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This document describes the semantics of the probabilistic Maude strategy language as an
extension of the semantics of the standard Maude strategy language in [4]. The probabilistic
version of the Maude strategy language includes all operators of the original language and the
following new three:

• choice(𝑤1 : 𝛼1, …, 𝑤𝑛 : 𝛼𝑛) that selects one of the strategies 𝛼𝑘 according to their
weights 𝑤𝑘. These weights are terms in the Nat or Float sorts that may contain variables
if they are defined in the outer scope. This is an evolution of the nondeterministic choice
operator 𝛼1 | ⋯ | 𝛼𝑛, and similar constructs exist in a probabilistic extension of ELAN [3]
and in Porgy [1].

• sample 𝑋 := 𝜋(𝑡1, …, 𝑡𝑛) in 𝛼 that samples the variable 𝑋 from a probabilistic distri-
bution with parameters 𝑡1, … , 𝑡𝑛 that may contain variables defined in the outer contexts.
The new variable 𝑋 can be freely used in 𝛼. Both the variable 𝑋 and the parameters must
be of sort Float. The available distributions are bernouilli(𝑝), uniform(𝑎, 𝑏), exp(𝜆),
norm(𝜇, 𝜎), and gamma(𝛼, 𝛽).

• An extension of the matchrew, xmatchrew, and amatchrew combinators of the standard
strategy language to allow specifying the weight of every match and selecting one according
to these weights. Syntactically, an optional infix with weight 𝑤 is added to the original
operators, like in

matchrew 𝑃(𝑋1, … , 𝑋𝑛) s.t. 𝐶 with weight 𝑤 by 𝑋1 using 𝛼1, …, 𝑋𝑛 using 𝛼𝑛,

where the weight 𝑤 is a term of sort Nat or Float that may contain variables from the
matching, the condition, and the outer scope.

1 Small-step operational semantics
The small-step operational semantics of the Maude strategy language in [4] is defined on top of
execution states 𝒳𝒮 holding both the term being rewritten and the strategy continuation. Steps
are partioned into control steps →𝑐 that advance the execution of the strategy without modifying
the current term, and system steps →𝑠 that apply a single rule rewrite on the current term. The
rules of the operational semantics define these two small-step relations, but the most meaningful
relation is the derived ↠ = →𝑠 ∘ →∗

𝑐 that consists of a single system step preceded by as many
control transitions as needed. Since the strategy language admits delayed failures, i.e. discarding
an unbounded number of previous steps with the fail strategy or other implicit failures, not all
steps described by the small-step operational semantics are valid. The validity of a state and
consequently of a transition leading to it is defined as

valid(𝑞) = (∃ 𝑡 ∈ 𝑇Σ 𝑞 →∗
𝑠,𝑐 𝑡 @ 𝜀) ∨ (∃ 𝑥 ∶ ℕ → 𝒳𝒮 𝑥(0) = 𝑞 ∧ ∀𝑛 ∈ ℕ 𝑥(𝑛) ↠ 𝑥(𝑛 + 1))

1



where →𝑠,𝑐 = →𝑠∪→𝑐. States of the form 𝑡 @ 𝜀 and the corresponding terms 𝑡 are called solutions
of the strategy. Thus, an execution state is valid if it leads to a solution or to a nonterminating
rewriting path.

For extending the small-step operational semantics to the new probabilistic operators, we
first provide nondeterministic rules for all of them.

The choice operator may execute any of its substrategies 𝛼𝑘 whose weights evaluate to a
positive number:

𝑡 @ choice(𝑤1 : 𝛼1, …, 𝑤𝑛 : 𝛼𝑛) 𝑠 →𝑐 𝑡 @ 𝛼𝑘 𝑠 for 1 ≤ 𝑘 ≤ 𝑛 and 𝜃(𝑤𝑘) > 0

where 𝜃 = vctx(𝑠) denotes the current variable context implied by 𝑠. The precise meaning of
𝜃(𝑤𝑘) > 0 is that the term 𝜃(𝑤𝑘) is equivalent modulo equations either to a non-zero constant
of sort Nat or to a positive constant of sort Float.

For the sample operator, the variable 𝑋 can take any value in the domain of the probabilistic
distribution for the given parameters:

(sample 𝑋 := 𝜋(𝑡1, …, 𝑡𝑛) in 𝛼) 𝑠 →𝑐 𝑡 @ 𝛼 𝜃[𝑋/𝑥] 𝑠 for 𝑥 ∈ dom 𝜋(𝜃(𝑡1), … , 𝜃(𝑡𝑛))

Notice that there may be infinitely many, even uncountably many successors from a sample
state. For convenience, we consider that this rule is only applicable when the measure of the set
of valid successors of the state is positive, 𝜈({𝑥 ∈ ℝ ∶ valid(𝑡 @ 𝛼 𝜃[𝑋/𝑥] 𝑠)}) > 0.

Finally, the semantic rule for the matchrew with weight operator coincides with that of the
standard matchrew [4] with the additional condition that the weight 𝜃(𝑤) must be positive:

𝑡 @ (matchrew 𝑃 s.t 𝐶 with weight 𝑤 by 𝑥1 using 𝛼1, … , 𝑥𝑛 using 𝛼𝑛) 𝑠
→𝑐 subterm(𝑥1 ∶ 𝜎(𝑥1) @ 𝛼1 𝜎, … , 𝑥𝑛 ∶ 𝜎(𝑥𝑛) @ 𝛼𝑛 𝜎; 𝜎−{𝑥1,…,𝑥𝑛}(𝑃 )) @ 𝑠

if 𝜎 ∈ mcheck(𝑃 , 𝑡, 𝐶, 𝜃) and 𝜎(𝑤) > 0

Similar rules are valid for the other variants, xmatchrew and amatchrew.
None of the previous rules talks about probabilities, but we will turn the semantic graph into

a probabilistic transition system with the following definitions.

Definition 1 (PARS). A probabilistic abstract reduction system (PARS) [2] is a tuple (𝑆, 𝑅)
where 𝑆 is a measurable space of states and 𝑅 ⊆ 𝑆 ×ℳ(𝑆) is a transition relation that associates
probability measures over 𝑆 to the states.

Let us introduce some notation. For any 𝑠 ∈ 𝑆, 1𝑠 is the probabilistic measure satisfying
1𝑠({𝑠}) = 1, and 𝛿(𝑠) = {𝜇 ∶ (𝑠, 𝜇) ∈ 𝑅}. A state 𝑠 is deterministic if 𝛿(𝑠) = {1𝑠′} for some
𝑠′ ∈ 𝑆, free of unquantified nondeterminism if 𝛿(𝑠) = {𝜇} for some probability measure 𝜇, and
unquantified if for every 𝜇 ∈ 𝛿(𝑠) there is a 𝑠′ such that 𝜇 = 1𝑠′ . A PARS is deterministic, free
of unquantified nondeterminism, or unquantified if all of its states are so. It is discrete if 𝑆 is
finite, 𝛿(𝑠) is finite for all 𝑠 ∈ 𝑆, and every 𝜇 ∈ 𝛿(𝑠) has a finite domain. A PARS that is free
of unquantified nondeterminism can be identified with a Markov process, or with a discrete-time
Markov chain if it is also discrete. Any discrete PARS can be identified with a Markov decision
process provided an appropiate labeling of the options.

Definition 2 (PARS for 𝒳𝒮). Given a term 𝑡 and a strategy expression 𝛼, let 𝒳𝒮𝑡,𝛼 be {𝑞 ∈ 𝒳𝒮 ∶
𝑡 @ 𝛼 →∗

𝑠,𝑐 𝑞 ∧ valid(𝑞)} endowed of an appropriate 𝜎-algebra.1 The PARS on 𝒳𝒮 for 𝑡 and 𝛼 is
(𝒳𝒮𝑡,𝛼, 𝑅) where 𝑅 is defined as follows. For any state 𝑞 of the form 𝑡 @ 𝛼 𝑠 where the outermost
combinator in 𝛼 is standard, we consider the transitions (𝑞, 1𝑞′) for any small step 𝑞 →𝑠,𝑐 𝑞′

such that valid(𝑞). Whenever 𝛼 is a probabilistic combinator, we define a single transition (𝑞, 𝜇)
where 𝜇 is given by
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• For choice(𝑤1 : 𝛼1, …, 𝑤𝑛 : 𝛼𝑛), we define 𝜇({𝑡 @ 𝛼𝑘 𝑠}) = �̂�𝑘/𝑊 where 𝑊 =
∑𝑛

𝑖=1 �̂�𝑘 and �̂�𝑘 = 𝜃(𝑤𝑘) if valid(𝑡 @ 𝛼𝑘 𝑠) and �̂�𝑘 = 0 otherwise.

• For matchrew combinators, we define a similar measure with domain on the successors 𝑞𝜎 of
the nondeterministic rule for each match 𝜎. The probabilities are given by 𝜇({𝑞𝜎}) = �̂�𝜎/𝑊
where 𝑊 = ∑𝜎∈mcheck(𝑃 ,𝑡,𝐶,𝜃) �̂�𝜎 and �̂�𝜎 = 𝜎(𝑤) if valid(𝑞𝜎) and �̂�𝜎 = 0 otherwise. In
the case of xmatchrew and amatchrew, successors 𝑞(𝜎,𝑐) are indexed by both matching
substitution 𝜎 and context 𝑐.

• For sample 𝑋 := 𝜋(𝑡1, …, 𝑡𝑛) in 𝛼, if 𝜈 ∶ ℝ → [0, 1] is the measure of the distribution
𝜋(𝜃(𝑡1), … , 𝜃(𝑡𝑛)), we have that

𝜇({𝑡 @ 𝛼 𝜃[𝑋/𝑥] 𝑠 ∶ 𝑥 ∈ 𝑈}) = 𝜈(𝑈)/𝑊

for any measurable set 𝑈 ⊆ dom 𝜈 ⊆ ℝ where 𝑊 = 𝜈({𝑥 ∈ dom 𝜈 ∶ valid(𝑡 @ 𝛼 𝜃[𝑋/𝑥] 𝑠)}).
We know that 𝑊 > 0 in every case by the validity of the states.

Finally, the probabilistic transitions for composed execution states, like rewc and subterm,
are derived according to their nondeterministic semantic rules in Figures 2 and 3 of [4]. States
that are rewritten with rules without premises are handled as in the 𝑡 @ 𝛼 𝑠 case for 𝛼 headed by
a non-probabilistic combinator. States to be reduced by rules with premises are handled in the
straighforward way, i.e. there is a transition (𝑞, 𝜇) from 𝑞, there is also a transition (𝑄(𝑞), 𝜇′)
from 𝑄(𝑞) where 𝜇′({𝑄(𝑞′) ∶ 𝑞 ∈ 𝑈}) = 𝜇(𝑈) for any 𝑈 ⊆ dom 𝜇.

For example, consider a rewrite system with states 𝑆 = {a, b, c} and two rules ab and ac
that rewrite the first to the second letter. The PARS for the strategy 𝛼 = a @ ab|𝛽 with
𝛽 = choice(2 : ab, 3 : ac, 5 : fail) is (𝒳𝒮a,𝛼, 𝑅) with

𝑅 = {(a @ 𝛼, {1b @ 𝜀}), (a @ 𝛼, {1a @ 𝛽}), (a @ 𝛽, {𝜇}), (a @ ab, {1b @ 𝜀}), (a @ ac, {1c @ 𝜀})}

where 𝜇({a @ ab}) = 2/5 and 𝜇({a @ ac}) = 3/5. As a consequence, 𝛿(a @ 𝛼) = {1b @ 𝜀, 1a @ 𝛽},
𝛿(a @ 𝛽) = {𝜇}, 𝛿(a @ ab) = {1b @ 𝜀}, 𝛿(a @ ac) = {1c @ 𝜀}, and 𝛿(𝑞) = ∅ otherwise. This PARS
is neither deterministic, nor free of unquantified nondeterminism, nor unquantified, but it is
discrete.

In the following, we will construct discrete structures, so let us assume that the PARS for
the given term 𝑡 and strategy 𝛼 is discrete. Our goal is to construct a probabilistic graph whose
transitions are one-step rule applications allowed by the strategy, for what we have to collapse
control and a system transitions to ↠ = →𝑠 ∘ →∗

𝑐. For the next definition, we also assume that
it is free of unquantified nondeterminism.

Definition 3 (DTMC induced by a strategy). The discrete-time Markov chain induced by
a strategy 𝛼 that is free of unquantified nondeterminism is given by (𝑋, 𝑃 , 𝑃0) where 𝑋 =
𝑋0 ∪ {𝑡′ @ 𝜀 ∶ 𝑞 →∗

𝑐 𝑡′ @ 𝜀, 𝑞 ∈ 𝑋0}, 𝑋0 = {𝑞 ∶ 𝑡 @ 𝛼 ↠∗ 𝑞}, 𝑃0(𝑡 @ 𝛼) = 1, and

𝑃(𝑞, 𝑞′) = lim
𝑛→∞

∑
𝑞1⋯𝑞𝑚∈Path𝑛

↠(𝑞,𝑞′)
𝜇1({𝑞2}) ⋯ 𝜇𝑚−1({𝑞𝑚}) 𝑞′ ∈ 𝑋0

𝑃(𝑞, cterm(𝑞) @ 𝜀) = 1 − ∑
𝑞′∈𝑋0

𝑃(𝑞, 𝑞′)

where Path𝑛
↠(𝑞, 𝑞′) = {𝑞1𝑞2 ⋯ 𝑞𝑚 ∶ 𝑞 = 𝑞1 →𝑐 𝑞2 →𝑐 ⋯ →𝑐 𝑞𝑛−1 →𝑠 𝑞𝑚 = 𝑞′, 𝑚 ≤ 𝑛} and 𝜇𝑘 is

the only element of 𝛿(𝑞𝑘) for the PARS in Definition 2.
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The formula for 𝑃(𝑞, 𝑞′) sums the probabilities 𝜇1({𝑞2}) ⋯ 𝜇𝑚−1({𝑞𝑚}) of every path from 𝑞
to 𝑞′ expanding a ↠ transition. However, since these paths may be infinitely many, the sum
is calculated as a limit of length-bounded probabilities. Notice that this DTMC is well-defined
since the non-decreasing sequence whose limit is calculated is bounded above by 1. Moreover,
the assignment of the remaining probability to the “solution state” cterm(𝑞) → 𝜀 is legitimate,
since the only option apart from reaching a state 𝑞′ such that 𝑞 ↠ 𝑞′ is 𝑞 →∗

𝑐 cterm(𝑞) @ 𝜀 by
the definition of valid. In effect, while there may be nonterminating chains of →𝑐 transitions in
some pathological cases, they would have probability zero because they will take infinitely many
transitions of probability 𝑝 < 1 since some states must have a different successor of positive
probability for reaching a solution or a →𝑠 transition.

Now, we allow for unquantified nondeterminism in order to derive Markov decision processes.
Given any PARS and a choice 𝜆 ∶ 𝑆+ → ℳ(𝑆) of probability measures 𝜆(𝑤𝑠) ∈ 𝛿(𝑠) for every
finite path 𝑤𝑠 in 𝑆, we can calculate a single probability 𝑃(𝑤, 𝜆) for any path 𝑤 ∈ 𝑆∗. We define
𝑃(𝜀, 𝜆) = 1, 𝑃(𝑠, 𝜆) = 1, and 𝑃(𝑤𝑠, 𝜆) = 𝑃(𝑤, 𝜆) ⋅ 𝜆(𝑤)({𝑠}) for 𝑤 ∈ 𝑆+ and 𝑠 ∈ 𝑆.

Definition 4 (MDP induced by a strategy). The Markov decision process induced by the
strategy 𝛼 whose PARS does not contain cycles of →𝑐 transitions is given by (𝑋, 𝐴, 𝑃 , 𝑃0)
where 𝑋 and 𝑃0 are defined as in Definition 3, 𝐴 ⊆ {1, … , 𝑁} with 𝑁 = Π𝑞′∈𝑋|𝛿(𝑞′)| ⋅
max𝑞∈𝑋0

|Paths→∗𝑐
(𝑞, 𝑞′))|, and 𝑃 is defined as follows. For each choice 𝜆, consider

𝑃𝜆,𝑞(𝑞′) = lim
𝑛→∞

∑
𝑤∈Path𝑛

↠(𝑞,𝑞′)
𝑃(𝑤, 𝜆) 𝑞′ ∈ 𝑋0

𝑃𝜆,𝑞(cterm(𝑞) @ 𝜀) = 1 − ∑
𝑞′∈𝑋0

𝑃𝜆,𝑞(𝑞′)

Then, enumerate the elements of the set {𝑃𝜆,𝑞} = {𝑃𝑞,1, … , 𝑃𝑞,𝑛} and take 𝑃(𝑞, 𝑘, 𝑞′) = 𝑃𝑞,𝑘(𝑞′).
The construction of the MDP is simpler when the discrete PARS for 𝒳𝒮 satisfies the well-

behaved nondeterminism property: for every path 𝑞1 ⋯ 𝑞𝑛 from a state 𝑞 to state 𝑞′ such that
𝑞 ↠ 𝑞′ there is an index 𝑘 such that 𝑞1, … , 𝑞𝑘−1 are unquantified and 𝑞𝑘+1, … , 𝑞𝑛 are free of un-
quantified nondeterminism (notice that 𝑞𝑘 is arbitrary). In other words, when the first quantified
choice appears no other unquantified choice is possible.

Notes
1Assuming that Maude’s Float type is a 64-bit floating-point number, we can take ℝ ≡ {0, 1}64 and use the

discrete 𝜎-algebra 𝒫(𝒳𝒮) on 𝒳𝒮. Consequently, the continuous probabilistic distributions in the sample operator
should be discretized as they are in their implementations. Otherwise, we may consider Float terms as actual real
numbers. Given an execution state it has a finite number of real values in its variable contexts, say 𝑞(𝑣1, … , 𝑣𝑛)
for some 𝑣1, … , 𝑣𝑛 ∈ ℝ. We can take the 𝜎-algebra consisting of the sets {𝑞(𝑥1, … , 𝑥𝑛) ∶ 𝑥 ∈ 𝑈} for every execution
state pattern 𝑞 and every measurable set 𝑈 ⊆ ℝ𝑛.
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