1 Crossing the river

	3 The Maude strategy language
	3.1 Idle and fail
	3.2 Basic strategies
	3.3 Top
	3.4 Tests
	3.5 Regular expressions
	3.6 Conditional strategy and its derivations
	3.7 Rewriting of subterms
	3.8 Strategy modules and commands
	3.9 Example
	3.10 Implementations of the strategy language

	4 Some applications
	5 Completion
	5.1 N-completion
	5.1.1 Example

	5.2 S-completion
	5.3 ANS-completion

	6 Concluding remarks

